
Partially-Distributed Coordination with Reo (Technical Report)

Sung-Shik T.Q. Jongmans
Formal Methods

Centrum Wiskunde & Informatica
Amsterdam, Netherlands

Email: Sung.Jongmans@cwi.nl

Francesco Santini
Contraintes

INRIA Paris-Rocquencourt
Le Chesnay, France

Email: Francesco.Santini@inria.fr

Farhad Arbab
Formal Methods

Centrum Wiskunde & Informatica
Amsterdam, Netherlands

Email: Farhad.Arbab@cwi.nl

Abstract—Coordination languages, as Reo, have emerged for
the specification and implementation of interaction protocols
among concurrent entities. In this paper, we propose a frame-
work for generating partially-distributed, partially-centralized
implementations of Reo connectors to improve 1) build-time
compilation and 2) run-time throughput and parallelism. Our
framework relies on the definition of a new formal product
operator on constraint automata (Reo’s formal semantics),
which enables the formally correct distribution of disjoint parts
of a coordination scheme over different machines according to
several possible motivations (e.g., performance, privacy, QoS
constraints, resource availability, network topology). First, we
describe the design and a proof-of-concept implementation of
our framework. Then, in a case study, we show and explain
how a generated connector implementation can be executed in
the Cloud and supports Big Data coordination.

Keywords-Reo coordination language; distributed computa-
tion; Web services; Cloud; Big Data;

I. INTRODUCTION

A. Context

Coordination languages have emerged for the specification
and implementation of interaction protocols among con-
current entities (components, services, threads, etc.). This
class of languages includes Reo [1, 2], a graphical dataflow
language for compositional construction of connectors: com-
munication media through which entities can interact with
each other. Figure 1 shows example connectors in their usual
graphical syntax. Briefly, connectors consist of one or more
channels, through which data items flow, and a number of
(named) nodes, on which channel ends coincide. Through

A

B

Z

d

(a) Alternator

A

B

Z

d

(b) Alternator2

A

B

C

Z

d
d

(c) Alternator3

Figure 1: Example connectors: the Alternator family.

connector composition (the act of gluing connectors together
on their shared nodes), developers can construct arbitrarily
complex connectors. While nodes have fixed dataflow behav-
ior, Reo features an open-ended set of channels: developers
can define their own channels with custom semantics.

Compared to general-purpose languages, Reo has sev-
eral software engineering advantages as a domain-specific
language for programming interaction protocols [3]. For
instance, the use of Reo forces developers to separate
their computation code from their protocol code instead of
intermixing computations with protocols (as usually done
when both are implemented in the same language). This sep-
aration facilitates verbatim reuse, independent modification,
and compositional construction of protocol implementations
(i.e., Reo connectors) in a straightforward way. Moreover,
Reo has a formal foundation, which enables formal analysis
of connectors (e.g., model checking [4]). This makes stati-
cally verifying that a given protocol does not deadlock, for
instance, relatively easy. Such protocol analyses are much
harder on lower-level general-purpose languages, especially
when computations and protocols are intermixed.

B. Problem

To use connectors in real applications, one must derive
implementations from their graphical specification, as pre-
compiled executable code or using a run-time interpretation
engine. Roughly two implementation approaches currently
exist. In the distributed approach [5, 6, 7], one implements
the behavior of each of the k constituents of a connector
(its nodes and channels) and runs these k implementations
concurrently as a distributed system; in the centralized
approach [3, 8], one computes the behavior of a connec-
tor as a whole, implements this behavior, and runs this
implementation sequentially as a centralized system. The
distributed approach has the advantage of fast compilation at
build-time and high parallelism at run-time. However, this
comes at the cost of reduced throughput at run-time (be-
cause of communication necessary for executing distributed
algorithms). In contrast, the centralized approach has the
advantage of high throughput at run-time but at the cost
of slow compilation and reduced parallelism. Moreover, the
amount of code generated in the centralized approach may

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301636146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table I: Syntax and semantics of common channels.

Name Graphical syntax Semantics

sync Atomically takes a data item d from its
source end and writes d to its sink end.

lossysync-nd Atomically takes a data item d from its
source end and nondeterministically
either writes d to its sink end or
loses d.

syncdrain Atomically takes data items from both
its source ends and loses them.

fifo d Takes a data item d from its source
end, then writes d to its sink end.

be exponential in k, in which case the output is prohibitively
big and the time to produce it prohibitively long. Proença
et al. observe that a partially-distributed hybrid approach,
where parts of a connector are compiled according to the
centralized approach and deployed in a distributed fashion,
is generally ideal [6, 7]: a hybrid approach strikes a middle
ground between throughput and parallelism at run-time
while achieving reasonably fast compilation at build-time.

In this paper, we address the problem that no systematic,
formally justified way of automatically constructing connec-
tor implementations according to the hybrid approach exists.

C. Contribution

We use Reo’s notion of (a)synchronous regions and an
extended recent result on connector composition to auto-
matically construct formally sound hybrid connector im-
plementations (using constraint automata as our semantic
formalism [9]). We implement this construction on top of
an existing Reo-to-Java centralized-code generator [3]. This
enables a case study on distributed service orchestration by
reusing an existing Reo-based orchestration framework [8].
This case study shows that the hybrid approach can improve
the centralized approach not only in terms of run-time
parallelism but also throughput.

We organize this paper as follows. In Sec. II, we give
a concise overview of Reo. In Sec. III, we explain the
formal theory behind our hybrid connector implementations
and how to automatically generate them. In Sec. IV, we
discuss the salient aspects of our implementation. In Sec. V,
we exemplify our code generator with a distributed service
orchestration scenario. In Sec. VI, we discuss related work,
after which Sec. VII concludes this paper.

II. REO COORDINATION LANGUAGE

Reo is a language for compositional construction of
concurrency protocols, manifested as connectors [1, 2].
Connectors consist of channels and nodes, organized in a
graph-like structure. Every channel consists of two ends and
a constraint that relates the timing and the contents of the

(a) Source (b) Sink (c) Mixed

Figure 2: Node types.

(a) Merger (b) Replicator (c) Node

Figure 3: Merger, Replicator, and Node for n = 3 and m = 2.

data-flows at those ends. A channel end has one of two
types: source ends accept data (i.e., a source end of a channel
connects to that channel’s data source/producer), while sink
ends dispense data (i.e., a sink end of a channel connects
to that channel’s data sink/consumer). Reo makes no other
assumptions about channels. This means, for instance, that
Reo allows channels with two source ends. Table I shows
the syntax and an informal description of common channels.

Entities communicating through a connector perform I/O
operations—writes and takes—on its nodes. Reo features
three types of nodes: source nodes on which only source
ends coincide (see Figure 2a), sink nodes on which only
sink ends coincide (see Figure 2b), and mixed nodes on
which both types of channel end coincide (see Figure 2c).
Informally, nodes behave as follows.

• A source node n has replicator semantics. Once a
communicating entity attempts to write a piece of
data d on n, this node first suspends that operation.
Subsequently, n notifies the channels whose source ends
coincide on n that it offers d. Once each of those
channels has notified n that it accepts d, n resolves
the write: the write operation terminates successfully
and atomically, n dispenses (a copy of) d to each of its
coincident source ends. Source nodes forbid takes.

• A sink node n has merger semantics. Once a commu-
nicating entity attempts to take a piece of data from n,
this node first suspends that operation. Subsequently, n
notifies the channels whose sink ends coincide on n that
it accepts a piece of data. Once at least one of these
channels has notified n that it offers a piece of data d,
n resolves the take: atomically, n fetches d from the
appropriate channel end and dispenses it to the entity
attempting to take. If multiple sink ends offer a data
item, n chooses one of them nondeterministically. Sink
nodes forbid writes.

• A mixed node has pumping station semantics: the
atomic execution of the replicator semantics and merger
semantics discussed above. Mixed nodes forbid I/O.

2

{A , B} ,
d(A) = d(B)

(a) Sync

{A , B} ,
d(A) = d(B)

{A} , >

(b) LossySync-ND

{A , B} , >

(c) SyncDrain

{A} ,
x′ = d(A)

{B} ,
d(B) = x

(d) FIFO

{A , B , Z} ,
d(A) = d(Z) ∧ x′ = d(B)

{Z} ,
d(Z) = x

(e) Alternator

Figure 4: Constraint automata for the channels in Table I
(between ports A and B) and for Alternator in Figure 1a.

So far, we explicitly distinguished between three language
constructs in Reo: channels, nodes, and connectors. In the
rest of this paper, for simplicity (but without loss of gen-
erality), we represent every channel c as its corresponding
connector, which consists of two nodes connected by c. To
define the semantics of c, it suffices to define the semantics
of its corresponding connector. Furthermore, we assume that
at most one source end and at most one sink end coincides
on every node [9]. We model such binary nodes with ports.
Ports occur either on the boundary between a connector and
its environment or inside a connector. If a connector consists
only of boundary ports, we call it a primitive; otherwise,
we call it a composite. To simulate the semantics of nodes
with more than two coincident channel ends, we use two
ternary primitives: Merger and Replicator. These primitives can
compose into a Node composite, which connects n ≥ 0 input
ports to m ≥ 0 output ports and behaves as a node on which
n source ends and m sink ends coincide (where n+m > 0).
Figure 3 shows an example.

Many formalisms exist for mathematically defining the
semantics of connectors [10]. In this paper, we adopt the
same formalism as the existing code generator that we
use: constraint automata (CA) [9]. A constraint automaton
consists of finite sets of states and transitions. States repre-
sent the internal configurations of a connector; transitions
describe the atomic steps of the protocol specified by a
connector. Formally, we represent a transition as a tuple of
four elements: a source state, a synchronization constraint,
a data constraint, and a target state. A synchronization
constraint is a set that specifies on which ports a data item
flows (i.e., which ports synchronize); a data constraint is
a logical formula that specifies which particular data items
flow on which of those ports.

Figure 4 shows example CA, where A and B refer to ports.
Informally, the data constraint d(A) = d(B) means that the

qα
Pα,fα−−−−→α q

′
α and qβ

Pβ ,fβ−−−−→β q
′
β

and Port(α) ∩ Pβ = Port(β) ∩ Pα

(qα , qβ)
Pα∪Pβ ,fα∧fβ−−−−−−−−−→ (q′α , q

′
β)

(1)

qα
Pα,fα−−−−→α q

′
α and qβ

Pβ ,fβ−−−−→β q
′
β

and

[
Pα = Port(α) ∩ Pβ or Pβ = Port(β) ∩ Pα

or Port(α) ∩ Pβ = ∅ = Port(β) ∩ Pα

]
(qα , qβ)

Pα∪Pβ ,fα∧fβ−−−−−−−−−→ (q′α , q
′
β)

(2)

qα
Pα,fα−−−−→α q

′
α and qβ ∈ Qβ and Pα ∩ Port(β) = ∅

(qα , qβ)
Pα,fα−−−−→ (q′α , qβ)

(3)

qβ
Pβ ,fβ−−−−→β q

′
β and qα ∈ Qα and Pβ ∩ Port(α) = ∅

(qα , qβ)
Pβ ,fβ−−−−→ (qα , q′β)

(4)

Figure 5: Rules for combining transitions.

data item flowing on port A equals the data item flowing on
port B; the data constraint > means that it does not matter
which particular data items flow; the data constraint x′ =
d(A) means that the value of x, a private (to the connector)
memory cell, after completing the transition equals the data
flowing on A during the transition (i.e., x is written to in the
end); finally, the data constraint d(B) = x means that the
data flowing on B equals the value of private memory cell
x before starting the transition (i.e., x is read from in the
beginning).

Let STATE, PORT, MEM, and DC, defined in Appx. B,
denote universes of states, ports, memory cells, and data
constraints.

Definition 1. The universe of CA, denoted by CA, is the
largest set of tuples (Q , P ,M , −→ , ı) where:

• Q ⊆ STATE; (states)
• P ⊆ PORT; (ports)
• M⊆MEM; (memory cells)
• −→ ⊆ Q× ℘(P)× DC ×Q; (transitions)
• and ı ∈ Q. (initial state)

If α denotes a CA, let State(α), Port(α), Mem(α), and
init(α), defined in Appx. B, denote its states, ports, memory
cells, and initial state. We adopt bisimilarity on CA as
behavioral equivalence [9]: if α and β are bisimilar, denoted
by α ≈ β, α can “simulate” every transition of β in every
state and vice versa. Henceforth, we consider CA up to
bisimilarity.

Individual CA describe the behavior of individual connec-
tors; the application of the existing product operator to such
CA models connector composition [9]. The formal definition
and a congruence lemma, proved in [9], follow below.

Definition 2. The product operator, denoted by � , is the

3

operator on CA × CA defined by the following equation:

α� β =

(
State(α)× State(β) , Port(α) ∪ Port(β) ,

Mem(α) ∪Mem(β) , −→ , (init(α) , init(β))

)
where −→ denotes the smallest relation induced by Rule
(1), Rule (3), and Rule (4) in Figure 5.

Lemma 1.
[
α ≈ β and γ ≈ δ

]
implies α� γ ≈ β � δ

Henceforth, let �{α1 , . . . , αk} denote α1� · · ·�αk. This
is well-defined, because � is associative and commutative.

III. DESIGN: THEORETICAL JUSTIFICATION

A. Hybrid Connector Implementations

We start with presenting our design of hybrid connector
implementations; in Sec. III-B, we discuss the design of a
tool that automatically generates corresponding code.

To first better explain the different implementation ap-
proaches for connectors with CA as formal semantics, let
X = {α1 , . . . , αk} denote a set of “small” CA, each of
which models one of the k primitive constituents of the
connector Conn to implement. We associate with X an inter-
pretation, denoted by JXK, which models the composition
of the constituents in X (i.e., the full behavior of Conn):

JXK =�X

Every implementation of Conn—be it distributed, central-
ized, or hybrid—must behave as JXK.

With the distributed approach, one first writes code for ev-
ery α ∈ X and then deploys those k CA-implementations in
k parallel processing units (e.g., processes, threads, actors).
To ensure that those CA-implementations behave as JXK, at
run-time, they must communicate with each other to check
which of their transitions can fire: generally, the enabledness
of a transition of one CA-implementation depends on the
enabledness of transitions of other CA-implementations—an
example follows shortly. Essentially, with the distributed ap-
proach, the k CA-implementations compute the �-operators
amongst them dynamically at run-time. With the centralized
approach, in contrast, one first computes �X (i.e., the full
behavior of Conn), then writes code for the resulting “big”
CA, and finally deploys this single CA-implementation in a
single processing unit. By its construction, this single CA-
implementation behaves as JXK. Finally, with the hybrid
approach, one first constructs a partition A = {A1 , . . . ,
A`} of X ,1 then computes �A for every part A ∈ A,
then writes code for the resulting “medium” CA, and finally
deploys those ` CA-implementations in ` concurrent process-
ing units. We associate with A an interpretation, denoted by
JAK, by straightforwardly lifting the interpretation of sets of
CA:

JAK = J{JA1K , . . . , JA`K}K

1A partition of X is a disjoint collection A of nonempty subsets of X ,
called parts, whose union is X [11, Sec. 7].

One can easily show that the interpretation of X equals
the interpretation of any of its partitions (i.e., JXK = JAK).
Essentially, with the hybrid approach, a code generator com-
putes the �-operators embedded in the “inner” interpreta-
tions statically at build-time (as in the centralized approach),
while the ` CA-implementations compute the �-operators
embedded in the “outer” interpretation dynamically at run-
time (as in the distributed approach).

To carry out the second, third, and fourth steps of the
hybrid approach we can use existing techniques from the
distributed/centralized approach. The current challenge, thus,
lies in the first step: finding a reasonable partition of X in
a potentially huge search space.2 At one extreme, if we put
every α ∈ X in its own part (i.e., A = {{α1} , . . . , {αk}}),
we get the distributed approach, whose communication over-
head reduces throughput at run-time. At the other extreme, if
we put every α ∈ X in the same part (i.e., A = {{α1 , . . . ,
αk}}), we get the centralized approach, which sequentializes
all parallelism. The hybrid approach should avoid both these
unwelcome phenomena. As a compromise, we therefore
adopt the following guideline for constructing partitions:

Put those CA whose implementations would require
“expensive” communication at run-time in the same
part; separate those CA that will require only “cheap”
or no communication in different parts.

Without having explained the more technical meaning of
“expensive” and “cheap” in this context, also the natural
language interpretation of this guideline seems sensible.
First, a partition A constructed according to this guideline
yields improved throughput (cf. the distributed approach),
because those CA responsible for most of the communication
overhead—caused by expensive communication—are com-
piled into one CA-implementation at build-time (i.e., they
populate the same part in A). Second, A yields improved
parallelism (cf. the centralized approach), because those CA
requiring only cheap or no communication are deployed
in parallel processing units at run-time (i.e., each of them
populates its own part in A).

