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Abstract
Queuing networks are a well-established approach to modeling and analysis of com-
plex systems. This paper develops an approach to risk-analysis of queuing network
models, where “risk” is understood as the possible impact of ignoring parameter inse-
curity. Our approach allows to compute the value at risk of performance characteristics
of queuing networks under parameter insecurity.

Keywords Robustness analysis · Queuing network · Parameter insecurity

1 Introduction

Jackson networks (henceforth JN), to be formally introduced later on, are a well
established class ofmodels in, e.g., production, telecommunication, computer systems;
for surveys seeKelly (1979) andChen andYao (2001). JN’s have the desirable property
that the distribution of the stationary queue length vector is of product-form, which
allows for quick numerical evaluation of performance measures, such as the the mean
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queue length,mean sojourn times and the throughput at nodes. In this paperweconsider
JN’s with the additional features:

– simultaneous breakdown and repair of groups of servers (i.e., repair can be
grouped). This allows in particular (i) to model simultaneous breakdown of groups
of servers, and (ii) model group repair strategies. For example, repairing several
servers simultaneously may lead to more efficient repair actions and thus may
reduce the repair time.

– infinite supply, where infinite supply has the aim to utilize the capacity of a server
to the fullest. For example, in service center models it is typically assumed that an
agent, when not answering a call, switches to low priority works such as answering
email and administrative duties.

Like for classical JN’s, one can obtain for these extended JN’s the steady-state
distribution of the queue-length vector at stable nodes in product-from for different
type of failure-regimes (a precise definition of “stable node” will be provided later in
the text), see Sommer et al. (2017). In addition, closed-form solutions for the long-run
throughput of subnetworks and of the complete network are provided.

Design and analysis of stochastic networks are often challenged by the fact that the
exact specifications of the network are either not known. This is even more so true
for models including breakdowns as there is typically only limited information on
breakdowns available. Indeed, during usual operation breakdowns are to be avoided
and typically only censored observations are available, which is in contrast to, for
example, repairs (indeed, repair times are observable and can often be influenced by
a decision maker).

Elaborating on the product-form results in Sommer et al. (2017), we will in this
paper investigate the impact of the distribution of the time between breakdowns of the
individual servers on the throughput of the network. More specifically, we will model
the breakdown behavior through a parameterized distribution, and provide a robust-
ness analysis of the system throughput with respect to the uncertainty parameters. Our
analysis shows how for different breakdown and repair regimes, the corresponding
risk profiles for system-oriented and customer-oriented performance metrics can be
evaluated. It is worth noting that this efficient risk analysis step is only possible due to
the simple closed-form solutions obtained for the performance measures. The frame-
work provided in this paper allows to combine robustness analysis and performance
modeling in an efficient way.

The research for robustness analysis of stochastic models is a predominant research
line in Georg Pflug’s work, see, for example the monographs (Ermoliev et al. 2006;
Pflug 2000). Next to his impressive work on stochastic optimization the study
of risk and the investigation on how to deal with uncertainty in stochastic mod-
els.

The paper is organized as follows. Section 2 gives a brief introduction to the class of
generalized JN’s. Robustness analysis is introduced in Sect. 3. The general approach
to robustness analysis is presented in Sect. 4. We conclude the paper with discussion
of possible future research directions.
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2 Jackson networks with breakdowns and repairs

We present a brief review of the theory of JN’s with breakdowns and repairs. For
details we refer to Sommer et al. (2017). The network consists of J exponential single
server nodes with service discipline “First-Come-First-Served” (FCFS), the node set
is denoted by J̃ = {1, . . . , J }. At node i a Poisson stream with rate λi ≥ 0 arrives
from the exterior node 0, and service times at node i are exponential with rate μi .
All service times constitute an independent family of variables which are independent
of the arrival streams. Standard customers are indistinguishable and follow the same
rules. Routing is Markovian

Nodes in V ⊆ J̃ have an infinite supply from which customers are put into an
idling server. We denote W := J̃\V and require V �= ∅ (unless otherwise specified).
Customers from the infinite supply have lowpriority, and (standard) customers arriving
from the outside or from another server have high priority with preemptive-resume
regime: Service of a low priority customer is interrupted as soon as a high priority
customer arrives. Service of low priority customers is resumed only when the server
idles again. When a low priority customer is served and fed into the network, he
becomes a high priority customer and follows the rules for standard customers. Service
times of the low priority customers are independent from the external arrival streams
and the service times of high priority customers.

