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Diego G. Tomé‡§, Paulo C. Santos†, Luigi Carro†, Eduardo C. Almeida‡, Marco A. Z. Alves‡
‡Department of Informatics – Federal University of Paraná – Curitiba, Brazil
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Abstract—The recent Hybrid Memory Cube (HMC) is a smart
memory which includes functional units inside one logic layer of
the 3D stacked memory design. In order to execute instructions
inside the Hybrid Memory Cube (HMC), the processor needs
to send instructions to be executed near data, keeping most of
the pipeline complexity inside the processor. Thus, control-flow
and data-flow dependencies are all managed inside the processor,
in such way that only update instructions are supported by the
HMC. In order to solve data-flow dependencies inside the mem-
ory, previous work proposed HMC Instruction Vector Extensions
(HIVE), which embeds a high number of functional units with
a interlock register bank. In this work we propose HMC In-
struction Prediction Extensions (HIPE), that supports predicated
execution inside the memory, in order to transform control-flow
dependencies into data-flow dependencies. Our mechanism focus
on removing the high latency iteration between the processor and
the smart memory during the execution of branches that depends
on data processed inside the memory. In this paper we evaluate a
balanced design of HIVE comparing to x86 and HMC executions.
After we show the HIPE mechanism results when executing a
database workload, which is a strong candidate to use smart
memories. We show interesting trade-offs of performance when
comparing our mechanism to previous work.

Index Terms—Processing-In-Memory; Predicated Instructions;
Hybrid Memory Cube; Near-Data Database;

I. INTRODUCTION

Over the past few years, the processing of read-mostly

workloads with all data located in-memory became popular,

such as database (DB) systems. However, these workloads hit

the “memory wall” when moving large amounts of data around

the memory hierarchy, suffering from the interconnection

and cache latency. This data movement also increases the

cache pollution, once the new line that will never be used

needs to be installed inside the cache by removing potentially

useful data. To tackle the problems of data movement, the

processing-in-memory (PIM) approach [1], [2], [3] inverts the

data processing path by moving computation to where data

resides. PIM presents many benefits such as reducing energy

consumption and providing faster response times [4].

Recently, the release of the Hybrid Memory Cube (HMC)

made PIM tangible for data intensive applications [5]. The

HMC can be used as a simple main memory, providing

on average 10× better performance and 70% lower energy

consumption. In order to execute instructions inside the HMC,
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the processor needs to send it specific instructions, and wait

for a status or answer to return. This design keeps most

of the pipeline complexity (front-end and graduation) in-

side the processor. Thus, control flow dependencies and data

flow dependencies are all managed inside the processor, in

such way that only update instructions (read-operate or read-

modify-write) are supported by the HMC [6]. Moreover, the

current set of HMC instructions is not favorable to operate

over read-intensive applications, such as databases [7], since

the only comparison implemented on HMC is performed by

compare-swap instructions which overwrites the original data

in memory. Furthermore, the small HMC instruction size

(16 byte wide) is also a limiting factor for database systems.

Although more instructions could be easily supported by

HMC, it would still be limited to update instructions, as

control-flow and data-flow dependencies are still solved inside

the processor. In order to solve data-flow dependencies inside

the memory, previous work proposed HIVE [8], which embeds

big vector functional units together with a register bank.

In this work we propose HIPE in order to support predicated

instructions inside the memory. The predicated instructions

enable the compiler to transform control flow dependencies

into data flow dependencies [9]. Data flow dependencies are

convenient to perform PIM data streaming operations, which

include a wide range of applications (e.g., databases, sensors,

monitoring). As far as we know, we are the first to propose

and evaluate a technique to solve control-flow dependencies on

smart memories without the usage of a full processor inside the

memory. This paper presents the following main contributions:

• We evaluate a balanced design of previous work to take full

advantage of the DRAM architecture provided by the HMC

when processing the select scan operations in DB systems.

• We performed loop unroll in order to study its impact on

the better usage of the vault parallelism inside the HMC.

• We use the simple design of the predicated execution in

order to support decisions inside the memory, changing

processor oriented control-flow by in-memory data-flow.

