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Abstract

In this paper we study bipartite quantum correlations using techniques from tracial poly-
nomial optimization. We construct a hierarchy of semidefinite programming lower bounds on
the minimal entanglement dimension of a bipartite correlation. This hierarchy convergesto
a new parameter: the minimal average entanglement dimension, which measuresthe amount
of entanglement needed to reproduce a quantum correlation when access to shared random-
ness is free. For synchronous correlations, we show a correspondence between the minimal
entanglement dimension and the completely positive semidefinite rank of an associated ma-
trix. We then study optimization over the set of synchronous correlations by investigating
quantum graph parameters. We unify existing bounds on the quantum chromatic number
and the quantum stability number by placing them in the framework of tracial optimiza-
tion. In particular, we show that the projective packing number, the projective rank, and
the tracial rank arise naturally when considering tracial analogues of the Lasserre hierarchy
for the stability and chromatic number of a graph. We also introduce semidefinite program-
ming hierarchies converging to the commuting quantum chromatic number and commuting
quantum stability number.

1 Introduction

1.1 Bipartite quantum correlations

One of thedistinguishing features of quantum mechanicsis quantum entanglement, which allows
for nonclassical correlations between spatially separated parties. By performing a measurement
on their part of an entangled system, the parties — who cannot communicate — can use such
correlations to complete tasks that are impossible within classical mechanics. In this paper we
consider the problems of quantifying the advantage entanglement can bring and quantifying the
minimal amount of entanglement necessary for generating a given correlation. For this we use
techniques from tracial polynomial optimization.

Quantum entanglement hasbeen widely studied in the bipartite correlation setting. Here we
have two parties, Alice and Bob, where Alice receives a question s from a finite set S and Bob
receives a question t from a finite set T. The parties do not know each other’s questions, and
after receiving the questions they do not communicate. Then, according to some predetermined
protocol, Alice returns an answer a from a finite set¢ A and Bob returns an answer b from
a finite set B. The probability that the parties answer (a,b) to questions (s,t) is given by
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Ebipartite correlation P(a,bls,t), which satisfies P(a,bs,t) = 0 for all (a,b,s,t) € ' and
apP(abs,t) = 1forall (s,t) €Sx T. Throughout weset N'= Ax Bx Sx T.

The bipartite corrdlations P = (P(a,bls,t)) € R" depend on the additional resources that
are available to the two parties Aice and Bob. As we discuss below, it is of fundamental
importance in quantum information theory that quantum entanglement allows for correlations
that are not possible in a classical setting.

If the parties do not have access to any additional resources, then the correlation will be
deterministic, which means it is of tfe form P(a, bf,t) = Pa(als) Pg(blt), with Pa(als) and
Pg (blt) taking values in {0,1} and = jPa(als) = = ,Pg(bt) = 1 for all s,t. If the parties
have access to local randomness, then Po and Pg take values in [0,1]. If the parties have
access to shared randomness (they can draw from a shared random variable), then the resulting
correlation will bea convex combination of deterministic correlations, and issaid to bea classical
correlation. Theclassical correlationsform a polytope, denoted by Coc(I"), and valid inequalities
for it are known as Bell inequalities [Bel64].

Weareinterested in the quantum setting, wherethe parties have access to a shared quantum
state upon which they can perform measurements. The quantum setting can be modeled in
different ways, leading to the so-called tensor model and commuting model; see the discussion,
e.g., in [Tsi06, NPA0O8, DLTWO08].

In the tensor model, Alice and Bob each have access to one half of a finite dimensional
quantum state, which is modeled by a unit vector ¢ € C? ® CY. Alice and Bob determine
their answers by performing a measurement on their part of the state. Such a measurement
is modeled by a positive operator valued measure (POVM), which consists of a set of d x d
Hermitian positive semidefinite matrices labeled by the possible answers and summing to the
identity matrix. If Alice usesthe POVM {EZ2}ca When she gets question s € S and Bob uses
the POVM {F®} g when he gets question t € T, then the probability of obtaining the answers
(a,b) is given by

P(a bs,t) = Tr((E3 ®FP)py’) = ¢'(EZ QF)y. (1)

If the state Y cannot be written as a single tensor product Ya ® Yg, then Y is said to be
entangled, and this can lead to the above correlation P to be nonclassical.

A correlation of the above form (1) is called a (tensor) quantum correlation, and we say it
is realizable in the tensor mode in local dimension d or in dimension d?. Let Cg(l') be the set
of quantum correlations realizable in local dimension d, denote the smallest dimension needed
to realize the correlation P € Cq4(I") in the tensor model by

Dq(P) = min{d2 :deN, P ecg(r)}, 2
and define the set U
Cq(N) = CJ(N).
deN

Theset Cq(I) is convex, for if Py/P> € Gy(I") with Pi(a, bls, t) = W (E2(1) ®FP(i)) Wi fori = 1,2,
andif A € [0, 1], then, with @ = AYy@® 11— AYp, E2 = EZ(1)PEZ(2), and FP = FP(1) BFP(2),
we have (AP + (1= A\)P2)(a,bis,t) = Y*(E2 ® FP)y, which shows AP + (1 - A\)P2 € Cq(I1).

The set C(}(F) contains the deterministic correlations, so by Caratheodory’s theorem Cio(IN)
is contained in Cg(r), where c is at most IAIISI + IBIITI + 1; that is, quantum entanglement
can be used as an alternative to shared randomness. If A, B, S, and T all contain at least
two elements, then Bell’s theorem says the inclusion Cic(I") € Cqy(I") is strict; that is, quantum
entanglement can be used to obtain nonclassical correlations [Bel64].

T he second model commonly used in quantum information theory to define quantum corre-
lations is the commuting model (or relativistic field theory model). In this model a correlation
P € R" iscalled a commuting quantum correlation if it is of the form

P(a bls,t) = Tr(X2Y gyr) = ¢ (X2YO)y, (3)
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where {X 2}, and {Y,’}p are POVMs consisting of bounded operators on a separable Hilbert
space H, satisfying [X2,Y"] = X2YP - Y,°X2 = 0 for all (a,bs,t) € ', and where ¢ is a
unit vector in H. Such a corréation is said to be realizable in dimension d = dim(H) in the
commuting model, and we denotethe set of such correlations by Cgc(r) and set Cqc(IM) = Cge ().
We denote the smallest dimension needed to realize a quantum correlation P € Cq(I") by

Dg(P) = min{deNU{oo} :Pecgc(r)}. (4)

We have CJ(I) € CE(I), which follows by setting X2 = E2 ®1 and Y,° = | ®FP. This shows
Dao(P) = Dg(P) foral P e Cq(l).

The minimum Hilbert space dimension in which a given quantum correlation P can be
realized in the tensor or commuting model quantifies the minimal amount of entanglement
needed to represent P. Computing the parameter D4(P) isin fact an NP-hard problem [Sta15].
Hence a natural question is to find good lower bounds for the parameters Dq(P) and Dqc(P),
and a main contribution of this paper is proposing a hierarchy of semidefinite programming
lower bounds for these parameters. A lower bound for D4(P) based on the notion of fidelity is
given in [SVW16].

As said above we have CJ(I') < cgj(r). Conversely, each finite dimensional commuting
quantum correlation can be realized in the tensor model, although not necessarily in the same
dimension [Tsi06] (see, e.g., [DLTWO08] for a detailed proof). This shows

U
Cq(MN = CY(MN) < Cqe(IN).
deN

Whether the two sets Cq(I") and Cqc(I") coincide is known as Tsirelson’s problem. In a
recent breakthrough result Slofstra [Slo17] shows that if ISI = 184, ITI = 235, |IAl = 8, and
IBlI = 2, then Cq(I") is not closed. This implies the existence of a sequence {P;} < Cqy(I')
with Dy(P;) — . Since Cq(I) is closed [Fri12, Prop. 3.4], this also implies the inclusion
Cq(T") € Cqe(I) isstrict, thus settling Tsirelson’s problem. Whether the closure of Cy(I") equals
Cqc(I") isan open problem that isrelated to an important conjecturein operator theory: We have
cl(Cqy(I)) = Cqe(I) for all T if and only if Connes’ embedding conjecture holds[JNP* 11, Oza12].

Further variations on the above definitions are possible. For instance, we can consider a
mixed state p (a Hermitian positive semidefinite matrix p with Tr(p) = 1) instead of a pure
state Y, where we replace therank 1 matrix yyg* by pin the above definitions. By convexity this
doesnot changethe sets Cq(I") and Cqc(IM), but the dimension parameters Do(P) and Dqc(P) can
be smaller when allowing mixed states. Another variation would be to use projection valued
measures (PVMs) instead of POVMs, where the operators are projectors instead of positive
semidefinite matrices. This again does not change the sets Cy(I") and Cgc(I") [NCOQ], but the
dimension parameters can be larger when restricting to PVMs.

In the rest of the introduction we give a road map through the contents of the paper. We
state the main results, which we number according to the section where they will be proved,
and we will introduce the necessary background along the way.

1.2 From synchronous correlations to hierarchies

When the two parties have the same question sets (S = T) and the same answer sets (A = B), a
bipartite correlation P € R" iscalled synchronous if P(a,bs,s) = Ofor all sand a B b. Thesets
Cq,s(I") and Cgc s(IM) of synchronous correlations form particularly interesting subsets of bipartite
correlations; The quantum graph parameters discussed in Section 1.4 will be defined through
optimization problems over these sets. The sets of synchronous correlations are rich enough, so
that the above mentioned result about Connes’ embedding conjecture still holds when werestrict
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to synchronous correlations; that is, the conjecture holds if and only if cl(Cgs(I")) = Ceqe,s(I")
for all ' [DP16, Thm. 3.7].

We show that the minimal local dimension in which a synchronous quantum correlation P
can be realized is given by the completely positive semidefinite rank of an associated matrix
Mp, indexed by A x S and defined by

(Mp)(s,a),t,p = P(a,bls,t) foral (abs,t)erl.

A matrix M € R™" is said to be completely positive semidefinite if there exist d € N and
Hermitian positive semidefinite matrices X1,...,X, € C%™9 such that Mi; = Tr(X;Xj) for
al i,j € [n]. The minimal such d is called the completely positive semidefinite rank of M
and denoted by cpsd-rankc(M). Completely positive semidefinite matrices are investigated
in [LP15], motivated by their use to model quantum graph parameters, and the completely
positive semidefinite rank in [PSVW16, GdLL17b, PV17, GdLL17a]. To show the following
result we combine proofs from [SV17] (see also [MR16]) and [PSS* 16]; the proof can be found
in the Appendix.

Proposition A.1. The smallest local dimension in which a synchronous quantum correlation
P can be realized is given by cpsd-rankc(Mp).

In [GdLL17a] we usetechniques from tracial polynomial optimization to define a semidefinite
programming hierarchy of lower bounds{&P%(M )}, 1 on cpsd-ranks(M ). By the above result
this hierarchy can be used to obtain lower bounds on the smallest local dimension in which a
synchronous correlation can be realized in the tensor model. However, in [GdLL17a] we show
that the hierarchy typically does not converge to cpsd-rankc(M ) but instead (under a certain
flatness condition) to a parameter £P(M ), which can be seen as a block-diagonal version of
the completely positive semidefinite rank.