Let D denote the set of nodes that can breakdown. The breakdown-repair process
Y = (Y (t) : t ≥ 0) is Markov on state space P(D), where P(D) denotes the power
set of D. Y (t) = I , for ∅ ⊆ I ⊆ D, indicates that (exactly) the nodes in I are broken
down. The transition rates of Y out of I ⊆ D are given as

1. if I ⊂ H ⊆ D, the nodes in H\I break down with rate α(I , H) ≥ 0,
2. if ∅ ⊆ K ⊂ I , the nodes in I\K are repaired with rate β(I , K ) ≥ 0.

Rates α(·, ·) and β(·, ·) are constructed from any pair of functions A, B : P(D) →
[0,∞), subject to (i) A(∅) = B(∅) = 1, (ii) ∀ I ⊂ H ⊆ D : A(H)/A(I ) < ∞, and
(iii) ∀ ∅ ⊆ K ⊂ I : B(I )/B(K ) < ∞ (where we set 0/0 = 0).

With these functions we set for all subsets of down nodes I ⊆ D

α(I , H) = A(H)

A(I )
, I ⊂ H ⊆ D, and β(I , K ) = B(I )

B(K )
, ∅ ⊆ K ⊂ I . (1)

Remark 1 With suitable functions A and B we can model, e.g., that nodes may break
down isolated or in groups, and repair may happen similarly. It is not required that
nodes which are broken down are repaired simultaneously. A statistical procedure to
check whether this form is justified, is to determine in a first step all possible values
A(I ) = α(∅, I } and B(I ) = β(I ,∅),∀I ⊆ D, and then to check (1) stepwise.

The availability process Y is an ergodicMarkov process with stationary distribution

π(I ) =
⎛
⎝ ∑

K⊆D

A(K )

B(K )

⎞
⎠

−1

· A(I )

B(I )
, ∀I ⊆ D. (2)
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From this the stationary (time) point availability (PA) of a Jackson networkwith infinite
supply and unreliable nodes (or subnetworks thereof) may be computed similar to
Sauer and Daduna (2003), p.185) as PA(H) := ∑

K⊆D\H π(K ), for H ⊆ D and
t ≥ 0, where π(I ) is the probability that exactly the nodes in I ⊆ D are under repair
as given by (2).

The following regime is set in force whenever a node breaks down:

– service at this node is interrupted, customers (of high as well as of low priority)
are frozen there to wait for restart of the service, which is resumed at the point
where it was paused,

– no new customers are admitted to enter that node,
– customers who select a broken down node to visit are rerouted according one of the
classical rules: stalling, skipping or blocking rs-rd, which will be defined below,

– all these rules, if applicable, are valid for high and low priority customers.

Rerouting is a functional of Y and applies only to high priority customers, because
on departure from a node with infinite supply low priority customers are transformed
immediately to high priority, and only thereafter are rerouted. We distinguish the
following rerouting schemes:

– Stalling: Whenever a node breaks down the service system is frozen: All arrival
processes are interrupted and service everywhere in the network is stopped until all
broken down nodes are repaired again. Stalling is applied, e.g., in the automotive
industry to decrease variability of the flow of materials. Indeed, stalling prevents
servers to send parts to a server that is broken down and thereby prevents piling
up inventory.

– Skipping: If as next destination of a customer a downnode is selected, the customer
jumps to this node, spends no time there, and immediately performs the next jump
according to routing regime R until he arrives at a node in up status or leaves
the network. Skipping is applied, e.g., in production networks where skipping a
production step yields a product of lower but sufficient quality.

– Blocking rs-rd: Broken down stations are blocked. A customer whose next des-
tination is down stays at his present node to obtain immediately another service
there. After the repeated service (rs) the customer chooses his next destination
anew according to R (random destination (rd)). Blocking rs-rd is applied, e.g.,
in communication networks where packages are rerouted in case a link is not
available.

