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1. INTRODUCTION

With 3.5 billion searches per day 1 , the impact of Google’s
search engine cannot be underestimated. The underlying
mechanism that ensures that the most relevant search
results stand out, relies on the inherent information of the
internet network consisting of websites (nodes) connected
by hyperlinks (directed edges). To distill this information
from the network,Google’s PageRank algorithm essentially
performs a random walk on the internet network modeled
by a modified Markov chain. At each time step at a current
node, the walk randomly chooses an available edge and
moves to the corresponding node to continue the random
walk. The stationary distribution of the location of this
random walk induces the ranking of nodes in terms of
importance. Relatively more visits to a node in the long-
run means a more important node. For the original work
see Brin and Page (1998).

Also in other application domains Markov chain network
analysis can lead to important insights, such as in biblio-
metrics, social network analysis, systems analysis of road
networks, as well as in economics, biology, chemistry, neu-
roscience, and physics. For more details see Gleich (2015).

There are some real-life networks aspects that often com-
plicate network analysis in practice. A feature of many
real-life networks is that they continuously change over
time. For example, think of a stock market where the
network describes the trading dynamics between traders.
As a result, one has to recalculate network measures often
in order to obtain the latest network insights. As networks
can be of gigantic size nowadays, e.g., Facebook’s social
network reached more than 2 billion users this year accord-
ing to Zuckerberg (2017), each of these (re-)calculations

1 Reported on http://www.internetlivestats.com/

google-search-statistics (15 December 2017)

may pose a computational burden on its own. Another
complicating feature is that network nodes are often not
strongly connected in practice. A network may consist of
multiple weakly or strongly connected components which
is reflected as a Markov multi-chain. This lack of con-
nectivity leads to numerical challenges when evaluating
network concepts. For example, without making the net-
work artificially strongly connected and thereby distorting
the true network dynamics (as in Google’s PageRank),
the stationary distribution is often not unique. The truly
long-term distribution of the location of the random walk
is described by the ergodic projector of a Markov multi-
chain. For a discussion and an alternative ranking that
incorporates the ergodic projector see Berkhout and Hei-
dergott (2018).

The focus of this article is on the efficient updating of the
ergodic projector of the random walk on weakly connected
networks in a continuously changing network environment
in which existing connections are revised. The contribution
of this paper is two-fold: (i) a reformulation of the series
expansion for the ergodic projector of Markov multi-chains
from Schweitzer (1968) is presented that is suitable for
numerical updating by providing an error bound, and (ii) a
new series expansion is introduced that allows efficient up-
dating of the resolvent after network changes. More specif-
ically, the Markov chain resolvent accurately approximates
the ergodic projector Markov multi-chains. Moreover, with
little extra effort the resolvent also provides an accurate
approximation for the in Markov chain theory fundamental
deviation matrix.

The outline of the rest of this article is as follows. In
Section 2 the main technical concepts will be introduced.
Afterwards, in Section 3 these concepts will be used to
develop the series representations of the ergodic projector
and the resolvent of Markov multi-chains. The applicabil-
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ity of the series expansions will be illustrated in Section 4
via numerical experiments. This article concludes in Sec-
tion 5.

2. PRELIMINARIES

In the following, it will be shown how to model a random
walk on a network in terms of a Markov chain. Afterwards,
Markov chain concepts such as the ergodic projector,
deviation matrix and resolvent will be introduced.

General networks can typically be modeled as directed
graphs with weighted edges. In particular, let G = (V,E)
describe a directed graph with finite vertex set V and
edge set E ⊆ V × V . All edges are weighted by a positive
function f based on the underlying network dynamics, i.e.,
f : E → (0,∞). An edge e = (i, j) ∈ E means that there
is a directed relation from i to j and the relation-strength
is described by weight f(e). For example, f(e) may be the
number of hyperlinks going from website i to website j in
an internet network.

The location of a random walk on the graph-modeled-
network will be described by a discrete time Markov chain
(Xt : t = 0, 1, 2, . . . ) on state space V . Particularly,Xt ∈ V
is the node-location/state of the random surfer at time t.
Write P as the transition matrix of the Markov chain of
which the (i, j)-th element is given by

P (i, j) =
f(i, j)∑

(i,k)∈E f(i, k)
, for all (i, j) ∈ E,

and P (i, j) = 0 for all (i, j) /∈ E. In case
∑

j∈V P (i, j) = 0,

we set P (i, i) = 1. In general, a real-life network of C
strongly connected components with no outgoing edges
leads to a Markov transition matrix of the canonical form
(after relabeling the nodes)

P =




P1 0 0 · · · 0
0 P2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 PC 0
P̄1 P̄2 · · · P̄C P̄C+1




(1)

wherein, for k = 1, 2, . . . , C, Pk is the transition matrix
of the kth ergodic class, and P̄k contains the transition
probabilities from the transient states to ergodic class
k. Lastly, P̄C+1 describes transition probabilities between
transient states. When C = 1, P models a Markov uni-
chain, whereas P with C > 1 models a Markov multi-
chain. For convenience, the described Markov chain with
transition probability matrix P will be denoted as ‘Markov
chain P ’.

The probability of finding the random walk at node j after
t discrete time steps when starting at node i is given by
(P t)(i, j) = Pr(Xt = j | X0 = i). In particular, the focus is
on the long term distribution of the random walk location
as given by the ergodic projector ΠP . Using a Cesaro limit,
ΠP is defined as

ΠP = lim
T→∞

1

T

T−1∑
t=0

P t.