We will use similar techniques to construct a hierarchy {&'(P)},=1 of lower bounds on
the minimal dimension D4(P) of a quantum correlation P € Cq(I"). This new hierarchy will
have three advantages over the above approach. 1) It works for all correlations and not just
for synchronous correlations. 2) The special structure of a quantum correlation allows us to
add constraints that strengthen the lower bounds. 3) The hierarchy converges (under flatness)
to E/(P), and by using the extra constraints mentioned above we can show £)(P) is equal
to an interesting parameter Aq(P) = Dq(P). This parameter describes the minimal average
entanglement dimension of a correlation when the parties have free access to shared randomness;
see the next section.

1.3 A hierarchy for the average entanglement dimension

We are interested in the minimal entanglement dimension needed to realize a given quantum
correlation P € Cy(IN). If P is deterministic or only uses local randomness, then Dy(P) =
Dg(P) = 1, but otherwise we have D4(P) = Dq(P) > 1. That is, the shared quantum state
is used as a shared randomness resource. We define a new parameter Aq(P) < Dqy(P) that
more closely measures the minimal entanglement dimension when the parties have free access
to shared randomness, so that Aq(P) = 1if and only if P is classical.

For this we assume that before the game starts the parties select a finite number of pure
states Y (i € ) (instead of a single one), in possibly different dimensions d;j, and POVMs
{E2(i)}a, {FP(i)}p for each i € | and (s,t) € Sx T. As before, we assume that the parties
cannot communicate after receiving their questions (s, t), but now they do have access to shared
randomness, which they use to decide on which state g to use. The parties proceed to measure
state Y using POVMs {E2(i)}a, {FP(i)}b, S0 that the probability of answers (a,b) is given
by the quantum correlation P;. We want to know what the minimal average dimension of
entanglement needed to reproduce a given correlation P is, which is obtained by minimizing
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the average dimension 2 i) Nidi over all convex combinations P = 2 ie; NiPi. Hence, in the
tensor model the minimal average entanglement dimension is given by

R3] il i il
Ag(P) = inf AiDg(Pi) :1 eN,Ae R, Ai=1,P= AiPi, P e Cy(IN) ,
i=1 i=1 i=1

and, in the commuting model, Aqc(P) is given by the same expression with D4(P;) replaced
by Dg(Pi). Observe that we need not replace Cq(I") by Cquc(I") since Dqc(P) = o for any
P € Cq(lMN)\ Cqy(IN).

It follows by convexity that for the above definitions it does not matter whether we use pure
or mixed states. In thefollowing proposition we show that for the average minimal entanglement
dimension it also does not matter whether we use the tensor or commuting model.

Proposition 2.1. For any P € C4(I") we have Ag(P) = Aqc(P).

We have A4(P) = Dg(P) and Aq(P) = Dg(P) for P € Cq(I"), with equality if P is an
extreme point of Cq(I"). Hence, we have Dy(P) = D (P) if P is an extreme point of Cq(I").
We show that the parameter A4(:) can be used to distinguish between classical and nonclassical
correlations.

Proposition 2.2. For a correlation P € R" we have Aq(P) = 1if and only if P € Cjoe(I).

As mentioned before, Slofstra showed the existence of I" for which Cqy(I") is not closed, which
implies the existence of a sequence {Pi} S Cq4(I") such that Dy(P) — o . By the following
proposition this also implies the existence of such a sequence with Ag(P;) — .

Proposition 2.3. If C4(I") is not closed, then there exists {P;j} € Cqy(I") with Ag(Pj) — % .

Using tracial polynomial optimization and building on the techniques from [GdLL17a] we
construct a hierarchy of increasingly large optimization problems whose optimal values give
increasingly good lower bounds {§(P)}r=1 on Aqe(P). For each r € N this is a semidefinite
program, and for r = o it is an infinite dimensional semidefinite program. We further define a
(hyperfinite) variation E(P) of & (P) by adding a finite rank constraint, so that

E(P)< E(P)s ...< & (P) < E(P) = Ag(P).

We do not know whether & (P) = &)(P) always holds; this question is related to Connes
embedding conjecture [KS08].

First we show that we imposed enough constraints in the bounds &(P) so that £/(P) =
Ago(P).

Proposition 2.8. For any P € Cq(I") we have §/(P) = Agc(P).

Then we show that the infinite dimensional semidefinite program &l (P) is the limit of the
finite dimensional semidefinite programs.

Proposition 2.9. For any P € Cy(I") we have &(P) — & (P) asr — o .

Finally we give a criterion under which finite convergence &'(P) = £J(P) holds. The défini-
tion of flatness follows later in the paper; here we only note that it is an easy to check criterion
given the output of the semidefinite programming solver.

Proposition 2.10. If &(P) admits a (rr/31 + 1)-flat optimal solution, then &(P) = E}(P).



1.4 Quantum graph parameters

Nonlocal games have been introduced in quantum information theory as abstract models to
quantify the power of entanglement, in particular, in how much the sets Cq(I") and Cqc(I") differ
from Cjoc(I"). A nonlocal game is defined by a probability distribution m: Sx T — [0,1] and a
functionf : Ax B x Sx T — {0, 1}, known as the predicate of the game, wheref (a,b,s,t) = 0
means that the answer pair (a,b) is wrong for the question pair (s,t). Alice and Bob receive a
question pair (s,t) € Sx T with probability m(s,t). They know the game parametersmand f,
but they do not know each other’s questions, and they cannot communicate after they receive
their questions. Their answers (a,b) are determined according to some correlation P € R',
called their strategy, on which they may agree before the start of the game, and which can be
classical or quantum depending on whether P belongs to Cioc(I7), Cq(I"), or Cye(IN). Then their
corresponding winning pro%ability is givenEIby

(s, t) P(a,bs,t)f (a,bs,1). (5)
(s,H)eSxT (a,b)eAxB

A strategy P is called perfect if the above winning probability is equal to one, that is, if the
probability of giving a wrong answer is zero: for all (a,b,s,t) € ' we have

n(s,t)>0 and f(abs,t)=0 == P(aHbs,t)=0.

Computing the maximum winning probability of a nonlocal game is an instance of linear
optimization over Cioc(I") in the classical setting, and over Cqy(I") or Cqc(I') in the quantum
setting. Since the inclusion Cjc(I") € Cq4(I") can be strict, it is not surprising that the winning
probability can be higher when the parties have accessto entanglement. Perhapsmore surprising
is the existence of nonlocal games that can be won with probability 1 when using entanglement,
but with optimal winning probability strictly lessthan 1 in the classical setting.

The quantum graph parameters aq(G) and X4(G) (and the variants aqc(G) and Xqc(G)) are
quantum analogues of the classical stability number a(G), which isthe size of a largest stable set
in agraph G, and the chromatic number X(G), which isthe minimal number of colors needed to
color the vertices of G such that no two adjacent vertices have the same color. These quantum
graph parameters are defined through the coloring stability number games as described below.
These nonlocal games use the set [k] (whose elements are denoted as a,b) and the set V of
vertices of G (whose elements are denoted asii,j) as question and answer sets.

In the quantum coloring game, introduced in [AHKS06, CMN* 07], we are given a graph
G = (V,E) and an integer k e N. We sdlect S= T = V as question setsand A = B = [k] as
answer sets. Thedistribution tis strictly positive for all elementsof V x V (e.g., it is uniform)
and the predicate f of the game is such that the players’ answers have to be consistent with
having a k-coloring of G, that is, f (a,b,i,j) = 0 precisely when (i =j and a8 b) or ({i,j} €E
and a = b). This expresses the fact that if Alice and Bob receive the same vertex they should
return the same color and if they receive adjacent vertices they should return distinct colors.
A perfect classical strategy exists if and only if a perfect deterministic strategy exists, and a
perfect deterministic strategy corresponds to a k-coloring of G. Hence the smallest number k
of colors for which there exists a perfect classical strategy P € Coc(I') is equal to the classical
chromatic number x(G). It istherefore natural to define the quantum chromatic number Xq(G)
(resp., the commuting quantum chromatic number Xq(G)) as the smallest k for which there
exists a perfect (resp., commuting) quantum strategy P € Cq(I") (resp., P € Cqc(IN)), where
I = [K]? x V2. Notethat such a strategy P is necessarily synchronous. In other words:

Definition 1.1. The (commuting) quantum chromatic number Xq(G) (resp., Xqc(G)) is the
smallest integer K € N for which there exists a synchronous correlation P = (P(a,bli,j)) in
Cqs([K]? x V2) (resp., Cqes([K]? x V2)) such that

P(a,ali,j) =0 for all ae[k],{i,j} €E.
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In the quantum stability number game, introduced in [MR16, Rob13], we again have a graph
G = (V,E) and k € N, but now we use the question set [k]x [k] and the answer set V x V. The
distribution Tt is again strictly positive on the question set and now the predicate f of the game
is such that the players answers have to be consistent with having a stable set of size k, that
is, f (i,j,a,b) = O precisely when (a= bandi B j)or (al band (i =j or{i,j} € E)). This
expresses the fact that if Alice and Bob receive the same index a = b e [k] they should answer
with the same vertex i = j of G and if they receive distinct indices a B b from [k] they should
answer with distinct nonadjacent verticesi and j of G. There is a perfect classical strategy
precisely when there exists a stable set of size k, so that the largest integer k for which there
exists a perfect classical strategy is equal to the stability number a(G). The largest integer k
for which there exists a perfect quantum strategy P € Cqy(I") (resp., Cqc(I)) is the (commuting)
quantum stability number 0q(G) (resp., aqc(G)), where we now have I' = V2 x [k]2. Again, a
perfect strategy P must be synchronous. In other words:

Definition 1.2. The (commuting) stability number aq(G) (resp., aqc(G)) is the largest integer
k € N for which there exists a synchronous correlation P = (P(i,jla, b)) in Cq,s(V2 x [K]?)
(resp., CqC,S(V2 x [k]?)) such that

P(i,jla,b) = 0 whenever (i=j or{i,j} €E) and aB be [k].

As is well known, the classical parameters X(G) and a(G) are NP-hard to compute. The
same holds for the quantum coloring number x4(G) [Ji13] and also for the quantum stability
number aq(G), in view of the following reduction to coloring shown in [MR16]:

Xq(G) = min{k € N : aq(GEKy) = IVI}. (6)

Here GHK  isthe Cartesian product of thegraph G = (V, E) and the complete graph K. Note
that (6) extends to the quantum setting the analogous well-known reduction for the classical
parameters. By construction we have Xqc(G) = Xq(G) = X(G) and a(G) = aq(G) = aq(G).
Interestingly, the separation between X4(G) and x(G), and between aq(G) and a(G), can be
exponentially large in the number of vertices; This is the case for the graphs G, with vertex
set V = {x1}" for n a multiple of 4, where two vertices x,y € V are adjacent if they are
orthogonal [AHK S06, MR16, MSS13].