Throughout this article, it is assumed that all nodes in W are stable, i.e., the traffic
rate ηi , following from the general traffic equations for Jackson networks with infinite
supply but no breakdowns and repairs, is smaller than its service rate μi for every
node i in W , i.e., ηi < μi . Without breakdowns, i.e., D = ∅, the traffic equations of
Jackson networks with infinite supply is

ηi = λi +
∑
j∈W

η j r( j, i) +
∑
j∈V

μ j r( j, i), i ∈ J̃ . (3)
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By assumption, under blocking rs-rd the following reversibility constraints hold:

ηi r(i, j) = η j r( j, i) ∀i, j ∈ W , (4)

ηi r(i, j) = μ j r( j, i) ∀i ∈ W , j ∈ V , (5)

and in case of skipping the following rate stability constraints hold:

ηi = μi , ∀i ∈ V ∩ D. (6)

These constraints ensure that solution ηi , i ∈ J̃ , from (3) is also the solution of
the traffic equations for unreliable Jackson networks under any breakdown scenario.
For more details see Sommer et al. (2017). Under these assumptions, we provide an
overview on the studied performance characteristics in the following. For an overview
of other performance characteristics see Sommer et al. (2017).

Under stalling the stationary throughput at nodes i ∈ W (no infinite supply) is

ηi · π(∅).

Under blocking rs-rd and skipping the stationary throughput at a node i ∈ W is

ηi ·
∑

I⊆D,i /∈I
π(I ).

To simplify the presentation, we will in the following only consider individual
breakdowns and repairs, where for a server i ∈ D the breakdown rate will be denoted
by τi and the repair rate by ρi . We conclude this section with a short discussion on the
robustness of JN’s as modeling class for stochastic networks.

Remark 2 Suppose that the physical layout of the network, i.e., the number of nodes,
and the topology are known, as well as mean service times, mean inter-arrival times of
customers at the network and routing decisions. Provided that this rough information
constitute the only available data in advance, arguments exploiting entropy properties
lead to use so-called product-formmodels as conservative first ordermodels. Indeed, if
mean service times and mean inter-arrival times are given, the exponential distribution
is known to maximize the entropy over all distributions with support R+ := [0,∞)

and these means,1 see, for example, Park and Bera (2009), Lisman and van Zuylen
(1972). Furthermore, for given arrival and service rates at the stations, a product-form
solution maximizes the entropy of the stationary queue length distribution (Ferdinand
1970; Walstra 1985). Therefore, product-form solutions are conservative and robust
models with respect to model insecurity in the service time and inter-arrival time
distributions. Hence, working with a model with exponentially distributed service
times and inter-arrival times that does have a product-form solution for the stationary
queue length distribution, provides a robust model for performance analysis.

1 Loosely speaking, entropy can be seen in this context as the amount of uncertainty. Results based on
distributions given certain means with maximal entropy should be ‘least surprising’ in terms of predictions
that follow from the model. Therefore, the most conservative probabilistic model for service times (or
inter-arrival times) with support R+ consistent with a given mean value is an exponential distribution.
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3 Robustness analysis

As pointed out in the introduction, breakdown rates are hard to estimate via historical
data. Therefore, one is typically confronted with uncertainty about the true value
of the parameters defining the distributions of the time between breakdowns, in our
case the failure rate. This is known as parameter uncertainty in the literature, see,
for example, Haverkort and Meeuwissen (1992), for a discussion on integration of
parameter uncertainty into queueing models and Henderson (2003) for a discussion
on parameter insecurity from a broader perspective. In the following, the focus is
on robustness analysis of our queuing model with respect to uncertainty about the
breakdown rates.

In modeling parameter uncertainty, the choice of the distribution is of importance
and one typically chooses a particular distribution based on (possible incomplete)
knowledge that is available. For example, if the mean and the variance are known, and
if, in addition, we know that the parameter may take values in R, the most general
distribution is the normal distribution, where “most conservative” refers to the fact
that this distribution maximizes the entropy. On the other hand, when, due to expert
knowledge, it is known that the parameter falls into an interval, say, [a, b], then the
uniform distribution on [a, b] is the entropymaximizing distribution; see, for example,
Kullback (1959).Alternatively, theremay be statistical knowledge available on θ based
onmeasurements. Then, the distribution of the statistic used for estimating θ is a natural
candidate for the distribution of θ .

