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ABSTRACT

According to the No-Free-Lunch theorems of Wolpert and Macready, we cannot expect

one generic optimization technique to outperform others on average [WM97]. For every

optimization technique there exist \easy" and \hard" problems. However, only little is

known as to what criteria determine the particular diÆculty of a problem.

In this paper, we address this question from an evolutionary computing point of view.

We use cost distributions, i.e., the frequencies of the objective function's values occurring

in the search spaces, to devise a classi�cation of optimization problems. We scrutinize

the inuence of cost distributions on the single algorithmic components of evolutionary

computing.

Our analysis helps identifying (1) problems where evolutionary algorithms are overhead,

(2) problems where evolutionary algorithms are highly suitable optimization algorithms, as

well as (3) problems that pose diÆculties for evolutionary techniques.

1991 ACM Computing Classi�cation System: G.2.1 Combinatorics, G.3 Probability and

Statistics

Keywords and Phrases: Evolutionary Algorithms

Note: Funded by HPCN/IMPACT project.

1. Introduction

Evolutionary algorithms have been shown to be successful for a variety of opti-
mization problems like timetabling and scheduling, but there is relatively little
information on what makes a problem amenable to be solved by these algo-
rithms.
In this paper we undertake an analysis of the search space properties and

explore how cost distributions a�ect the behavior of evolutionary optimization.
Our approach di�ers fundamentally from previous work as we do not focus on
space topology, or landscapes, rather, we take a step back and consider the space
of solutions with no neighborhood structure. In this more basic view, the space
is simply the set of feasible solutions, along with their associated cost.
Though landscapes do provide valuable information about how a particular

algorithm approaches the problem, however, it is important to understand that
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any such topology is not intrinsic in the solution space of optimization problems;
it is imposed arti�cially through a arbitrary notion of adjacency, or proximity
between solutions. For example, terms like local minimum are understood with
respect to a landscape, which is de�ned by the neighborhood structure, or
connections that can be used to traverse the space. The speci�c adjacency
however is solely de�ned by the implementor of the algorithm.
In contrast, the cost distribution of a search space provides basic statistical

information such as the average cost of a solution, but also information whether
there are concentrations of good and bad solutions.
Through a large number of experiments, we have seen that cost distributions

appear to be characteristic for di�erent optimization problems: Di�erent in-
stances of a given problem, say Traveling Salesman (TSP), exhibit a similar
cost distribution; but instances of di�erent problems, say TSP and Knapsack,
show a distinctly di�erent shape. Furthermore, the variation within a problem
is limited and gradual.
In this paper we present a broad classi�cation of cost distributions, based

on our experimental observations, and study their e�ects on evolutionary algo-
rithms. For a comprehensive analysis, we break the evolutionary framework up,
scrutinize the building blocks �rst in isolation, and assess the resulting com-
pound algorithm afterwards. Our model helps explain results that have been
reported in the literature on the behavior of evolutionary algorithms.
The cost distributions we examined clearly indicate that some problems are

\very easy", in that many good solutions exist in the space|even for problems
known to be NP-complete in the worst case|, and evolutionary techniques
appear overkill. Other problems appear \very hard" requiring special prob-
lem speci�c tuning in order to achieve more than only mediocre results. For
problems in between, evolutionary algorithms turn out to be highly suitable
optimization algorithms.
Our analysis can be transferred easily to assess whether evolutionary algo-

rithms are well-suited to tackle a given problem. In case of a negative result, the
analysis of components helps identify weak spots which can then be improved.

The paper is organized as follows. In Section 2 we go into more detail on space
topology, and how it di�ers from cost distributions. In Section 3 we examine the
di�erent components of evolutionary optimization, and how they are a�ected
by the cost distribution in the space. Section 4 reports our experimental results
on three problems, Partition, Knapsack, and Traveling Salesman. Section 5
presents a summary and conclusions.

2. Parameters of Search Space

Ever since the introduction of blind search algorithms, relentless e�ort has been
devoted to characterize the search space|i.e., the set of all possible solutions|
and its inuence on the search algorithms. In this section we motivate our
choice to use cost distribution rather than topological models.