It holds that ΠP equals limt→∞ P t when Markov chain
P is aperiodic. For more details see Kemeny and Snell

(1976). When P is of the canonical form as in (1), ergodic
projector ΠP is of the form

ΠP =




Π1 0 0 · · · 0
0 Π2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 ΠC 0
Π̄1 Π̄2 · · · Π̄C 0



.

The rows in square matrix Πk are all equal to the unique
stationary distribution of the chain inside the kth ergodic
class, i.e., equal to the unique distribution πPk

satisfying
π�
Pi
Pi = π�

Pi
. Element (i, j) in Matrix Π̄k gives the

equilibrium probability of visiting j (which is part of
the kth ergodic class) when starting in transient state
i. It holds for k = 1, 2, . . . , C, see, e.g., Berkhout and
Heidergott (2014), that Π̄k = (I − P̄C+1)

−1P̄kΠPk
, where

I is an appropriately sized identity matrix. If the random
walk starts according to a random distribution v, the
probability of finding the walk at node j in the long
term is given by v�ΠP (j). To exactly calculate ΠP in
practice, one has to: i) uncover the multi-chain structure,
ii) determine Πk for k = 1, 2, . . . , C, and iii) determine Π̄k

for k = 1, 2, . . . , C.

Throughout this article, ‖ · ‖ denotes the ∞-norm. While
any norm can be chosen, this norm choice allows to use
simplifying properties such as ‖P‖ = 1.

An alternative way to evaluate ΠP directly (i.e., without
having to uncover the multi-chain structure first) by means
of an approximation is to determine the so-called resolvent
of Markov chain P , see Kartashov (1996). The resolvent
of Markov chain P with α ∈ (0, 1] is defined as

Rα(P ) = α(I − (1− α)P )−1.

It is shown in Theorem 1.5 of Kartashov (1996) that
limα→0 Rα(P ) = ΠP . In Berkhout and Heidergott (2016b)
this result is elaborated into a numerical approximation
framework for ΠP and it is essentially shown 2 that

‖Rα(P )−ΠP ‖ ≤ αc(P ),

where c(P ) is an α-independent constant. This shows
that for α ∈ (0, 1] small, Rα(P ) provides an accurate
approximation for ΠP .

Remark 1. It is worth noting that choosing α too small
may cause numerical instabilities when approaching the
machine precision, see Berkhout and Heidergott (2016b),
which implies that ‖Rα(P )−ΠP ‖ cannot be made numer-
ically arbitrarily small.

Virtually everything that you would want to know of a
Markov chain P can be determined using the so-called
deviation matrix DP , see Meyer (1975), where DP is indi-
cated as the group inverse of I − P . It also plays an im-
portant role in Markov decision theory and computation,
see, e.g., the monograph of Puterman (1994), and serves as
a basis for a structural way of ranking nodes in networks
described by a Markov multi-chain P , see Berkhout and
Heidergott (2018). Matrix DP is defined as

2 In Berkhout and Heidergott (2016b), Rα(P ) is modified for effi-
cient evaluation. It can be shown that the similar bounds as for the
modified version from Berkhout and Heidergott (2016b) also hold
true for Rα(P ).
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1. INTRODUCTION

With 3.5 billion searches per day 1 , the impact of Google’s
search engine cannot be underestimated. The underlying
mechanism that ensures that the most relevant search
results stand out, relies on the inherent information of the
internet network consisting of websites (nodes) connected
by hyperlinks (directed edges). To distill this information
from the network,Google’s PageRank algorithm essentially
performs a random walk on the internet network modeled
by a modified Markov chain. At each time step at a current
node, the walk randomly chooses an available edge and
moves to the corresponding node to continue the random
walk. The stationary distribution of the location of this
random walk induces the ranking of nodes in terms of
importance. Relatively more visits to a node in the long-
run means a more important node. For the original work
see Brin and Page (1998).

Also in other application domains Markov chain network
analysis can lead to important insights, such as in biblio-
metrics, social network analysis, systems analysis of road
networks, as well as in economics, biology, chemistry, neu-
roscience, and physics. For more details see Gleich (2015).

There are some real-life networks aspects that often com-
plicate network analysis in practice. A feature of many
real-life networks is that they continuously change over
time. For example, think of a stock market where the
network describes the trading dynamics between traders.
As a result, one has to recalculate network measures often
in order to obtain the latest network insights. As networks
can be of gigantic size nowadays, e.g., Facebook’s social
network reached more than 2 billion users this year accord-
ing to Zuckerberg (2017), each of these (re-)calculations

1 Reported on http://www.internetlivestats.com/

google-search-statistics (15 December 2017)

may pose a computational burden on its own. Another
complicating feature is that network nodes are often not
strongly connected in practice. A network may consist of
multiple weakly or strongly connected components which
is reflected as a Markov multi-chain. This lack of con-
nectivity leads to numerical challenges when evaluating
network concepts. For example, without making the net-
work artificially strongly connected and thereby distorting
the true network dynamics (as in Google’s PageRank),
the stationary distribution is often not unique. The truly
long-term distribution of the location of the random walk
is described by the ergodic projector of a Markov multi-
chain. For a discussion and an alternative ranking that
incorporates the ergodic projector see Berkhout and Hei-
dergott (2018).

The focus of this article is on the efficient updating of the
ergodic projector of the random walk on weakly connected
networks in a continuously changing network environment
in which existing connections are revised. The contribution
of this paper is two-fold: (i) a reformulation of the series
expansion for the ergodic projector of Markov multi-chains
from Schweitzer (1968) is presented that is suitable for
numerical updating by providing an error bound, and (ii) a
new series expansion is introduced that allows efficient up-
dating of the resolvent after network changes. More specif-
ically, the Markov chain resolvent accurately approximates
the ergodic projector Markov multi-chains. Moreover, with
little extra effort the resolvent also provides an accurate
approximation for the in Markov chain theory fundamental
deviation matrix.