By définition, the parameters aq(G) and x4(G) involve synchronous quantum correlations,
while the parameters aqc(G) and Xqc(G) involve synchronous commuting quantum correlations.
It is not known whether there is a separation between the parameters x4(G) and Xq(G), and
between aq(G) and aqc(G). A motivation for studying both versions of the gamesliesin the fact
that it it isnot known whether thetwo sets Cy (") and Cqcs(I") coincide, where ™ = A2x S? for
finite sets A and S. In the asynchronous setting, as already mentioned earlier, this has recently
been settled by Slofstra [Slo17]: there existsa T = A x B x Sx T for which Cqy(I) B Cqc(I).

A second motivation isthe study of the following lower bounds on the (commuting) quantum
chromatic number: the projectiverank & (G) [MR16] and the tracial rank &, (G) [PSS* 16]. Re-
cently it has been shown in [DP16, Cor. 3.10] that the projective rank and tracial rank coincide
if Connes’ embedding conjectureistrue. In Section 3 we provide a hierarchy of semidefinite pro-
gramming bounds { £ (G)}, that asymptotically converges to the tracial rank, and has finite
convergence to the projective rank if a certain ‘flatness’ condition holds.

We now give an overview of the results of Section 3 and refer to that section for formal
definitions. In Section 3.1.1 we reformulate the quantum graph parameters in terms of C*-
algebras, using a reformulation from [PSS* 16] for quantum synchronous correlations in terms
of C*-algebras. We then use thisin Section 3.1.2 to express the quantum graph parameters in
terms of positive tracial linear forms, which allows usto use techniques from tracial polynomial
optimization to formulate bounds on the quantum graph parameters. In particular, we define a



hierarchy {y¢ (G)}renugw y Of semidefinite programming lower bounds on the commuting quan-
tum chromatic number. We moreover definethe parameter y°° (G) as y&°' (G) with an additional
rank constraint on the matrix variable. Similarly, we define a hierarchy {yf‘ab(G)}reNU{w} of
upper bounds on the commuting quantum stability number, and the corresponding parameter
vy (G). We show the following convergence results for these hierarchies.

Lemma 3.2. Let G be a graph. There exists an ro € N such that Y (G) = Xq(G) and
Y& (G) = aqe(G) for all r = ro. Moreover, if Yy (G) admits a flat optimal solution, then
Y (G) = Xq(G), and similarly if y*@(G) admits a flat optimal solution, then Y (G) = a4(G).

Then, in Section 3.2, we use tracial analogues of Lasserre type bounds on a(G) and x(G)
to obtain hierarchies of semidefinite programming bounds for their quantum analogues, which
are more economical than the bounds y*°'(G) and y*2(G) (since they use less variables) and
also permit to recover some known bounds for the quantum parameters. The classical stability
number a(G) has a natural formulation as a polynomial optimization problem. Applying the
standard Lasserre hierarchy [LasO1] to that problem gives a hierarchy {Iasf‘ab(G)},eNU{oo} of
upper bounds on the stability number. We define the tracial analogue 42 (G) of Iasf‘ab(G) for
r e NU{%} and the corresponding parameter €43 (G). We show that £!2(G) coincides with
the projective packing number a,(G) and that gstab(G) upper bounds Age(G).

Proposition 3.3. We have £4%(G) = a,(G) = aq(G) and EL2(G) = age(G).

Next, we consider the chromatic number. A Lasserre-type hierarchy {Iasf°'(G)}reNU{m} of
semidefinite programming lower bounds on the chromatic number X(G) is defined in [GLO8b].
We again consider thetracial analogue £ (G) of las™® (G) for r € NU{® } and the corresponding
parameter £°(G). The tracial hierarchy {E% (G)} unifies two known bounds: the projective
rank & (G), a lower bound on the quantum chromatic number [MR16]; and the tracial rank
& (G), alower bound on the commuting chromatic number [PSS* 16].

Proposition 3.5. We have £€°(G) = & (G) < Xq(G) and EX'(G) = & (G) = Xqc(G).

After that we show EX3(G)E®! (G) = IVI, with equality if G is vertex-transitive; this extends
the corresponding known result for the commutative parameters (cf. Section 3.2.3). Thebounds
of order 1 correspond to the well-known theta number: &3 (G) = §(G) and £°(G) = §(G),
and we point out therelation between £ (G) and the semidefinite programming bound Espp(G)
from [PSS* 16] (cf. Section 3.2.4).

In Section 3.3, we compare the hierarchies £° (G) and Yy (G), and the hierarchies £ (G)
and Y2 (G). For the coloring parameters, the analogue of reduction (6) applies to the semidef-
inite programming bounds.

Proposition 3.9. For r e NU{%® } we have yY*(G) = min{k : E®(GHK) = IVI}.

An analogous statement holds for the stability parameters, when using the homomorphic
graph product of K¢ with the complement of G, denoted here as K¢ « G, and the following
reduction shown in [MR16]:

aq(G) = max{k € N : aq(Kg * G) = k}.
We show the following result for the corresponding semidefinite programming bounds.
Proposition 3.10. For r e NU{® } we have y*®(G) = max{k : £&® (K - G) = Kk}.

Finally, we show that the hierarchies{y® (G)} and {y*®(G)} refinethehierarchies{ £ (G)}
and {&'%°(G)}.

Proposition 3.11. For r e NU{®, «} we have £°(G) = y®!(G) and £ (G) = y*&®(G).
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1.5 Techniques from noncommutative polynomial optimization

To derive our bounds we use techniques from tracial polynomial optimization. This is a
noncommutative extension of the widely used moment and sum-of-squares techniques from
Lasserre [Las01] and Parrilo [Par00] in polynomial optimization, dealing with the problem of
minimizing a multivariate polynomial function f (x4,...,Xx,) over a feasible region defined by
polynomial inequalities g(x1,...,Xn) = 0 (for g € G < R[x4,...,Xn]). These techniques have
been adapted to the noncommutative setting in [NPAO8] and [DLTWO08] for approximating the
set Cqc(lM) of commuting quantum correlations and the winning probability of nonlocal games
over Cqc(I") (and, more generally, computing Bell inequality violations). In [PNA10, NPA12]
this approach has been extended to the general eigenvalue optimization problem, of the form

inf{tp*f (X1,...,Xn)w:deN, g e CY unit vector, X1,...,X, € Cd,

a(X4,...,Xn) @ OforgeG}.

Here, the matrix variables X; have free dimension d € N and {f} U G € REk;,...,x,His
a set of symmetric polynomials in noncommutative variables. In tracial optimization, in-
stead of minimizing the smallest eigenvalue of f (X1,...,Xp), we minimize its normalized trace
Tr(f (X4,...,Xn))/d (so that the identity matrix has trace one) [BK12, BCKP13, BKP16,
KP16]. The moment approach for these problemsrelies on minimizing L(f ), whereL isalinear
functional on the space of honcommutative polynomials satisfying some necessary conditions,
so that L(f ) models either @*f (X1,...,Xn)@ or Tr(f (X4,...,X))/d. By truncating the de-
grees one gets hierarchies of lower bounds for the original problem. By the GNS construction,
the asymptotic limit of these bounds involves operators X; on a Hilbert space (possibly with
infinite dimension). In tracial optimization this leads to allowing solutions X; in a C*-algebra
A equipped with a tracial state T, so that T(f (X1,...,Xn)) is minimized.

In [PSS* 16] hierarchies of outer approximations {Q,(I")} for the set Cy(I") of commuting
quantum correlations are constructed and used to derive semidefinite programming bounds con-
verging to the commuting quantum coloring number Xqc(G). They are based on the eigenvalue
optimization approach, applied to the formulation (3) of commuting quantum correlations. In
this paper we construct new hierarchies of semidefinite programming bounds for xq(G) and
aqc(G), exploiting the fact that these parameters are defined in terms of synchronous corre-
lations and the fact (from [PSS* 16]) that such correlations admit a reformulation in terms of
C*-algebras with a tracial state. So our bounds are based on tracial optimization and they use
less variables, roughly speaking they involve only the variables {x3} while the previous bounds
of [PSS* 16] use the larger set of variables {x2,yP}.

An important feature in noncommutative optimization is the dimension independence: the
optimization is over all possible matrix sizes d € N. In some applications one may want to
restrict to optimizing over matrices with restricted size d. In [NV 15, NFAV 15] techniques are
developed that allow to incorporate this dimension restriction by suitably selecting the linear
functionals L in a specified space; this is used to give bounds on the maximum violation of a
Bell inequality that can be achieved in afixed dimension. A related natural problem isto decide
what is the minimum dimension d needed to realize a given algebraically defined object, like a
(commuting) quantum correlation P. We propose an approach based on tracial optimization:
starting from the observation that the trace of the d x d identity matrix gives its size d, we
consider the problem of minimizing L(1) where L is a linear functional modeling the non-
normalized matrix trace. Thisapproach hasbeen developed in therecent work [GdLL17a] for the
problem of finding smallest matrix factorization ranks: Given a nonnegative matrix M € R™*",
the smallest dimension d for which there exist Hermitian positive semidefinite matrices X,
sothat M = (Tr(X;Yj))iem),j e is called the positive semidefinite rank of M ; when m = n and
we restrict to using the same factors X; = Y; the analogous parameter is called the completely
positive semidefinite rank. Semidefinite programming bounds are constructed in [GdLL17a] for



these matrix factorization ranks (and for their commutative analogues, where all factors are
diagonal matrices: the nonnegative rank and the completely positive rank). Similar ideas are
used here to derive semidefinite programming bounds for the minimum dimension parameters
Dq4(P),Dg(P) considered in this paper.

2 A hierarchy for the minimal entanglement dimension

2.1 The minimal average entanglement dimension

We start by showing that it does not matter whether we use the tensor or the commuting model
when defining the average entanglement dimension.

Proposition 2.1. For any P € Cy(I") we have Aq(P) = Ag(P).

Proof. Theeasy inequality Agc(P) = Ag( folf)wsfrom theidentity E2QFP = (E2RI) (I ®FP).

For the other inequality we suppose P =" ,_{\P; isfeasible for Aq(P). This means we
have POVMs{X 2(i)}a and { Y,X(i )}b in C9>d with [X (i), Y;°(i)] = 0 and unit vectors g € CY
such that P;(a,bls,t) = WX 2(i)Y(i)y for alt a,bst) e F and i € [I]. We will construct a
feasible solution to Aq(P) W|th value at most — ; Ajd;, thus showing Aq(P) = Ag(P).