Formally,we assume that the breakdown rate τ is a randomvariable defined on some
underlying probability field, and that the probability density function for τ , denoted
by fτ , is known. We let h(τ ) denote some reward function. Think, for example, of h
as the stationary throughput at node i . Provided that h is invertible and the inverse is
differentiable with respect to the throughput

g(y) = fτ (h
−1(y))

∣∣∣∣
d

dy

(
h−1(y)

)∣∣∣∣ (7)

yields the density of the stationary throughput. Based on the distributional assumptions
or statistical information comprised in fτ , one may, as is common practice in applied
probability, take the expected value of τ , denoted byμτ = ∫

y fτ (y)dy, as a noise-free
approximation of τ and subsequently h(μτ ) as output for the throughput. Since h(μτ )

is typically not close to E[h(τ )], simply using μτ instead of τ falls short of bringing
the risk incurred by the insecurity on τ to light. To analyze the impact τ has on h(τ ),
we consider the value at risk of h(τ ), denoted in short by VaR(α), where VaR(α) = q
if and only if

G−1(α) = q,

where G(·) denotes the cumulative distribution function of h(τ ), which is, for ease of
presentation, assumed to be continuous and invertible. The potential misspecification
at an α probability level is thus h(μτ )−VaR(α). Note that for the throughput we want
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Fig. 1 The two-way-tandem network as analyzed in Sect. 3.1

to hedge against the risk of low values, so we use the α-quantile, whereas for cost
functions one would measure the risk through the (1 − α)-quantile.

In the following, we make the reasonable assumption that the “true” breakdown
rate at node i , that is, τi , is not revealed to us and we therefore assume that τi follows a
given distribution Fi . Instances of the throughput can be easily obtained by sampling
the τi ’s according to their assumed distribution and evaluating the realization of the
stationary throughput. Creating a sufficient number of samples, the density and the
cumulative distribution function of the throughput can be estimated and evaluated
for further robustness analysis. We would like to point out that a similar robustness
analysis can be performed for other performance measures of the queuing network as
given (Sommer et al. 2017).

We illustrate the application of the above results to robustness analysis with the
help of the following examples.

3.1 A tandem system

Consider the network with J = {1, 2, 3} nodes given in Fig. 1. The network is a two-
way tandem of three nodes. The infinite supply is depicted by a dashed arrow pointing
to server 2, and the node that is prone to failure is depicted as a grey circle. Note that
by incorporating node 0, the linear topology is transformed into a ring. To summarize,
V = {2}, W = {1, 3}, and D = V , i.e., the infinite supply node is prone to failure.
Routing is given by

r(1, 2) = a, r(1, 0) = 1 − a, r(2, 3) = b, r(2, 1)

= 1 − b, r(3, 0) = c, r(3, 2) = 1 − c,

and

r(0, 1) = λ1

λ1 + λ3
, r(0, 3) = λ3

λ1 + λ3
,

for 0 < a, b < 1 and λi > 0, i = 1, 2.
For ease of analysis, we parameterize the model and set λ1 = (1 − a)t , for t > 0,

and λ3 = at , and b = 1 − c. Regarding the service rates it holds that

μ1 > t, μ2 = t
a

c
and μ3 > t

a

c
.
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In this model, we assume for a breakdown scenario that the rate with which a break-
down of server i = 2 occurs is given by τ2, and we denote the corresponding repair
rate by ρ2. Then,

π(∅) = ρ2

ρ2 + τ2

and the throughput at node 3 under stalling as a function of a certain τ2 is given by

h(τ2) = η3ρ2

ρ2 + τ2
,

and by computation

h−1(y) = η3ρ2

y
− ρ2 and

d

dy
h−1(y) = −η3ρ2

y2
.

Let h denote the stationary throughput at node i = 3 andmodel τ2 as being random.
In the following, two distributions for τ2 are elaborated, the uniform and exponential
distribution, respectively:

– Assume that τ2 is uniformly distributed on [a, b], with 0 < a < b < ∞. Then,

g(y) = 1

b − a

η3ρ2

y2
, for

η3ρ2

ρ2 + b
≤ y ≤ η3ρ2

ρ2 + a
,

and zero otherwise. It holds that μτ2 = (a + b)/2. The value at risk, i.e., the
α-quantile of the stationary throughput, is also easily computable to be

VaR(α) = η3ρ2

ρ2 + b − (b − a)α
,

for α ∈ [0, 1]. In words, for α · 100% of the possible breakdown rates the actual
throughput of the system will fall below VaR(α). Observe, that for α = 1 we have
VaR(α) = η3ρ2/(ρ2 + a), which is the right bound of the support of τ2, and for
α = 0 we have Var(α) = η3ρ2/(ρ2 + b), which is the left bound of the support of
h(τ2).
Suppose b = k · a with k > 1, then τ2 is uniformly distributed on [a, ka], and τ2
becomes rather uncertain for large values of k. Then the above analysis uncovers
the exposed risk by expecting the throughput to be of order h(μτ2) without taking
the stochasticity into account. In particular, with chance α the realized throughput
h(τ2) is at least