To exemplify the meaning of “expensive” and “cheap,”
let Alice, Bob, and Carol be three CA-implementations . In
particular, let Alice, Bob, and Carol implement three Sync
primitives in sequence between ports A, B, C, and D. Suppose
that Alice’s input port A has a pending write operation
coming from the environment and that she wants to fire her
{A , B}-transition (see Figure 4a). Operationally, to fire this
transition, Alice must atomically take the data item written
on A from that port and write it to B (see Table I). However,
to guarantee atomicity, she must first ascertain that Bob

2Theoretically, the total number of partitions of a k-cardinality set equals
the k-th Bell number, denoted by Bk , which grows rapidly in k. For
instance, the number of possible partitions for Alternator in Figure 1a, which
consists of only 6 constituents, is B6 = 203.

4

is in fact ready to take a data item from B.3 So, before
Alice takes the data item from A, she first asks Bob if
he is ready to take from B. But Bob cannot immediately
answer that question: he, in turn, must first ask Carol if
she is ready to take a data item from C.4 In this simple
example, Carol can answer Bob’s question without further
derivative communication by locally checking if D has a
pending take operation. Generally, however, the chain of
derivative communication can be much longer (ignoring, for
the moment, the possibility of loops, which can be resolved).
This makes the initial communication between Alice and
Bob potentially very expensive. In summary, if Bob initiates
derivative communication to answer a question from Alice,
we call communication between Alice and Bob “expensive”
(and “cheap” otherwise).

To identify which CA require only cheap communication,
we extend the recent local product theory from CA without
data constraints to unrestricted CA [12]. The idea is to intro-
duce a new product operator on CA, called l-product, which
models connector composition with cheap communication.
This contrasts the existing product in Definition 2, which
models standard connector composition with potentially
expensive communication: l-product is generally not faithful
to Reo’s semantics. The formal definition and a congruence
lemma, proved in Appx. B, follow below. Afterward, we
address the issue of determining when substituting the
existing product with l-product is sound (i.e., faithful to
Reo’s semantics).

Definition 3. The l-product (where “l” stands for “local”),
denoted by � , is the operator on CA × CA defined by
the following equation:

α� β =

(
State(α)× State(β) , Port(α) ∪ Port(β) ,

Mem(α) ∪Mem(β) , −→ , (init(α) , init(β))

)
where −→ denotes the smallest relation induced by Rule
(2), Rule (3), and Rule (4) in Figure 5.

Lemma 2.
[
α ≈ β and γ ≈ δ

]
implies α� γ ≈ β � δ

The difference with Definition 2 is that the transition relation
is induced by Rule (2) in Figure 5 instead of Rule (1).5

To construct a reasonable—according to our guideline—
partition A = {A1 , . . . , A`}, we must ensure that only
cheap communication occurs among (implementations of

3If not, the data item that Alice writes to B has nowhere to go, which
Reo’s semantics forbids (i.e., ports cannot buffer data).

4If not, the data item that Bob atomically takes from B and writes to C
has nowhere to go.

5The second line of the premise in Rule (1) states that, if two transitions
agree on their shared ports, they can fire together. These transitions may
involve any number of other, unshared ports, which causes expensive
communication when computing � at run-time (e.g., Alice asks Bob about
their shared port, but Bob wants to involve a port not shared with Alice for
which he asks Carol). In contrast, the second line of the premise in Rule
(2) restricts the involvement of unshared ports: either one of the transitions
fires only shared ports, or both transitions fire only unshared ports.

function PARTITION({α1 , . . . , αk})
(B0 , C0) := (∅ , ∅)
for all 1 ≤ i ≤ k do
if 1−→αi then
(Bi , Ci) := (Bi−1 ∪ {{αi}} , Ci−1)

else
Ci := {C ∈ Ci−1 | γ ∈ C and αi 6� γ}
(Bi , Ci) := (Bi−1 , (Ci−1 \ Ci)∪ {{αi} ∪

⋃
C∈Ci C})

return (Bk , Ck)

Figure 6: Algorithm for computing reasonable partitions.

interpretations of) parts in A at run-time. Using the l-
product just introduced, we can formally state this property
as follows:

JA1K� · · ·� JA`K ≈ JA1K � · · ·� JA`K

By extending [12, Theorem 2] from port automata to CA,
we obtain two conditions on JA1K , . . . , JA`K that ensure
the validity of that equation. This reduces the problem of
finding a reasonable partition to finding CA that satisfy
those conditions. Doing so is relatively straightforward (see
Sec. III-B). To express the first condition, let 1−→α denote
that each of α’s transitions has a singleton synchronization
constraint (e.g., the CA of FIFO in Figure 4d). To express
the second condition, let α1 � α2 denote that α1 and α2

have disjoint sets of ports. The following lemma, proved in
Appx. C, defines those conditions.

Lemma 3.[[1−→βi for all
1 ≤ i ≤ m

]
and

[[
i 6= j implies γi � γj

]
for all 1 ≤ i , j ≤ n

]]
implies

β1 � · · ·� βm � γ1 � · · ·� γn
≈ β1 � · · ·� βm � γ1 � · · ·� γn

So, if we construct a partition A that contains m parts B1 ,

. . . , Bm with the property 1−→ JBiK and n parts C1 , . . . ,
Cn with the property JCiK � JCjK, Lemma 3 implies that
only cheap communication (modeled by �) instead of ex-
pensive communication (modeled by �) is necessary among
their corresponding CA-implementations at run-time,6 while,
collectively, they behave as JXK. The following derivation
establishes this:

JXK = JAK
= J{JB1K , . . . , JBmK , JC1K , . . . , JCnK}K
= JB1K� · · ·� JBmK� JC1K� · · ·� JCnK
≈ JB1K � · · ·� JBmK � JC1K � · · ·� JCnK

B. Hybrid-Code Generator

The new task of a hybrid-code generator, in addition to
the tasks of a centralized-code generator [3], is dividing

6Mathematically, one can formally compensate for non-associativity of �
along the same lines as [12, Sec. 5], manifested as proper locking schemes
at run-time, as mentioned in Sec. IV-A.

5

the CA of the k primitive constituents of the connector
to implement over parts in a partition A such that the
two conditions in Lemma 3 hold; it can subsequently use
existing techniques to generate code for every part in A.
To carry out this new task, a hybrid-code generator can run
the algorithm in Figure 6 with time complexity upper bound
O(k2). The following lemma, proved in Appx. D, establishes
its functional correctness.

Lemma 4. PARTITION(X) = (B , C) implies

1) B ∪ C is a partition of X
2) 1−→ JBK for all B ∈ B
3)
[
C 6= C ′ implies JCK � JC ′K

]
for all C , C ′ ∈ C

The reasonable partitions A = B ∪ C computed by the
algorithm in Figure 6 correspond to the synchronous and
the asynchronous regions of a connector [6, 7]. First, every
part B ∈ B seems to represent an asynchronous region
(e.g., a FIFO primitive): the fact that JBK has only single-
ton synchronization constraints (i.e., 1−→ JBK) models that
its ports cannot—neither intentionally nor coincidentally—
synchronize at run-time. Dually, every part C ∈ C seems
to represent a synchronous region (e.g., the sequence of
three Sync primitives modeled by Alice, Bob, and Carol in a
previous example): by the duality of (a)synchronous regions,
a CA for a synchronous region has at least one transition
with a nonsingleton synchronization constraint. When such
a transition fires, synchronization between at least two ports
takes place.

IV. IMPLEMENTATION: PRACTICAL REALIZATION

A. Hybrid Connectors

We extended the existing Reo-to-Java code genera-
tor [3]. This tool translates CA to implementations of Java’s
Runnable interface. Every such a CA-implementation can
run in its own Java thread. The control-flow inside the
main run() method follows a conceptually simple (event-
driven) state machine pattern—details appear elsewhere [3].
We focus on the process of firing a transition q

P,f−−→ q′. The
following enumeration of steps summarizes this process.

1) Check synchronization constraint P .
a) Check the ports in P for pending I/O. Let P ′ ⊆ P

denote the set of ports without pending I/O.
b) Ask neighbors with ports in P ′ which data con-

straints must hold for them to be ready for I/O on
those ports. Let F denote that set of data constraints.

2) Solve extended data constraint f ∧
∧
F .

3) Commit and conclude.
a) Distribute data items among pending take operations

according to the solution found for f ∧
∧
F .

b) Mark pending I/O completed, and update state to q′.
c) Perform I/O on ports in P ′ according to the solution

found for f ∧
∧
F .

TakerWriter LSP

Machine X

Input Port
Interface

Port (Logically)

Output Port
Interface

(a) Local synchronization point (shared-memory port)

RSP-OCRSP-IC
RSP-SWriter Taker

Machine X Machine Y Machine Z

Port (Logically)

Input Port
Interface

Output Port
Interface

(b) Remote synchronization point (distributed-memory port)

Figure 7: Synchronization points

d) Notify neighbors with ports in P ′ that they should
fire their transitions involving those ports.

e) Await the completion of those transition.
During steps (1) and (2), a CA-implementation can still abort
the firing process, and it will do so if either the synchroniza-
tion constraint does not hold—in which case F contains
⊥—or the data constraint has no solution under the then-
pending I/O operations. Once step (3) starts, however, the
transition must run to completion. To ensure that the whole
firing process runs atomically, that pending I/O operations
do not timeout during the firing process, and that neighbors
do not change state, a CA-implementation uses a two-phase
locking scheme [13].

Ports are implemented as interfaces that provide access to
concurrent data structures called synchronization points [3].
Essentially, synchronization points register pending write
and take operations. There exist two kinds of port inter-
faces: input ports expose only write(...) methods for
performing write operations, while output ports expose only
take(...) methods for performing take operations. Ap-
plication developers can use input and output ports for letting
concurrent fragments of their computation code interact with
each other via a CA-implementation (i.e., via a connector).
Internal classes in the Reo run-time libraries, as well as gen-
erated CA-implementations, call also other methods on input
and output ports (e.g., checking for pending I/O operations,
communicating with neighbors via synchronization points).

6

The run-time libraries of the original implementation of
the Reo-to-Java code generator contain only one shared-
memory implementation of input and output ports. Fig-
ure 7a shows an infographic, where “LSP” stands for “local
synchronization point.” This name reflects that the Java
objects constituting such a synchronization point live on
the same machine as the CA-implementations that access
that synchronization point through input and output ports.
Logically, a triple of an LSP, an input port, and an output
port makes up a single port.

To enable developers to fully exploit the improved paral-
lelism in the hybrid connector implementations generated
by our tool extension (cf. the centralized approach), we
implemented a new distributed-memory implementation of
input and output ports. In particular, this allows developers
to deploy connector implementations generated by our tool
extension on different machines in a network. Figure 7b
shows an infographic, where “RSP” stands for “remote
synchronization point,” “-S” for “server,” “-IC” for “input
client,” and “-OC” for “output client.” Deployment of a
remote synchronization point starts with deploying an RSP-
S on some machine in the network. Essentially, an RSP-
S is a Web service, implemented using JAX-WS,7 whose
operations provide its clients access to a “classical” LSP
inside of it. Once an RSP-S has been deployed, one can
construct input and output ports to access it, including input
and output clients. During execution, those port interfaces
use such clients for delegating, to the deployed RSP-S, those
method calls that they cannot process locally (e.g., checking
for pending I/O operations). The CA-implementations that
call methods on port interfaces do not know whether those
calls require network communication: whether synchroniza-
tion points accessed through port interfaces run locally or
remotely is completely transparent.

B. Hybrid Code Generator

Our extension to the Reo-to-Java code generator is—
as the original—implemented in Java as an Eclipse plug-
in. This plug-in depends on the Extensible Coordination
Tools (ECT): a collection of Eclipse plug-ins that constitute
an IDE for Reo.8 Our extension outputs ` Java classes—
one for every part in the reasonable partition computed
using the algorithm in Figure 6—each of which implements
the Runnable interface. Instances of those classes can
be deployed on different machines and connected to each
other via distributed-memory ports (including the required
remote synchronization point servers and clients). For testing
purposes, the code generator also generates a default main
program which deploys an instance of each of the ` classes
and each of the required distributed-memory ports on the

7http://jax-ws.java.net
8http://reo.project.cwi.nl

Figure 8: Connector for orchestrating the four WSs. Colored
regions denote deployment of medium CA-implementations
and the StoreOffice service on machine Blue.

same machine.9

For performance reasons, we simplified the implementa-
tion of the algorithm in Figure 6 and the actual code gener-
ation process (using ANTLR’s StringTemplate engine [14])
by exploiting the observation that the only primitive cur-
rently supported by the ECT that satisfies the first condition
in Lemma 3 is FIFO. This, for instance, reduced checking
the condition of the if-statement in Figure 6 from iterating
over all transitions of a CA to checking that CA’s type.

V. CASE STUDY

In the following case study, we elaborate on the same ex-
ample as given in [8], which implements a classical online-
purchase scenario. This interaction involves four Web ser-
vices (WS) named ClientBroker, StoreOffice, SalesOffice, and
Bank. The ClientBroker service takes care of interfacing a
client to the other services, which deal with: the information
about the store (i.e., the StoreOffice service), the procedure
to prepare the invoice (i.e., the SalesOffice service), and
the effective payment management (i.e., the Bank service).
See [8] for a more detailed description. Figure 8 shows a Reo
connector, named Orchestrator, for orchestrating the four WSs.
A Reo expert designed this connector by hand. Alternatively,
depending on the expertise available in an organization, one
can specify the orchestration protocol as an automaton, as a
BPEL program, or as a UML sequence/activity diagram, and
use mechanical connector synthesis technology to obtain this
(or a behaviorally equivalent) connector [15, 16].

In [8], Jongmans et al. generate a centralized implemen-
tation of Orchestrator and deploy that implementation on a
single machine in a network. We improve on that by using
our hybrid-code generator to obtain a hybrid implementation
and deploy it across multiple machines.

First, our code generator establishes that Orchestrator con-
sists of 43 channels and 42 nodes. It then matches each of

9Our implementation of distributed-memory ports works also for ma-
chines X , Y , and Z in Figure 7b such that X = Y = Z. However, in that
case, using shared-memory ports is more sensible.

7

http://jax-ws.java.net
http://reo.project.cwi.nl

{Ain , Asales} ,
d(Ain) = d(Asales)

A = Node(Ain; Asales)

{Bin , Bout} ,
d(Bin) = d(Bout)

B = Node(Bin; Bout)

{Cstore , Cout1 , Cout2} ,
d(Cstore) = d(Cout1) = d(Cout2)

C = Node(Cstore;Cout1,Cout2)

{Din , Dout1 , Dout2} ,
d(Din) = d(Dout1) = d(Dout2)

D = Node(Din;Dout1,Dout2)

{Cout1 , Ain} ,
d(Cout1) = d(Ain)

Sync(Cout1; Ain)

{Cout2 , Bin} ,
d(Cout2) = d(Bin)

Sync(Cout2; Bin)

{Bout , Dout1} , >

SyncDrain(Bout;Dout1)

Figure 9: Constraint automata for the channels and nodes in
the largest colored region in Figure 8. Nodes are named A,
B, C, and D, from top to bottom and from left to right. In
this CA semantics, every node is represented by a number
of input and output ports, which are shared with channels.

Ain , Asales , Bin , Bout ,
Cstore , Cout1 , Cout2 ,

Din , Dout1 , Dout2

 ,

d(Ain) = d(Asales) ∧ d(Bin) = d(Bout) ∧
d(Cstore) = d(Cout1) = d(Cout2) ∧
d(Din) = d(Dout1) = d(Dout2) ∧

d(Cout1) = d(Ain) ∧ d(Cout2) = d(Bin)

(a) Without abstraction

{
Asales , Cstore ,

Din , Dout2

}
,

d(Cstore) = d(Asales) ∧
d(Din) = d(Dout2)

(b) With abstraction

Figure 10: �-product of the CA in Figure 9, with and without
abstracting away internal ports.

those constituents with a CA describing that constituent’s be-
havior, which yields k = 85 small CA. For instance, Figure 9
shows seven CA describing the constituents in the largest
colored region in Figure 8. Next, our code generator runs
the algorithm in Figure 6 to obtain a reasonable partition.
This partition consists of thirteen parts: seven singleton parts
for asynchronous regions (i.e., FIFOs, which satisfy 1−→) and
six parts for synchronous regions. For instance, the CA in
Figure 9 form a complete part of the latter kind (none of
those seven CA shares a port with any CA in any other part).
The code generator then computes, for every part, the �-
product of the CA in that part. This yields ` = 13 medium
CA. For instance, Figure 10 shows the �-product of the
CA in Figure 9. Finally, the code generator compiles the
thirteen medium CA to as many CA-implementations. For

instance, at run-time, the generated implementation of the
CA in Figure 10 has only one execution step (i.e., transition)
that it repeats infinitely often: it atomically transports a piece
of data from StoreOffice to SalesOffice and, simultaneously,
it transports a piece of data from the output port of one
FIFO to the input port of another one. The latter ensures that
the generated CA-implementation can perform this execution
step only if the whole connector is in a state that allows this
(i.e., if the FIFOs are, respectively, full and empty). See [8]
for details.