The outline of the rest of this article is as follows. In
Section 2 the main technical concepts will be introduced.
Afterwards, in Section 3 these concepts will be used to
develop the series representations of the ergodic projector
and the resolvent of Markov multi-chains. The applicabil-
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ity of the series expansions will be illustrated in Section 4
via numerical experiments. This article concludes in Sec-
tion 5.

2. PRELIMINARIES

In the following, it will be shown how to model a random
walk on a network in terms of a Markov chain. Afterwards,
Markov chain concepts such as the ergodic projector,
deviation matrix and resolvent will be introduced.

General networks can typically be modeled as directed
graphs with weighted edges. In particular, let G = (V,E)
describe a directed graph with finite vertex set V and
edge set E ⊆ V × V . All edges are weighted by a positive
function f based on the underlying network dynamics, i.e.,
f : E → (0,∞). An edge e = (i, j) ∈ E means that there
is a directed relation from i to j and the relation-strength
is described by weight f(e). For example, f(e) may be the
number of hyperlinks going from website i to website j in
an internet network.

The location of a random walk on the graph-modeled-
network will be described by a discrete time Markov chain
(Xt : t = 0, 1, 2, . . . ) on state space V . Particularly,Xt ∈ V
is the node-location/state of the random surfer at time t.
Write P as the transition matrix of the Markov chain of
which the (i, j)-th element is given by

P (i, j) =
f(i, j)∑

(i,k)∈E f(i, k)
, for all (i, j) ∈ E,

and P (i, j) = 0 for all (i, j) /∈ E. In case
∑

j∈V P (i, j) = 0,

we set P (i, i) = 1. In general, a real-life network of C
strongly connected components with no outgoing edges
leads to a Markov transition matrix of the canonical form
(after relabeling the nodes)

P =




P1 0 0 · · · 0
0 P2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 PC 0
P̄1 P̄2 · · · P̄C P̄C+1




(1)

wherein, for k = 1, 2, . . . , C, Pk is the transition matrix
of the kth ergodic class, and P̄k contains the transition
probabilities from the transient states to ergodic class
k. Lastly, P̄C+1 describes transition probabilities between
transient states. When C = 1, P models a Markov uni-
chain, whereas P with C > 1 models a Markov multi-
chain. For convenience, the described Markov chain with
transition probability matrix P will be denoted as ‘Markov
chain P ’.

The probability of finding the random walk at node j after
t discrete time steps when starting at node i is given by
(P t)(i, j) = Pr(Xt = j | X0 = i). In particular, the focus is
on the long term distribution of the random walk location
as given by the ergodic projector ΠP . Using a Cesaro limit,
ΠP is defined as

ΠP = lim
T→∞

1

T

T−1∑
t=0

P t.

It holds that ΠP equals limt→∞ P t when Markov chain
P is aperiodic. For more details see Kemeny and Snell

(1976). When P is of the canonical form as in (1), ergodic
projector ΠP is of the form

ΠP =




Π1 0 0 · · · 0
0 Π2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 ΠC 0
Π̄1 Π̄2 · · · Π̄C 0



.

The rows in square matrix Πk are all equal to the unique
stationary distribution of the chain inside the kth ergodic
class, i.e., equal to the unique distribution πPk

satisfying
π�
Pi
Pi = π�

Pi
. Element (i, j) in Matrix Π̄k gives the

equilibrium probability of visiting j (which is part of
the kth ergodic class) when starting in transient state
i. It holds for k = 1, 2, . . . , C, see, e.g., Berkhout and
Heidergott (2014), that Π̄k = (I − P̄C+1)

−1P̄kΠPk
, where

I is an appropriately sized identity matrix. If the random
walk starts according to a random distribution v, the
probability of finding the walk at node j in the long
term is given by v�ΠP (j). To exactly calculate ΠP in
practice, one has to: i) uncover the multi-chain structure,
ii) determine Πk for k = 1, 2, . . . , C, and iii) determine Π̄k

for k = 1, 2, . . . , C.

Throughout this article, ‖ · ‖ denotes the ∞-norm. While
any norm can be chosen, this norm choice allows to use
simplifying properties such as ‖P‖ = 1.

An alternative way to evaluate ΠP directly (i.e., without
having to uncover the multi-chain structure first) by means
of an approximation is to determine the so-called resolvent
of Markov chain P , see Kartashov (1996). The resolvent
of Markov chain P with α ∈ (0, 1] is defined as

Rα(P ) = α(I − (1− α)P )−1.

It is shown in Theorem 1.5 of Kartashov (1996) that
limα→0 Rα(P ) = ΠP . In Berkhout and Heidergott (2016b)
this result is elaborated into a numerical approximation
framework for ΠP and it is essentially shown 2 that

‖Rα(P )−ΠP ‖ ≤ αc(P ),

where c(P ) is an α-independent constant. This shows
that for α ∈ (0, 1] small, Rα(P ) provides an accurate
approximation for ΠP .

Remark 1. It is worth noting that choosing α too small
may cause numerical instabilities when approaching the
machine precision, see Berkhout and Heidergott (2016b),
which implies that ‖Rα(P )−ΠP ‖ cannot be made numer-
ically arbitrarily small.