Fix someindexi € [I]. By Artin- Wedderburn theory applied to CEXa )}asl the «-algebra
generated by thematrices X (i) with (a,s) € Ax S, thereexistsa unitary matrix U; and integers
K, mg, ng such that

K [
UiCE X &(i)}a s = (C"*™ Ry, ) and di = MyNk.
k=1 k=1

By the commutation relations each matgix Y{(i) commutes with all matricesin CR X 2(i)}a s
and thus U Y,2(i)U; liesin the algebra | (15, ® C™*™Mk). Hence, we may assume

. ﬁi . b . ﬁi b . ﬁi

X&(i) = ES(i,k) ®lm,, Yi) = In, ®FP(i,k), W= Wi ks
k=1 k=1 k=1

with E2(i, k) € C™*Mk, FP(i,k) € C™*Mk and ; x € C™«"k. Then we have

i

Pi(a,bs,t) = Tr(X2(I)YL() @) = By P Tr E2(i, k) ®F2(i, k)

k - El
Qi (a,bls,t)

qu,klIJi*,k El
By P f

where Q; x € Cq(IN). Asz B P = BpiP =1, P = 2 « B (EPQ; i is a convex combination.
We now show that Q; x € C§"™ ™™} (). For this consider the Schmidt decomposition

min{Eu(,nk}
Wi k/ Eﬂwi,kﬂ = Ni k1 Vik,l ®Wi,k,|,

=1

where {V; k1 }{%, € C" and {w;x }m% < C™« are orthonormal bases, and Ak, = 0. Define
unitary matrices Vi € C"«* "k and Wy € C™Mk*™Mk such that Vv k| isthelth unit vector in R«
and Wiw; k| isthelth unit vector in R™ for | < min{my,ny}. Let E2(i,k) (resp., FP(i,k)) be
the leading principal §meatr|o&s of VKE&(i,k)V,' (resp., WkFtb(i,k)Wk*) of size min{my, ny}.
Moreover, sat ¢ = ~ [m0™™ )\ 1@ ®@, where g is the Ith unit vector in RMMMioni},
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Then

& i
Qi k(a,bis,t) = Tr E2(i, k) ®F i k)w
I,k 1 ) - S ) t ] Ewl’k@
minﬁpk,nk}
= i gt N1 Vi B2 KOV Wi FEG L KW e
I1'=1
min{ﬁpk,nk}
= NNk 6 E2(i,K) e FR(i, k) &
I1'=1
= Tr((E3(i, k) ®FL(i,k) ) k),
thus showing Q; € C4"™ ™™} (I). From the convex decomposition P = 2 N B EPQ
we obtain
i f
Aq(P) < Ai Eﬂwi,kﬁ?min{mk, nk}2 < )\imin{mk, nk}2 < Aimgng = Aidi,
ik ik ik i
which completes the proof. O

We now show that the parameter Aq(:) permits to characterize classical correlations.
Proposition 2.2. For a correlation P € RT we have Aq(P) = 1if and only if P € Cjoe(I).

Proof. If P € Cc(I"), then P can be written as a convex combination of deterministic correla-
tions (which are contained in C4(I")), hence Aq(P) = 1.
On the other hand, if Aq(P) = 1, then there exist convex decompositions indexed by | € N:

il ]
P= AP with {P/}cCq) and lim NDgP/)=1.

| —o00
iell iel!
Decompose | as the digoint union I! Ul sothat Dq(P;) isequal to 1fori €' and strictly
greater than 1fori ell. Let e> 0. For all | sufficiently large we have
( f i i i i
1- ANo+2 A< A+ ADg(P) < 1+ ¢

iel! iel! iel! iel!
iel, iel, iell iel,

which shows that 2 it Nl < & This shows that P is the limit of convex combinations of
deterministic correlations, which impliesthat P € Cyoc(I1). O

Proposition 2.3. If C4(I") is not closed, then there exists {Pj} € Cq(I") with Ag(Pj) — .

Proof. Assume for contradiction that there exists an integer K such that Ay(P) < K for all
P € Cq4(I"). We will show thisresultsin a uniform upper bound on D4(P) for P € C4(I"), which
implies Cq(I") is closed. For this we first observe that any P € Cq(I") can be decomposed as

P=piRy+ (1= p1)Qy, (7)

where Ry € Co(I"), Q1 € conv(CK (1)), and p1 < K/ (K + 1). Indeed, by assumption, P can be
written as a convex combination

] ]
P= AP with {P}cCyl and AD4(P) = K.

iel iel

11



We can decompose | as the disjoint union I_ U1, so that D4(P;) isat most K for i € |_ and
at least K + 1fori el,. Then,

i i
(K + 1) )\i < )\iDq(Pi) < K,

iel, iel,

and th%sm = 2 ic1, Ni = K/(K +1). Hence (7) holds after setting Ry = (z
Q1= (" i NP)/(1 = p1).

By repeating the same argument for Ry and iterating we obtain for each integer k € N a
decomposition

)\i Pi)/[J1 and

iel,

P = papzpkRi+ (L= p1)Q + p1(1 = p2)Qo 4. + P2~ Pr-1(1 = Hk) Qg

=(1-p1p2py)Qx

where Ry € Cq(I"), Qx € conv(C¢ (M) and papz- - pk < (K/(K + 1))¥. As the entries of Ry
liein [0, 1] we can conclude that pius--- xRk tendsto 0 as k — o« . Hence the sequence (f)k)k
has a limit Q and P = Q holds. As all Q liein the compact set conv(C(’f(I’)), we also have
P € conv(Cg (). The extreme points of the compact convex set conv(Ck (1)) lie in C (I),
so, by the Caratheodory theorem, P € conv(Cg< (M) is a convex combination of at most ¢
elements from Cg(l’) where c is at most IAIISI + IBIITI+ 1. By adirect sum construction (see
Section 1.1) we then obtain D4(P) < cK. O

2.2 Setup of the hierarchy

We will now construct a hierarchy of lower bounds on the minimal entanglement dimension,

using its formulation via Aqc(P). Our approach is based on noncommutative polynomial opti-

mization, thus similar to the approach in [GdLL17a] for bounding matrix factorization ranks.
We first need some notation. Set

X = {xg:(a,s)eAx S} and y = {ytb:(b,t)eBxT},

and let [k, y, z[} betheset of all words of length at most r inthen = ISIIAI+ ITIIBI+ 1 symbols
x2, y?, and z. Moreover, set [k,y,zfl = bk,y,z0. . We equip Ek,y,zl with an involution
w B> w* that reverses the order of the symbols in the words and leaves the symbols x2, yP, z
invariant; e.g., (x2z)* = zx2. Let Rlk,y,zl} bethe vector space of all real linear combinations
of the words of length (aka degree) at most r. The space Rlk,y,zll = Rik,y,zll isthe «-
algebra with Hermitian generators{x2}, {yP}, and z, and the elementsin this algebra are called
noncommutative polynomials in the variables {x2},{yf}, z.

Thehierarchy isbased on thefollowing idea: For any feasible solution to Aqc(P), itsobjective
value can be modeled as L (1) for a certain tracial linear form L on the space of noncommutative
polynomials (truncated to degree 2r).

Indeed, assume {(P;,Ai);} is a feasible solut50n to the program Ay (P) defined in Sec-
tion 1.3, where Pi(a,bs, t) = Tr X2(i)Y2(i)yiw:" with X2(i),Y2(i) € C4*d% ¢ € C4, and
di = Dge(Pi). Fix r e Nu{ }, and consider the linear functional L € Rk, y, zl}, defined by

il
L(p) = A Re(Tr(p(X (i), Y (i), yiw))) for peRk,y,zk.
|
Here, for each index i, weset X (i) = (X2(i) : (a,8) € AxS), Y (i) = (Ytb(§ :(bt)eBxT),and
replace the variables x2, yp, z by X &(i), Y2(i), and ¢i@. Then L(1) = © ; Aidi. That is, L(1)
is the objective value of the feasible solution { (Pi, Ai)i} to Aqc(P). We will now identify several
computationally tractable properties that this linear functional L satisfies. Then the hierarchy
consists of optimization problems where we minimize L (1) over the set of linear functionals that
satisfy these specified properties, which will result in a hierarchy of lower bounds on Ay (P).
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First note that L is symmetric, that is, L(w) = L(w*) for all w € [k,y,zl}, and tracial,
that is, L(ww') = L(w'w) for all w,w’ € Ik, y, zBwith deg(ww') < 2r.
For all p € Rik,y, zf} _1 we have

il
L(pxep) = AN Re(Tr(M (i)"Xg(i))M (i), where M (i) = p(X (i), Y (i), wiy).
i
Since X &(i) is a positive semidefinite matrix, M (i)*X 2(i)M (i) is positive semidefinite too, and
thus we have L (p*x2p) = 0. In the same way we have L (p*yPp) = 0 and L(p*zp) = 0. That is,
G= x%:seS,aeA U yP:teT, beB u{z},

then L is nonnegative (denoted as L = 0) on the truncated quadratic module
i 3
M 2 (G) = cone pgp:pe Rik,y,zl]l ge Gu{1}, deg(p‘gp) < 2r . (8)

Similarly, setting

B @ i B g @
H={z—22}u{ 1- X2 :seS}U{ 1— ¥ :teT}U{[xg‘,ytb]:(s,t,a,b)el’},
acA beB
we have L = 0 on the truncated ideal
i e
lo(H)= ph:peRik,y,zl] heH, deg(ph) < 2r . (9)

Moreover, we have L (z) = > - NRe(Tr(Wiw)) = 1. In addition, for any matrices U,V € C%*d
we have

GG UGi Vg = gy Vg ugyy,
and therefore, in particular,

L(wzuzvz) = L(wzvzuz) for all u,v,welk,y,zll with deg(wzuzvz) < 2r.
That is, wehaveL = 0 on | o (R;), where
R, = zuzvz - zvzuz:u,v e u,v € [k, y, zllwith deg(zuzvz) < 2r" .

We get the idea of adding these last constraints from [NPA12], where this is used to study the
mutually unbiased bases problem.
Wecall M (G) = M » (G) the quadratic module generated by G, and wecall | (HUR ) =
lo (HUR&) theideal generated by H U R .
For r e NU{> } we can now define the parameter:
f
€(P) = min L(1) :L € Rik,y, zf}, tracial and symmetric,

L(z) = 1, L(x3yPz) = P(a,bis, ) for all (st e,
L=0onM(G),L=0onla(HUR;,) .
Additionally, we define E3(P) by adding the constraint rank(M (L)) < » to & (P). By con-
struction this gives a hierarchy of lower bounds for Aq(P):
E(P)=...< §(P) = & (P) = §(P) = Ag(P).

Note that for order r = 1 we get the trivial lower bound &(P) = 1.
For each finite r € N the parameter &(P) can be computed by semidefinite programming.
Indeed, the condition L = 0 on M 5 (G) means that L(p*gp) = O for all ge GU{1} and all
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polynomials p € Rik, y, zll with degree at most r — rdeg(g)/21. This s equivalent to requiring
that the matrices (L(w*w)), indexed by all wordf w,w with degree at most r — rdeg(g)/ 21,
are positive semidefinite. To see this, writep= "~ |, pwW and let p = (pw) denote the vector
of coefficients, then L(p*gp) = 0 is equivalent to p' (L(w*gw))p = 0. When g = 1, the matrix
(L(w*w")) is indexed by the words of degree at most r, it is called the moment matrix of L
and denoted by M, (L) (or M (L) when r = ®). The entries of the matrices (L(w*gw’)) are
linear combinations of the entries of M, (L), and the constraint L = Oon | o (H U R;) can be
written as a set of linear constraints on the entries of M, (L). It follows that for finiter € N,
the parameter &(P) isindeed computable by a semidefinite program.