Next, we discuss the deployment of the generated code.
Logically, we have five machines: called Red (for the
actual client), Green (for ClientBroker), Blue (for Store-
Office), Cyan (for SalesOffice), and Magenta (for Bank).
Although any distribution of the thirteen generated CA-
implementations (and the ports between them, through
which CA-implementations communicate with each other)
over the five available machines would technically work,
some of those distributions make more sense than others.
Generally, the problem of (automatically) optimally dis-
tributing CA-implementations over machines is an interesting
research challenge, which we regard as important future
work (see also Sec. VII). For now, we adopted the following
ad hoc approach: to minimize network traffic, we manually
distributed CA-implementations in such a way that every
piece of data goes over the network exactly once. In contrast,
in the centralized implementation in [8], every piece of
data goes over the network twice: first from the sending
WS machine to the Orchestrator machine and then from the
Orchestrator machine to the receiving WS machine. Thus, the
hybrid approach can improve the centralized approach not
only in terms of run-time parallelism but, as a consequence
of less network traffic and no single-point contention, also
in terms of throughput (especially with large data). Figure 8
shows the deployment of parts of the orchestration on
machine Blue; see Appx. A for the full distribution.

For deploying ports, we first analyzed which ports are
shared between CA-implementations running on the same
machine. We deployed those ports as shared-memory ports
(similar to [8]) and all other ports as distributed-memory
ports. For every distributed-memory port p, we deployed
its remote synchronization point server (RSP-S) on the
same machine as the CA-implementation that uses p’s input
interface. This means that pieces of data involved in write
operations on p stay on that machine as long as no other
CA-implementation (running on a different machine) wants
to take that data from p’s RSP-S (via p’s output interface).
Consequently, pieces of data travel over the network only if
absolutely necessary.

To actually run this case study on five machines, we use
Amazon Web Services (AWS),10 which is a collection of
WSs that together make up a Cloud computing platform,

10http://aws.amazon.com

8

http://aws.amazon.com

offered over the Internet by Amazon.com. In particular,
we take advantage of Elastic Compute Cloud (EC2): a
WS that provides resizable compute capacity in the Cloud.
It is designed to make Web-scale computing easier for
developers, by allowing them to rent virtual machines on
which to run their own applications. We rented five of
those virtual machines and deployed the generated code for
this case study as explained above. This shows that the
framework underlying Reo can be integrated with Cloud
technologies (i.e., “Reo goes to the Cloud”).

Actually, by using the Cloud in this way, we can position
the example in [8] in the following new scenario. Suppose
we run a (large) online business company that offers a
purchase service through AWS: the motivation is that our
company desires to scale its business in the Cloud, benefiting
from a third-party infrastructure that can efficiently manage
Big Data. For instance, combined with EC2, our company
can use another Cloud service from the AWS platform
called Simple Storage Service (S3): an online technology for
managing large amounts of information at any time, capable
of handling Big Data such as transaction logs of our clients’
orders.11 Because the hybrid approach allows us to sensibly
distribute CA-implementations over machines (minimizing
network traffic, as explained above), it is—contrasting the
centralized approach—suitable for Big Data coordination.

VI. RELATED WORK

In this section, we discuss related work on Reo and
distributed orchestration/workflow.

A. Related Work on Reo

Closest to ours is the work on splitting connectors into
(a)synchronous regions for better performance. Proença
developed the first implementation based on these ideas,
demonstrated its merit through benchmarks, and invented a
new automaton model to reason about split connectors [5, 6].
Furthermore, Clarke and Proença explored connector split-
ting in the context of the connector coloring semantics [17].
They discovered that the standard version of that semantics
has undesirable properties in the context of splitting: some
split connectors that intuitively should be equivalent to the
original connector are not equivalent under the standard ver-
sion. To address this problem, Clarke and Proença propose
a new variant—partial connector coloring—which allows
one to better model locality and independencies between
different parts of a connector. Recently, Jongmans et al.
studied a formal justification of connector splitting in a
process algebraic setting [18].

Also related to the work presented in this paper is
the work of Kokash et al. on action constraint automata

11Nowadays, these qualify as Big Data: “Wal-Mart handles more than
one million customer transactions every hour, feeding databases estimated
at more than 2.5 petabytes” (http://www.economist.com/node/15557443).

(ACA) [19]. Kokash et al. argue that ordinary constraint au-
tomata describe the behavior of Reo connectors too coarsely,
which makes it impossible to express certain fine parallel
behavior. While ACA better describe the behavior of existing
connector implementations (under certain assumptions), the
increased granularity of ACA comes at the price of substan-
tially larger models. This makes them less suitable for code
generation.

B. Related Work on Distributed Orchestration/Workflow

To put our previous case study in perspective, we conclude
with related work on distributed orchestration/workflow.

In [20], Nanda et al. present a technique for partitioning
a composite service written as a single BPEL [21] program
into an equivalent set of decentralized processes. In their
approach, Nanda et al. construct the dependency graph of
a BPEL program with the aim of minimizing communi-
cation costs while maximizing throughput. In [22], Chafle
et al. decentralize the orchestration of a FindRoute service
by partitioning the BPEL code into four parts, which are
executed by four distinct Java engines. Afterward, Chafle
et al. compare the performance of the centralized and the
decentralized implementation by using both service-time
and message-size metrics. Chafle et al. also estimate the
additional complexity in error recovery and fault handling
in a decentralized orchestration. In [23], Mostarda et al. use
a BPEL-based language for distributed orchestration in the
context of pervasive computing. In their approach, Mostarda
et al. automatically decompose a centralized workflow into
implementations of finite state machines that, when syn-
chronized using a consensus protocol, execute the original
workflow. In [24], Fernández et al. introduce an execution
model for distributed orchestration based on a metaphor
from chemistry. In this approach, services communicate with
each other through a distributed shared multiset (“chemical
solution”), which contains both control-flow and data-flow
information (“molecules”). A workflow engine then executes
an orchestration protocol by applying formal rewrite rules
(“chemical reactions”). Fernández et al. propose translating
BPEL programs to chemical representations that the work-
flow engine they describe can process. The main difference
between these existing BPEL-based approaches to distributed
orchestration and our approach is the use of Reo instead
of BPEL. At least from a software engineering perspective,
Reo has several advantages compared to BPEL (declarative
style, verbatim reuse/composition of connectors, smaller gap
between verification and execution) [8]. Whether our Reo-
based approach also outperforms those existing BPEL-based
approaches remains a topic for future study.

In [25], Barker et al. present an architecture (including a
proxy API) for optimizing data-flow in workflow execution.
In their architecture, control-flow messages are still sent to
a centralized orchestration engine, while data-flow messages
(i.e., the actual, potentially large, pieces of data) go directly

9

http://www.economist.com/node/15557443

from one service to another. The latter reduces network
traffic, and it coincides with the heuristic we adopted for
distributing the CA-implementations over machines in our
case study. However, our technique distributes also control-
flow. This gives our approach, in addition to data-flow opti-
mization through clever deployment, also other advantages
such as control-flow parallelism, no single point-of-failure,
and potentially easier dynamic reconfiguration. Similarly
motivated as the work of Barker et al. (i.e., optimizing data-
flow), in [26], Binder et al. propose a distributed orchestra-
tion methodology based on decomposing an orchestration
protocol (or workflow) into a directed acyclic graph of
service invocations, represented as triggers. Every trigger
encodes the data dependencies of the invocation it represents
(i.e., the parents and children of the corresponding node
in the graph). Triggers act as proxies: they collect all
input data before actually invoking the service, and they
transmit all output data directly to the dependent triggers
for subsequent service invocations. One may regard the
medium CA-implementations that we generate with our code
generator as triggers. In that case, this report improves the
work of Binder et al. by presenting an automatic procedure
for decomposing orchestration protocols into triggers for a
more expressive protocol language (i.e., Reo): we support
also loops and conditions, which Binder et al. forbid.

In [27], Tretola and Zimeo present a technique for im-
proving concurrency in workflow execution. Their technique
works by concurrently executing otherwise sequential, data-
dependent service invocations with dummy data until those
services require the actual data. If service invocations have a
data-independent initialization phase, for instance, the work-
flow engine of Tretola and Zimeo executes those intialization
phases in parallel instead of in sequence. For workflows and
services implemented on top of the framework of Tretola and
Zimeo, this process happens automatically. Although Tre-
tola and Zimeo parallelize service invocations, they neither
parallelize nor distribute the execution of the orchestration
protocol. Also, their technique seems unable to handle third-
party/black-box services. In contrast, our approach does
distribute the execution of the orchestration protocol and
works with black-box services (via proxies [8]), but we
currently cannot exploit potential concurrency between ser-
vice invocations the way Tretola and Zimeo do. Thus, the
technique of Tretola and Zimeo seems to complement our
work. (However, we do not understand yet which notion
of equivalence their technique preserves and what conse-
quences this has for properties that the orchestration protocol
satisfies on the modeling level. This requires further study.)

In [28], Pedraza and Estublier present FOCAS. This
framework consumes as input an annotated APEL [29]
specification of an orchestration scenario and produces as
output a number of suborchestrations and a deployment
plan (for distributing suborchestrations over machines). The
main difference between our approach and the approach of

Pedraza and Estublier seems that Reo allows for expressing
more complex data-flow behavior than APEL does. This di-
rectly influences the complexity of automatically computing
suborchestrations. On the other hand, our code generator
currently does not compute a deployment plan, because we
do not support deployment annotations, which FOCAS does.

Finally, in [30], Muth et al. use the formal semantics of
state/activity charts to develop an algorithm for transforming
centralized state/activity charts into equivalent partitioned
ones, suitable for distributed execution by a workflow en-
gine. Muth et al. subsequently refine their basic approach to
also reduce communication overhead and exploit parallelism
between parts in partitions. We had similar motivations for
doing the work presented in this paper, but the underlying
formalisms differ. Comparing the strengths and weaknesses
of state/activity charts and Reo in the context of workflows,
orchestration protocols, and coordination in general seems
an interesting topic for future work.

VII. CONCLUSION

We presented a hybrid approach for the implementa-
tion of Reo connectors by partitioning them into several
(a)synchronous regions at build-time. Every such region can
be executed on a different machine at run-time. We use
the term “hybrid” because our approach is neither purely
centralized (regions run in parallel at run-time), nor purely
distributed (the elements inside a region are compiled to a
sequential program at build-time and require no distributed
algorithms or communication at run-time). In this way, we
have the benefits of both pure approaches: the high run-time
throughput of a centralized scheme combined with the high
parallelism and fast compilation of a distributed scheme.

In the future, we plan to design an algorithm to auto-
matically find the best partitioning of CA-implementations
according to user and system-defined constraints. These
constraints may need to be either “crisply” or “softly”
satisfied (in relation to their indispensability), and concern
different criteria as hardware requirements of software,
QoS/QoE/performance desiderata, and issues correlated with
security (e.g., preventing attacks based on Business Process
Discovery), privacy (of both data and workflow), and fault
handling.

REFERENCES

[1] F. Arbab, “Reo: a channel-based coordination model for
component composition,” MSCS, vol. 14, no. 3, pp. 329–366,
2004.

[2] ——, “Puff, The Magic Protocol,” in Talcott Festschrift, ser.
LNCS. Springer, 2011, vol. 7000, pp. 169–206.

[3] S.-S. Jongmans and F. Arbab, “Modularizing and Specifying
Protocols among Threads,” in Proceedings of PLACES 2012,
ser. EPTCS. CoRR, 2013, vol. 109, pp. 34–45.

10

[4] N. Kokash, C. Krause, and E. de Vink, “Reo+mCRL2: A
framework for model-checking dataflow in service composi-
tions,” FAC, vol. 24, no. 2, pp. 187–216, 2012.

[5] J. Proença, D. Clarke, E. de Vink, and F. Arbab, “De-
coupled execution of synchronous coordination models via
behavioural automata,” in Proceedings of FOCLASA 2011,
ser. EPTCS. CoRR, 2011, vol. 58, pp. 65–79.

[6] J. Proença, D. Clarke, E. de Vink, and F. Arbab, “Dreams:
a framework for distributed synchronous coordination,” in
Proceedings of SAC 2012. ACM, 2012, pp. 1510–1515.

[7] J. Proença, “Synchronous Coordination of Distributed Com-
ponents,” Ph.D. dissertation, Leiden University, 2011.

[8] S.-S. Jongmans, F. Santini, M. Sargolzaei, F. Arbab, and
H. Afsarmanesh, “Automatic Code Generation for the Orches-
tration of Web Services with Reo,” in Proceedings of ESOCC
2012, ser. LNCS. Springer, 2012, vol. 7592, pp. 1–16.

[9] C. Baier, M. Sirjani, F. Arbab, and J. Rutten, “Modeling
component connectors in Reo by constraint automata,” SCP,
vol. 61, no. 2, pp. 75–113, 2006.

[10] S.-S. Jongmans and F. Arbab, “Overview of Thirty Semantic
Formalisms for Reo,” SACS, vol. 22, no. 1, pp. 201–251,
2012.

[11] P. Halmos, “Relations,” in Naive Set Theory. Springer, 1974,
pp. 26–29.

[12] S.-S. Jongmans and F. Arbab, “Global Consensus through Lo-
cal Synchronization,” in Preproceedings of FOCLASA 2013,
2013, pp. 86–82.

[13] P. Bernstein, V. Hadzilacos, and N. Goodman, “Two Phase
Locking,” in Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987, pp. 47–111.

[14] T. Parr, “Generating Structured Text with Templates and
Grammars,” in The Definitive ANTLR Reference: Building
Domain-Specific Languages. The Pragmatic Bookshelf,
2007, pp. 208–242.

[15] F. Arbab, C. Baier, F. de Boer, J. Rutten, and M. Sirjani,
“Synthesis of Reo Circuits for Implementation of Component-
Connector Automata Specifications,” in Proceedings of CO-
ORDINATION 2005, ser. LNCS. Springer, 2005, vol. 3454,
pp. 236–251.

[16] B. Changizi, “Model Based Analysis of Business Process
Models,” Ph.D. dissertation, Leiden University, 2014, (in
preparation).

[17] D. Clarke and J. Proença, “Partial Connector Colouring,” in
Coordination Models and Languages, ser. LNCS. Springer,
2012, vol. 7274, pp. 59–73.

[18] S.-S. Jongmans, D. Clarke, and J. Proença, “A Procedure for
Splitting Processes and its Application to Coordination,” in
Proceedings of FOCLASA 2012, ser. EPTCS. CoRR, 2012,
vol. 91, pp. 79–96.

[19] N. Kokash, B. Changizi, and F. Arbab, “A Semantic Model
for Service Composition with Coordination Time Delays,” in
Proceedings of ICFEM, ser. LNCS. Springer, 2010, vol.
6447, pp. 106–121.

[20] M. G. Nanda, S. Chandra, and V. Sarkar, “Decentralizing
Execution of Composite Web Services,” in Proceedings of
OOPSLA 2004. ACM, 2004, pp. 170–187.

[21] D. Jordan and J. Evdemon, “Web Services Business Process
Execution Language Version 2.0,” OASIS, Standard ws-bpel-
v2.0-OS, 2007.

[22] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Decen-
tralized orchestration of composite web services,” in Proceed-
ings of WWW Alt. 2004. ACM, 2004, pp. 134–143.

[23] L. Mostarda, S. Marinovic, and N. Dulay, “Distributed Or-
chestration of Pervasive Services,” in Proceedings of AINA
2010. IEEE, 2010, pp. 166–173.

[24] H. Fernández, T. Priol, and C. Tedeschi, “Decentralized Ap-
proach for Execution of Composite Web Services Using the
Chemical Paradigm,” in Proceedings of ICWS 2010. IEEE,
2010, pp. 139–146.

[25] A. Barker, J. Weissman, and J. van Hemert, “Orchestrating
Data-Centric Workflows,” in Proceedings of CCGRID 2008.
IEEE, 2008, pp. 210–217.

[26] W. Binder, I. Constantinescu, and B. Faltings, “Decentralized
Orchestration of Composite Web Services,” in Proceedings of
ICWS 2006. IEEE, 2006, pp. 869–876.

[27] G. Tretola and E. Zimeo, “Workflow fine-grained concurrency
with automatic continuation,” in Proceedings of IPDPS 2006.
IEEE, 2006, pp. 253–260.

[28] G. Pedraza and J. Estublier, “Distributed Orchestration Versus
Choreography: The FOCAS Approach,” in Proceedings of
ICSP 2009, ser. LNCS. Springer, 2009, no. 5543, pp. 75–86.

[29] S. Dami, J. Estublier, and M. Amiour, “APEL: A Graphi-
cal Yet Executable Formalism for Process Modeling,” ASE,
vol. 5, pp. 61–91, 1998.

[30] P. Muth, D. Wodtke, J. Weissenfels, A. K. Dittrich, and
G. Weikum, “From Centralized Workflow Specification to
Distributed Workflow Execution,” JIIS, vol. 10, no. 2, pp.
159–184, 1998.

[31] S.-S. Jongmans and F. Arbab, “Global Consensus through
Local Synchronization (Technical Report),” CWI, Tech. Rep.
FM-1303, 2013.