Virtually everything that you would want to know of a
Markov chain P can be determined using the so-called
deviation matrix DP , see Meyer (1975), where DP is indi-
cated as the group inverse of I − P . It also plays an im-
portant role in Markov decision theory and computation,
see, e.g., the monograph of Puterman (1994), and serves as
a basis for a structural way of ranking nodes in networks
described by a Markov multi-chain P , see Berkhout and
Heidergott (2018). Matrix DP is defined as

2 In Berkhout and Heidergott (2016b), Rα(P ) is modified for effi-
cient evaluation. It can be shown that the similar bounds as for the
modified version from Berkhout and Heidergott (2016b) also hold
true for Rα(P ).
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DP = lim
T→∞

1

T

T−1∑
t1=0

t1−1∑
t2=0

(P t2 −ΠP ) = (I−P +ΠP )
−1−ΠP .

Existence of DP is guaranteed for finite-state Markov
chains, see Puterman (1994). A related concept in Markov
chain theory is the fundamental matrix ZP which equals

ZP = DP +ΠP = (I − P +ΠP )
−1.

The resolvent can also be used for approximating DP at
the expense of 1 extra matrix multiplication. In particular,
defining for α ∈ (0, 1] the resolvent approximation for DP

as

Dα(P ) =
1

α
(I −Rα(P ))Rα(P )

it is essentially shown in Berkhout and Heidergott (2016a)
that

‖Dα(P )−DP ‖ ≤ αc̄(P ), (2)

where c̄(P ) (> c(P )) is an α-independent constant. This
illustrates thatDα(P ) gives an accurate approximation for
small α ∈ (0, 1].

3. SERIES REPRESENTATIONS OF THE ERGODIC
PROJECT AND THE RESOLVENT

Given the ergodic projector (or resolvent) of a Markov
chain P and a Markov chain Q �= P close to P , it
is reasonable to expect that the ergodic projector (or
resolvent) of a Markov chain Q is close to that of P . This
will be exploited using a series expansion for the ergodic
projector in Subsection 3.1 and similarly for the resolvent
in Subsection 3.2. It is worth noting that the series
developments are inspired by the analysis from Heidergott
et al. (2007) in which a series expansion is presented for the
ergodic projector. However, this expansion for the ergodic
projector is not applicable to Markov multi-chains (as it
relies on the property that QΠP = ΠP which in general
does not hold).

3.1 Schweitzer Inspired Series Expansion

In Schweitzer (1968) a series expansion is presented that
applies to Markov multi-chains in case ΠQ → ΠP as
Q → P . In particular, it is shown in Schweitzer (1968)
that

ΠQ =

∞∑
n=0

Bn

where for n ≥ 0

Bn =

n∑
k=0

ZPU
kΠPU

n−k with U = (Q− P )ZP .

Differential matrix U measures the distance between P
and Q. The series terms can be efficiently evaluated via

Bn+1 = BnU + ZPU
n+1ΠP with B0 = ΠP .

The following lemma allows the development of a sim-
ilar series as in Schweitzer (1968), the error of which
can be meaningfully bounded. The lemma requires that
ΠP = ΠPΠQΠP , which holds when Markov chains P and
Q have the same ergodic classes. Furthermore, for a mean-
ingful analysis, P and Q should be not “too different”.
Specifically, it will be imposed that ||U || < 1 so that
(I−U)−1 =

∑∞
n=0 U

n exists. Note that ‖Q−P‖ < 1/‖ZP ‖
implies ||U || < 1.

Lemma 2. When ΠP = ΠPΠQΠP and ||U || < 1,

ΠQ = ZP (I − U)−1ΠP +ΠQU.

Proof. It holds that

ΠQ = ZP (I − U)−1ΠP +ΠQU

⇔ Z−1
P ΠQ = (I − U)−1ΠP + Z−1

P ΠQU

⇔ ΠP = (I − U)Z−1
P ΠQ(I − U)

writing out I−U = I−(Q−P )ZP , respectively, and using
that ΠQQ = QΠQ = ΠQ

ΠQ = ZP (I − U)−1ΠP +ΠQU

⇔ ΠP = Z−1
P ΠQ(I − U)− (Q− P )ΠQ(I − U)

⇔ ΠP = (Z−1
P − (Q− P ))ΠQ(I − U)

⇔ ΠP = (I +ΠP −Q)ΠQ(I − U)

⇔ ΠP = ΠPΠQ(I − U)

⇔ ΠP = ΠPΠQ(I − (Q− P )ZP )

⇔ ΠP = ΠPΠQ(I − (I − P )ZP )

⇔ ΠP = ΠPΠQ(I − (I −ΠP ))

⇔ ΠP = ΠPΠQΠP . �

Iterating the result from Lemma 2 gives

ΠQ = ZP (I − U)−1ΠP +ΠQU

= ZP (I − U)−1ΠP (I + U) + ΠQU
2

= ... (iterating N times in total)

= ZP (I − U)−1ΠP

N∑
n=0

Un +ΠQU
N+1.

Utilizing that
∑N

n=0 U
n is a natural approximation for

(I − U)−1 =
∑∞

n=0 U
n (assuming ||U || < 1), gives the

following multi-chain series expansion

ΠQ = ZP

N∑
n=0

UnΠP

N∑
n=0

Un

︸ ︷︷ ︸
:=V (N,P,Q)

+ΠQU
N+1 + ZPU

N+1(I − U)−1ΠP

N∑
n=0

Un

︸ ︷︷ ︸
:=W (N,P,Q)

,

where V (N,P,Q) is defined as the N th order series ex-
pansion approximation for ΠQ and W (N,P,Q) the cor-
responding error. The following theorem establishes con-
vergence of the series expansion approximation for ΠQ at
geometric rate.