2.3 Background on positive tracial linear forms

Before we show the convergence results we give some background on positivetracial linear forms,
which we use again in Section 3. We state these results using the variables x4, ..., X, where
we use the notation k= fkq,...,x,H The results stated below do not always appear in this
way in the sources cited; we follow the presentation of [GdLL17a], where full proofs for these
results are also provided.

First we need a few more definitions. A polynomial p € REkflis called symmetric if p* = p,
and we denote the set of symmetric polynomials by SymRikfl Given G € Sym REkfl and
H c REkH theset M (G)+ | (H) iscalled Archimedean if it contains the polynomial R—~ [, x?
for some R > 0. We will use the concept of a C*-algebra, which for our purposes can be defined
as a norm closed =-subalgebra of the space B(H) of bounded operators on a complex Hilbert
space H. We say that A isunital if it contains the identity operator (denoted 1). An element
a e A iscalled positive if a= b*bfor somebe A. A linear form 1T on a unital C*-algebra A is
said to be a state if T(1) = 1 and T is positive; that is, T(a) = O for all positive elementsa e A.
We say that a state 1 is tracial if T(ab) = t(ba) for all a,be A. See, for example, [Bla06] for
more information on C*-algebras.

Thefirst result, which relates positive tracial linear formsto C*-algebras, is dueto [NPA12]
in the noncommutative setting, and due to [BKP16] in the tracial setting.

Theorem 2.4, Let GE€ SymRIkfland H ¢ Rikfand assume that M (G)+ | (H) is Archimedean.
For a linear form L € Rk, the following are equivalent:

(1) L is symmetric, tracial, nonnegative on M (G), zero on | (H), and L(1) = 1;

(2) there is a unital C*-algebra A with tracial state T and X € A" such that g(X) is positive
in A for all g€ G, and h(X) = O for all h € H, with

L(p) = t(p(X)) for all pe Rkl (10)

The following can be seen as the finite dimensional analogue of the above result. T he proof
of the unconstrained case (G= H = & can be found in [BK12], and for the constrained case
in [BKP16]. Given a linear form L € RIk[}, recall that the moment matrix M (L) is given by
M (L)yy = L(u*v) for u,v e kil

Theorem 2.5. Let GE€ SymRikHand H ¢ REkE For L € REk[}, the following are equivalent:

(1) L is a symmetric, tracial, linear form with L(1) = 1 that is nonnegative on M (G), zero
on | (H), and has rank(M (L)) < o ;

(2) there is a finite dimensional C*-algebra A with a tracial state T and X € A" satisfy-
ing (10), with g(X) positive in A for all g€ Gand h(X) = O for all he H;

(3) L is a convex combination of normalized trace evaluations at tuples X = (X1,...,Xp) of
Hermitian matrices that satisfy g(X) [l O for all g€ G and h(X) = 0 for allh € H.
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A truncated linear functional L € Rik[}, is d-flat if the principal submatrix M,_s(L) of
M, (L) indexed by monomials up to degree r — & has the same rank as M,(L). We call a
truncated linear functional flat if it is &flat for some & = 1. The following result claims
that any flat linear functional on a truncated polynomial space can be extended to a linear
functional L on the full algebra of polynomials. It is due to Curto and Fialkow [CF96] in the
commutative case and extensions to the noncommutative case can be found in [PNA10] (for
eigenvalue optimization) and [BK12] (for trace optimization).

Theorem 2.6. Let 1< 8=t < o, Gc SymREky, and H ¢ Rk . If L € Rk, is
symmetric, tracial, &-flat, nonnegative on M 2 (G), and zero on | 5 (H), then L extends to a
symmetric, tracial, linear form on REkElthat is nonnegative on M (G), zero on | (H), and whose
moment matrix has finite rank.

The following technical lemma, based on the Banach-Alaoglu theorem, is a well-known tool
to show asymptotic convergence resultsin (tracial) polynomial optimization.

Lemma 2.7. Let GE SymREkE H c REKE and assume R— (x5+ -+ -+ x2) € M 24(G) + | 29(H)
for some d € N and R> 0. For r € N assume L, € REkE}, is tracial, nonnegative on M 2 (G)
and zero on | 5 (H). Then we have IL,(w)l = R™2L, (1) for all w € BxEb_ o4, 2. In addition,
if sup, L (1) < o, then {L}; has a pointwise converging subsequence in REkE}.

2.4 Convergence results

We first show equality E4(P) = Aq(P), and then we consider convergence properties of the
bounds &(P) to the parameters & (P) and &J(P).

Proposition 2.8. For any P € Cy(I") we have E/(P) = Aqc(P).

Proof. Since we know E(P) < Ag(P), it remains to show &(P) = Aq(P). For thislet L be
feasiblefor E3(P), sothat L = 0OonM (G) andL = Oon | (HUR ). By Theorem 2.5, there exist
finitely many scalars Aj = 0, Hermitian matrix tuples X (i) = (X&(i))as and Y (i) = (Ytb(i))b,t,
and Hermitian matrices Z;, so that g(X (i), Y (i),Z;) B Ofor all ge G, h(X (i), Y (i), Z;) = 0 for
alheHUR«, and

@
L(p) = N Tr(p(X (i),Y (i),Z;)) for all peRIk,y,zfl (11)

Here we may assume without loss of generality that, for each i, the algebra CEX (i), Y (i), Z;[
is a full matrix algebra C%*9% . |Indeed, if this is not the case, by the Artin-Wedderburn
theorem there exists a unitary matrix U for which the algebra U*CEX (i), Y (i), Z;J can be
block diagonalized into smaller blocks and thus we obtain another conic decomposition of L
involving only full matrix algebras. [ ]
Since h(E(i),F(i),Zi) = 0 for al h € Re U{z — z%}, the commutator ~Z;juZ;, Z;VZ;
vanishes for all u,v € [E(i),F(i),Z;l and hence for all u,v € CEE(i),F(i),Z;l This means
that [Z;T1Zi,Z;T»Zi] = O for all T4, To € C%*9% Since Z; is a projector, there exists a unitary
matrix U; such that
UiZ;U; = Diag(1,...,1,0,...,0).

The above then impliesthat for all T1 and Tp, the leading principal submatrices of size rank(Z;)
of UiT1U; and Uiggui* commuteEThisimpliesrank(Zi) = 1 and therefore Tr(Z;) = 1. Thuswe
have1=L(z) =" A Tr(Z) =" ;A

For each index i define the correlation P; € C4(I") by

Pi(a,bls,t)=Tr(ES(i)Ftb(i)Zi) for all (a,bs,t)erl.
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Then, P =~ , \iP;, sothat (P;, Aj) forms a feasible solution to Aq(P) with objective value

i i
Aidi = )\iTr(Idi)z L(1).

This shows E3(P) = Ag(P). O

The problem &(P) differs in two ways from a standard tracial optimization problem. It
does not have the normalization condition L(1) = 1 (and instead minimizes L (1)), and it has
the extra ideal constraints L = 0 on | o (R;), where R, depends on r. The following proof
is a straightforward adaptation of a similar proof for general tracial optimization problems
from [KP16] and it relies on Lemma 2.7.

Proposition 2.9. For any P € C4(I") we have EF(P) > &L (P)asr —> o,

Proof. First we observe that the polynomials 1- z2, 1- (x2)2, and 1- (yP)? liein M 4(GUHy),
where Hy contains the symmetric polynomials in H (i.e., omitting the polynomials [x"g‘,ytb ).
Indeed, we have 1 - 22 = (1- 2)2 + 2(z - 29),

(, @ o @

1-(x3)2= (1= x3)2+2(1= xH)x3(1-xH+ 22 1- x2 + xg")xa

and analogously for yP. Hence R - z2 - 2 as(X3)? - 2 bt (YP)? € M 4(GU Ho) for some R > 0.
Fix €> 0 and for each r € N let L, be feasible for &(P) with value L,(1) = &(P) + . As
L, is tracial and zero on | o (Hg) it follows (using the identity p*gp = pp*g + [p*g,p]) that
L =0o0n M z(Hg). Hence, Ly = 0on M 2 (GU Hp). Since sup,L(1) = Aq(P) + € we can
apply Lemma 2.7 and conclude that {L;}, has a converging subsequence; denote its limit by
L. € REkE. Then one can verify that L. is feasible for & (P), and we have

E(P)sLeg() = limE(P)+e< E(P)+ e

r—o0
Letting € — 0 we obtain that & (P) = lim;_. &(P). O

Recall that afeasible solution L of &'(P) issaid to be&-lat if rank(M, (L)) = rank(M,_5(L)),
where M, _5(L) is the principal submatrix of M (L) whose rows and columns are indexed by
fe,f,zf_5. Since computing the rank of a matrix is easy, it is easy to check whether the
solution given by the semidefinite programming solver is flat. In the following proposition we
show that if &(P) admits a &flat optimal solution with &= rr/31 + 1, then E(P) = &X(P).
This proposition and its proof are a small extension of the flat extension result from [KP16]
for tracial optimization, where now © depends on r because the set R, for the ideal constraint
dependsonr.

Proposition 2.10. If & (P) admits a (rr/31 + 1)-flat optimal solution, then E(P) = E(P).

Proof. Let 8= rr/31+ 1 and let L be a &flat optimal solution to &(P). We have to show
&(P) = &(P), which we do by constructing a feasible solution to £}(P) with the same objective
value. In the proof of Theorem 2.6 (see [GdLL17a, Thm. 2.3], and also [KP16, Prop. 6.1] for the
original proof of thistheorem), thelinear form L is extended to a tracial symmetric linear form
L on Rk, y, zAthat is nonnegative on M 5 (G), zero on | (H), and satisfies rank(M (L)) < & .
To do this a subset W of [k, y,zl_5s can be found such that we have the vector space direct
sum
Rik,y,zB= span(W) @1 (N, (L)),

where N, (L) is the vector space
N((L) = {pe Rik,y,zf} :L(gp) = Ofor all ge REB(,y,zE]}.
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It is moreover shown that | (N,(L)) € N(L). For p € Rik,y, zll we denote by r, the unique
element in span(W) such that p—rp €1 (N((L)).
Fix u,v,w € Rlk,y, zfl Then we have

L(w(zuzvz - zvzuz)) = I:(wzuzvz) - I:(wzvzuz).
Since L istracial and u— ry,v—ry,W—ry €| (Nf(L)) e N (I:), we have
L(wzuzvz) = L(ryzruzrvz) and L(wzvzuz) = L(rwzryzruz).
Since deg(ryzryzryz) = deg(ryzryzrywz) < 2r we have
L(rwzruzryz) = L(rwzryzryz) and L(rwzrvzryz) = L(rwzryzryz).

SoL €l(R;) impliesL €1 (R). )
Since L extends L we have L(z) = L(z) = 1 and L(x8yfz) = L(x2y{z) =

A P(a,bs,t) for all
a,b,s,t. So, L isfeasible for E/(P) and has the same objective value L(1) = L(1).