11

APPENDIX A.
CASE STUDY: DISTRIBUTION OF CA-IMPLEMENTATIONS

Figures 11–15 show the deployment of the four Web services and thirteen CA-implementations (generated by our hybrid-
code generator) on machines Red, Green, Blue, Cyan, and Magenta in the case study in Sec. V. Additionally, Figure 16
shows an overview of the full distribution.

APPENDIX B.
PROOF OF LEMMA 2

Before we prove Lemma 2, we first give formal definitions of notation that we introduced in Sec. II. We start with
defining the universes of states, ports, memory cells, and data constraints. In all definitions, we make the tacit assumptions
that no two different universes overlap (i.e., they are pairwise disjoint). After those definitions, we proceed with defining
the accessor functions on constraint automata. Finally, we define bisimilarity in terms of the auxiliary notion of similarity.

Definition 4 (Universe of states). The universe of states, denoted by STATE, is a set satisfying the following rule:

qα ∈ STATE and qβ ∈ STATE

(qα , qβ) ∈ STATE

Definition 5 (Universe of ports). The universe of ports, denoted by PORT, is a set.

Definition 6 (Universe of memory cells). The universe of memory cells, denoted by MEM, is a set.

Definition 7 (Universe of data constraints). The universe of data constraints, denoted by DC, is the set of data formulas
generated by the following grammar:

t ::= d(p) for p ∈ PORT | d(x) for x ∈MEM | d(x′) for x ∈MEM (data terms)
a ::= > | t = t (data atoms)
f ::= a | ¬f | f ∧ f | f ∨ f (data formulas)

Definition 8 (Accessor functions on constraint automata). The accessor functions on constraint automata, denoted by State,
Port, Mem, and init, are functions from CA to ℘(STATE), ℘(PORT), ℘(MEM), and STATE defined as:

State((Q , P ,M , −→ , ı)) = Q
Port((Q , P ,M , −→ , ı)) = P
Mem((Q , P ,M , −→ , ı)) =M
init((Q , P ,M , −→ , ı)) = ı

Definition 9 (Similarity relation). The similarity relation, denoted by �, is the relation on CA × ℘(STATE2)× CA defined
as:

(Qα , Pα ,Mα , −→α , ıα)
�R (Qβ , Pβ ,Mβ , −→β , ıβ)

iff

R ⊆ Qα ×Qβ and Pα = Pβ and Mα =Mβ and ıα R ıβ and

[[qα P,fα−−−→α q
′
α

and qα R qβ

]
implies fα ≤

∨{
fβ

[
qβ

P,fβ−−−→β q
′
β and q′α R q′β

]
for some q′β

}]
for all fα , P , qα , q

′
α , qβ

Definition 10 (Bisimilarity relation). The bisimilarity relation, denoted by ≈, is the relation on (CA×℘(STATE2)×CA)∪
(CA × CA) defined as:

α ≈R β iff
[
α �R β and β �R−1

α
]

α ≈ β iff
[
α ≈R β for some R

]
Next, we prove Lemma 2 by reusing as much as possible the proofs for port automata in [12]. In this case, the main

result that we want to reuse is [12, Lemma 2], which states exactly the same property as Lemma 2 for port automata.
After carefully analyzing the proof of that result (including the definitions and other results it relies on), we discovered that
the differences between port automata and constraint automata manifest only in [12, Lemma 12].12 To prove Lemma 2, it
therefore suffices to prove a similar result as [12, Lemma 12] for constraint automata instead of port automata. We do so
in the following lemma.

12That lemma appears only in the full version [31] of [12].

12

Figure 11: Deployment of two CA-implementations on machine Red.

Figure 12: Deployment of four CA-implementations and the ClientBroker service on machine Green.

13

Figure 13: Deployment of two CA-implementations and the StoreOffice service on machine Blue.

Figure 14: Deployment of three CA-implementations and the SalesOffice service on machine Cyan.

14

Figure 15: Deployment of two CA-implementations and the Bank service on machine Magenta.

Figure 16: Distribution of all CA-implementations and all services over all machines.

15

Lemma 5. [
α �R1 β and γ �R2 δ and

[
(qα , qγ) R (qβ , qδ) iff[
qα R1 qβ and qγ R2 qδ

]]] implies α� γ �R β � δ

Proof: Assume:

A1 α �R1 β

A2 γ �R2 δ

A3 (qα , qγ) R (qβ , qδ) iff
[
qα R1 qβ and qγ R2 qδ

]
A4 α = (Qα , Pα ,Mα , −→α , ıα)

A5 β = (Qβ , Pβ ,Mβ , −→β , ıβ)

A6 γ = (Qγ , Pγ ,Mγ , −→γ , ıγ)

A7 δ = (Qδ , Pδ ,Mδ , −→δ , ıδ)

A8 −→† denotes the smallest relation induced by Rule (2), Rule (3), and Rule (4) in Figure 5 under α and γ.

A9 −→‡ denotes the smallest relation induced by Rule (2), Rule (3), and Rule (4) in Figure 5 under β and δ.

Observe:

Z1 Recall γ �R2 δ from A2 . Then, by applying A6 , conclude (Qγ , Pγ ,Mγ , −→γ , ıγ) �R2 δ. Then, by applying A7

, conclude (Qγ , Pγ ,Mγ , −→γ , ıγ) �R2 (Qδ , Pδ ,Mδ , −→δ , ıδ). Then, by applying Definition 9 of �, conclude
Pγ = Pδ . Then, by applying Definition 8 of Port, conclude Port((Qγ , Pγ ,Mγ , −→γ , ıγ)) = Port((Qδ , Pδ ,
Mδ , −→δ , ıδ)). Then, by applying A6 , conclude Port(γ) = Port((Qδ , Pδ ,Mδ , −→δ , ıδ)). Then, by applying
A7 , conclude Port(γ) = Port(δ).

Z2 Recall γ �R2 δ from A2 . Then, by introducing A1 , conclude
[
α �R1 β and γ �R2 δ

]
. Then, by applying A4

, conclude
[
(Qα , Pα ,Mα , −→α , ıα) �R1 β and γ �R2 δ

]
. Then, by applying A5 , conclude

[
(Qα , Pα ,Mα ,

−→α , ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ) and γ �R2 δ
]
. Then, by applying A6 , conclude (Qα , Pα ,Mα , −→α ,

ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ) and (Qγ , Pγ ,Mγ , −→γ , ıγ) �R2 δ. Then, by applying A7 , conclude:

(Qα , Pα ,Mα , −→α , ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ)
and (Qγ , Pγ ,Mγ , −→γ , ıγ) �R2 (Qδ , Pδ ,Mδ , −→δ , ıδ)

Then, by applying Definition 9 of �, conclude
[
Pα = Pβ and Mα = Mβ and ıα R ıβ

]
and

[
Pγ = Pδ and

Mγ =Mδ and ıγ R ıδ
]
. Then, by basic rewriting, conclude

[[
Pα = Pβ and Pγ = Pδ

]
and

[
Mα =Mβ and

Mγ = Mδ

]
and

[
ıα R ıβ and ıγ R ıδ

]]
. Then, by applying A3 , conclude

[[
Pα = Pβ and Pγ = Pδ

]
and

[
Mα = Mβ and Mγ = Mδ

]
and (ıα , ıγ) R (ıβ , ıδ)

]
. Then, by rewriting under ZFC, conclude,

[
Pα ∪ Pγ =

Pβ ∪ Pδ and Mα ∪Mγ =Mβ ∪Mδ and (ıα , ıγ) R (ıβ , ıδ)
]
.

Z3 Recall γ �R2 δ from A2 . Then, by introducing A1 , conclude
[
α �R1 β and γ �R2 δ

]
. Then, by applying A4

, conclude
[
(Qα , Pα ,Mα , −→α , ıα) �R1 β and γ �R2 δ

]
. Then, by applying A5 , conclude

[
(Qα , Pα ,Mα ,

−→α , ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ) and γ �R2 δ
]
. Then, by applying A6 , conclude (Qα , Pα ,Mα , −→α ,

ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ) and (Qγ , Pγ ,Mγ , −→γ , ıγ) �R2 δ. Then, by applying A7 , conclude:

(Qα , Pα ,Mα , −→α , ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ)
and (Qγ , Pγ ,Mγ , −→γ , ıγ) �R2 (Qδ , Pδ ,Mδ , −→δ , ıδ)

Then, by applying Definition 9 of �, conclude
[
R1 ⊆ Qα×Qβ and R2 ⊆ Qγ ×Qδ

]
. Then, by rewriting under ZFC,

conclude: [[
qα R1 qβ implies

[
qα ∈ Qα and qβ ∈ Qβ

]]
for all qα , qβ

]
and

[[
qγ R2 qδ implies

[
qγ ∈ Qγ and qδ ∈ Qδ

]]
for all qγ , qδ

]
Then, by basic rewriting, conclude:[[

qα R1 qβ and qγ R2 qδ
]

implies

[
qα ∈ Qα and qβ ∈ Qβ

and qγ ∈ Qγ and qδ ∈ Qδ

]]
for all qα , qβ , qγ , qδ

16

Then, by rewriting under ZFC, conclude:[[
qα R1 qβ and qγ R2 qδ

]
implies

[
(qα , qγ) ∈ Qα ×Qγ

and (qβ , qδ) ∈ Qβ ×Qδ

]]
for all qα , qβ , qγ , qδ

Then, by applying A3 , conclude:[
(qα , qγ) R (qβ , qδ) implies

[
(qα , qγ) ∈ Qα ×Qγ

and (qβ , qδ) ∈ Qβ ×Qδ

]]
for all qα , qβ , qγ , qδ

Then, by rewriting under ZFC, conclude R ⊆ (Qα ×Qγ)× (Qβ ×Qδ).

Reasoning to a generalization, suppose:[
(qα , qγ)

P,f−−→† (q′α , q′γ) and (qα , qγ) R (qβ , qδ)
]

for some P , f , qα , q
′
α , qβ , qγ , q

′
γ , qδ

Then, by applying A3 , conclude
[
(qα , qγ)

P,f−−→† (q′α , q
′
γ) and qα R1 qβ and qγ R2 qδ

]
. Then, by applying A8 ,

conclude
[[[

Rule (2) applies
]

or
[
Rule (3) applies

]
or
[
Rule (4) applies

]]
and qα R1 qβ and qγ R2 qδ

]
. Then, by

basic rewriting, conclude:[[
Rule (2) applies

]
and

qα R1 qβ and qγ R2 qδ

]
or

[[
Rule (3) applies

]
and

qα R1 qβ and qγ R2 qδ

]
or

[[
Rule (4) applies

]
and

qα R1 qβ and qγ R2 qδ

]
Proceed by case distinction.

• Case:
[[

Rule (2) applies
]

and qα R1 qβ and qγ R2 qδ
]
.

Then, by applying the definition of Rule (2) in Figure 5, conclude:P = Pα ∪ Pγ and f = fα ∧ fγ and qα
Pα,fα−−−−→α q

′
α and qγ

Pγ ,fγ−−−−→γ q
′
γ and[

Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα
or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
and qα R1 qβ and qγ R2 qδ

 for some fα , fγ , Pα , Pγ

Then, by introducing A2 , conclude:

γ �R2 δ and P = Pα ∪ Pγ and f = fα ∧ fγ and qα
Pα,fα−−−−→α q

′
α and qγ

Pγ ,fγ−−−−→γ q
′
γ

and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
and qα R1 qβ and qγ R2 qδ

Then, by introducing A1 , conclude:

α �R1 β and γ �R2 δ and P = Pα ∪ Pγ and f = fα ∧ fγ and qα
Pα,fα−−−−→α q

′
α and qγ

Pγ ,fγ−−−−→γ q
′
γ

and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
and qα R1 qβ and qγ R2 qδ

Then, by applying A4 , conclude:

(Qα , Pα ,Mα , −→α , ıα) �R1 β and γ �R2 δ and

P = Pα ∪ Pγ and f = fα ∧ fγ and qα
Pα,fα−−−−→α q

′
α and qγ

Pγ ,fγ−−−−→γ q
′
γ

and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
and qα R1 qβ and qγ R2 qδ

Then, by applying A5 , conclude:

(Qα , Pα ,Mα , −→α , ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ) and γ �R2 δ and

P = Pα ∪ Pγ and f = fα ∧ fγ and qα
Pα,fα−−−−→α q

′
α and qγ

Pγ ,fγ−−−−→γ q
′
γ

and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
and qα R1 qβ and qγ R2 qδ

17

Then, by applying A6 , conclude:

(Qα , Pα ,Mα , −→α , ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ) and (Qγ , Pγ ,Mγ , −→γ , ıγ) �R2 δ and

P = Pα ∪ Pγ and f = fα ∧ fγ and qα
Pα,fα−−−−→α q

′
α and qγ

Pγ ,fγ−−−−→γ q
′
γ

and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
and qα R1 qβ and qγ R2 qδ

Then, by applying A7 , conclude:

(Qα , Pα ,Mα , −→α , ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ) and
(Qγ , Pγ ,Mγ , −→γ , ıγ) �R2 (Qδ , Pδ ,Mδ , −→δ , ıδ) and

P = Pα ∪ Pγ and f = fα ∧ fγ and qα
Pα,fα−−−−→α q

′
α and qγ

Pγ ,fγ−−−−→γ q
′
γ

and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
and qα R1 qβ and qγ R2 qδ

Then, by applying Definition 9 of �, conclude:
[[qα P,fα−−−→α q

′
α

and qα R1 qβ

]
implies fα ≤

∨{
fβ

[
qβ

P,fβ−−−→β q
′
β and q′α R1 q

′
β

]
for some q′β

}]
for all fα , P , qα , q

′
α , qβ

 and

[[qγ P,fγ−−−→γ q

′
γ

and qγ R2 qδ

]
implies fγ ≤

∨{
fδ

[
qδ

P,fδ−−−→δ q
′
δ and q′γ R2 q

′
δ

]
for some q′δ

}]
for all fγ , P , qγ , q

′
γ , qδ

 and

P = Pα ∪ Pγ and f = fα ∧ fγ and qα
Pα,fα−−−−→α q

′
α and qγ

Pγ ,fγ−−−−→γ q
′
γ

and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
and qα R1 qβ and qγ R2 qδ

Then, by basic rewriting, conclude:

fα ≤
∨{

fβ

[
qβ

Pα,fβ−−−−→β q
′
β and q′α R1 q

′
β

]
for some q′β

}
and fγ ≤

∨{
fδ

[
qδ

Pγ ,fδ−−−→δ q
′
δ and q′γ R2 q

′
δ

]
for some q′δ

}

and P = Pα ∪ Pγ and f = fα ∧ fγ and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
Then, by rewriting under ZFC, conclude:

fα ∧ fγ ≤
∨{

fβ

[
qβ

Pα,fβ−−−−→β q
′
β and q′α R1 q

′
β

]
for some q′β

}
∧
∨{

fδ

[
qδ

Pγ ,fδ−−−→δ q
′
δ and q′γ R2 q

′
δ

]
for some q′δ

}

and P = Pα ∪ Pγ and f = fα ∧ fγ and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
Then, by rewriting under ZFC, conclude:

fα ∧ fγ ≤
∨{

fβ ∧ fδ
[
qβ

Pα,fβ−−−−→β q
′
β and qδ

Pγ ,fδ−−−→δ q
′
δ and q′α R1 q

′
β and q′γ R2 q

′
δ

]
for some q′β , q

′
δ

}

and P = Pα ∪ Pγ and f = fα ∧ fγ and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]

18

Then, by applying A3 , conclude:

fα ∧ fγ ≤
∨{

fβ ∧ fδ
[
qβ

Pα,fβ−−−−→β q
′
β and qδ

Pγ ,fδ−−−→δ q
′
δ and (q′α , q

′
γ) R (q′β , q

′
δ)
]

for some q′β , q
′
δ

}

and P = Pα ∪ Pγ and f = fα ∧ fγ and

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
Then, by rewriting under ZFC, conclude:

fα ∧ fγ ≤
∨
fβ ∧ fδ

[
Pα = Port(α) ∩ Pγ or Pγ = Port(γ) ∩ Pα

or Port(α) ∩ Pγ = ∅ = Port(γ) ∩ Pα

]
and

qβ
Pα,fβ−−−−→β q

′
β and qδ

Pγ ,fδ−−−→δ q
′
δ and (q′α , q

′
γ) R (q′β , q

′
δ)

for some q′β , q

′
δ

and P = Pα ∪ Pγ and f = fα ∧ fγ

Then, by applying the definition of Rule (2) in Figure 5, conclude:

fα ∧ fγ ≤
∨{

fβ ∧ fδ
[[

Rule (2) applies
]

and (q′α , q
′
γ) R (q′β , q

′
δ)
]

for some q′β , q
′
δ

}
and P = Pα ∪ Pγ and f = fα ∧ fγ

Then, by applying A9 , conclude:

fα ∧ fγ ≤
∨{

fβ ∧ fδ
[
(qβ , qδ)

Pα∪Pγ ,fβ∧fδ−−−−−−−−−→‡ (q′β , q′δ) and (q′α , q
′
γ) R (q′β , q

′
δ)
]

for some q′β , q
′
δ

}
and P = Pα ∪ Pγ and f = fα ∧ fγ

Then, by basic rewriting, conclude:

f ≤
∨{

f ′
[
(qβ , qδ)

P,f ′−−−→‡ q′ and (q′α , q
′
γ) R q′

]
for some q′

}
• Case:

[[
Rule (3) applies

]
and qα R1 qβ and qγ R2 qδ

]
.