Theorem 3. When ΠP = ΠPΠQΠP and ||U || < 1

‖W (N,P,Q)‖ ≤
(
1 +

2‖ZP ‖
(1− ‖U‖)2

)
‖U‖N+1.

Proof. First observe that∥∥∥∥∥
N∑

n=0

Un

∥∥∥∥∥ =
∥∥(I − UN+1)(I − U)−1

∥∥

≤ 1 + ‖U‖N+1

1− ‖U‖
<

2

1− ‖U‖
.

Therefore, it holds for the error of V (N,P,Q) that
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‖W (N,P,Q)‖

≤

∥∥∥∥∥ΠQU
N+1 + ZPU

N+1(I − U)−1ΠP

N∑
n=0

Un

∥∥∥∥∥

≤ ‖U‖N+1 + ‖U‖N+1‖ZP ‖‖(I − U)−1‖

∥∥∥∥∥
N∑

n=0

Un

∥∥∥∥∥
≤ ‖U‖N+1(1 + 2‖ZP ‖/(1− ‖U‖)2). �

Remark 4. In practice, condition ‖U‖ < 1 might be too
restrictive. It is topic of further research to relax this
requirement.

Suppose ΠP and ZP for Markov chain P are known.
When Markov chain P changes to Q (assuming that
ΠP = ΠPΠQΠP and ||U || < 1), an efficient procedure to
approximate ΠQ via V (N,P,Q) to a user-defined precision
ε > 0 is as follows. Matrix multiplication and inverse are
denoted by m and i, respectively. Firstly, determine ΠP ,
ZP and ‖ZP ‖ (2 i). Then, for each Q:

(1) Find U = (Q− P )ZA and ‖U‖.
(2) Choose N = log(ε/

(
1 + 2‖ZP ‖

(1−‖U‖)2

)
)/ log(‖U‖).

(3) Determine V (N,P,Q). (For each Q: (N + 2) m)

Theorem 3 then guarantees that ‖ΠQ − V (N,P,Q)‖ < ε.

3.2 Resolvent Series Expansion

In the following, a series expansion for the resolvent will
be developed that allows for an accurate approximation of
Rα(Q) once Rα(P ) is known. Moreover, it follows from (2)
that with one extra matrix multiplication this expansion
also provides an accurate approximation for deviation
matrix DQ.

The series expansion for the resolvent relies on the follow-
ing update formula.

Lemma 5. (Resolvent Update Formula). For Markov chains
P and Q, the following update formula holds for all α ∈
(0, 1]

Rα(Q) = Rα(P ) +Rα(Q)Tα(P,Q),

where

Tα(P,Q) :=
1− α

α
(Q− P )Rα(P ).

Proof. Writing out Rα(Q), which is allowed since ‖(1 −
α)P‖ < 1, and taking the first term out shows that

Rα(Q) = α

∞∑
n=0

((1− α)Q)n

= αI +Rα(Q)(1− α)Q.

Subtracting Rα(Q)(1− α)P from both sides gives

Rα(Q)(I − (1− α)P ) = αI +Rα(Q)(1− α)(Q− P )

⇔ Rα(Q) = Rα(P ) +Rα(Q)(1− α)(Q− P )

· (I − (1− α)P )−1

⇔ Rα(Q) = Rα(P ) +Rα(Q)
1− α

α
(Q− P )Rα(P ),

using the definition of Tα(P,Q) concludes the proof. �

Note that Tα(P,Q) can be seen as the resolvent version
of differential matrix U . Iterating the resolvent update
formula to its right hand side gives

Rα(Q) = Rα(P ) +Rα(Q)Tα(P,Q)

= Rα(P ) (I + Tα(P,Q)) +Rα(P )Tα(P,Q)2

= ... (iterating N times in total)

= Rα(P )

N∑
n=0

Tα(P,Q)n

︸ ︷︷ ︸
Sα(N,P,Q)

+Rα(Q)Tα(P,Q)N+1

︸ ︷︷ ︸
Eα(N,P,Q)

,

where the series expansion of order N for Rα(Q) is de-
fined as Sα(N,P,Q) and the corresponding error term as
Eα(N,P,Q). The claim is that Sα(N,P,Q), for relatively
small N (i.e., a few series terms), provides a good approx-
imation for Rα(Q) in case P and Q are not too different,
i.e.,

∑∞
n=0 Tα(P,Q)n should converge. A sufficient condi-

tion for
∑∞

n=0 Tα(P,Q)n to exist is that

∃N ∈ N : ‖Tα(P,Q)N‖ < 1.

The following theorem provides a sharp bound that can
be used in practice by multiplying the last term of
Sα(N,P,Q) by 1−α

α (Q− P ) from the right.

Theorem 6. For Markov chains P and Q and α ∈ (0, 1],
when

∑∞
n=0 Tα(P,Q)n < ∞

‖Eα(N,P,Q)‖ ≤
∥∥∥∥Rα(P )Tα(P,Q)N

1− α

α
(Q− P )

∥∥∥∥ .