(
1 −

2ρ2
a + k + 1

2ρ2
a + 2(1 − α)k + 2α

)
· 100% (8)

smaller than h(μτ2). For example, let α = 0.1, then with probability 0.1 the actual
throughput h(τ2) is at least approximately 44.4% smaller than h(μτ2) for relatively
large k.
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– Let τ2 be exponentially-λ-distributed so that μτ2 = 1/λ. Then the density for the
throughput via (7) equals

g(y) = λη3ρ2

y2
exp

(
−λρ2

(
η3

y
− 1

))
,

for y ∈ (0, η3]. It can be shown that the cumulative distribution function of g(y)
is given by

G(y) = exp

(
−λη3ρ2

y
+ λρ2

)
, for y ∈ (0, η3], (9)

which leads to

VaR(α) = λρ2η3

λρ2 − ln(α)
, (10)

for α ∈ (0, 1). Note that the “naive” throughput is given by

h(1/λ) = λρ2η3

λρ2 + 1

and the difference between h(1/λ) and VaR(α) expresses the model risk at prob-
ability α.

Remark 3 Consider the uniform model for τ2 and consider the reasonable case that
the breakdown rate is small, i.e., assume that τ2 is close to zero. More specifically, let
τ2 ∼ U (0, 2 · ε), and assume that ρ2 = c · ε, for c > 1. It then holds for the relative
error that

h(E[τ2]) − VaR(α)

h(E[τ2]) = 1 − 1 + c

2(1 − α) + c
,

which implies that VaR(α) is (1 − 1+c
2(1−α)+c ) · 100 percent smaller than h(E[τ2]) for

α ≤ 1/2, and VaR(α) is ( 1+c
2(1−α)+c −1) ·100 percent lager than h(E[τ2]) for α ≥ 1/2.

This reasoning allows for a quick assessment of the impact of the postulated model
on the breakdown rate.

3.2 A star-like system

Consider a networkwith J = {1, 2, . . . , 6}, V = {2, 3, 4},W = {1, 5, 6}, and D = V ,
i.e., all infinite supply nodes are prone to failure, depicted by grey circles in Fig. 2.
Jobs arrive from outside with rate λ at the central node 1. From node 1 they go with
probability r/5 to any of the nodes 2 to 6, for r ∈ (0, 1). After finishing service at
node i = 2, . . . , 6, jobs are sent back to the central node 1. Being served there, they
either leave the system with probability 1 − r , or are sent back to one of the servers
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Fig. 2 The star-like network as
analyzed in Sect. 3.2

in the set {2, . . . , 6} according to the routing scheme described above. Let h denote
the stationary throughput at node i = 2 and model τ2 as being random. Then, the
throughput at node 2 as a function of certain τ2 under skipping is

h(τ2) = η2π(∅)

(
1 + τ3

ρ3
+ τ4

ρ4
+ τ3 + τ4

2min(ρ3, ρ4)

)
,

with π(∅) given as

π(∅) =
(
1 +

4∑
i=2

τi

ρi
+ τ2 + τ3

2min(ρ2, ρ3)
+ τ2 + τ4

2min(ρ2, ρ4)

+ τ3 + τ4

2min(ρ3, ρ4)
+ τ2 + τ3 + τ4

3min(ρ3, ρ3, ρ4)

)−1

.

Letting

a1 = 1 + τ3

ρ3
+ τ4

ρ4
+ τ3 + τ4

2min(ρ3, ρ4)
+ τ4

2min(ρ2, ρ4)

+ τ3

2min(ρ2, ρ3)
+ τ3 + τ4

3min(ρ2, ρ3, ρ4)
,

a2 = 1

ρ2
+ 1

2min(ρ2, ρ4)
+ 1

2min(ρ2, ρ3)
+ 1

3min(ρ2, ρ3, ρ4)
,

and

a3 = η2

(
1 + τ3

ρ3
+ τ4

ρ4
+ τ3 + τ4

2min(ρ3, ρ4)

)
,
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we may write for a constant τ2

h(τ2) = a3
a1 + a2τ2

.