Then, by applying the definition of Rule (3) in Figure 5, conclude:[
P = Pα and f = fα and qγ = q′γ and qα

Pα,fα−−−−→α q
′
α

and Pα ∩ Port(γ) = ∅ and qα R1 qβ and qγ R2 qδ

]
for some fα , Pα

Then, by basic rewriting, conclude:

P = Pα and f = fα and qα
Pα,fα−−−−→α q

′
α

and Pα ∩ Port(γ) = ∅ and qα R1 qβ and q′γ R2 qδ

Then, by introducing A2 , conclude:

γ �R2 δ and P = Pα and f = fα and qα
Pα,fα−−−−→α q

′
α

and Pα ∩ Port(γ) = ∅ and qα R1 qβ and q′γ R2 qδ

Then, by introducing A1 , conclude:

α �R1 β and γ �R2 δ and P = Pα and f = fα and qα
Pα,fα−−−−→α q

′
α

and Pα ∩ Port(γ) = ∅ and qα R1 qβ and q′γ R2 qδ

Then, by applying A4 , conclude:

(Qα , Pα ,Mα , −→α , ıα) �R1 β and γ �R2 δ and

P = Pα and f = fα and qα
Pα,fα−−−−→α q

′
α

and Pα ∩ Port(γ) = ∅ and qα R1 qβ and q′γ R2 qδ

19

Then, by applying A5 , conclude:

(Qα , Pα ,Mα , −→α , ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ) and γ �R2 δ and

P = Pα and f = fα and qα
Pα,fα−−−−→α q

′
α

and Pα ∩ Port(γ) = ∅ and qα R1 qβ and q′γ R2 qδ

Then, by applying A6 , conclude:

(Qα , Pα ,Mα , −→α , ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ) and (Qγ , Pγ ,Mγ , −→γ , ıγ) �R2 δ and

P = Pα and f = fα and qα
Pα,fα−−−−→α q

′
α

and Pα ∩ Port(γ) = ∅ and qα R1 qβ and q′γ R2 qδ

Then, by applying A7 , conclude:

(Qα , Pα ,Mα , −→α , ıα) �R1 (Qβ , Pβ ,Mβ , −→β , ıβ) and
(Qγ , Pγ ,Mγ , −→γ , ıγ) �R2 (Qδ , Pδ ,Mδ , −→δ , ıδ) and

P = Pα and f = fα and qα
Pα,fα−−−−→α q

′
α

and Pα ∩ Port(γ) = ∅ and qα R1 qβ and q′γ R2 qδ

Then, by applying Definition 9 of �, conclude:
[[qα P,fα−−−→α q

′
α

and qα R1 qβ

]
implies fα ≤

∨{
fβ

[
qβ

P,fβ−−−→β q
′
β and q′α R1 q

′
β

]
for some q′β

}]
for all fα , P , qα , q

′
α , qβ

 and R2 ⊆ Qγ ×Qδ

and P = Pα and f = fα and qα
Pα,fα−−−−→α q

′
α

and Pα ∩ Port(γ) = ∅ and qα R1 qβ and q′γ R2 qδ

Then, by basic rewriting, conclude:

fα ≤
∨{

fβ

[
qβ

Pα,fβ−−−−→β q
′
β and q′α R1 q

′
β

]
for some q′β

}
and R2 ⊆ Qγ ×Qδ

and P = Pα and f = fα and Pα ∩ Port(γ) = ∅ and q′γ R2 qδ

Then, by rewriting under ZFC, conclude:

fα ≤
∨{

fβ

[
qβ

Pα,fβ−−−−→β q
′
β and q′α R1 q

′
β

]
for some q′β

}
and qδ ∈ Qδ

and P = Pα and f = fα and Pα ∩ Port(γ) = ∅ and q′γ R2 qδ

Then, by applying Z1 , conclude:

fα ≤
∨{

fβ

[
qβ

Pα,fβ−−−−→β q
′
β and q′α R1 q

′
β

]
for some q′β

}
and qδ ∈ Qδ

and P = Pα and f = fα and Pα ∩ Port(δ) = ∅ and q′γ R2 qδ

Then, by rewriting under ZFC, conclude:

fα ≤
∨fβ

[
qδ ∈ Qδ and Pα ∩ Port(δ) = ∅ and q′γ R2 qδ

and qβ
Pα,fβ−−−−→β q

′
β and q′α R1 q

′
β

]
for some q′β

 and P = Pα and f = fα

Then, by applying A3 , conclude:

fα ≤
∨fβ

[
qδ ∈ Qδ and Pα ∩ Port(δ) = ∅ and

qβ
Pα,fβ−−−−→β q

′
β and (q′α , q

′
γ) R (q′β , qδ)

]
for some q′β

 and P = Pα and f = fα

20

Then, by applying the definition of Rule (3) in Figure 5, conclude:

fα ≤
∨{

fβ

[[
Rule (3) applies

]
and (q′α , q

′
γ) R (q′β , qδ)

]
for some q′β

}
and P = Pα and f = fα

Then, by applying A9 , conclude:

fα ≤
∨{

fβ

[
(qβ , qδ)

Pα,fβ−−−−→‡ (q′β , qδ) and (q′α , q
′
γ) R (q′β , qδ)

]
for some q′β

}
and P = Pα and f = fα

Then, by basic rewriting, conclude:

f ≤
∨{

f ′
[
(qβ , qδ)

P,f ′−−−→‡ q′ and (q′α , q
′
γ) R q′

]
for some q′

}

• Case:
[[

Rule (4) applies
]

and qα R1 qβ and qγ R2 qδ
]
. Symmetrically.

Hence, after considering all cases, conclude:

f ≤
∨{

f ′
[
(qβ , qδ)

P,f ′−−−→‡ q′ and (q′α , q
′
γ) R q′

]
for some q′

}

Then, by generalizing the premise, conclude:

[[(qα , qγ)
P−→† (q′α , q′γ)

and (qα , qγ) R (qβ , qδ)

]
implies f ≤

∨{
f ′

[
(qβ , qδ)

P,f ′−−−→‡ q′ and (q′α , q
′
γ) R q′

]
for some q′

}]
for all qα , qβ , qγ , qδ , q

′
α , q

′
γ , P

Then, by introducing Z2 , conclude:

Pα ∪ Pγ = Pβ ∪ Pδ and Mα ∪Mγ =Mβ ∪Mδ and (ıα , ıγ) R (ıβ , ıδ) and
[[(qα , qγ)

P−→† (q′α , q′γ)
and (qα , qγ) R (qβ , qδ)

]
implies f ≤

∨{
f ′

[
(qβ , qδ)

P,f ′−−−→‡ q′ and (q′α , q
′
γ) R q′

]
for some q′

}]
for all qα , qβ , qγ , qδ , q

′
α , q

′
γ , P

Then, by introducing Z3 , conclude:

R ⊆ (Qα ×Qγ)× (Qβ ×Qδ) and Pα ∪ Pγ = Pβ ∪ Pδ and Mα ∪Mγ =Mβ ∪Mδ and (ıα , ıγ) R (ıβ , ıδ) and
[[(qα , qγ)

P−→† (q′α , q′γ)
and (qα , qγ) R (qβ , qδ)

]
implies f ≤

∨{
f ′

[
(qβ , qδ)

P,f ′−−−→‡ q′ and (q′α , q
′
γ) R q′

]
for some q′

}]
for all qα , qβ , qγ , qδ , q

′
α , q

′
γ , P

Then, by applying Definition 9 of �, conclude (Qα × Qγ , Pα ∪ Pγ ,Mα ∪ Mγ , −→† , (ıα , ıγ)) �R (Qβ × Qδ ,

Pβ ∪ Pδ ,Mβ ∪Mδ , −→‡ , (ıβ , ıδ)). Then, by introducing A9 , conclude
[
A9 and (Qα × Qγ , Pα ∪ Pγ ,Mα ∪Mγ ,

−→† , (ıα , ıγ)) �R (Qβ ×Qδ , Pβ ∪Pδ ,Mβ ∪Mδ , −→‡ , (ıβ , ıδ))
]
. Then, by introducing A8 , conclude

[
A8 and A9

and (Qα×Qγ , Pα ∪Pγ ,Mα ∪Mγ , −→† , (ıα , ıγ)) �R (Qβ ×Qδ , Pβ ∪Pδ ,Mβ ∪Mδ , −→‡ , (ıβ , ıδ))
]
. Then, by

applying Definition 3 of �, conclude (Qα , Pα ,Mα , −→α , ıα)� (Qγ , Pγ ,Mγ , −→γ , ıγ) �R (Qβ , Pβ ,Mβ , −→β ,
ıβ) � (Qδ , Pδ ,Mδ , −→δ , ıδ). Then, by applyling A4 , conclude α � (Qγ , Pγ ,Mγ , −→γ , ıγ) �R (Qβ , Pβ ,Mβ ,
−→β , ıβ)� (Qδ , Pδ ,Mδ , −→δ , ıδ). Then, by applying A6 , conclude α�γ �R (Qβ , Pβ ,Mβ , −→β , ıβ)� (Qδ , Pδ ,
Mδ , −→δ , ıδ). Then, by applying A5 , conclude α�γ �R β�(Qδ , Pδ ,Mδ , −→δ , ıδ). Then, by applying A7 , conclude
α� γ �R β � δ.

21

APPENDIX C.
PROOF OF LEMMA 3

Similar to how we proved Lemma 2 in Section B, we prove Lemma 3 by reusing as much as possible the proofs for port
automata in [12]. In this case, the main result that we want to reuse is [12, Theorem 2]. However, because that theorem
states not exactly the same property for port automata as Lemma 3 for constraint automata, we need an auxiliary lemma to
bridge the gap. To that end, we first define the unary relation denoted by 1−→ (informally introduced in Sec. III) and a new
binary relation on constraint automata called slavery (originally introduced in [12] on port automata). Afterward, we state
and prove the auxiliary lemma.

Definition 11 (No-synchronization relation). The no-synchronization relation, denoted by 1−→ , is the relation on CA defined
as:

1−→ (Q , P ,M , −→ , ı) iff

[[
q
P,f−−→ q′ implies |P | = 1

]
for all f , P , q , q′

]
Definition 12 (Slave relation). The slave relation, denoted by 7→, is the relation on CA × CA defined as:

(Qβ , Pβ ,Mβ , −→β , ıβ) 7→ α iff

[[qβ Pβ ,fβ−−−−→ q′β and

Pβ ∩ Port(α) 6= ∅

]
implies Pβ ⊆ Port(α)

]
for all fβ , Pβ , qβ , q

′
β

Lemma 6. 1−→β implies β 7→ α

Proof: Assume:

A1
1−→β

A2 β = (Qβ , Pβ ,Mβ , −→β , ıβ)

Recall 1−→β from A1 . Then, by applying Definition 11 of 1−→ , conclude
[[
qβ

Pβ ,fβ−−−−→ q′β implies |Pβ | = 1
]

for all fβ ,

Pβ , qβ , q
′
β

]
. Then, by basic rewriting, conclude

[[[
qβ

Pβ ,fβ−−−−→ q′β and Pβ ∩ Port(α) 6= ∅
]

implies
[
|Pβ | = 1 and

Pβ ∩ Port(α) 6= ∅
]]

for all fβ , Pβ , qβ , q
′
β

]
. Then, by rewriting under ZFC, conclude:

[[[qβ Pβ ,fβ−−−−→ q′β and

Pβ ∩ Port(α) 6= ∅

]
implies

[[
Pβ = {p} for some p

]
and Pβ ∩ Port(α) 6= ∅

]]
for all fβ , Pβ , qβ , q

′
β

]
Then, by basic rewriting, conclude:[[[qβ Pβ ,fβ−−−−→ q′β and

Pβ ∩ Port(α) 6= ∅

]
implies

[[
Pβ = {p} and Pβ ∩ Port(α) 6= ∅

]
for some p

]]
for all fβ , Pβ , qβ , q

′
β

]
Then, by basic rewriting, conclude:[[[qβ Pβ ,fβ−−−−→ q′β and

Pβ ∩ Port(α) 6= ∅

]
implies

[[
Pβ = {p} and {p} ∩ Port(α) 6= ∅

]
for some p

]]
for all fβ , Pβ , qβ , q

′
β

]
Then, by rewriting under ZFC, conclude:[[[qβ Pβ ,fβ−−−−→ q′β and

Pβ ∩ Port(α) 6= ∅

]
implies

[[
Pβ = {p} and p ∈ Port(α)

]
for some p

]]
for all fβ , Pβ , qβ , q

′
β

]
Then, by rewriting under ZFC, conclude:[[[qβ Pβ ,fβ−−−−→ q′β and

Pβ ∩ Port(α) 6= ∅

]
implies

[[
Pβ = {p} and {p} ⊆ Port(α)

]
for some p

]]
for all fβ , Pβ , qβ , q

′
β

]
Then, by rewriting under ZFC, conclude

[[[
qβ

Pβ ,fβ−−−−→ q′β and Pβ ∩ Port(α) 6= ∅
]

implies
[
Pβ ⊆ Port(α) for some

p
]]

for all fβ , Pβ , qβ , q
′
β

]
. Then, by basic rewriting, conclude

[[[
qβ

Pβ ,fβ−−−−→ q′β and Pβ ∩ Port(α) 6= ∅
]

implies

22

qα
Pα,fα−−−−→α q

′
α and qβ

Pβ ,fβ−−−−→β q
′
β and (Port(α) , Pα) ♦ (Port(β) , Pβ)

(qα , qβ)
Pα∪Pβ ,fα∧fβ−−−−−−−−−→ (q′α , q

′
β)

(1)

qα
Pα,fα−−−−→α q

′
α and qβ

Pβ ,fβ−−−−→β q
′
β and (Port(α) , Pα) � (Port(β) , Pβ)

(qα , qβ)
Pα∪Pβ ,fα∧fβ−−−−−−−−−→ (q′α , q

′
β)

(2)

qα
Pα,fα−−−−→α q

′
α and qβ ∈ Qβ and Pα ∩ Port(β) = ∅

(qα , qβ)
Pα,fα−−−−→ (q′α , qβ)

(3)

qβ
Pβ ,fβ−−−−→β q

′
β and qα ∈ Qα and Pβ ∩ Port(α) = ∅

(qα , qβ)
Pβ ,fβ−−−−→ (qα , q′β)

(4)

Figure 17: Reformulated rules for combining transitions (cf. Figure 5).

Pβ ⊆ Port(α)
]

for all fβ , Pβ , qβ , q
′
β

]
. Then, by applying Definition 12 of 7→, conclude (Qβ , Pβ ,Mβ , −→β , ıβ) 7→ α.

Then, by applying A2 , conclude β 7→ α.
Using Lemma 6, we can show that the two conditions in the premise of Lemma 3 satisfy the conditions in the premise
of [12, Definition 12]. Then, combined with [12, Proposition 2], we can use [12, Theorem 2] to establish the conclusion of
Lemma 3. In principle, this concludes our proof. What remains, however, is showing that we in fact can extend the proof
of [12, Theorem 2] from port automata to constraint automata. After carefully analyzing the structure of that proof (including
the definitions and other results it relies on), we discovered that the differences between port automata and constraint automata
manifest in [12, Lemmas 4, 5, 6, 8, 9]. Consequently, for our proof of Lemma 3 to be valid, we must prove similar results
as [12, Lemmas 4, 5, 6, 8, 9] for constraint automata instead of port automata. We do so in the remainder of this section.

First, to simplify notation in the upcoming proofs, we adopt the same symbols ♦ and � as in [12] to abbreviate the second
line of the premise in Rule (1) and Rule (2) in Figure 5. Formally, those symbols denote the following relations.

Definition 13 (Weak agreement relation). The weak agreement relation, denoted by ♦, is the relation on ℘(PORT)2 × ℘(
PORT)2 defined as:

(Pα , Pα) ♦ (Pβ , Pβ) iff
[
Pα ⊆ Pα and Pβ ⊆ Pβ and Pα ∩ Pβ = Pβ ∩ Pα

]
Definition 14 (Strong agreement relation). The strong agreement relation, denoted by �, is the relation on ℘(PORT)2 × ℘(
PORT)2 defined as:

(Pα , Pα) � (Pβ , Pβ) iff

[
Pα ⊆ Pα and Pβ ⊆ Pβ and

[
Pα = Pα ∩ Pβ or Pβ = Pβ ∩ Pα

or Pα ∩ Pβ = ∅ = Pβ ∩ Pα

]]
Using those relations, we can reformulate Rule (1) and Rule (2) more concisely as in Figure 17. In addition to ♦ and �,
we also adopt the notion of subautomata from [12].