Proof. The following resolvent property will be used in
this proof

I =
1

α
(I−(1−α)P )Rα(P ) = Rα(P )

1

α
(I−(1−α)P ). (3)

A necessary condition for
∑∞

n=0 Tα(P,Q)n to converge is
that limN→∞ Tα(P,Q)N = 0. This implies that

lim
N→∞

‖Eα(N,P,Q)‖ ≤ lim
N→∞

‖Tα(P,Q)N+1‖ = 0,

therefore,
lim

N→∞
Sα(N,P,Q) = Rα(Q). (4)

This means that

Eα(N,P,Q) = Rα(P )

∞∑
n=N+1

Tα(P,Q)n

= Rα(P )Tα(P,Q)N+1
∞∑

n=0

Tα(P,Q)n,

for which, using (3) and (4),
∞∑

n=0

Tα(P,Q)n =
1

α
(I − (1− α)P )Rα(P )

∞∑
n=0

Tα(P,Q)n

︸ ︷︷ ︸
=Rα(Q)

so that

Eα(N,P,Q) =
1

α
Rα(P )Tα(P,Q)N+1(I − (1− α)P )Rα(Q)

=
1

α
Rα(P )Tα(P,Q)N (1− α)(Q− P )Rα(Q),

where the last equality uses that

Tα(P,Q)(I − (1− α)P ) = (1− α)(Q− P ),

because of (3).

Taking the norm of the last found expression ofEα(N,P,Q)
leads to

IFAC WODES 2018
May 30 - June 1, 2018. Sorrento Coast, Italy

67



	 J. Berkhout  et al. / IFAC PapersOnLine 51-7 (2018) 64–69	 67

‖W (N,P,Q)‖

≤

∥∥∥∥∥ΠQU
N+1 + ZPU

N+1(I − U)−1ΠP

N∑
n=0

Un

∥∥∥∥∥

≤ ‖U‖N+1 + ‖U‖N+1‖ZP ‖‖(I − U)−1‖

∥∥∥∥∥
N∑

n=0

Un

∥∥∥∥∥
≤ ‖U‖N+1(1 + 2‖ZP ‖/(1− ‖U‖)2). �

Remark 4. In practice, condition ‖U‖ < 1 might be too
restrictive. It is topic of further research to relax this
requirement.

Suppose ΠP and ZP for Markov chain P are known.
When Markov chain P changes to Q (assuming that
ΠP = ΠPΠQΠP and ||U || < 1), an efficient procedure to
approximate ΠQ via V (N,P,Q) to a user-defined precision
ε > 0 is as follows. Matrix multiplication and inverse are
denoted by m and i, respectively. Firstly, determine ΠP ,
ZP and ‖ZP ‖ (2 i). Then, for each Q:

(1) Find U = (Q− P )ZA and ‖U‖.
(2) Choose N = log(ε/

(
1 + 2‖ZP ‖

(1−‖U‖)2

)
)/ log(‖U‖).

(3) Determine V (N,P,Q). (For each Q: (N + 2) m)

Theorem 3 then guarantees that ‖ΠQ − V (N,P,Q)‖ < ε.

3.2 Resolvent Series Expansion

In the following, a series expansion for the resolvent will
be developed that allows for an accurate approximation of
Rα(Q) once Rα(P ) is known. Moreover, it follows from (2)
that with one extra matrix multiplication this expansion
also provides an accurate approximation for deviation
matrix DQ.

The series expansion for the resolvent relies on the follow-
ing update formula.

Lemma 5. (Resolvent Update Formula). For Markov chains
P and Q, the following update formula holds for all α ∈
(0, 1]

Rα(Q) = Rα(P ) +Rα(Q)Tα(P,Q),

where

Tα(P,Q) :=
1− α

α
(Q− P )Rα(P ).

Proof. Writing out Rα(Q), which is allowed since ‖(1 −
α)P‖ < 1, and taking the first term out shows that

Rα(Q) = α

∞∑
n=0

((1− α)Q)n

= αI +Rα(Q)(1− α)Q.

Subtracting Rα(Q)(1− α)P from both sides gives

Rα(Q)(I − (1− α)P ) = αI +Rα(Q)(1− α)(Q− P )

⇔ Rα(Q) = Rα(P ) +Rα(Q)(1− α)(Q− P )

· (I − (1− α)P )−1

⇔ Rα(Q) = Rα(P ) +Rα(Q)
1− α

α
(Q− P )Rα(P ),

using the definition of Tα(P,Q) concludes the proof. �

Note that Tα(P,Q) can be seen as the resolvent version
of differential matrix U . Iterating the resolvent update
formula to its right hand side gives

Rα(Q) = Rα(P ) +Rα(Q)Tα(P,Q)

= Rα(P ) (I + Tα(P,Q)) +Rα(P )Tα(P,Q)2

= ... (iterating N times in total)

= Rα(P )

N∑
n=0

Tα(P,Q)n

︸ ︷︷ ︸
Sα(N,P,Q)

+Rα(Q)Tα(P,Q)N+1

︸ ︷︷ ︸
Eα(N,P,Q)

,

where the series expansion of order N for Rα(Q) is de-
fined as Sα(N,P,Q) and the corresponding error term as
Eα(N,P,Q). The claim is that Sα(N,P,Q), for relatively
small N (i.e., a few series terms), provides a good approx-
imation for Rα(Q) in case P and Q are not too different,
i.e.,

∑∞
n=0 Tα(P,Q)n should converge. A sufficient condi-

tion for
∑∞

n=0 Tα(P,Q)n to exist is that

∃N ∈ N : ‖Tα(P,Q)N‖ < 1.

The following theorem provides a sharp bound that can
be used in practice by multiplying the last term of
Sα(N,P,Q) by 1−α

α (Q− P ) from the right.

Theorem 6. For Markov chains P and Q and α ∈ (0, 1],
when

∑∞
n=0 Tα(P,Q)n < ∞

‖Eα(N,P,Q)‖ ≤
∥∥∥∥Rα(P )Tα(P,Q)N

1− α

α
(Q− P )

∥∥∥∥ .