Evaluations with HIPE show that executing data-intensive

applications with control-flow converted to predicated exe-

cution, HIPE is 6.46× better than x86 and loses 15% of

performance compared to HIVE. Nevertheless, our proposal

enables 3% DRAM energy savings on average.
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II. BACKGROUND

A. The HIVE Architecture

In order to take advantage of HMC’s intrinsic parallelism,

HIVE architecture proposes to insert a instruction sequencer,

a register bank and a set of vector functional units inside the

HMC [8]. These functional units execute HIVE instructions,

while the register bank enables the operation answer to be

stored in an address different from the source data. Moreover,

the interlock register bank allows computation to be over-

lapped with memory accesses.

B. Query Execution in Database Systems

Traditionally, the storage layout implemented by most of the

database management systems (DBMS) is the N-ary Storage

Model (NSM) or row-store. Figure 1a illustrates the storage

layout implemented in row-stores and the processing flow.

Considering a tuple (or row) composed of four attributes (or

columns), for each step of the common tuple-at-a-time [10]

processing, the select scan loads the entire tuple (one at a

time), but only applies the operation in a small part of the

tuple (i.e., only a few columns). In read-mostly databases,

the tuple-at-a-time processing wastes memory bandwidth and

causes huge occurrence of misses in cache, because the cache

lines are filled with lots of irrelevant columns [11].

(a) Row-store model. (b) Column-store model.

Fig. 1: Database storage and selection scan execution order.

In order to avoid cache pollution for read-mostly DB is the

Decomposition Storage Model (DSM) [12] or column-store. In

this layout, a partition of the tuples and attributes are stored

contiguously in memory. Thus, only the needed attributes

traverse the memory hierarchy and the contiguous storage

guarantees good cache locality. Figure 1b presents the data

organization and processing for column-stores. Considering a

database query evaluating Attributes 0, 1 and 3, the Attribute

2 is not load during the processing.

The traditional strategy to process query operations in

columns-stores is the “column-at-a-time” [13]. The column-

at-a-time is illustrated in Figure 1b. In this query processing

strategy all the entries of Attribute 0 are evaluated generating

an intermediate result to be used by Attribute 1 and then the

same happens to evaluate Attribute 3. However, large volumes

of intermediate results reside in memory for each attribute with

increasing misses in cache and I/O overhead [14].

III. HIPE: HMC INSTRUCTION PREDICATION EXTENSION

When using HMC-based operations the processor is respon-

sible for triggering only the correct execution path of the

source code. This means that during control flow decisions,

the processor can only trigger HMC/HIVE instructions after

the branch is executed. Previous work could only solve such

problem by inserting a full processor inside the memory, which

have a huge area overhead. We propose to change control-flow

by data-flow inside the memory by using predicated execution.

Fig. 2: HIPE architecture executing a database query plan.

Figure 2 presents the HIPE architecture executing a database

query. HIPE is formed by a buffer to keep incoming instruc-

tions into the mechanism. A register bank, formed by 36

registers of 256 bytes each (total of 9 KB). An ALU based on

neon-ARM functional units and the predication match logic.

The instructions are executed in-order, and each HIPE

instruction belong to one of three classes: lock/unlock, load-

/store, ALU operation. The lock/unlock are used to gain

access to the HIPE, avoiding conflicts to the register bank.

The load/store instructions perform data transfers between

the DRAM and the register bank. The ALU operations will

perform computations inside the HMC. The load/store and

ALU instructions can have predicate, it means, that they will

only be executed if some register matches the wanted value.

The register bank stores not only the result value, but also

the zero flag from each operation. This flag is used during

predicated execution. Moreover, it is implemented with an

interlock mechanism, in order to continue the execution during

loads, only stopping the execution on real data dependencies.

The following modifications are required by HIPE:

Workload: No source code change is required, but it needs

to be compiled to use HIPE instructions, similarly to AVX.

Processor: The processor needs an extension to its ISA to

provide the execution of HIPE instructions (similarly to HMC

support). The instructions pass the pipeline in the same way
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TABLE I: Simulation parameters for evaluated systems.