Definition 15 (Subautomaton relation). The subautomaton relation, denoted by v, is the relation on CA × CA defined as:

(Q , P ,M , −→α , ı) v (Q , P ,M , −→β , ı) iff −→α ⊆ −→β

Now, the following lemma extends [12, Lemma 4] from port automata to constraint automata.

Lemma 7. α� β v α� β

Proof: Assume:

A1 α = (Qα , Pα ,Mα , −→α , ıα)

A2 β = (Qβ , Pβ ,Mβ , −→β , ıβ)

A3 −→� denotes the smallest relation induced by the rules Rule (1), Rule (3), and Rule (4) in Figure 17 under α and
β.

23

A4 −→� denotes the smallest relation induced by the rules Rule (2), Rule (3), and Rule (4) in Figure 17 under α and
β.

Reasoning to a generalization, suppose:

(qα , qβ)
P,f−−→� (q′α , q

′
β) for some f , P , qα , qβ , q

′
α , q

′
β

Then, by applying A4 ,
[[

Rule (2) applies
]

or
[
Rule (3) applies

]
or
[
Rule (4) applies

]]
. Proceed by case distinction.

• Case:
[
Rule (2) applies

]
.

Then, by applying the definition of Rule (2) in Figure 17, conclude:[
P = Pα ∪ Pβ and f = fα ∧ fβ and qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β

and (Port(α) , Pα) � (Port(β) , Pβ)

]
for some fα , fβ , Pα , Pβ

Then, by applying [12, Lemma 3], conclude
[
P = Pα ∪ Pβ and f = fα ∧ fβ and qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β

q′β and (Port(α) , Pα) ♦ (Port(β) , Pβ)
]
. Then, by applying the definition of Rule (1) in Figure 17, conclude

[
P = Pα ∪ Pβ and f = fα ∧ fβ and

[
Rule (1) applies

]]
. Then, by applying A3 , conclude

[
P = Pα ∪ Pβ and

f = fα ∧ fβ and (qα , qβ)
Pα∪Pβ ,fα∧fβ−−−−−−−−−→� (q′α , q

′
β)
]
. Then, by basic rewriting, conclude (qα , qβ)

P,f−−→� (q′α , q
′
β).

• Case:
[
Rule (3) applies

]
.

Then, by applying A3 , conclude (qα , qβ)
P,f−−→� (q′α , q

′
β).

• Case:
[
Rule (4) applies

]
.

Then, by applying A3 , conclude (qα , qβ)
P,f−−→� (q′α , q

′
β).

Hence, after considering all cases, conclude (qα , qβ)
P−→� (q′α , q

′
β). Then, by generalizing the premise, conclude:[

(qα , qβ)
P,f−−→� (q′α , q

′
β) implies (qα , qβ)

P,f−−→� (q′α , q
′
β)
]

for all f , P , qα , qβ , q
′
α , q

′
β

Then, by rewriting under ZFC, conclude −→� ⊆ −→�. Then, by introducing A4 , conclude
[
A4 and −→� ⊆ −→�

]
.

Then, by introducing A3 , conclude
[
A3 and A4 and −→� ⊆ −→�

]
. Then, by applying Definition 15 of v, conclude:

A3 and A4 and (Qα×Qβ , Pα∪Pβ ,Mα∪Mβ , −→� , (ıα , ıβ)) v (Qα×Qβ , Pα∪Pβ ,Mα∪Mβ , −→� , (ıα , ıβ))

Then, by applying Definition 3 of �, conclude
[
A3 and (Qα , Pα ,Mα , −→α , ıα) � (Qβ , Pβ ,Mβ , −→β , ıβ) v

(Qα × Qβ , Pα ∪ Pβ ,Mα ∪ Mβ , −→� , (ıα , ıβ))
]
. Then, by applying Definition 2 of �, conclude (Qα , Pα ,Mα ,

−→α , ıα)�(Qβ , Pβ ,Mβ , −→β , ıβ) v (Qα , Pα ,Mα , −→α , ıα)�(Qβ , Pβ ,Mβ , −→β , ıβ). Then, by applying A1

, conclude α�(Qβ , Pβ ,Mβ , −→β , ıβ) v α�(Qβ , Pβ ,Mβ , −→β , ıβ). Then, by applying A2 , conclude α�β v α�β.

To generalize the next lemma from port automata to constraint automata, we need to introduce yet another notion from [12].

Definition 16 (Conditional strong agreement relation). The conditional strong agreement relation, denoted by ♦�, is the
relation on CA × CA defined as:

(Qα , Pα ,Mα , −→α , ıα) ♦� (Qβ , Pβ ,Mβ , −→β , ıβ) iff

[
qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]
implies (Port(α) , Pα) � (Port(β) , Pβ)

for all fα , fβ , Pα , Pβ , qα , qβ , q

′
α , q

′
β

Now, the following lemma extends [12, Lemma 5] from port automata to constraint automata.

Lemma 8. α ♦� β implies α� β v α� β

Proof: Assume:

A1 α ♦� β

A2 α = (Qα , Pα ,Mα , −→α , ıα)

24

A3 β = (Qβ , Pβ ,Mβ , −→β , ıβ)

A4 −→� denotes the smallest relation induced by the rules Rule (1), Rule (3), and Rule (4) in Figure 17 under α and
β.

A5 −→� denotes the smallest relation induced by the rules Rule (2), Rule (3), and Rule (4) in Figure 17 under α and
β.

Reasoning to a generalization, suppose:

(qα , qβ)
P,f−−→� (q′α , q

′
β) for some f , P , qα , qβ , q

′
α , q

′
β

Then, by applying A4 ,
[[

Rule (1) applies
]

or
[
Rule (3) applies

]
or
[
Rule (4) applies

]]
. Proceed by case distinction.

• Case:
[
Rule (1) applies

]
.

Then, by applying the definition of Rule (1) in Figure 17, conclude:[
P = Pα ∪ Pβ and f = fα ∧ fβ and qα

Pα−−→α q
′
α and qβ

Pβ−−→β q
′
β

and (Port(α) , Pα) ♦ (Port(β) , Pβ)

]
for some fα , fβ , Pα , Pβ

Then, by introducing A1 , conclude:

α ♦� β and

[
P = Pα ∪ Pβ and f = fα ∧ fβ and qα

Pα−−→α q
′
α and qβ

Pβ−−→β q
′
β

and (Port(α) , Pα) ♦ (Port(β) , Pβ)

]
Then, by applying Definition 16 of ♦�, conclude:

[
qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]
implies (Port(α) , Pα) � (Port(β) , Pβ)

for all qα , qβ , q

′
α , q

′
β , Pα , Pβ

 and

[
P = Pα ∪ Pβ and f = fα ∧ fβ and qα

Pα−−→α q
′
α and qβ

Pβ−−→β q
′
β and (Port(α) , Pα) ♦ (Port(β) , Pβ)

]
Then, by rewriting under ZFC, conclude

[
P = Pα ∪ Pβ and f = fα ∧ fβ and qα

Pα−−→α q
′
α and qβ

Pβ−−→β q
′
β and

(Port(α) , Pα) � (Port(β) , Pβ)
]
. Then, by applying the definition of Rule (2) in Figure 17, conclude

[
P = Pα ∪ Pβ

and f = fα ∧ fβ and
[
Rule (2) applies

]]
. Then, by applying A5 , conclude

[
P = Pα ∪ Pβ and f = fα ∧ fβ and

(qα , qβ)
Pα∪Pβ ,fα∧fβ−−−−−−−−−→� (q′α , q

′
β)
]
. Then, by basic rewriting, conclude (qα , qβ)

P,f−−→� (q′α , q
′
β).

• Case:
[
Rule (3) applies

]
.

Then, by applying A5 , conclude (qα , qβ)
P,f−−→� (q′α , q

′
β).

• Case:
[
Rule (4) applies

]
.

Then, by applying A5 , conclude (qα , qβ)
P,f−−→� (q′α , q

′
β).

Hence, after considering all cases, conclude (qα , qβ)
P,f−−→� (q′α , q

′
β). Then, by generalizing the premise, conclude:[

(qα , qβ)
P,f−−→� (q′α , q

′
β) implies (qα , qβ)

P,f−−→� (q′α , q
′
β)
]

for all f , P , qα , qβ , q
′
α , q

′
β

Then, by rewriting under ZFC, conclude −→� ⊆ −→�. Then, by introducing A5 , conclude
[
A5 and −→� ⊆ −→�

]
.

Then, by introducing A4 , conclude
[
A4 and A5 and −→� ⊆ −→�

]
. Then, by applying Definition 15 of v, conclude:

A4 and A5 and (Qα×Qβ , Pα∪Pβ ,Mα∪Mβ , −→� , (ıα , ıβ)) v (Qα×Qβ , Pα∪Pβ ,Mα∪Mβ , −→� , (ıα , ıβ))

Then, by applying Definition 2 of �, conclude
[
A5 and (Qα , Pα ,Mα , −→α , ıα) � (Qβ , Pβ ,Mβ , −→β , ıβ) v

(Qα × Qβ , Pα ∪ Pβ ,Mα ∪ Mβ , −→� , (ıα , ıβ))
]
. Then, by applying Definition 3 of �, conclude (Qα , Pα ,Mα ,

−→α , ıα)�(Qβ , Pβ ,Mβ , −→β , ıβ) v (Qα , Pα ,Mα , −→α , ıα)�(Qβ , Pβ ,Mβ , −→β , ıβ). Then, by applying A2

25

, conclude α�(Qβ , Pβ ,Mβ , −→β , ıβ) v α�(Qβ , Pβ ,Mβ , −→β , ıβ). Then, by applying A3 , conclude α�β v α�β.

To generalize the next lemma from port automata to constraint automata, we first define the binary relation denoted by
� (informally introduced in Section III).

Definition 17 (Independence relation). The independence relation, denoted by �, is the relation on CA × CA defined as:

α � β iff Port(α) ∩ Port(β) = ∅

Now, the following lemma extends [12, Lemma 6] from port automata to constraint automata.

Lemma 9. α � β implies α ♦� β

Proof: Assume:

A1 α � β.

A2 α = (Qα , Pα ,Mα , −→α , ıα)

A3 β = (Qβ , Pβ ,Mβ , −→β , ıβ)

Reasoning to a generalization, suppose:

(Port(α) , Pα) ♦ (Port(β) , Pβ) for some Pα , Pβ

Then, by introducing A1 , conclude
[
α � β and (Port(α) , Pα) ♦ (Port(β) , Pβ)

]
. Then, by applying Definition 17 of �,

conclude
[
Port(α) ∩ Port(β) = ∅ and (Port(α) , Pα) ♦ (Port(β) , Pβ)

]
. Then, by applying Definition 13 of ♦, conclude[

Port(α) ∩ Port(β) = ∅ and Pα ⊆ Port(α) and Pβ ⊆ Port(β) and Port(α) ∩ Pβ = Port(β) ∩ Pα
]
. Then, by rewriting

under ZFC, conclude
[
Port(α) ∩ Pβ = ∅ and Pα ⊆ Port(α) and Pβ ⊆ Port(β) and Port(α) ∩ Pβ = Port(β) ∩ Pα

]
.

Then, by rewriting under ZFC, conclude
[
Pα ⊆ Port(α) and Pβ ⊆ Port(β) and Port(α)∩Pβ = ∅ = Port(β)∩Pα

]
. Then,

by applying Definition 14 of �, conclude (Port(α) , Pα) � (Port(β) , Pβ). Then, by generalizing the premise, conclude:[
(Port(α) , Pα) ♦ (Port(β) , Pβ) implies (Port(α) , Pα) � (Port(β) , Pβ)

]
for all Pα , Pβ

Then, by basic rewriting, conclude:
[
qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]
implies (Port(α) , Pα) � (Port(β) , Pβ)

 for all qα , qβ , q
′
α , q

′
β , Pα , Pβ

Then, by applying Definition 16 of ♦�, conclude (Qα , Pα ,Mα , −→α , ıα)♦�(Qβ , Pβ ,Mβ , −→β , ıβ). Then, by applying
A2 , conclude α ♦� (Qβ , Pβ ,Mβ , −→β , ıβ). Then, by applying A3 , conclude α ♦� β.

The following lemma extends [12, Lemma 8] from port automata to constraint automata.

Lemma 10. β 7→ α implies β ♦� α

Proof: Assume:

A1 α 7→ β

A2 α = (Qα , Pα ,Mα , −→α , ıα)

A3 β = (Qβ , Pβ ,Mβ , −→β , ıβ)

Reasoning to a generalization, suppose:[
qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β and (Port(α) , Pα) ♦ (Port(β) , Pβ)

]
for some fα , fβ , Pα , Pβ , qα , qβ , q

′
α , q

′
β

Then, by introducing A1 , conclude
[
α 7→ β and

[
qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β and (Port(α) , Pα) ♦ (Port(β) ,

Pβ)
]]

. Then, by applying A2 , conclude
[
(Qα , Pα ,Mα , −→α , ıα) 7→ β and

[
qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β and

26

(Port(α) , Pα) ♦ (Port(β) , Pβ)
]]

. Then, applying Definition 12 of 7→, conclude:

[
[
qα

Pα,fα−−−−→ q′α and
Pα ∩ Port(β) 6= ∅

]
implies Pα ⊆ Port(β)

 for all fα , Pα , qα , q
′
α

]
and

[
qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]

Then, by basic rewriting, conclude:
[
qα

Pα,fα−−−−→ q′α and
Pα ∩ Port(β) 6= ∅

]
implies Pα ⊆ Port(β)

 and

[
qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]

Then, by basic rewriting, conclude: (not qα
Pα,fα−−−−→ q′α)

or Pα ∩ Port(β) = ∅
or Pα ⊆ Port(β)

 and

[
qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]

Then, by basic rewriting, conclude:[
(not qα

Pα,fα−−−−→ q′α) and qα
Pα,fα−−−−→α q

′
α and qβ

Pβ ,fβ−−−−→β q
′
β

and (Port(α) , Pα) ♦ (Port(β) , Pβ)

]

or

[
Pα ∩ Port(β) = ∅ and qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β

and (Port(α) , Pα) ♦ (Port(β) , Pβ)

]

or

[
Pα ⊆ Port(β) and qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β

and (Port(α) , Pα) ♦ (Port(β) , Pβ)

]
Then, by basic rewriting, conclude:

false or

[
Pα ∩ Port(β) = ∅ and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]
or

[
Pα ⊆ Port(β) and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]
Then, by basic rewriting, conclude:[

Pα ∩ Port(β) = ∅ and
(Port(α) , Pα) ♦ (Port(β) , Pβ)

]
or

[
Pα ⊆ Port(β) and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]
Then, by applying Definition 13 of ♦, conclude: Pα ∩ Port(β) = ∅ and

Pα ⊆ Port(α) and Pβ ⊆ Port(β)
and Port(α) ∩ Pβ = Port(β) ∩ Pα

 or

 Pα ⊆ Port(β) and
Pα ⊆ Port(α) and Pβ ⊆ Port(β)
and Port(α) ∩ Pβ = Port(β) ∩ Pα

Then, by rewriting under ZFC, conclude:[

Pα ⊆ Port(α) and Pβ ⊆ Port(β) and
Port(α) ∩ Pβ = ∅ = Port(β) ∩ Pα

]
or

[
Pα ⊆ Port(α) and Pβ ⊆ Port(β)
and Port(α) ∩ Pβ = Port(β) ∩ Pα

]
Then, by applying Definition 14 of �, conclude

[
(Port(α) , Pα) � (Port(β) , Pβ) or (Port(α) , Pα) � (Port(β) , Pβ)

]
.

Then, by basic rewriting, conclude (Port(α) , Pα) � (Port(β) , Pβ). Then, by generalizing the premise, conclude:
[
qα

Pα,fα−−−−→α q
′
α and qβ

Pβ ,fβ−−−−→β q
′
β and

(Port(α) , Pα) ♦ (Port(β) , Pβ)

]
implies (Port(α) , Pα) � (Port(β) , Pβ)

 for all fα , fβ , Pα , Pβ , qα , qβ , q
′
α , q

′
β

Then, by applying Definition 16 of ♦�, conclude (Qα , Pα ,Mα , −→α , ıα)♦�(Qβ , Pβ ,Mβ , −→β , ıβ). Then, by applying
A2 , conclude α ♦� (Qβ , Pβ ,Mβ , −→β , ıβ). Then, by applying A3 , conclude α ♦� β.

27

Finally, the following lemma extends [12, Lemma 9] from port automata to constraint automata. Note that, after this
lemma, we extended each of [12, Lemma 4, 5, 6, 8, 9] from port automata to constraint automata, which was exactly our
remaining proof obligation for establishing Lemma 3.