Proof. The following resolvent property will be used in
this proof

I =
1

α
(I−(1−α)P )Rα(P ) = Rα(P )

1

α
(I−(1−α)P ). (3)

A necessary condition for
∑∞

n=0 Tα(P,Q)n to converge is
that limN→∞ Tα(P,Q)N = 0. This implies that

lim
N→∞

‖Eα(N,P,Q)‖ ≤ lim
N→∞

‖Tα(P,Q)N+1‖ = 0,

therefore,
lim

N→∞
Sα(N,P,Q) = Rα(Q). (4)

This means that

Eα(N,P,Q) = Rα(P )

∞∑
n=N+1

Tα(P,Q)n

= Rα(P )Tα(P,Q)N+1
∞∑

n=0

Tα(P,Q)n,

for which, using (3) and (4),
∞∑

n=0

Tα(P,Q)n =
1

α
(I − (1− α)P )Rα(P )

∞∑
n=0

Tα(P,Q)n

︸ ︷︷ ︸
=Rα(Q)

so that

Eα(N,P,Q) =
1

α
Rα(P )Tα(P,Q)N+1(I − (1− α)P )Rα(Q)

=
1

α
Rα(P )Tα(P,Q)N (1− α)(Q− P )Rα(Q),

where the last equality uses that

Tα(P,Q)(I − (1− α)P ) = (1− α)(Q− P ),

because of (3).

Taking the norm of the last found expression ofEα(N,P,Q)
leads to
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‖Eα(N,P,Q)‖

≤
∥∥∥∥Rα(P )Tα(P,Q)N

1− α

α
(Q− P )

∥∥∥∥ ‖Rα(Q)‖,

which proves the result since ‖Rα(Q)‖ = 1. �

Suppose Rα(P ) for Markov chain P is known. When
Markov chain P changes to Q, an efficient procedure
to approximate Rα(Q) via Sα(N,P,Q) to a user-defined
precision ε > 0 is as follows, where again, a matrix multi-
plication and inverse are denoted by m and i, respectively.
Determine Rα(P ) and Tα(P,Q) (1 i + 1 m), and initialize
N = 0 and Sα(0, P,Q) = Rα(P ). For each Q:

While ‖Rα(P )Tα(P,Q)N (Q− P )‖ ≥ αε
1−α :

(1) Calculate

Rα(P )Tα(P,Q)N+1 = Rα(P )Tα(P,Q)NTα(P,Q).

(2) Save

Sα(N +1, P,Q) = Sα(N,P,Q)+Rα(P )Tα(P,Q)N+1.

(3) Set N = N + 1.

Return Sα(N,P,Q). (For each Q: (2(N + 1)− 1) m)

In practice, one immediately notices when the error bound
drifts away for increasing N . In that case, P and Q differ
too much. It follows from Theorem 6 that this procedure
leads to an approximation Sα(N,P,Q) which satisfies
‖Rα(Q)− Sα(N,P,Q)‖ < ε.

In the following, a connection will be established between
Sα(N,P,Q), V (N,P,Q) and the series expansion for the
ergodic projector from Heidergott et al. (2007), respec-
tively. The connection requires that QΠP = ΠP which in
general does not hold for Markov multi-chains.

Proposition 7. When QΠP = ΠP , it holds that

lim
α↓0

Sα(N,P,Q) = V (N,P,Q) = ΠP

N∑
n=0

((Q− P )DP )
n

and also the errors coincide, i.e.,

lim
α↓0

Eα(N,P,Q) = W (N,P,Q) = ΠQ((Q− P )DP )
N+1.

Proof. Since QΠP = ΠP (as prerequisite) and PΠP =
ΠP , it holds that

Tα(N,P,Q) =
1− α

α
(Q− P )Rα(P )

= (1− α)(Q− P )
∞∑
i=0

(1− α)i(P i −ΠP ),

this expression allows us to let α tend to 0 which leads to

lim
α↓0

Tα(N,P,Q) = (Q− P )DP .

Furthermore, noting that limα↓0 Rα(P ) = ΠP and
limα↓0 Rα(Q) = ΠQ, proves the connection between the
resolvent series expansion and the series expansion from
Heidergott et al. (2007).

Because ZPΠP = ΠP and QΠP = ΠP , it holds that

ZP

N∑
n=0

UnΠP = ZP

N∑
n=0

((Q− P )ZP )
nΠP = ΠP .

Furthermore, U may be written as

U = (Q− P )ZP = (Q− P )(ZP +ΠP ) = (Q− P )DP .

Together this shows that V (N,P,Q) coincides with the
series expansion approximation of Heidergott et al. (2007).
The same holds true for the error by observing that
W (N,P,Q) = ΠQU

N+1 = ΠQ((Q − P )DP )
N+1 (where

it is tacitly used that UN+1ΠP = 0 for N ≥ 0). �

4. NUMERICAL EXPERIMENTS

This section illustrates the practical applicability of the
presented series expansions using a numerical experiment.
To that end, a social network from Moody (2001) is used,
which is the result of an in-school questionnaire. The
specific dataset can be found in KONECT (2017). Each
student of the school was asked to list his 5 best female
and his 5 male friends. Each node represents a student
and when student i chose student j as a friend this is
represented by an edge (i, j) ∈ E. In total the dataset
consists of 2,539 nodes and 12,969 edges.