2.1 Landscape Models

Usually, the terms topology and landscape are used to describe certain properties
and relations among solutions. Though a powerful tool for an interpretation of
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(a) (b) (c)

Figure 1: Alternative tours for a Traveling Salesman Problem; (a) optimal tour,
(b) tour neighbored to optimal tour under N1, (b) under N2

certain e�ects occurring with some optimization algorithms (see e.g. [Kau93]),
these structures are not intrinsic to the problem and completely di�erent topolo-
gies can be de�ned easily, as the following example illustrates.
Consider for example the Traveling Salesman Problem where the shortest tour

via a number of cities is sought. We de�ne two di�erent notions of neighborhood
N1 and N2. Two tours are neighbored if one can be transformed into the other
by

N1 : exchanging two subsequently visited cities;

N2 : exchanging any two cities;

Figure 1 illustrates the consequences with the optimal tour and possible neigh-
bors according to the two di�erent neighborhood relations. Whereas neighbors
under N1 are of very similar cost, neighbors under N2 can be of higher di�er-
ences in costs. Moreover, N2 is a super set of N1, i.e., neighbors in N1 are also
neighbors in N2 but not conversly.
Both N1 and N2 de�ne a topology, thus a landscape, on the search space.

One appears relatively smooth (N1), the other rugged (N2) although they are
de�ned on the same problem. Neither of the two landscapes is intrinsic or
natural to the problem and a variety of further neighborhood relations has
been described in literature, most notably 2-swap and 3-swap. For a survey on
this issue see for instance [FJMO95].

2.2 Cost Distributions

A cost distribution captures the frequencies of cost values|i.e. values of the
objective function|in the complete search space. The term cost is preferable
to �tness, because sometimes �tness is intended as a relative measure (see
e.g. [ZT99]). Instead, cost refers to the absolute value of the objective function.
Cost distributions are independent of the algorithm used to tackle the prob-

lem and are an invariable property of the particular problem instance. No
matter whether a topology is de�ned at a later stage, the cost values and their
frequencies are not altered.
Cost distributions are best extracted by uniform random sampling or, if uni-

form generation of solutions is hard, by quasi uniform techniques like random
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Figure 2: Basic types of distributions.

walks etc.
What makes cost distributions such an important instrument is the possibility

to analyze concentrations of cost values in the search space. We are in particular
interested in the distance between the optimum|without loss of generality
we assume a minimization problem|and the bulk of solutions. The question
central to our further considerations is therefore:

Is this bulk close to the optimum or is the optimum an outlier with

respect to the distribution?

In large test series with di�erent optimization problems, we observed two basic
types A and B of cost distributions, the second of which comes as two subtypes
B1 and B2. In Figure 2, these distributions are shown qualitatively.
In problems with type-A distribution, the bulk of solutions is very close to

the optimal costs, i.e. there are many optimal or near-optimal solutions in the
search space. The optimum can even have highest frequency of all solutions
(see Sec. 4.1). Note, the cost-wise proximity does not imply any neighborhood
or topology.
In problems with type-B distribution, the bulk of solutions is of distinctly

di�erent cost than the optimum. We can distinguish the subtypes B1 where
the mean is at a moderate distance of the optimum, and B2 where the bulk
of solutions is far away from the optimum, i.e. the optimum is an outlier and
near-optimal solutions are rare.

Our classi�cation distinguishes three major types of distributions, but cer-
tainly not all problems can be assigned exactly to on type, but may appear to
be in between two types. However, this puts no limitation to our analysis as
the results interpolate smoothly (see next section).

3. Principles of Evolutionary Algorithms

The notion of evolutionary computing is fairly exible, comprising a large va-
riety of algorithms and techniques. Frameworks as for instance presented in
[Gol89, Mit96, Eib96] are capable of simulating other algorithms that are com-
monly not considered evolutionary, like Random Sampling or Simulated Anneal-
ing [B�ac96]. In our analysis, we �rst sketch the di�erent generic components of
evolutionary algorithms, then scrutinize the impact of cost distributions on of
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those components. In particular, we investigate to what degree the single com-
ponents use randomly selected solutions. Random sampling, uniform or biased,
on|possibly restricted{sets of solutions is the very nucleus of all randomized
optimization algorithms including evolutionary techniques.
Figure 3 shows an outline of a evolutionary algorithm in pseudo code (cf. e.g.