Lemma 11. β 7→ α implies β 7→ α� γ

Proof: Assume:

A1 α 7→ β

A2 α = (Qα , Pα ,Mα , −→α , ıα)

Recall α 7→ β from A1 . Then, by applying A2 , conclude (Qα , Pα ,Mα , −→α , ıα) 7→ β. Then, applying Definition 12

of 7→, conclude
[[[
qα

Pα,fα−−−−→ q′α and Pα ∩ Port(β) 6= ∅
]

implies Pα ⊆ Port(β)
]

for all fα , Pα , qα , q
′
α

]
. Then, by

introducing [12, Proposition 6],13 conclude:

Port(β � γ) = Port(β) ∪ Port(γ) and

[[[
qα

Pα,fα−−−−→ q′α and Pα ∩ Port(β) 6= ∅
]

implies Pα ⊆ Port(β)
]

for all fα , Pα , qα , q
′
α

]
Then, by rewriting under ZFC, conclude:

Port(β) ⊆ Port(β � γ) and

[[[
qα

Pα,fα−−−−→ q′α and Pα ∩ Port(β) 6= ∅
]

implies Pα ⊆ Port(β)
]

for all fα , Pα , qα , q
′
α

]

Then, by rewriting under ZFC, conclude
[[[
qα

Pα,fα−−−−→ q′α and Pα ∩ Port(β � γ) 6= ∅
]

implies Pα ⊆ Port(β)
]

for all
fα , Pα , qα , q

′
α

]
. Then, by applying Definition 12 of 7→, conclude (Qα , Pα ,Mα , −→α , ıα) 7→ β�γ. Then, by applying

A2 , conclude α 7→ β � γ.

APPENDIX D.
PROOF OF LEMMA 4

Assume:

A1 PARTITION(X) = (B , C)

A2 X = {α1 , . . . , αk}

1) To show that (B , C) is a partition of X , we must show that (Bk , Ck) is a partition of X . To show that, we must show[⋃
B∈Bk B ∪

⋃
B∈Ck C = X and

[[[
A 6= A′ and A , A′ ∈ B ∪ C

]
implies A ∩A′ = ∅

]
for all A , A′

]]
. We do

so by induction on 0 ≤ i ≤ k.
• Base: i = 0.
Observe:

Z1 Conclude ∅ = ∅. Then, by rewriting under ZFC, conclude ∅ ∩ ∅ = ∅. Then, by applying the definition of
PARTITION, conclude B0 ∩ C0 = ∅. Then, by applying Base , conclude Bi ∩ Ci = ∅.

Z2 Conclude ∅ = {α1 , . . . , α0}. Then, by rewriting under ZFC, conclude
⋃
B∈∅B ∪

⋃
C∈∅ C = {α1 , . . . ,

α0}. Then, by applying the definition of PARTITION, conclude
⋃
B∈B0

B ∪
⋃
C∈C0 C = {α1 , . . . , α0}. Then,

by applying Base , conclude
⋃
B∈Bi B ∪

⋃
C∈Ci C = {α1 , . . . , αi}.

Z3 Conclude ∅∩ {α1 , . . . , αk} = ∅. Then, by rewriting under ZFC, conclude (
⋃
B∈∅B ∪

⋃
C∈∅ C)∩{α1 , . . . ,

αk} = ∅. Then, by applying the definition of PARTITION, conclude (
⋃
B∈B0

B∪
⋃
C∈C0 C)∩{α1 , . . . , αk} = ∅.

Then, by applying Base , conclude (
⋃
B∈Bi B ∪

⋃
C∈Ci C) ∩ {αi+1 , . . . , αk} = ∅.

Z4 Conclude
[[[
A 6= A′ and A , A′ ∈ ∅

]
implies A ∩ A′ = ∅

]
for all A , A′

]
. Then, by rewriting under

ZFC, conclude
[[[
A 6= A′ and A , A′ ∈ ∅

]
∪ ∅ implies A ∩A′ = ∅

]
for all A , A′

]
. Then, by applying the

definition of PARTITION, conclude
[[[
A 6= A′ and A , A′ ∈ B0 ∪ C0

]
implies A ∩ A′ = ∅

]
for all A , A′

]
.

Then, by applying Base , conclude
[[[
A 6= A′ and A , A′ ∈ Bi ∪ Ci

]
implies A ∩A′ = ∅

]
for all A , A′

]
.

Conclude the base case by and-ing Z1 , Z2 , Z3 , Z4 .

13That proposition appears only in the full version [31] of [12].

28

• IH:
Bi−1 ∩ Ci−1 = ∅ and

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C = {α1 , . . . , αi−1}
and (

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ {αi , . . . , αk} = ∅ and[[[
A 6= A′ and A , A′ ∈ Bi−1 ∪ Ci−1

]
implies A ∩A′ = ∅

]
for all A , A′

]
• Step: 0 < i ≤ k.

Conclude
[1−→αi or

[
not

1−→αi
]]

. Proceed by case distinction.

– Case: 1−→αi.
Observe:

Y1 Recall 1−→αi by Case . Then, by applying the definition of PARTITION, conclude
[
Bi = Bi−1 ∪ {{αi}}

and Ci = Ci−1
]
.

Y2 Reasoning to false, suppose {{αi}} ∈ Ci−1. Then, by rewriting under ZFC, conclude αi ∈
⋃
C∈Ci−1

C.
Then, by rewriting under ZFC, conclude αi ∈

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C. Then, by rewriting under
ZFC, conclude

[
αi ∈

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C and αi ∈ {αi , . . . , αk}
]
. Then, by rewriting under

ZFC, conclude (
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ {αi , . . . , αk} 6= ∅. Then, by introducing IH , conclude
[

(
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ {αi , . . . , αk} = ∅ and (
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ {αi , . . . , αk} 6= ∅
]
.

Then, by basic rewriting, conclude false. Then, by negating the premise, conclude {{αi}} /∈ Ci−1. Then, by
introducing IH , conclude

[
Bi−1 ∩ Ci−1 = ∅ and {{αi}} /∈ Ci−1

]
. Then, by rewriting under ZFC, conclude

(Bi−1 ∪ {{αi}}) ∩ Ci−1 = ∅. Then, by applying Y1 , conclude Bi ∩ Ci = ∅.

Y3 Recall
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C = {α1 , . . . , αi−1} from IH . Then, by rewriting under ZFC, conclude
{αi} ∪

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C = {αi} ∪ {α1 , . . . , αi−1}. Then, by rewriting under ZFC, conclude⋃
B∈Bi−1∪{{αi}}B ∪

⋃
C∈Ci−1

C = {α1 , . . . , αi}. Then, by applying Y1 , conclude
⋃
B∈Bi B ∪

⋃
C∈Ci C =

{α1 , . . . , αi}.

Y4 Recall (
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ {αi , . . . , αk} = ∅ from IH . Then, by rewriting under ZFC,
conclude (

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ ({αi} ∪ {αi+1 , . . . , αk}) = ∅. Then, by rewriting under ZFC,
conclude (

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C ∪ {αi}) ∩ {αi+1 , . . . , αk} = ∅. Then, by rewriting under ZFC,
conclude (

⋃
B∈Bi−1∪{{αi}}B ∪

⋃
C∈Ci−1

C) ∩ {αi+1 , . . . , αk} = ∅. Then, by applying Y1 , conclude
(
⋃
B∈Bi B ∪

⋃
C∈Ci C) ∩ {αi+1 , . . . , αk} = ∅.

Y5 Recall (
⋃
B∈Bi−1

B∪
⋃
C∈Ci−1

C)∩{αi , . . . , αk} = ∅ from IH . Then, by rewriting under ZFC, conclude
αi /∈

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C. Then, by rewriting under ZFC, conclude
[[
A′ ∈ Bi−1 ∪ Ci−1 implies

αi /∈ A′
]

for all A′
]
. Then, by rewriting under ZFC, conclude

[[
A′ ∈ Bi−1∪Ci−1 implies {αi}∩A′ = ∅

]
for all A′

]
. Then, by rewriting under ZFC, conclude

[[[
A ∈ {{αi}} and A′ ∈ Bi−1 ∪ Ci−1

]
implies

A ∩A′ = ∅
]

for all A , A′
]
. Then, by rewriting under ZFC, conclude:[[[

A ∈ {{αi}} and A′ ∈ Bi−1 ∪ Ci−1
]

implies A ∩A′ = ∅
]

for all A , A′
]

and
[[[
A ∈ Bi−1 ∪ Ci−1 and A′ ∈ {{αi}}

]
implies A ∩A′ = ∅

]
for all A , A′

]
Then, by introducing IH , conclude:[[[

A 6= A′ and A , A′ ∈ Bi−1 ∪ Ci−1
]

implies A ∩A′ = ∅
]

for all A , A′
]

and
[[[
A ∈ {{αi}} and A′ ∈ Bi−1 ∪ Ci−1

]
implies A ∩A′ = ∅

]
for all A , A′

]
and

[[[
A ∈ Bi−1 ∪ Ci−1 and A′ ∈ {{αi}}

]
implies A ∩A′ = ∅

]
for all A , A′

]
Then, by rewriting under ZFC, conclude

[[[
A 6= A′ and A , A′ ∈ Bi−1∪Ci−1∪{{αi}}

]
implies A∩A′ =

∅
]

for all A , A′
]
. Then, by applying Y1 , conclude

[[[
A 6= A′ and A , A′ ∈ Bi∪Ci

]
implies A∩A′ = ∅

]
for all A , A′

]
.

Conclude the inductive step by and-ing Y2 , Y3 , Y4 , Y5 .

– Case:
[
not

1−→αi
]
.

Observe:

29

X1 Recall
[
not

1−→αi
]

by Case . Then, by applying the definition of PARTITION, conclude
[
Bi = Bi−1 and

Ci = (Ci−1 \ Ci) ∪ {{αi} ∪
⋃
C∈Ci C} and Ci = {C ∈ Ci−1 | γ ∈ C and αi 6� γ}

]
.

X2 Recall Ci = {C ∈ Ci−1 | γ ∈ C and αi 6� γ} from X1 . Then, by rewriting under ZFC, conclude
Ci ⊆ Ci−1.

X3 Reasoning to false, suppose {{αi} ∪
⋃
C∈Ci C} ∈ Bi−1. Then, by rewriting under ZFC, conclude αi ∈⋃

B∈Bi−1
B. Then, by rewriting under ZFC, conclude αi ∈

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C. Then, by rewriting
under ZFC, conclude

[
αi ∈

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C and αi ∈ {αi , . . . , αk}
]
. Then, by rewriting under

ZFC, conclude (
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ {αi , . . . , αk} 6= ∅. Then, by introducing IH , conclude
[

(
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ {αi , . . . , αk} = ∅ and (
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ {αi , . . . , αk} 6= ∅
]
.

Then, by basic rewriting, conclude false. Then, by negating the premise, conclude {{αi}∪
⋃
C∈Ci C} /∈ Bi−1.

Then, by introducing IH , conclude
[
Bi−1 ∩ Ci−1 = ∅ and {{αi} ∪

⋃
C∈Ci C} /∈ Bi−1

]
. Then, by rewriting

under ZFC, conclude (Bi−1 ∩ (Ci−1 ∪{{αi}∪
⋃
C∈Ci C}) = ∅. Then, by applying X1 , conclude Bi ∩Ci = ∅.

X4 Recall
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C = {α1 , . . . , αi−1} from IH . Then, by rewriting under ZFC, conclude
{αi} ∪

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C = {αi} ∪ {α1 , . . . , αi−1}. Then, by rewriting under ZFC, conclude
{αi} ∪

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C = {α1 , . . . , αi}. Then, by introducing X2 , conclude
[
Ci ⊆ Ci−1

and {αi} ∪
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C = {α1 , . . . , αi}
]
. Then, by rewriting under ZFC, conclude

{αi} ∪
⋃
B∈Bi−1

B ∪
⋃
C∈(Ci−1\Ci)∪Ci C = {α1 , . . . , αi}. Then, by rewriting under ZFC, conclude

{αi} ∪
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1\Ci C ∪

⋃
C∈Ci C = {α1 , . . . , αi}. Then, by rewriting under ZFC, con-

clude
⋃
B∈Bi−1

B ∪
⋃
C∈(Ci−1\Ci)∪{{αi}∪

⋃
C∈Ci

C} C = {α1 , . . . , αi}. Then, by applying X1 , conclude⋃
B∈Bi B ∪

⋃
C∈Ci C = {α1 , . . . , αi}.

X5 Recall (
⋃
B∈Bi−1

B∪
⋃
C∈Ci−1

C)∩{αi , . . . , αk} = ∅ from IH . Then, by rewriting under ZFC, conclude
(
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ ({αi} ∪ {αi+1 , . . . , αk}) = ∅. Then, by rewriting under ZFC, conclude
(
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C ∪ {αi}) ∩ {αi+1 , . . . , αk} = ∅. Then, by introducing X2 , conclude
[
Ci ⊆ Ci−1

and (
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C ∪ {αi}) ∩ {αi+1 , . . . , αk} = ∅
]
. Then, by rewriting under ZFC, conclude

(
⋃
B∈Bi−1

B ∪
⋃
C∈(Ci−1\Ci)∪Ci C ∪ {αi}) ∩ {αi+1 , . . . , αk} = ∅. Then, by rewriting under ZFC, conclude

(
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1\Ci C ∪

⋃
C∈Ci C ∪ {αi}) ∩ {αi+1 , . . . , αk} = ∅. Then, by rewriting under ZFC,

conclude (
⋃
B∈Bi−1

B ∪
⋃
C∈(Ci−1\Ci)∪{{αi}∪

⋃
C∈Ci

C} C) ∩ {αi+1 , . . . , αk} = ∅. Then, by applying Y1 ,
conclude (

⋃
B∈Bi B ∪

⋃
C∈Ci C) ∩ {αi+1 , . . . , αk} = ∅.

X6 Reasoning to false, suppose:[
A ∈ Bi ∪ (Ci−1 \ Ci) and A′ ∈ {{αi} ∪

⋃
C∈Ci C} and A ∩A′ 6= ∅

]
for some A , A′

Then, by rewriting under ZFC, conclude:[
A ∈ Bi ∪ (Ci−1 \ Ci) and A′ ∈ {{αi} ∪

⋃
C∈Ci C} and α ∈ A and α ∈ A′

]
for some α

Then, by rewriting under ZFC, conclude
[
α ∈

⋃
B∈Bi B ∪

⋃
C∈Ci−1\Ci C and α ∈ {αi}∪

⋃
C∈Ci C

]
. Then,

by rewriting under ZFC, conclude
[
α ∈

⋃
B∈Bi B ∪ (

⋃
C∈Ci−1

C \
⋃
C∈Ci C) and α ∈ {αi} ∪

⋃
C∈Ci C

]
.

Then, by basic rewriting, conclude:[
α ∈

⋃
B∈Bi B ∪ (

⋃
C∈Ci−1

C \
⋃
C∈Ci C) and α ∈ {αi} ∪

⋃
C∈Ci C

]
and

[
α = αi

or α 6= αi

]
Then, by basic rewriting, conclude:[

α ∈
⋃
B∈Bi B ∪ (

⋃
C∈Ci−1

C \
⋃
C∈Ci C) and α ∈ {αi} ∪

⋃
C∈Ci C and α = αi

]
or
[
α ∈

⋃
B∈Bi B ∪ (

⋃
C∈Ci−1

C \
⋃
C∈Ci C) and α ∈ {αi} ∪

⋃
C∈Ci C and α 6= αi

]
Proceed by case distinction.

· Case:
[
α ∈

⋃
B∈Bi B ∪ (

⋃
C∈Ci−1

C \
⋃
C∈Ci C) and α ∈ {αi} ∪

⋃
C∈Ci C and α = αi

]
.

Then, by basic rewriting, conclude
[
α ∈

⋃
B∈Bi B ∪ (

⋃
C∈Ci−1

C \
⋃
C∈Ci C) and α = αi

]
. Then, by

rewriting under ZFC, conclude
[
α ∈

⋃
B∈Bi B ∪

⋃
C∈Ci−1

C and α = αi
]
. Then, by basic rewriting,

30

conclude αi ∈
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C. Then, by rewriting under ZFC, conclude
[
αi ∈ {αi , . . . , αk}

and αi ∈
⋃
B∈Bi−1

B∪
⋃
C∈Ci−1

C
]
. Then, by rewriting under ZFC, conclude (

⋃
B∈Bi−1

B∪
⋃
C∈Ci−1

C)∩
{αi , . . . , αk} 6= ∅. Then, by introducing IH , conclude

[
(
⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C)∩{αi , . . . , αk} = ∅
and (

⋃
B∈Bi−1

B ∪
⋃
C∈Ci−1

C) ∩ {αi , . . . , αk} 6= ∅
]
. Then, by basic rewriting, conclude false.

· Case:
[
α ∈

⋃
B∈Bi B ∪ (

⋃
C∈Ci−1

C \
⋃
C∈Ci C) and α ∈ {αi} ∪

⋃
C∈Ci C and α 6= αi

]
.

Then, by rewriting under ZFC, conclude
[
α ∈

⋃
B∈Bi B ∪ (

⋃
C∈Ci−1

C \
⋃
C∈Ci C) and α ∈

⋃
C∈Ci C

]
.