OoO Execution Cores 16 cores @ 2.0 GHz, 32 nm; 6-wide issue;
16 B fetch; Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB;
MOB entries: 64-read, 36-write; 1-load, 1-store units (1-1 cycle);
3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);
1 branch per fetch; Branch predictor: Two-level GAs. 4,096 entry BTB;

L1 Data + Inst. Cache 32 KB, 8-way, 2-cycle; Stride prefetch;
64 B line; MSHR size: 10-request, 10-write, 10-eviction; LRU policy;

L2 Cache Private 256 KB, 8-way, 4-cycle; Stream prefetch;
64 B line; MSHR size: 20-request, 20-write, 10-eviction; LRU policy;

L3 Cache Shared 40 MB (16-banks), 2.5 MB per bank; LRU policy;
16-way, 6-cycle; 64 B line; Bi-directional ring; Inclusive;
MOESI protocol; MSHR size: 64-request, 64-write, 64-eviction;

HMC v2.1 32 vaults, 8 DRAM banks/vault; DRAM@166 MHz;
8 GB total size; 256 B Row buffer; Closed-page policy;
8 B burst width at 2:1 core-to-bus freq. ratio; 4-links@8 GHz;
DRAM: CAS, RP, RCD, RAS, CWD cycles (9-9-9-24-7);
Per vault func. units (logical bitwise & integer); Latency: 1 cpu-cycle;
Operation size (bytes): 16, 32, 64, 128, 256 (up to 16-B originally);

HIVE Logic Unified func. units (integer + floating-point) @1 GHz;
Latency (cpu-cycles): 2-alu, 6-mul. and 40-div. int. units;
Latency (cpu-cycles): 10-alu, 10-mul. and 40-div. fp. units;
Op. sizes (bytes): 16, 32, 64, 128, 256 (up to 8192 B originally);
Register bank: 36x 256 B; (16x 8192 B originally)

HIPE Logic Unified func. units (integer + floating-point) @1 GHz;
Latency (cpu-cycles): 2-alu, 6-mul. and 40-div. int. units;
Latency (cpu-cycles): 10-alu, 10-mul. and 40-div. fp. units;
Op. sizes (bytes): 16, 32, 64, 128, 256; Register bank: 36x 256 B;

as a memory load operation. The requests of loads work with

virtual addresses, although the addresses have to be translated

by the Translation Look-aside Buffer (TLB) in order to respect

a correct permission policy to access the given address range.

HMC: We based our implementation in the modifications

proposed on HIVE [8]. Our goal is to take advantage of the

execution of data-flow and control-flow dependencies inside

the memory, reducing thus the interaction with the processor.

IV. EXPERIMENTAL EVALUATION

Methodology and Setup We used the SiNUCA cycle-accurate

in-house simulator [15] to evaluate our proposal. Table I shows

the main parameters used in our study.

x86 baseline: This baseline is inspired by the Intel Sandy

Bridge processor micro-architecture and referred to as x86. It

was modeled with AVX-512 instruction set capabilities with

all the instructions executed in the x86 processor. It uses the

HMC version 2.1 as simple main memory.

HMC baseline: The second baseline uses the current set

of operations support by HMC ISA extending it to different

operator sizes from 16 bytes up to 256 bytes. In this work

we extend the HMC update instructions to provide other

instructions more convenient to execute our benchmark, for

instance, the compare instruction is considered.

Benchmark: In our experiments, we use the TPC-H database

with 1 GB running the Query 06. This query implements

complex boolean expressions during the select scan operation.

It also consists of conjunctions without join operations in the

largest table called lineitem. We let join operations for future

work as it requires understanding the impact of each one of

the many different join algorithms on HMC.

Experiments Implementation: To evaluate the execution of

the select scan with the tuple-at-a-time execution, the matched

tuples are materialized as intermediate results. In the column-

at-a-time execution, the predicate is performed for the first

column, and it stores a bitmask with “1” for match and “0”

for no match to be used ahead by the further predicates.

We considered that each tuple in the table occupies 64-bytes,

which is equal to the cache line size. The store instructions are

executed with cache assistance in both x86 and HMC base-

lines. However, the load-compare instructions are processed

inside the memory for HMC baseline. When using HIVE or

HIPE both load-compare and bitmask store instructions are

executed in the logic layer of HMC.

A. Experimental Results

1) Varying Operation Size: We evaluated the TPC-H Query

06 using HMC and HIVE using five different data operation

sizes from 16 B to 256 B, while we set the x86 up to 64 B

(i.e. the instruction size of AVX-512).

Figure 3a presents the results for the tuple-at-a-time execu-

tion in the NSM storage layout. When executing HMC-16 B

the select scan execution time increased in 97% compared to

x86. This behavior also occurred for 32 B and 64 B width

operations, with increases of 1.02× and 1.19× respectively.