All edges are weighted by a function f : E → {1, 2, . . . , 6}.
A larger edge weight indicates more interaction. In partic-
ular for (i, j) ∈ E, f(i, j) = 1+xij where xij is the number
of the following activities students i and j participated in.
These activities were:

• you went to (his/her) house in the last seven days,
• you met (him/her) after school to hang out or go
somewhere in the last seven days,

• you spent time with (him/her) last weekend,
• you talked with (him/her) about a problem in the last
seven days,

• you talked with (him/her) on the telephone in the
last seven days.

Value f(i, j) = 1 means that student i nominated j as
friend but reported no activities, whereas f(i, j) = 6
means that student i nominated j as friend and reported
participating in all five activities with the friend. The
network is converted to Markov chain P as described in
Section 2. It leads to a Markov multi-chain of 228 ergodic
states and 2,311 transient states. The rows of ΠP give
insight into the popularity of the students, for more details
see Berkhout and Heidergott (2018). This is useful infor-
mation for, e.g., social support and marketing purposes.
In the following, the network edges will be revised and it
will be demonstrated that the presented series expansions
efficiently lead to accurate approximations for the new
ergodic projector, i.e., the popularity of students in the
revised network.

For the numerical experiment a random matrix Y is drawn
with elements

Y (i, j) =

{
0 if (i, j) �∈ E

X if (i, j) ∈ E
,

where X is a uniform random variable on interval (0, 10).
Subsequently, the rows of Y are normalized so that it be-
comes a stochastic matrix. The objective is to approximate
ΠQθ

, where
Qθ = Q = (1− θ)P + θY.

The results for a typical random Qθ with θ = 0.01 can be
found in Figure 1 (for which ‖P−Qθ‖ ≈ 0.0163). To obtain
a sharper bound, ‖UN+1‖ instead of ‖U‖N+1 is used in
the bound for ‖W (N,P,Qθ)‖ as given in Theorem 3. The
bound for ‖Eα(N,P,Qθ)‖ is as in Theorem 6. The value
α = 10−8 is used for the resolvent.
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Fig. 1. The series expansion approximation errors for
θ = 0.01 (‖P − Qθ‖ ≈ 0.0163). A few series terms
is enough for an accurate approximation.

Fig. 2. The series expansion approximation errors for
θ = 0.1 (‖P −Qθ‖ ≈ 0.163).

It follows from Figure 1 that 2 series terms leads to
a norm error below 10−4. In other words, V (2, P,Qθ)
and Sα=10−8(2, P,Qθ) already provide accurate approxi-
mations for ΠQθ

. ForN ≥ 4, the bound for ‖Eα(N,P,Qθ)‖
becomes smaller than the actual value of ‖Eα(N,P,Qθ)‖.
This is due to similar numerical issues as mentioned in
Remark 1.

The value of θ is small in this initial experiment to ensure
that ‖U‖ < 1 so that the bound for ‖W (N,P,Qθ)‖ (from
Theorem 3) holds. In this context see also Remark 4.
However, the development of V (N,P,Qθ) does not rely
on this restriction so that θ may be increased for testing
purposes. The results for approximating ΠQθ

with θ = 0.1
can be found in Figure 2.

When θ = 0.1, P andQθ differ more so that relatively more
series terms are required to obtain a precision of 10−4, i.e.,
N = 4 terms. Furthermore, the bound for ‖Eα(N,P,Qθ)‖
is sharp enough to be used in practice to guarantee a
certain precision.

5. CONCLUSION

The introduced series expansions in this paper allow
efficient updating of the ergodic projector of Markov multi-

chains. Numerical examples illustrate the usefulness of the
presented approximations and their error bounds. Future
research will be on the analysis of local perturbations,
i.e., perturbations restricted to a subnetwork, extensions
to perturbations of the structure of the network, and
tightening the error bound for the ergodic projector series
expansion.
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Fig. 1. The series expansion approximation errors for
θ = 0.01 (‖P − Qθ‖ ≈ 0.0163). A few series terms
is enough for an accurate approximation.

Fig. 2. The series expansion approximation errors for
θ = 0.1 (‖P −Qθ‖ ≈ 0.163).

It follows from Figure 1 that 2 series terms leads to
a norm error below 10−4. In other words, V (2, P,Qθ)
and Sα=10−8(2, P,Qθ) already provide accurate approxi-
mations for ΠQθ

. ForN ≥ 4, the bound for ‖Eα(N,P,Qθ)‖
becomes smaller than the actual value of ‖Eα(N,P,Qθ)‖.
This is due to similar numerical issues as mentioned in
Remark 1.

The value of θ is small in this initial experiment to ensure
that ‖U‖ < 1 so that the bound for ‖W (N,P,Qθ)‖ (from
Theorem 3) holds. In this context see also Remark 4.
However, the development of V (N,P,Qθ) does not rely
on this restriction so that θ may be increased for testing
purposes. The results for approximating ΠQθ

with θ = 0.1
can be found in Figure 2.

When θ = 0.1, P andQθ differ more so that relatively more
series terms are required to obtain a precision of 10−4, i.e.,
N = 4 terms. Furthermore, the bound for ‖Eα(N,P,Qθ)‖
is sharp enough to be used in practice to guarantee a
certain precision.

5. CONCLUSION

The introduced series expansions in this paper allow
efficient updating of the ergodic projector of Markov multi-

chains. Numerical examples illustrate the usefulness of the
presented approximations and their error bounds. Future
research will be on the analysis of local perturbations,
i.e., perturbations restricted to a subnetwork, extensions
to perturbations of the structure of the network, and
tightening the error bound for the ergodic projector series
expansion.
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