Hence,

h−1(y) = a3
a2y

− a1
a2

and
d

dy
h−1(y) = − a3

a2y2
.

In the following we show that for uniformly and exponentially distributed τ2, closed
form expressions for the value at risk can be obtained:

– Assume that τ2 is uniformly distributed on [a, b], with 0 < a < b < ∞. Then,

g(y) = 1

b − a

a3
a2y2

, for
a3

a1 + a2b
≤ y ≤ a3

a1 + a2a

and zero otherwise. The value at risk, i.e., the α quantile of the stationary through-
put, is also easily computable to be

VaR(α) = a3
a1 + a2b − α(b − a)a2

,

for α ∈ [0, 1].
– For τ2 exponentially distributed with parameter λ it holds that

g(y) = λ exp

(
−λ

(
a3
a2y

− a1
a2

))
a3
a2y2

, (11)

for y ∈ (0, a3
a1

), so that

G(y) = exp

(
−λ

(
a3
a2y

− a1
a2

))
, (12)

and thus

VaR(α) = λa3
λa1 − a2 ln(α)

,

for α ∈ (0, 1).

Aswe have shown in this section, for uniform and exponential distributions,VaR(α)

can be explicitly solved, which is due to the simplicity of both distributions. In the
following we study the more challenging problem when the distribution of τ2 is of
general form.
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4 The general approach

In this section we provide a general approach to approximately computing VaR(α).
Revisit the two-way network from example in Sect. 3.1. Let τ2 be normally distributed
with mean μ and standard deviation σ but conditioned on interval [γl , γr ] where
0 ≤ γl < γr . The rationale behind the conditioning is that negative values as well as
non-realistically large values for τ2 are avoided. Then, following (7), the throughput
at node 3 under stalling has density g for

η3ρ2

ρ2 + γr
≤ y ≤ η3ρ2

ρ2 + γl
(13)

given by

g(y) = η3ρ2

ΔΦσ
√
2π y2

exp

⎛
⎜⎝−

(
η3ρ2
y − ρ2 − μ

)2

2σ 2

⎞
⎟⎠ , (14)

where

ΔΦ = Φ

(
γr − μ

σ

)
− Φ

(
γl − μ

σ

)

and Φ(·) is the standard normal cumulative distribution function. To obtain the VaR
we need to find the inverse of the cumulative distribution of the throughput given by

G(y) =
∫ y

η3ρ2
ρ2+γr

g(t)dt .

Computing the inverse of a general function can usually only be performed numer-
ically. However, in case the function of interest is analytical and can thus be written
as a power series, a power series representation of the inverse can be obtained. This
result is well-known in analysis, see, e.g., Dettman (2012). However, computing the
actual elements of the power series is a challenging task. A first result can be found in
Whittaker’s pioneering paper (Whittaker 1951). In particular, Whittaker provided an
explicit expression for the elements of the power series of the inverse in terms of the
elements of the power series of the original function. Unfortunately, the computation
of the elements is rather demanding. An alternative approach, that suffers from the
same computational burden is Lagrange’s inversion formula (Abramowitz and Ste-
gun 1992). Dominici (2003) introduced a method for numerical inversion that is very
well suited to computing the VaR of a transformation of an exponentially distributed
random variable. In the following we will present this approach.

For an infinitely often differentiable mapping f define the nested derivative
Dn[ f ](x) by the recursion

D0[ f ](x) = 1
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and

Dn[ f ](x) = d

dx

(
f (x)Dn−1[ f ](x)

)
,

for n ≥ 1. Let

h(x) =
∫ x

a

1

f (t)
dt (15)

with f (a) �= 0,∞. Then according to Theorem 4.1 in Dominici (2003) the inverse of
h(x) is given by

h−1(y) = a + f (a)
∑
n≥1

Dn−1[ f ](a)
yn

n! , (16)

where |y| < ε for some ε > 0. The elements of the series can be easily evaluated by
means of standard computer algebra tools. We refer to Dominici (2003) for details.

Example 1 Consider the exponential mapping ex and apply the method of nested
derivatives. Note that

h(x) := ex − 1 =
∫ x

0
etdt .

Let f (x) = e−x , then

Dn[ f ](x) = (−1)nn!e−nx

so that Dn[ f ](0) = (−1)nn!. Since f is analytical we obtain the inverse of h(x) as

h−1(y) =
∞∑
n=1

(−1)n−1 y
n

n
,

which is easily recognizable as the series expansion of ln(y + 1) around 0.