[Eib96]). Starting with a randomly generated initial population, generations
are repeatedly derived by selecting a set of parents, generating the o�spring
by recombination, introducing a certain random distortion in form of mutation,
and subjecting all individuals to a selection process. The algorithm terminates
as soon as a certain stopping criterion|e.g. timeout, maximum number of
individuals reached, or no improvement over a certain number of generations|
is ful�lled. In every generation, all individuals are checked for their �tness, i.e.
their costs, not only for the selection of the next generation but also to keep
track of the best individual found so far. Simulating the natural evolutionary
process the algorithm achieves a gradual improvement concentrating on well
suited individuals by selection and the production of closely related o�spring.
Let us now scrutinize the single components and how they are inuenced by

the di�erent kinds of cost distributions. We will corroborate the results of our
analysis with di�erent optimization problems in the next section.

Initialization. The inuence of the cost distribution on the initial phase is
signi�cant as initializing means literally sampling.
For a type-A distribution the probability to �nd already near-optimal solu-

tions in the initial sample is high. In other words, the subsequent optimization
phase cannot improve the initially found solutions substantially. The chances
that high quality solutions are included in the initial solution depend further
on the size of the population: very small populations may di�er enormously in
quality.
In case of a type-B distribution, the initialization's role is less important,

depending on the distance of the cost of the optimal solution from the average
cost. The sampled initial individuals are of comparable but distinctly sub-
optimal quality. As opposed to the previous case, the size of the population
does not a�ect its quality|the probability to sample a near-optimal solution is
virtually zero.

Recombination. During this phase a recombination or crossover operator is
applied to sets of individuals. It implements the actual evolutionary mechanism
that mates two (or more [ERR94]) individuals and derives a new one. Strictly
speaking, the result is a random solution consisting of parts of its ancestor.
In the case of the type-A distribution sophistication is usually of limited use

only as there are plenty of solutions in the close vicinity. However, if there are
too many close relatives, guiding the recombination process becomes also more
diÆcult.
The less solutions with similar costs to their ancestors there are, the more

astray|i.e., in direction of the average cost|the recombination may lead. So-
phisticated algorithms are necessary to avoid a fall back to the bulk of solutions
in case of a type-B2 distribution.
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proc EvolutionaryAlgorithm
t = 0

Pt = ;

Init(Pt)

repeat

P
0

t
= SelectParents(Pt)

Recombination(P 0

t
)

Mutation(P 0

t
)

Pt+1 = Selection(Pt [ P
0

t
)

t = t+ 1

until(done)
end

Figure 3: Outline of evolutionary algorithm.

Mutation. The role of mutation is disputed. It is an obvious element of
natural evolution. However, it is not clear whether it is vital for evolutionary
optimization techniques. For instance, Kosza suggested a mutation rate of
zero [Koz91].
In case of a type-A distribution, mutation can be most fruitful as the odds

to improve by random alteration are high.
For a type-B distribution, the probability to achieve an improvement by

mutation is very small and mutations is only useful to avoid undue concentration
of certain properties among the individuals.

Restarts. Evolutionary algorithms, mimicking the natural evolutionary pro-
cess are characterized by convergence, i.e. the overall �tness of the consecutive
generations increases|although not necessarily monotonic. For simpli�edmod-
els of those algorithms, the convergence of the optimum as a limit, provided an
in�nite running time, has been proven (see e.g. [Rud92], [B�ac96]). Similar facts
are known for algorithms like Simulated Annealing. However, depending on
the cost distribution, evolutionary algorithms can very well pro�t from restart-
ing, simply because of the cost distributions inuence on the initialization (see
above).
In case of a type-A distribution, the impact of re-runs may greatly improve

the results, whereas in a type-B2 scenario, re-starts do not make much of a
di�erence.