O

3 Bounding quantum graph parameters

3.1 Hierarchies Y (G) and y#®(G) based on synchronous correlations

In Section 1.4 we introduced quantum chromatic numbers (Definition 1.1) and quantum sta-
bility numbers (Definition 1.2) in terms of the existence of synchronous quantum correlations
satisfying certain linear constraints. We use this in Section 3.1.1 to reformulate these prob-
lems in terms of C*-algebras, and then in Section 3.1.2 to reformulate this in terms of tracial
optimization, which leads to the hierarchies y*°'(G) and y2(G).

3.1.1 Graph parametersin terms of C*-algebras

The following result from [PSS* 16] allows us to write a synchronous quantum correlation in
terms of C*-algebras admitting a tracial state.

Theorem 3.1 ([PSS*16]). Let ' = A2x S?2 and P € R". We have P € Cqc,s(lM) (resp.,
P € Cqs(IM)) if and only if there exists a unital (resp., finite dimensional) C*-algebra A with a
faithful tracial state T and a set of projectors {X& :s€ S,a€ A} € A satisfying = .o X& =1
for all s€ S and

P(a,bs,t) = T(X2XP) for all s,teS,abeA.

Here we add the condition that T is faithful, that is, T(X*X) = 0 implies X = 0, since it
follows from the GNS construction in the proof of [PSS* 16]. This means that

0= P(abst) = T(X2XP) = T((X2)%(XP)?) = T((X3XP "X 2XP)
implies X2XP = 0.

It follows that Xqc(G) is equal to the smallest k € N for which there exists a C*-algebra A,
atracial state T on A, and a family of projectors {X°:i € V,ce [k]} € A satisfying

i
Xf-1=0 foral ieV, (12)
celK]
XiCXjC’=O if (cBcandi=j) or (c=c and{i,j} €E). (13)

The quantum chromatic number X4(G) is equal to the smallest k € N for which there exists a
finite dimensional C*-algebra A with the above properties.
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Analogously, aqc(G) is equal to the largest integer k € N for which there exists a C *-algebra
A, atracial state T on A, and a family of projectors{X(i: :ce[k],i e V} c A satisfying
@ .
X¢=1=0 foral celk], (14)
ieV

Xixl =0 if(iBjandc=c) or ((i=]or{i,j}€E)andcHl c), (15)

and the quantum stability number aq(G) is equal to the largest k € N for which there exists a
finite dimensional C*-algebra A with the above properties.

These reformulations of the parameters x4(G), Xqc(G), aq(G) and aq(G) can be obtained
from [OP16, Thm. 4.7], where general quantum graph homomorphisms are considered; the
formulations of x4(G) and Xq(G) are also made explicit in [OP16, Thm. 4.12].

By Artin-Wedderburn theory [Wed64, BEK 78], afinitedimensional C*-algebra isisomorphic
to a matrix algebra. So the above reformulations of X4(G) and aq(G) can be seen as feasibility
problems of systems of equations in matrix variables of unspecified (but finite) dimension;
such formulations are given in [CMN* 07, MR16, SV17] and they also follow from the proof of
Proposition A.1. If werestrict to scalar solutions (1 x 1 matrices) in these feasibility problems,
then we recover the classical graph parameters x(G) and a(G).

In [OP16] variations on the above parameters are considered where the C*-algebras are not
required to admit a tracial state.

3.1.2 Graph parametersin terms of positive tracial linear forms

Given a graph G = (V,E) and an integer k € N, we let HE| and HE% denote the set of
polynomials corresponding to equations (12)—<13) and (14)—15):

Hc(:30,|k={1— x?:ieV}U{xi"xf':(cE candi=j)or (c=c'and{i,j}eE)},

celk]
stab{ﬂi. YA , o . .}
HEX = 1- xg:icelkl U xxy :(iBjandc=c)or((i=jor{i,j}eE)andcBc) .

ieV
We have 1- (xf)2 € M o(@ + 1 2(HP)), since 1- (x%)? = (1- x%)? + 2(x¢ - (x%)?) and
B @ O ,
X (xf)P=xf 1= X+ xixP el a(HE),
c c:cHce

and the analogous statements hold for H&3?. Hence, M (g + | (H”') and M (G + | (H?®) are
Archimedean and we can apply Theorems 2.4 and 2.5 to express the quantum graph parameters
in terms of positive tracial linear functionals. Namely,
Xqc(G) = min{ keN:LeRExf:ieV,ce [k} symmetric, tracial, positive,
L()=1,L=0onl(HZ) ,

and Xq4(G) is obtained by adding the constraint rank(M (L)) < o . Likewise,

age(G) = min{ keN:L eREx.:celk],i e VI symmetric, tracial, positive,
L(1)=1,L=0on1(H&P),
and aq(G) is given by the same program with the additional constraint rank(M (L)) < .
Starting from these formulationsit is natural to define a hierarchy {y®° (G)} of lower bounds

on Xq(G) and a hierarchy {y$t¥®(G)} of upper bounds on 0qc(G), where the bounds of order
r € N are obtained by truncating L to polynomials of degree at most 2r and truncating the ideal
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todegree 2r. Then, if we define y®© (G) and y*2(G) by adding the constraint rank(M (L)) <
to y&'(G) and y$2(G), it follows by definition that
Y2'(G) = Xae(G),  YE®(G) = age(G), Y¥(G) = Xq(G), and y¥%°(G) = a4(G).

*

The optimization problems y®°(G), for r € N, can be computed by semidefinite program-
ming and binary search on k, since the positivity condition on L can be expressed by requiring
that its truncated moment matrix M, (L) = (L(w*w’)) (indexed by words with degree at most
r) is positive semidefinite. If there is an optimal solution (k,L) to y®(G) with L flat, then,
by Theorem 2.6, we have equality y®°'(G) = Xq(G). Since {y®(G)}ren is @ monotone nonde-
creasing sequence of lower bounds on X4(G), there exists an rq such that for all r = ro we have
v(G) = y&(G), which isequal to YP'(G) = Xqc(G) by Lemma 2.7. The analogous statements
hold for the parameters y$%(G). Hence, we have shown the following result.

Lemma 3.2. Let G be a graph. There exists an ro € N such that y*(G) = Xq(G) and
y®(G) = Qqc(G) for all r = ro. Moreover, if v*(G) admits a flat optimal solution, then

YP(G) = Xq(G), and similarly if y*3(G) admits a flat optimal solution, then Y$'#(G) = a4(G).

Going back to the reformulation of synchronous commuting quantum correlations in The-
orem 3.1 we can obtain in the same way a hierarchy of semidefinite programming based outer
approximations for the set Cqcs(I"): Define Q; s(I") as the set of P € R" for which there exists
a symmetric, tracial, positive linear form L € RE{x2 : (a,s) € A x S}}, such that L(1)<= 1 and
L = 0 on the ideal generated by the polynomials x2 — (x2)? ((a,s) € Ax S) and 1 - x2
(se€ S), truncated at degree 2r. Then we have

acA

n
ch,s(r) = Qo ,s(r) = Qr,s(r)-

reN

Compared to the approximation Q,(I") from [PSS* 16], only one set of variables {x2} is used
to define Q, ¢ in the synchronous case while two sets of variables {x2,yP} are used to define
Q( (). The synchronous value of a nonlocal game is defined in [DP16] as the maximum value
of the objective function (5) over the set Cqcs(I7). By maximizing the objective (5) over the
relaxations Qr s(I") we get a hierarchy of semidefinite programming upper boundsthat converges
to the synchronous value.

We will now present other hierarchies of bounds for the quantum parameters, inspired by
existing results on the classical parameters a(G) and x(G), and more economical since they
involve variables indexed only by the vertices of G. These hierarchies capture existing bounds
like projective packing, projective rank and tracial rank and are in fact tightly linked to the
bounds y*(-) and y$#(-) via suitable graph products.

3.2 Hierarchies £%(G) and &% (G) based on Lasserre type bounds

Here we revisit some known Lasserre type hierarchies for the classical stability number a(G)
and chromatic number x(G) and we show that their tracial noncommutative analogues can be
used to recover known parameters such as the projective packing number ap(G), the projective
rank & (G), and the tracial rank &,(G). Compared to the hierarchies defined in the previous
section, these Lasserretype hierarchies use less variables (they only use variables indexed by the
vertices of the graph G), but they also do not converge to the (commuting) quantum chromatic
or stability number.
Given a graph G = (V,E), define the set of polynomials

Hg= xj-x2:i ev} U{xixj {i,j} €E
in the variablesx = (x; :i € V) (which are commutative or noncommutative depending on the

context). Notethat 1- x2 e M (G + | o(Hg) for alli € V, soM (G + | (Hg) is Archimedean.
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3.2.1 Semidefinite programming bounds on the projective packing number

Wefirst recall the Lasserre hierarchy of bounds for the classical stability number a(G). Starting
from the formulation of a(QG) viaﬁthe polynomial optimization problem
@

a(G) = sup xi :x€R", h(x) = 0for heHg ,

ieV
ther-th leve of the La%gerre hierarchy for a(G) (introduced in [LasO1, Lau03]) is defned by
EH E
last*® (G) = sup L( xi) :L € R[x]5, positive, L(1) = 1,L=0o0onl2(Hg) .
ieV

Then 1as?(G) < 1as®(G), the first bound is Lovasz’ theta number: last®(G) = §(G), and
finite convergence to a(G) is shown in [Lau03]: Iasgt(""g)(G) = a(G).
Roberson [Rob13] introduces the projective packing number :

B,n ]
ap(G) = sup % rankX; :deN, X4,...,X, € &9 projectors, X;X; = Ofor {i,j} €E
B Ey B
=sup Tr X; /d:deN, X € (89", h(X)=0for he Hg (16)
ieV

as an upper bound for the quantum stability number aq(G); the inequality aq(G) < ap(G) also
follows from Proposition 3.3 below. In view of (16), the parameter ap(G) can be seen as a
noncommutative analogue of a(G).
Forr e Nu{e} we din.the nnoommutative analogue of the parameter las*®(G) by
1 B

£t (G) = sup L xi :L e Rk, tracial, symmetrg:, and positive,
<V L()=1L=0o0nlx(Hg) ,

and define £2°(G) by adding the constraint rank(M (L)) < « to the definition of EX2°(G).

In view of Theorems 2.4 and 2.5, both £ (G) and €92 (G) ean be reformulated in terms of
C*-algebras: £ (G) (resp., 42 (G)) is the largest value of T(~ ,oy Xi), where A is a (resp.,
finite-dimensional) C*-algebra with tracial state T and X4,...,X, € A areprojectors satisfying
XiXj = Ofor all {i,j} € E. Moreover, as we now see, the parameter 8130 (G) coincides with the
projective packing number and the parameters £2°(G) and £ (G) upper bound the quantum
stability numbers.

Proposition 3.3. We have £2(G) = ap(G) = aq(G) and E%(G) = aqc(G).