As illustrated in the above example, the method of nested derivatives allows for a
direct analysis of the function under the integral. This is particularly useful in VaR
computations as the analysis can directly be applied to the density and computation
of the cumulative distribution function can thus be avoided.

In the following we present the main result on nested derivatives, where we write
ḡ(t) = 1/g(t).

Theorem 1 Let G(y) be a cumulative distribution function on B = [bl , br ], where
B = R is not excluded. Suppose that there exits g(t), for t ∈ B, such that
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(i) for y ∈ B it holds that

G(y) =
∫ y

bl
g(t)dt,

(ii) G is analytical on the interior of B as a mapping in y,
(iii) there is an a ∈ B such that g(a) �= 0.

Let

ca =
∫ a

bl
g(t)dt = G(a),

then

VaR(α) = a + ḡ(a)
∑
n≥1

Dn−1[ḡ](a)
(α − ca)n

n! ,

for α sufficiently close to ca.

Proof For x ≥ a, write

G(x) = ca +
∫ x

a
g(t) dt

and let

Gca (x) = G(x) − ca =
∫ x

a

1

ḡ(t)
dt .

We now apply the nested derivatives method to ḡ(t). From (16) [see also Dominici
(2003)] it then follows that

G−1
ca (y) = a + ḡ(a)

∑
n≥1

Dn−1[ḡ](a)
yn

n! ,

for |y| sufficiently small. Noting that VaR(α) = G−1
ca (α − ca) concludes the

proof. ��
Note that the advantage of Theorem 1 lies in the fact that the elements of the series

expansion have to be computed once for a, yielding a polynomial approximation of
VaR on an entire interval. For ease of reference define for N ∈ N

VaR(N , α) = a + ḡ(a)

N∑
n=1

Dn−1[ḡ](a)
(α − ca)n

n! ,

so that limN→∞ VaR(N , α) = VaR(α).
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Example 2 Reconsider the tandem network from Sect. 3.1. Let τ2 be normally dis-
tributed with meanμ and standard deviation σ but truncated on interval [γl , γr ]where
0 ≤ γl < γr . See (14) for the density g(y) of the throughput. In order to approximate
the VaR by Theorem 1, where a is chosen to be η3ρ2

ρ2+γr
so that ca = 0 (note that this is

allowed since g( η3ρ2
ρ2+γr

) �= 0), we will compute the series using the computer algebra
algorithm provided in Dominici (2003). Using notation ḡ(y) = 1/g(y) it holds that

ḡ(y) = ΔΦσ
√
2π y2

η3ρ2
exp

⎛
⎜⎝

(
η3ρ2
y − ρ2 − μ

)2

2σ 2

⎞
⎟⎠ ,

for η3ρ2
ρ2+γr

≤ y ≤ η3ρ2
ρ2+γl

.

It follows fromMaple calculations that VaR(1, α), i.e., a VaR series approximation
based on 1 term, equals

VaR(1, α) = a + ḡ(a)α

=
ρ2η3

(
ΔΦσ

√
2πα exp

(
(γr−μ)2

2σ 2

)
+ ρ2 + γr

)

(ρ2 + γr )
2 .

For the VaR approximation of order 2 we have to add the term

ḡ(a)D1[ḡ](a)
α2

2

=
−η3ρ2(γ

2
r + (ρ2 − μ)γr − ρ2μ − 2σ 2)α2Δ2

Φ2π exp
(

(γr−μ)2

σ 2

)

2(ρ2 + γr )3
.

In general, for the n-th term it holds

ḡ(a)Dn−1[ḡ](a)
αn

n! = (−1)n+1σ 2η3ρ2P(n)

n!(ρ2 + γr )

⎛
⎝αΔΦ

√
2π exp

(
(γr−μ)2

2σ 2

)

σ(ρ2 + γr )

⎞
⎠

n

,

where P(n) is a homogeneous polynomial of degree 2(n − 1) in variables γr , σ , ρ2
and μ. In particular for P(n) with n = 1, 2, 3, 4 it holds