In Table 1, the basic tendencies of inuence are summarized. The three
types of cost distributions directly suggest three classes of diÆculty|from an
evolutionary algorithm point of view.
Type-A is the easiest, where all components but recombination are positively

inuenced by the distribution. However, problems of this class turn usually out
to be too simple, rendering evolutionary algorithms an overkill. Especially hill
climbing algorithms achieve a much better performance, i.e., results of compa-
rable quality but in signi�cantly shorter running time.
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Type-A Type-B1 Type-B2

Initialization �� � �

Recombination 	 � 	

Mutation �� 	 	

Restarts �� � �

(�)� = (strong) positive inuence, � = no inuence, 	 = negative inuence

Table 1: Inuence of cost distribution on components of evolutionary algorithms

Type-B1 is slightly positive inuenced; this is the kind of problem evolution-
ary algorithms are highly suitable to optimize.
Type-B2 is the most diÆcult as the cost distribution has mainly negative in-

uence. Problems of this class appear to be diÆcult for evolutionary algorithms
to optimize.

As we pointed out before, a large number of parameters determines success
and failure of evolutionary search algorithms, and negative inuences of the
cost distribution may be leveled|to a certain degree|by more sophisticated
design of recombination operators etc. However, cost distributions indicate
where advantages as well as problems are to be expected.
We also stressed that the basic framework does not restrict the choice of arbi-

trary crossover operators, or mutation rates. Even simulation of other optimiza-
tion algorithms are possible, however, the further we swerve from the simplest
of evolutionary algorithms the more likely it is that the overhead induced by
the evolutionary framework becomes more and more a hindrance rather than a
performance improvement and other, non-evolutionary algorithms may perform
better, i.e., they �nd results of similar quality within shorter running time.

4. Examples

To corroborate our previous analysis we scrutinize a couple of classic, well-
understood NP-complete optimization problems. We have to be aware, that
the given classi�cation is not de�ned in an exact way. Problems may have a
cost distribution that cannot be distinctly assigned to one of the categories but
appear to be in between two categories. However, in our experience, it is not
useful to devise a �ner system for the classi�cation|e.g. based on the statis-
tically characteristic values like mean, deviation, etc.|without taking further
problem speci�c properties as well as implementation details of the search al-
gorithm into account. On the other hand, the classi�cation with only three
categories proved surprisingly well-suited and to be of suÆcient generality.

4.1 Type-A

A typical representative of this class is the number partitioning problem, where
a set S of numbers is to be partitioned into 2 subsets S1 and S2 such that
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Figure 4: Cost distribution of number partitioning problem of size jSj = 100;
obtained from a sample of size 10000

S1 [ S2 = S, and the di�erence of the total sums

j
X

s2S1

s�
X

s2S2

sj

is minimal.
In Figure 4, the cost distribution of an instance with 100 elements. Optimal

and near-optimal costs appear with the highest possible frequency. The distri-
bution clearly is of the type-A kind. Even pure random sampling algorithms are
very likely to �nd good solutions, hill climber and other multi-start algorithms
that do not deploy highly sophisticated techniques, achieve excellent results
within extremely short running time.
Evolutionary algorithms �nd very well results of similar quality but require

longer running times. With this kind of distribution, the size of the initial
population is critical to the stability of the optimization, i.e., using a population
size of 100 almost certainly contains an optimal or near-optimal solution; the
quality of small populations may di�er signi�cantly, so that using a tight time
limit and re-starting the algorithm a couple of times may improve the results
signi�cantly in case of small populations.
Problems like number partitioning, which are known to be easy to optimize

may appear unrealistic and synthetic. This raises the question whether there
are any practical examples that display a type-A distribution too?
In fact, some very practical real-world problems belong to this class of \easy"

problems, most notably, query optimization in relational database systems.
This problem ranks among the most frequently tackled NP-complete optimiza-
tion problems due to the wide-spread use of database systems. Each single
database query, e.g. given in a query language like SQL, poses a NP-hard
optimization problem to the query optimizer.
Cost distributions found in query optimization strongly resemble exponential

distributions of the type-A kind. Because of its practical relevance, this prob-
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Figure 5: Cost distribution of multi-objective 0/1 Knapsack Problem, obtained
from a sample of 106. Region of optimal solutions in the foreground.

lem has been tackled with many kinds of optimization algorithms including
Genetic Algorithms and Genetic Programming. However, all three major stud-
ies published in this �eld [BFI91, SS96, SMK97], give experimental evidence
that evolutionary search algorithms cannot outperform hill climbing techniques
when applied to this problem (see also [Ste96]).