This performance degradation was due to the small operation

size, which requires multiple instructions to fully use the

overall row-buffer size (i.e. 256 B). HMC-256 B achieves the

best performance, with 18% gains compared to the best x86,

such result happened because the select scan could process

4 contiguous tuples per operation without suffering from any

extra cache latency. The execution with HIVE-16 B resulted

in an increase of 3× in the execution time when compared to

x86. For HIVE-256 B the execution time was still 11% bigger

than x86. The increasing in execution time occurs due to the

control-dependency of each isolated lock/unlock block when

performing streaming operations with HIVE.

Figure 3b presents the results for the column-at-a-time

execution in the DSM storage layout. When executing HMC-

256B the execution time was reduced by 4.38× compared to

x86. On the other hand, executing HIVE-256 B still takes

2× more when compared with the best case of x86 execution

(AVX-512). Notice that after processing the first column, the

processor needs to fetch the previous generated bitmask to

decide the portions of the second column it needs to process.

This generates data dependency and delays the execution

of HIVE instructions as more DRAM accesses need to be

performed, in contrast to cache access for x86 and HMC.

2) Different Unrolling Depths in Column-at-a-time : Fig-

ure 3c presents the results for the column-at-a-time in the DSM

layout varying the loop unroll depths to increase parallelism.

HMC and HIVE used five different unrolling depths: 1x to

32x, while we set the x86 up to 8x (i.e. the deepest unroll

used by compilers due to the reduced number of general

purpose registers). HMC-256 B with 32x loop unrolling could
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(a) Tuple-at-a-time execution
varying operation size.

(b) Column-at-a-time execution
varying operation size.

(c) Column-at-a-time execution
varying loop unrolling depth.

(d) Best cases of each architec-
ture compared to HIPE.

Fig. 3: Execution of TPC-H Query 06 selection scan varying operation size and loop unrolling depth for x86, HMC and HIVE.

improve performance in 5.15× compared to x86. Meanwhile,

HIVE-256 B with same unrolling caused an speedup of 7.57×.

When the loop is unrolled, HIVE overlaps DRAM latency with

parallel requests, thanks to the interlock register bank.

3) Predicated Execution: The main goal of the predicated

execution is to reduce the amount of executed instructions

by performing data and control flow inside the HMC itself.

Figure 3d shows the speedup of the predicated execution of

5.15× in HMC, 7.55× in HIVE and 6.46× in HIPE compared

to x86. While HIVE performs full scan in columns, HIPE

only performs load and compare on required column regions.

During the evaluation of the columns, HIPE guarantees that

only useful data are loaded and compared. It means that,

during the select scan, if the first attribute did not match the

query condition the second attribute for that same tuple will

not be loaded and compared. HIPE is 5% more efficient in

energy consumption than x86 and compared with HMC and

HIVE, it is 1% and 4% more efficient respectively.

V. RELATED WORK

Previous work proposed an external DRAM accelerator

called JAFAR [16] to execute near-data DB select scan opera-

tions in DDR-3. JAFAR processes a 64-bit word at a time by

intercepting memory requests from the CPU in the DRAM I/O

buffer. However, the data access must be coordinated to avoid

collisions with CPU requests. In contrast, we take advantage

of the logic layer of the HMC to execute the select scan.

The work proposed in [17] places an accelerator inside the

logic layer of the HMC, to support DB join operations. This

work redesigns the hash and merge join algorithms in order

to minimize row buffer re-access. However, this related work

does not support such operations for row-stores.

The usage of huge vectorial functional units with register

banks inside the HMC [8] called HIVE, was also proposed.

However, such design does not solve control-flow dependen-

cies inside HMC. Our approach has a more balanced design

than HIVE, with only 256 byte operation size (96% smaller)

and register bank with 32 registers of 256 bytes (94% smaller

than the original proposal).

Moreover, the use of predicated execution was already

investigated in several work [18], [19], but none of these

implemented predication on smart memories.

VI. CONCLUSIONS

In this work, we presented the HMC Instruction Predication

Extension (HIPE) to transform control-flow dependencies into

data-flow dependencies. HIPE removes the high latency itera-

tion between the processor and the HMC during the execution

of branches that depends on data processed by memory. We

showed tradeoffs comparing HIPE to previous work running

database operations. HIPE performed 6.46× better than x86,

but loses 15% of performance compared to HIVE due to

additional data dependencies. However, preliminary results

shows up to 5% DRAM energy savings using HIPE.
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