P(1) = 1

P(2) = γ 2
r + (ρ2 − μ)γr − 2σ 2 − ρ2μ

P(3) = 2γ 4
r + (4ρ2 − 4μ)γ 3

r + (−5σ 2 + 2ρ2
2 − 8ρ2μ + 2μ2)γ 2

r + (−4σ 2ρ2

+ 6σ 2μ − 4ρ2
2μ + 4ρ2μ

2)γr + 6σ 4 + σ 2ρ2
2

+ 6σ 2ρ2μ + 2ρ2
2μ

2
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Fig. 3 Plot ofVaR(α), VaR(N , α), with N = 1, 2, 5, 10, and ca = 0.Numerical values:ρ2 = 1.1, η3 = 1.5,
μ = 1, σ = 1.5 and [γl , γr ] = [0.1, 2.75] so that E[τ2] = 1.3259 and VaR(τ2) = 0.52134

P(4) = 6γ 6
r + (18ρ2 − 18μ)γ 5

r + (−15σ 2 + 18ρ2
2 − 54ρ2μ + 18μ2)γ 4

r

+ (−23σ 2ρ2 + 37σ 2μ + 6ρ3
2 − 54ρ2

2μ + 54ρ2μ
2 − 6μ3)γ 3

r

+ (28σ 4 − σ 2ρ2
2 + 67σ 2ρ2μ − 22σ 2μ2 − 18ρ3

2μ + 54ρ2
2μ

2 − 18ρ2μ
3)γ 2

r

+ (20σ 4ρ2 − 36σ 4μ + 7σ 2ρ3
2 + 23σ 2ρ2

2μ − 44σ 2ρ2μ
2

+ 18ρ3
2μ

2 − 18ρ2
2μ

3)γr − 24σ 6 − 8σ 4ρ2
2 − 36σ 4ρ2μ − 7σ 2ρ3

2μ

− 22σ 2ρ2
2μ

2 − 6ρ3
2μ

3.

Figure 3 provides a numerical example which illustrates that the VaR series with
a few terms already yields an accurate approximation for VaR(α) for α between 0
and 0.1. For the tandem network parameters we take a = 3/5, b = 1/2, c = 1/2,
t = 15/8, μ1 = μ3 = 2, so that λ1 = 9/8, λ3 = 3/4 and μ2 = 3/2. From the
traffic equations it follows that η3 = 1.5 for this this parameter setting. Regarding the
parameter uncertainty parameters, we let ρ2 = 1.1, μ = 1, σ = 1.5 and [γl , γr ] =
[0.1, 2.75] so that μτ2 = E[τ2] = 1.3259 and VaR(τ2) = 0.52134. Furthermore, the
example illustrates that significant risk is ignored when taking h(μτ2) as measure for
the throughput. Specifically, h(μτ2) ≈ 0.68 whereas with probability 0.2 the actual
throughput is approximately smaller than 0.52 (a difference of at least 23.5%) andwith
probability 0.1 the actual throughput is approximately smaller than 0.48 (a difference
of at least 29.4%).

In case one is interested in VaR(α) for α around 0.3, Fig. 3 shows that poor approx-
imations are obtained via the series, even when using 10 terms for the series. The
approximation for VaR(α) with α around 0.3 can be improved by choosing a in condi-
tion (iii) of Theorem 1 greater than bl = η3ρ2

ρ2+γr
such that ca lies near 0.3. The downside

is that this approach requires numerical evaluation of ca and the search for an appropri-
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Fig. 4 Plot of VaR(α), VaR(N , α), with N = 1, 2, 5, 10, and ca ≈ 0.3. Numerical values: ρ2 = 1.1,
η3 = 1.5, μ = 1, σ = 1.5 and [γl , γr ] = [0.1, 2.75] so that E[τ2] = 1.3259 and VaR(τ2) = 0.52134

ate a. But after this numerical burden, the series for VaR(α) from Theorem 1 provides
an accurate and efficient approximation for VaR(α) with α in a relative large interval
around ca . As example, Fig. 4 shows for the same instance as in Fig. 3 that choosing a
such that ca ≈ 0.3 leads to accurate approximations for VaR(α) with α ∈ (0.15, 0.45)
even for a small number of series terms.

5 Conclusion

In this paperwe have argued the importance of robustness analysis in case of parameter
uncertainty in queuing models. For generalized Jackson networks we have provided a
framework for evaluating numerically the value at risk incurred by parameter uncer-
tainty. Future research includes uncertainty analysis ofmultiple parameters and further
development of our risk analysis framework. In additional topic of further research is
to provide a numerically efficient bound for the remainder of the series approximation
of the value at risk.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
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