4.2 Type-B1

The class of type-B1 distributions comprises a large variety of scheduling,
timetabling and assignment problems. We chose the Knapsack Problem as
one of the representatives as its structure is easily accessible and can be well
illustrated due to its 2-dimensional nature.
The problems de�nition is as follows: Given a number of items|each has

a pro�t and a weight associated with it|, a (sub-)set of items is sought such
that the total weight does not exceed a given bound but the sum of pro�ts is
maximal (see e.g. [GJ79, MT87]). The problem owes its name to the analogy of
packing a knapsack. The variant we de�ned is referred to as single-objective, as
there is only one optimization goal, the maximizing of the pro�t. Branch and
bound algorithms as well as dynamic programming are usually the algorithms
of choice [MT87, Pis95].
Let us now consider the multi-objective variant of the problem, where not

only the pro�t is to be maximized but at the same time, the weight is to be
minimized. As opposed to the single-objective version, there is not only one



4. Examples 10

Multi-objective optima (Greedy)

Sampled
solutions×

×
×

×
×

×××
××

×× ×
× ××

× ×
× ×× ××

× ××× ×
×××× ×× ×× ×× ××

1000 2000 Capacity

Weight

2000

3000

4000

Profit

Figure 6: Cost distribution of multi-objective 0/1 Knapsack Problem
(cf. Fig. 5), including best multi-objective solutions found with greedy algo-
rithm.

single optimum but rather one optimum for each di�erent total weight. Genetic
algorithms are known to perform very well in the multi-objective case.
In Figure 5, the cost distribution of an instance consisting of 100 items is

shown. The distribution was obtained by a sample of 20000 packings generated
with uniform probability. The values of both weight and pro�t of the single
items were chosen as random numbers between 10 and 100. The capacity of
the knapsack was chosen as half the total weight of all items. Such assumptions
are common in the literature [ZT99]|in particular, this con�guration follows
the example of [MT90].
The resulting distribution is characterized by a marginal distribution along

each single weight con�guration that strongly resembles normal distributions.
This does not come as a surprise as both weight and pro�t of a particular pack-
ing of a knapsack are sums of random numbers. The shapes of the distribution
appear very stable and insensitive to the problem's parameters. We conducted
extensive experiments with large varieties of parameter combinations, resulting
in distributions with very similar shape, the extent may di�er though.
In order to give an indication of whether the distribution is of type B1 or

B2, it is necessary to determine the distance of the bulk of solutions from the
optima. To assess this distance, we used a greedy algorithm which provides
good approximations of the optima.



4. Examples 11

In Figure 6, the distribution is shown as a contour plot. The isolines connect
solutions with equal frequency. The theoretic region of optima is in direction
of the left upper half, stretching from the left lower corner to the right upper
corner. The optimization results found by the greedy algorithm form a lower
bound of this region (see Fig. 6). The actual optima are in the close vicinity of
those solutions.
The e�ect of this distribution on genetic search is twofold (see above): The

sampling of an initial population does not contain high quality solutions. Also,
the random sampling component in form of cross over and mutation is limited|
the probability to sample a near optimal solution practically zero. On the other
hand, the optima are not too far away from the bulk of solutions. Speci�cally,
for the multi-objective variant, genetic algorithms are known as a suitable and
very successful optimization technique.