Proof. By theformulation (16), ap(G) isthe largest value of L(™ ;oy X;) over linear functionals
L that are normalized trace evaluations at projectors X € (S9)" (for somed € N) with XiX;j=0
for {i,j} € E. By convexity the optimum value remains unchanged when considering a convex
combination of such trace evaluations. Now in view of Theorem 2.5(3), this optimum value is
precisely the parameter £42°(G). This shows equality a,(G) = E42(G).

Consider a C*-algebra A with tracigl state T and projectors XieA (ieV, celK)
satisfying (14)-(15). Then, setting X; = CE[E]X‘I: fori e % we obgain projectors X; € A that
satisfy XiXj = 0if {i,j} € E. Moreover, T(" jcy Xi) = 7 o T(" jev X¢) = k. This shows
E33(G) = aqe(G) and, when restricting A to be finite dimensional, 43 (G) = a4(G). O

Using Lemma 2.7 one can verify that £ (G) converges to E$%(G) asr — o, and for
r e Nu{e} theinfimum in £2(G) is attained. Moreover, by Theorem 2.6, if £ (G) admits
a flat optimal solution, then £33 = £ (G). Also, the first bound &!2°(G) coincides with the
theta number, since §'®(G) = las{'®(G) = §(G). Summarizing we have aq(G) <= &% (G)
and the following chain of inequalities

aq(G) = ap(G) = E'®(G) < E%®(G) = ... < E%(G) = ... < E'¥P(G) = §(G).
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3.2.2 Semidefinite programming bounds on the projective rank and tracial rank

We now turn to the (quantum) chromatic numbers. First recall the definition of the fractional
chromatic number:
ENz] i il
xi (G) := min As:AeR?, Ag=1foralieV ,
SeS SeS:ieS

where S is the set of stable sets of G. Clearly, x; (G) = x(G). The following Lasserre type
lower bounds for the classical chromatic number x(G) are defined in [GLO8b]:

last®(G) = inf{ L(1) : L € R[x]5 positive, L(xj)=1(ieV),L=0o0n |2r(HG)}-

By viewing x; (G) as minimizing L(1) over linear functionals L € R[x]* that are conic combi-
nations of evaluations at characteristic vectors of stable sets, we see that Ias‘,’°'(G) < X;i (G) for
all r = 1. In [GLO8Db] it is shown that finite convergence to xs (G) holds: Iasg‘z'G)(G) = Xt (Q).

Moreover, the order 1 bound coincides with the theta number: 1as3%(G) = §(G).

The following parameter & (G), called the projective rank of G, was introduced in [MR16]
as a lower bound on the quantum chromatic number X4(G):

& (G) = inf{g :d,reN, Xq,...,Xn €89, Tr(Xj)=r (i € V),
Xi2= Xi (I EV), X,XJ = 0({|,j} S E)}
Proposition 3.4 ([MR16]). For any graph G we have & (G) = Xq(G).

Proof. Set k = Xq(G). It is shown in [CMN* 07] that in the definition of x4(G) from (12)—(13),
one may assume w.l.o.g. that all matrices X ¢ have the same rank, say, r. Then, for any given
color ¢ € [k], the matrices XF (i € V) provide a feasible solution to & (G) with value d/r.
Finally, d/r = k holds since by (12)—<13) we have d = rank(l) = (‘;:1 rank(X?) = kr. O

Paulsen et al. [PSS* 16, Prop. 5.11] show that the projective rank & (G) can equivalently
be defined as

& (G) = inf{)\ : A is afinite dimensional C*-algebra with tracial state T, )
Xi € A projector (i € V), XiX; =0({i,j} €E), tu(Xj)=1/A(ieV) .

They also definethetracial rank &, (G) of G asthe parameter obtained by omitting in the above
definition of & (G) the restriction that A has to be finite dimensional. The motivation for the
parameter &, (G) isthat it lower bounds the commuting quantum chromatic number [PSS* 16,
Thm. 5.11]:

& (G) = qu(G)-
In view of Theorems 2.4 and 2.5, we obtain the following reformulations for & (G) and &; (G):

& (G) = inf{L(1) : L € REkE tracial, symmetric, positive, rank(M (L)) < oo,

L(xj)=1(ieV),L=0onl(Hg) ,

and &, (G) is obtained by the same program without the restriction rank(M (L)) < o . In
addition, using Theorem 2.5(3), we see that in this last definition of & (G) we can equivalently
optimize over all L that are conic combinations of trace evaluations at projectors X; € S9 (for
some d € N) satisfying X;X; = 0 for all {i,j} € E. If we restrict the optimization to scalar
evaluations (d = 1) we obtain the fractional chromatic number x; (G). This shows that the
projective rank & (G) can be seen as the noncommutative analogue of the fractional chromatic
number Xz (G), as was already observed in [MR16, PSSt 16].
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The above formulations of the parameters &, (G) and & (G) in terms of linear functionals
also show that they fit within the following hierarchy {ErCO'(G)}reNu{oo y» defined as the noncom-
mutative tracial analogue of the hierarchy {las®® (G)}, :

£ . . "
£°\(G) = inf L(1) : L € REk[3, tracial, symmetric, and positive,
L(xi)=1(ieV),L=0onl2(Hg) .

Again, define £°(G) as the parameter obtained by adding the constraint rankM (L) < o to
the program defining £°'(G). By the above discussion the following holds.

Proposition 3.5. We have £€°(G) = & (G) < Xq(G) and EX'(G) = & (G) = Xqc(G).

Using Lemma 2.7 one can verify that the parameters £°/(G) converge to £°'(G). Moreover,
by Theorem 2.6, if £°(G) admits a flat optimal solution, then &° = £%(G). Also, the
parameter £°(G) coincides with 1as® (G) = 8(G). Summarizing we have £°(G) = &, (G) =<
Xqc(G) and the following chain of inequalities

8(G) = & (G) = ...< EG) = ... = EX(G) = & (G) = E(G) = & (G) = Xq(Q).

Observethat theboundslas™® (G) and £°/(G) remain below the fractional chromatic number

Xi (G), since & (G) = £9(G) = 1as®(G) = x; (G). Hence, these bounds are weak if x; (G) is
close to 8(G) and far from X(G) or Xq(G). In the classical setting this is the case, e.g., for the
class of Kneser graphs G = K (n,r), with vertex set the set of all r-subsets of [n] and having
an edge between any two digjoint r-subsets. By results of Lovasz [Lov78, Lov06], the fractional
chromatic number is xs (K (n,r)) = n/r, which is known to be equal to (K (n,r)), while the
chromatic number is x(K(n,r)) = n—- 2r + 2. In [GL08b] this was used as a motivation to
definea new hierarchy of lower bounds{ A (G)} on the chromatic number that can go beyond the
fractional chromatic number. In Section 3.3 we recall this approach and show that its extension
to the tracial setting recovers the hierarchy {y®(G)} introduced earlier in Section 3.1.2. We

also show how a similar technique can be used to recover the hierarchy {y32(G)}.

3.2.3 A link between &% (G) and £%(G)
In [GLO8b, Thm. 3.1] it is shown that, for any r = 1, the bounds|as®(G) and las™® (G) satisfy

last*® (G)las® (G) = IVI,

with equality if G is vertex-transitive, which extends a well-known property of the theta number
(caser = 1). The same holds for the noncommutative analogues £ (G) and £° (G).

Lemma 3.6. For any graph G = (V,E) and r € NU{%,+} we have E®(G)EZ(G) = IVI,
with equality if G is vertex-transitive.

Proof.~l(§ L bej‘easiblefor £°/(G). Then L = L/L(1) provides a solution to £t (G) with
valueL “ .., xi" = IVI/L(1), implying 3 (G) = IVI/L(1) and thus £3(G)&%(G) = IVI.
Assume G is vertex-transitive. Let L be a feasible solution for £2(G). As G is vertex-
transitive we may assume (after symmetrization) that L(x;) is constant, set L(x;) =: 1/ A for all
i €V, sothat the objective value of L for £ (G) is IVI/A. Then L= AL provides a feasible
solution for £°!(G) with value A, implying £°(G) = A. Thisimplies £°(G)&?(G) < IVI. O

When G isvertex-transitive theinequality & (G)aq(G) < VI wasshown in [MR16, Lem. 6.5];
it can be recovered from the caser = « of Lemma 3.6 and the inequality aq(G) < ap(G).



3.2.4 Comparison to existing semidefinite programming bounds

Observe that by adding the inequalities L(x;x;) = 0 for all i,j € V to &°(G) we obtain the

strengthened theta number §* (G) (considered in [Sze94]). Moreover, if we add the constraints

0 L(xixj) = 0 forilj eV, (17)

L(xixj) = 1 fori eV, (18)
EHjeC

L(1) + L(xix;) = ICl+ IC'l for C,C’ distinct cliquesin G (19)
ieC,jeC’

to the program defining the parameter E?O'(G), then we obtain the parameter Espp(G), which
is introduced in [PSS* 16, Thm. 7.3] as a lower bound on &,;(G). We will now show that the
inequalities (17)—(19) are in fact valid for £°'(G), which implies

&°(G) = &pp(G) = 8*(G).
For this, given a clique C in G, we define the polynomial
i
gc :=1-  x; € Riki
ieC

Then the inequalities (18) and (19) can be reformulated as L(xjgc) = 0 and L(gcgc’) = O,
respectively, using the fact that L(x;) = L(x2) = 1for all i € V. Hence, in order to see that any
feasible L for £°(G) satisfies the constraints (17)-(19), it suffices to show Lemma 3.7 below.
Recall that a commutator is a polynomial of the form [p,q] = pq- gp with p,q € Rkl We
denote the set of linear combinations of commutators [p, q] with deg(pg) < r by ©;.

Lemma 3.7. Let C and C’ be cliques in a graph G and let i,j € V. Then we have
gc €M 2(G + 12(Hg), and xiXj, Xigc, gcdc’ € M 4(G + 14(Hg) + Oa.

Proof. Theclaim gc € M »(4d + | 2(Hg) follows from the identity

i @ B, @ &
o= 1- Xi o+ (Xi—xP)+ Xixj = G¢ + h, (20)

:Ef C Eg LﬁC E‘ iEjGC E
dc h

whereh € 1 5(Hg). We also have

Bxi + xj (xi = xP) + xF(x; = x) + [xi, xix?] + [xi — X, %],
XiggXi + ga (Xi = XF) + [xi — xf, @1+ [xi, xig],

XiXj = XjX

Xidc

and, writing analogously gc' = g&- + h" with h" € I »(Hg), we have

g0 = 908 gc + [oc, 9 @31+ [h, g3 1+ g&h'+ hh' + g h. =

Using the bound &spp(G), it is shown in [PSS* 16, Thm. 7.4] that for the odd cycle Con 4 1,
the tracial rank satisfies £°(Cont1) = (2n + 1)/n. Combining this with Lemma 3.6 gives
n = E3%(Cans 1) = dge(Cany 1). Equality holds since age(Cans 1) = A(Cans 1) = N.
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3.3 Links between the bounds y®(G), £&(G), y3®(G), and &' (G)

In this last section we make the link between the hierarchies {E3%®(G)} and {£°(G)} from
Section 3.2 and the hierarchies {y*2(G)} and {y®®(G)} introduced in Section 3.1. The key
fact istheinterpretation of the coloring and stability numbersin termsof certain graph products.