4.3 Type-B2

Given the previous analysis, we should expect a cost distribution of a diÆcult
problem (a) to show a strong concentration of the bulk of solutions and (b) the
optimum to be far o� the bulk.
We study the cost distributions of the symmetric TSP where instances are

given only by the coordinates of the cities. The TSPLIB collection of instances
for the symmetric TSP serves as a widely accepted standard benchmark library
in this �eld [Rei91]. Figure 7 the problem cost distribution of a problem with
52 cities, obtained from 106 uniformly sampled tours, is depicted. The cost dis-
tribution shows the expected features: Almost all solutions are concentrated|
even in the upper half of the total cost range. Moreover, they are concentrated
in a very small interval. The optimal tour is known to be of length 7542. All
sampled tours are longer than 21966 and shorter than 35898. Consequently,
neither when randomly selecting tours for a initial population nor when adding
randomly chosen tours during the optimization a tour shorter than 21966 is
likely to be chosen. The best sampled tour is more than twice the length of
the one found by a simple greedy algorithm (9535). To check for the generality
of this observation, we conducted this experiment for all symmetric Euclidean
TSP instances given in the TSPLIB problem library, including maps of several
countries, plans for drilling problems, as well as random instances [Rei91]. The
shapes of the distributions observed show distinctly the features as detailed
above. With increasing size of the problem, the discrepancy between the length

of the tour found with a greedy algorithm l
(G)
min

and the best tour sampled l
(S)
min

compounds, i.e., l
(G)
min

increasingly moves to the left, l
(S)
min

to the right; the bulk
of the distribution becomes narrower with respect to the cost range. For an
in-depth analysis of the cost distributions of the TSP, including an analytical
model and the explanation for the asymmetry of the total range, we refer the
interested reader to [Waa99].
The TSP is know to be a diÆcult problem for evolutionary algorithms. Evo-

lutionary algorithms when applied to this problem require special, sophisticated
extensions in order to achieve competitive results (see e.g. [MW92]).
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Figure 7: Cost distribution obtained from uniform sample of size 106. lmin

denotes the global optimum, l
(G)
min

and l
(G)
max shortest and longest tour found by

greedy algorithm, l
(S)
min

and l
(S)
max shortest and longest tour found by sampling.

5. Summary

Based on the observation that a cost distribution of an optimization problem is
characteristic for the problem [WGL00], we studied its e�ects and implications
on an optimization with evolutionary techniques. Cost distributions come in
three major types of shape: (1) a strong concentration of costs similar to the
optimum, and two variants where the bulk of solutions has costs (2) far or (3)
very far o� the optimum, respectively.
Our analysis shows which algorithmic principles of evolutionary search are

positively and which are negatively inuenced by a particular shape of the cost
distribution. Summing these partial inuences up, we gave experimental ev-
idence that cost distributions indicate whether a problem is (1) too easy for
an evolutionary approach, i.e., evolutionary search is an overkill and simpler
algorithms perform just as well if not better, (2) of a diÆculty which evolution-
ary techniques are typically well suited to tackle, or (3) a hard problem, where
the standard repertoire of evolutionary implementation techniques achieve only
mediocre performance.
Unlike previous work in this �eld we deliberately avoided the notion of land-

scape, because it is not intrinsic to the problem but arti�cially imposed on the
space, intently or not, to allow the use of navigation algorithms. In contrast,
cost distributions are entirely inherent to the problem, and independent of the
optimization algorithm applied. Furthermore, we observed that cost distribu-
tions could predict the behavior of evolutionary algorithms, which do introduce
and utilize a space topology. It appears that cost distributions are inuential
to the de�nition of landscapes, as the diÆculty of shaping a certain landscape
depends also on the number of available solutions of certain costs. For exam-
ple, a landscape which is favorable for hill climbing optimization is signi�cantly
easier to de�ne in case of a type-A distribution than is for a type-B.
Our analysis provides an indicator whether a given problem is diÆcult enough

to be tackled with evolutionary algorithms; and which component of an evolu-
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tionary search technique to modify and tune, in case the results are not satis-
fying.

Future Work. Our �ndings suggest several directions for further research.
For a better understanding of cost distributions an analysis of the problem
speci�c parameters underlying is inevitable. Based on such an analysis, we
pursue a classi�cation of NP-complete optimization problems with respect to
the applicability of certain optimization algorithms.
Taking this method of analysis to other optimization algorithms is an exciting

challenge. An analysis of randomized algorithms like Simulated Annealing and
Iterative Local Search is currently underway.
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