We start with the (quantum) coloring number. For an integer k, recall that the Cartesian
product GHK is the graph with vertex set V x [k], where the vertices (i,c) and (j,c) are
adjacent if ({i,j} € Eandc=c)or (i =j andcB ¢). Thefollowing is a well-known reduction
of the chromatic number x(G) to the stability number of the Cartesian product GE K :

X(G) = min{k eN:a(GHK) = IVI}.

It was used in [GLO8b] to define the following lower bounds on the chromatic number:

A (G) = min{k e N:las®(GHK) = IVI},

where it was also shown that 1as®® (G) = A, (G) = x(G) for all r = 1, with equality

Aivi(G) = X(G).

Hence the bounds A, (G) may go beyond the fractional chromatic number. Thisis the case for
the above mentioned Kneser graphs; see [GL08a] for other graph instances.

The above reduction from coloring to stability number has been extended to the quantum
setting by [MR16], where it is shown that

Xq(G) = min{k € N : aq(GEKy) = IVI}.

It is therefore natural to use the upper bounds £33 (GEK ) on aq(GHKY) in order to get the
following lower bounds on the quantum coloring number:

min{k : £ (GHOK ) = IVI}, (21)

which are thus the noncommutative analogues of the bounds A;(G). Observe that, for any
integer k e N and r e NU {0, «}, we have E'®(GHK) < IVI, which follows from Lemma 3.7
and the fact that the cliques Ci = {(i,c) : c € [k]}, for i € V, cover all verticesin GHK. Let
Ceak, = Oc @i eV}, where gc, = 1- X7,
celk]

denote the set of polynomials corresponding to these cliques. We now show that the param-
eters (21) coincide in fact with y®'(G) for all r € Nu{® }. For this observe first that the
quadratic polynomials in the set Hgf'k correspond precisely to the edges of GEKy, and the
projector constraints are included in | g(Hg’"k) (see Section 3.1.2), so that

l2r (H&)) = 12 (Haak, U Genk,)-
We will also use the following result.

Leinma 3.8. Let r € NU{®, «} and assume L is feasible for E'®(GHOK). Then, we have
L(" jeveeg X7) = IVl if and only if L = O on | o (Caik,)-
2

i,c

Proof. Onedirectioniseasy: If L = Oon | »(Capk, ), then 0= 2 iev L(gc;) = IVI-L(
Conversely assume that

xf).
B @ & i
0=L x¢ —IVl=  L(gg).

ieV,celk] ieV

24



We will show L = 0on | o (Csgk,). For this we first observe that gc, - (gci)2 € |l 2(Hgak,)
by (20). Hence L(gc,) = L(g(%i) = 0, which, combined with = ; L(gc,) = O, impliesL(gc,) = O
for all i € V. Next we show L(wgg,) = O for all words w with degree at most 2r — 1, using
induction on deg(w). The base case w = 1 holds by the above. Assume now w = uv, where
deg(v) < deg(u) = r. Using the positivity of L, the Cauchy-Schwarz inequality gives

IL (uvge,)! = L(u'u)2L(v' @& v)"'2.

Note that it suffices to show L(v*gg,v) = O since, using again (20), this implies L(v*g%i v) =0
and thus L (uvge,) = 0. Using the tracial property of L and the induction assumption, we see
that L(v*gc,v) = L(vv*ge,) = 0 since deg(vv*) < deg(w). O

Proposition 3.9. For r e NU{%® } we have y*°(G) = min{k : £®(GEK) = IVI}.

Proof. Let L be a linear functional certifying y*°(G) < k. Then L isfeas%)Iefor g (GEK )
and, asL = O0on | »(Cspk,), we can conclude using Lemma 3.8 that L( i,Cxic) = IVI. This
shows £ (G K) = IVI and thus min{k : &3 (GEKy) = IVI} < k.

Conversdly, assume £ (GHEK ) = IVI. S'gwethe optimum is attained, there exists a linear
functional L feasible for £ (GHEK ) with L( i ¢X{) = IVI. Using Lemma 3.8 we can conclude
that L is zero on | 2 (Cagk,) and thus also on I o (H®}). This shows y(G) < k. O

Note that the proof of Proposition 3.9 also works in the commutative setting; this shows
that the sequence A, (G) corresponds to the usual Lasserre hierarchy for the feasibility problem
defined by the equations (12)—(13), which is another way of showing A« (G) = X(G).

We now turn to the (quantum) stability number. For an integer k, consider the graph
product K - G, with vertex set [k] x G and with an edge between (c,i) and (c,j) when
(cBc,i=j)or(c=c,iBj)or(cBc, {ij}eE). Theproduct K, - G coincides with the
homomorphic product Ky X G used in [MR16, Sec. 4.2], where it is shown that

aq(G) = max{ke N:aq(Kg * G) = k}.

This suggests naturally to use the upper bounds £ (K - G) on aq(Kk « G) to define the
following upper bounds on aq(G):

max{keN L E(K - G) = k}. (22)
For each c € [k], the set C°= {(c,i) :i € V} isacliquein Ky - G and we let
{ } o
C.-c= Oce:ce[k], where gce=1- Xes
ieVv

denote the set of polynomials corresponding to these cliques. Since these k cliques cover the
vertex set of Ky - G, we can use Lemma 3.7 to conclude £ (K - G) < k for all r € NU{ , «}.
Again, observethat the quadratic polynomialsin the set Hgf‘kb correspond precisely to the edges
of Kk * G and that we have

lor (HEX) = l2r(Hiy -6 U Gy -6)-

Based on this, one can show tfe analogue of Lemma 3.8: If L is feasible for the program
gte(K + G), then we have L ( i cXe) = kiif and only if L = 0 on | 2 (G, .g), Which implies
the following result.

Proposition 3.10. For r e NU{® } we have y*®(G) = max{k : £®(Ky - G) = Kk}.
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We do not know whether the results of Propositions 3.9 and 3.10 hold for r = «, since we do
not know whether the supremum is attained in the parameter £32b(-) = ap(-) (as was already
observed in [Rob13, p. 120]). Hence we can only claim the inequalities

Y(G) = min{k : E®(GOK) = IVI} and y¥®(G) = max{k : £ (K - G) = k}.

As mentioned above, we have las® (G) = A, (G) for any r € N [GL08b, Prop. 3.3]. This
result extends to the noncommutative setting and the analogous result holds for the stability
parameters. In other words the hierarchies {y®(G)} and {y*@(G)} refine the hierarchies

{&°(G)} and E'2(G)}.
Proposition 3.11. For r e NU{ , «} we have £°(G) = y®!(G) and E%®(G) = y*®(G).

Proof. We may restrict to r € N since we have seen earlier that the inequalities hold for
r e {o,«}. The proof for the coloring parameters is similar to the proof of [GL08b, Prop. 3.3]
in the classical case and thus omitted. We now show the inequality £'3(G) = y®(G).
Set k = y*3(G) and, using Proposition 3.10, let L € REX. : i € V,c € k], be optimal
forzE,rStab(Kk +G) = k. That is, L is tracial, symmetric, positive, and satisfies L(1) = 1,
L(" jcXe) = k,and L = 0on I (Hk,.q). It suffices now to congtruct a tracial symmetric
positive linear form L € Rik; : i € VB, such that L(1) = 1, L(* oy xi) = k,and L = 0
on | 5 (Hg), since this will imply §'3(G) = k. For this, for any word x;, - --x;, with degree
1< t< 2r, weddfine

Lixiyooxi) = L(xg - xg).

celk]

Also, we set L(1) = L(1) = 1. Then, we havell(z ey Xi) = k. Moreover, one can easily check
that L isindeed tracial, symmetric, positive, and vanisheson | o (Hg). O

A Synchronous quantum correlations

We prove the following by combining proofs from [SV17] (see also [MR16]) and [PSS* 16].

Proposition A.1. The smallest local dimension in which a synchronous quantum correlation
P can be realized is given by cpsd-rankc(Mp).

Proof. Suppose first that (g, EZ, FP) is a realization of P in local dimension d. We will show
cpsd-rankg(Ap) < d.

The demid&deco\mgosition gives scalars {Aj} and orﬁhonoml bases {u;} and {v;} of CY
such that ¢ = id=1 Ai Ui ®v;. We can replace Yy by f'=1 Aivi ®v; and E2 by UE2U",
where U isthe unitary matrix for which u; = Uv; for all i, such that (qJ,Eg‘,Ftb) still realizes P
and is of the same dimension

Given such a realization ( f'=1 Aivi ®vi, E2, Ftb) of P, we define the matrices

v _
K = )\i ViVi*, X.S’d: K1/2E§1K 1/2’ Ytb= K1/2FtbK 1/2.
i=1
By using the identities vec(K') = ¢ and
vec(K )" (E2 ®FP)vec(K ) = Tr(K EZK FP) = Tr(K 2E2K V2K V2FPK 1/2),

we see that
P(a,bs,t) = IX2 Y,°@ for all a,bs,t, (23)
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and i i
K,KH= 1, X2=  YP=K foral st. (24)
a b
For each s, the Cauchy—Schwarz inequality gives
# # f
1= P(aals,;s)= X2 VY2 X3 X2 2Iv2 Y22
ifi E’wz@ﬂ EEI15;12
< X2 X2 iv@, Y2H
a a
(H il > 12¢ B il 2172
X& a Ya = [K,KH= 1.

S S
a a a a

Thus all inequalities above are equalities. The first inequality being an equality shows that
there exist asa such that X2 = as,Y2 for all a,s. The second inequality being an equality
shows that there exist Bs such that EX 20 = BsEY2H for all s. Hence,

BsﬁYsaE = ﬂ)(saﬁ = %s'aYSaﬂ = as’aEYSaE = O.S’asa fOI’ a” S, a,
2

which shows X & = BsYZ for all s. Sinoez 2 X&=K="_Y3 wehave s = 1for all s. Thus
X2 = Y2 for all a,s. Therefore,

(AP)(s.a) (1) = XE XPH foral abst,

which shows cpsd-rankc(Ap) < d.
For theother direction we suppose{ X 2} aresmallest possible Hermitian positive semidefinite
matrices such that (Ap)(sa),tp = X3 XPHfor all a,s,t,b. Then,
[ l i ] )
1=  P(abst)= X2 XM= X2, ~ XP foral st,
a,b a,b a b

which shows the existence of a matrix K such that K = 2 2 X & for all s. We have K, K= 1
so that vec(K) is a unit vector, and sinoetheiactorization is smallest possible, K isinvertible.
Set E2 = K~V2X2K~"2for all s,a, sothat = ,EZ =1 for all s. Then,

P(a,bis,t) = (Ap)(sa).th = XS, X 0= vec(K)"(E§ ®E)vec(K),

which shows P has a realization of local dimension cpsd-rankg(Ap). O
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