Then, by rewriting under ZFC, conclude
[
α ∈

⋃
B∈Bi B and α ∈

⋃
C∈Ci C

]
. Then, by introducing

X2 , conclude
[
Ci ⊆ Ci−1 and α ∈

⋃
B∈Bi B and α ∈

⋃
C∈Ci C

]
. Then, by rewriting under ZFC,

conclude
[
α ∈

⋃
B∈Bi B and α ∈

⋃
C∈Ci−1

C
]
. Then, by applying X1 , conclude

[
α ∈

⋃
B∈Bi−1

B and

α ∈
⋃
C∈Ci−1

C
]
. Then, by rewriting under ZFC, conclude:[
B ∈ Bi−1 and C ∈ Ci−1 and α ∈ B and α ∈ C ′

]
for some B , C

Then, by rewriting under ZFC, conclude
[
B ∈ Bi−1 and C ∈ Ci−1 and B∩C 6= ∅

]
. Then, by rewriting

under ZFC, conclude
[
B ∈ Bi−1 ∪ Ci−1 and C ∈ Bi−1 ∪ Ci−1 and B ∩ C 6= ∅

]
. Then, by rewriting

under ZFC, conclude
[
B , C ∈ Bi−1 ∪ Ci−1 and B ∩ C 6= ∅

]
. Then, by introducing IH , conclude

[
Bi−1 ∩ Ci−1 = ∅ and B , C ∈ Bi−1 ∪ Ci−1 and B ∩ C 6= ∅

]
. Then, by rewriting under ZFC, conclude[

B 6= C and B , C ∈ Bi−1 ∪ Ci−1 and B ∩ C 6= ∅
]
. Then, by introducing IH , conclude:[[[

A 6= A′ and A , A′ ∈ Bi−1 ∪ Ci−1
]

implies A ∩A′ = ∅
]

for all A , A′
]

and
[
B 6= C and B , C ∈ Bi−1 ∪ Ci−1 and B ∩ C 6= ∅

]
Then, by basic rewriting, conclude false.

Hence, after considering all cases, conclude false. Then, by negating the premise, conclude:[[
not A ∈ Bi ∪ (Ci−1 \ Ci)

]
or
[
not A′ ∈ {{αi} ∪

⋃
C∈Ci C}

]
or
[
not A ∩A′ 6= ∅

]]
for all A , A′

Then, by basic rewriting, conclude
[[[
A ∈ Bi∪(Ci−1\Ci) and A′ ∈ {{αi}∪

⋃
C∈Ci C}

]
implies A∩A′ =

∅
]

for all A , A′
]
. Then, by rewriting under ZFC, conclude:[[[

A ∈ {{αi} ∪
⋃
C∈Ci C} and A′ ∈ Bi ∪ (Ci−1 \ Ci)

]
implies A ∩A′ = ∅

]
for all A , A′

]
and

[[[
A ∈ Bi ∪ (Ci−1 \ Ci) and A′ ∈ {{αi} ∪

⋃
C∈Ci C}

]
implies A ∩A′ = ∅

]
for all A , A′

]
Then, by introducing IH , conclude:[[[

A 6= A′ and A , A′ ∈ Bi−1 ∪ Ci−1
]

implies A ∩A′ = ∅
]

for all A , A′
]

and
[[[
A ∈ {{αi} ∪

⋃
C∈Ci C} and A′ ∈ Bi ∪ (Ci−1 \ Ci)

]
implies A ∩A′ = ∅

]
for all A , A′

]
and

[[[
A ∈ Bi ∪ (Ci−1 \ Ci) and A′ ∈ {{αi} ∪

⋃
C∈Ci C}

]
implies A ∩A′ = ∅

]
for all A , A′

]
Then, by rewriting under ZFC, conclude:[[[

A 6= A′ and A , A′ ∈ Bi−1 ∪ (Ci−1 \ Ci)
]

implies A ∩A′ = ∅
]

for all A , A′
]

and
[[[
A ∈ {{αi} ∪

⋃
C∈Ci C} and A′ ∈ Bi ∪ (Ci−1 \ Ci)

]
implies A ∩A′ = ∅

]
for all A , A′

]
and

[[[
A ∈ Bi ∪ (Ci−1 \ Ci) and A′ ∈ {{αi} ∪

⋃
C∈Ci C}

]
implies A ∩A′ = ∅

]
for all A , A′

]
Then, by rewriting under ZFC, conclude

[[[
A 6= A′ and A , A′ ∈ Bi−1 ∪ (Ci−1 \ Ci)∪ {{αi} ∪

⋃
C∈Ci C}

]
implies A ∩A′ = ∅

]
for all A , A′

]
. Then, by applying X1 , conclude

[[[
A 6= A′ and A , A′ ∈ Bi ∪ Ci

]
implies A ∩A′ = ∅

]
for all A , A′

]
.

Conclude the inductive step by and-ing X3 , X4 , X5 , X6 .

2) To show
[1−→ JBK for all B ∈ B

]
, we must show

[[
B ∈ Bk implies

1−→ JBK
]

for all B
]
. We do so by induction

on 0 ≤ i ≤ k.
• Base: i = 0.

Conclude
[[

false implies
1−→ JBK

]
for all B

]
. Then, by rewriting under ZFC, conclude

[[
B ∈ ∅ implies

1−→ JBK
]

for all B
]
. Then, by applying the definition of PARTITION, conclude

[[
B ∈ B0 implies

1−→ JBK
]

for all

B
]
. Then, by applying Base , conclude

[[
B ∈ Bi implies

1−→ JBK
]

for all B
]
.

31

• IH:
[
B ∈ Bi−1 implies

1−→ JBK
]

for all B

• Step: 0 < i ≤ k.
Conclude

[1−→αi or
[
not

1−→αi
]]

. Proceed by case distinction.

– Case: 1−→αi.
Then, by applying the definition of PARTITION, conclude

[
Bi = Bi−1 ∪ {{αi}} and

1−→αi
]
. Then, by the

definition of J K in Section III, conclude
[
Bi = Bi−1 ∪ {{αi}} and

1−→ J{αi}K
]
. Then, by introducing IH ,

conclude
[
Bi = Bi−1 ∪ {{αi}} and

[[[
B ∈ Bi−1 implies

1−→ JBK
]

for all B
]

and
1−→ J{αi}K

]]
. Then, by

rewriting under ZFC, conclude
[
Bi = Bi−1 ∪ {{αi}} and

[[
B ∈ Bi−1 ∪ {{αi}} implies

1−→ JBK
]

for all

B
]]

. Then, by basic rewriting, conclude
[[
B ∈ Bi implies

1−→ JBK
]

for all B
]
.

– Case:
[
not

1−→αi
]
.

Then, by applying the definition of PARTITION, conclude Bi = Bi−1. Then, by introducing IH , conclude
[

Bi = Bi−1 and
[[
B ∈ Bi−1 implies

1−→ JBK
]

for all B
]]

. Then, by basic rewriting, conclude
[[
B ∈ Bi

implies
1−→ JBK

]
for all B

]
.

3) We first state and prove an auxiliary lemma.

Lemma 12. J{α1 , . . . , αk}K 6� β iff
[[
α 6� β and α ∈ {α1 , . . . , αk}

]
for some α

]
Proof:

⇒ Suppose J{α1 , . . . , αk}K 6� β. Then, by applying the definition of J K in Section III, conclude α1 � · · ·�αk 6� β.
Then, by applying Definition 17 of �, conclude Port(α1�· · ·�αk)∩Port(β) 6= ∅. Then, by applying Definition 2 of �,
conclude (Port(α1)∪· · ·∪Port(αk))∩Port(β) 6= ∅. Then, by rewriting under ZFC, conclude

[[
Port(α)∩Port(β) 6= ∅

and α ∈ {α1 , . . . , αk}
]

for some α
]
. Then, by applying Definition 17 of �, conclude

[
α 6� β and α ∈ {α1 ,

. . . , αk} for some α
]
.

⇐ Suppose
[[
α 6� β and α ∈ {α1 , . . . , αk}

]
for some α

]
. Then, by applying Definition 17 of �, conclude[[

Port(α) ∩ Port(β) 6= ∅ and α ∈ {α1 , . . . , αk}
]

for some α
]
. Then, by rewriting under ZFC, conclude

(Port(α1) ∪ · · · ∪ Port(αk)) ∩ Port(β) 6= ∅. Then, by applying Definition 2 of �, conclude Port(α1 � · · · � αk) ∩
Port(β) 6= ∅. Then, by applying Definition 17 of �, conclude α1 � · · ·� αk 6� β. Then, by applying the definition
of J K in Section III, conclude J{α1 , . . . , αk}K 6� β.

To show
[[
C1 6= C2 implies JC1K � JC2K

]
for all C1 , C2 ∈ C

]
, we must show

[[[
C1 6= C2 and C1 , C2 ∈ Ck

]
implies JC1K � JC2K

]
for all C1 , C2

]
. We do so by induction on 0 ≤ i ≤ k.

• Base: i = 0.
Conclude

[[
false implies JC1K � JC2K

]
for all C1 , C2

]
. Then, by basic rewriting, conclude

[[[
C1 6= C2 and

false
]

implies JC1K � JC2K
]

for all C1 , C2

]
. Then, by rewriting under ZFC, conclude

[[[
C1 6= C2 and C1 ,

C2 ∈ ∅
]

implies JC1K � JC2K
]

for all C1 , C2

]
. Then, by applying the definition of PARTITION, conclude

[[[
C1 6= C2 and C1 , C2 ∈ C0

]
implies JC1K � JC2K

]
for all C1 , C2

]
. Then, by applying Base , conclude

[[[
C1 6= C2 and C1 , C2 ∈ Ci

]
implies JC1K � JC2K

]
for all C1 , C2

]
.

• IH:
[[
C1 6= C2 and C1 , C2 ∈ Ci−1

]
implies JC1K � JC2K

]
for all C1 , C2

• Step: 0 < i ≤ k.
Conclude

[1−→αi or
[
not

1−→αi
]]

. Proceed by case distinction.

– Case: 1−→αi.
Then, by applying the definition of PARTITION, conclude Ci = Ci−1. Then, by introducing IH , conclude

[
Ci = Ci−1 and

[[[
C1 6= C2 and C1 , C2 ∈ Ci−1

]
implies JC1K � JC2K

]
for all C1 , C2

]]
. Then, by basic

rewriting, conclude
[[[
C1 6= C2 and C1 , C2 ∈ Ci

]
implies JC1K � JC2K

]
for all C1 , C2

]
.

– Case:
[
not

1−→αi
]
.

Observe:

W1 Recall
[
not

1−→αi
]

by Case . Then, by applying the definition of PARTITION, conclude
[
Ci = (Ci−1 \

32

Ci) ∪ {{αi} ∪
⋃
C∈Ci C} and Ci = {C ∈ Ci−1 | γ ∈ C and αi 6� γ}

]
.

W2 Recall Ci = {C ∈ Ci−1 | γ ∈ C and αi 6� γ} from W1 . Then, by rewriting under ZFC, conclude
Ci ⊆ Ci−1.

Reasoning to false, suppose:[
C1 ∈ Ci−1 \ Ci and JC1K 6� J{αi} ∪

⋃
C∈Ci CK

]
for some C1

Then, by applying Lemma 12, conclude
[
C1 ∈ Ci−1 \ Ci and

[[
JC1K 6� α and α ∈ {αi} ∪

⋃
C∈Ci C

]
for

some α
]]

. Then, by basic rewriting, conclude:[
C1 ∈ Ci−1 \ Ci and JC1K 6� α and α ∈ {αi} ∪

⋃
C∈Ci C

]
for some α

Then, by rewriting under ZFC, conclude
[
C1 ∈ Ci−1 \ Ci and JC1K 6� α and

[
α ∈ {αi} or α ∈

⋃
C∈Ci C

]]
.

Then, by basic rewriting, conclude
[[
C1 ∈ Ci−1 \ Ci and JC1K 6� α and α ∈ {αi}

]
or
[
C1 ∈ Ci−1 \ Ci and

JC1K 6� α and α ∈
⋃
C∈Ci C

]]
. Proceed by case distinction.

∗ Case:
[
C1 ∈ Ci−1 \ Ci and JC1K 6� α and α ∈ {αi}

]
.

Then, by rewriting under ZFC, conclude
[
C1 ∈ Ci−1 \ Ci and JC1K 6� α and α = αi

]
. Then, by basic

rewriting, conclude
[
C1 ∈ Ci−1\Ci and JC1K 6� αi

]
. Then, by applying Lemma 12, conclude

[
C1 ∈ Ci−1\Ci

and
[[
γ 6� αi and γ ∈ C1

]
for some γ

]]
. Then, by basic rewriting, conclude:[

C1 ∈ Ci−1 \ Ci and γ 6� αi and γ ∈ C1

]
for some γ

Then, by rewriting under ZFC, conclude
[
C1 ∈ Ci−1 \Ci and C1 ∈ {C ∈ Ci−1 \Ci | γ ∈ C and γ 6� αi}

]
.

Then, by rewriting under ZFC, conclude
[
C1 ∈ Ci−1 \ Ci and C1 ∈ {C ∈ Ci−1 | γ ∈ C and γ 6� αi}

]
.

Then, by applying W1 , conclude
[
C1 ∈ Ci−1 \ Ci and C1 ∈ Ci

]
. Then, by rewriting under ZFC, conclude

[
C1 /∈ Ci and C1 ∈ Ci

]
. Then, by basic rewriting, conclude false.

∗ Case:
[
C1 ∈ Ci−1 \ Ci and JC1K 6� α and α ∈

⋃
C∈Ci C

]
.

Then, by rewriting under ZFC, conclude
[
C1 ∈ Ci−1 \ Ci and JC1K 6� α and

[[
α ∈ C2 and C2 ∈ Ci

]
for some C2

]]
. Then, by basic rewriting, conclude

[
C1 ∈ Ci−1 \ Ci and

[[
JC1K 6� α and α ∈ C2

]
for

some C2

]
and C2 ∈ Ci

]
. Then, by applying Lemma 12, conclude

[
C1 ∈ Ci−1 \ Ci and JC1K 6� JC2K

and C2 ∈ Ci
]
. Then, by rewriting under ZFC, conclude

[
C1 /∈ Ci and C1 ∈ Ci−1 \ Ci and JC1K 6� JC2K

and C2 ∈ Ci
]
. Then, by rewriting under ZFC, conclude

[
C1 6= C2 and C1 ∈ Ci−1 \ Ci and JC1K 6� JC2K

and C2 ∈ Ci
]
. Then, by rewriting under ZFC, conclude

[
C1 6= C2 and C1 ∈ Ci−1 and JC1K 6� JC2K

and C2 ∈ Ci
]
. Then, by introducing W2 , conclude

[
Ci ⊆ Ci−1 and C1 6= C2 and C1 ∈ Ci−1 and

JC1K 6� JC2K and C2 ∈ Ci
]
. Then, by rewriting under ZFC, conclude

[
C1 6= C2 and C1 ∈ Ci−1 and

JC1K 6� JC2K and C2 ∈ Ci−1
]
. Then, by rewriting under ZFC, conclude

[
C1 6= C2 and C1 , C2 ∈ Ci−1

and JC1K 6� JC2K
]
. Then, by introducing IH , conclude:[[[
C1 6= C2 and C1 , C2 ∈ Ci−1

]
implies JC1K � JC2K

]
for all C1 , C2

]
and

[
C1 6= C2 and C1 , C2 ∈ Ci−1 and JC1K 6� JC2K

]
Then, by basic rewriting, conclude false.

Hence, after considering all cases, conclude false. Then, by negating the premise, conclude:[[
not C1 ∈ Ci−1 \ Ci

]
or
[
not JC1K 6� J{αi} ∪

⋃
C∈Ci CK

]]
for all C1

Then, by basic rewriting, conclude
[[
C1 ∈ Ci−1 \ Ci implies JC1K � J{αi} ∪

⋃
C∈Ci CK

]
for all C1

]
. Then,

by rewriting under ZFC, conclude
[[[
C1 ∈ Ci−1 \ Ci and C2 ∈ {{αi} ∪

⋃
C∈Ci C}

]
implies JC1K � JC2K

]
for all C1 , C2

]
. Then, by rewriting under ZFC, conclude:[[[

C1 ∈ {{αi} ∪
⋃
C∈Ci C} and C2 ∈ Ci−1 \ Ci

]
implies JC1K � JC2K

]
for all C1 , C2

]
and

[[[
C1 ∈ Ci−1 \ Ci and C2 ∈ {{αi} ∪

⋃
C∈Ci C}

]
implies JC1K � JC2K

]
for all C1 , C2

]
33

Then, by introducing IH , conclude:[[[
C1 6= C2 and C1 , C2 ∈ Ci−1

]
implies JC1K � JC2K

]
for all C1 , C2

]
and

[[[
C1 ∈ {{αi} ∪

⋃
C∈Ci C} and C2 ∈ Ci−1 \ Ci

]
implies JC1K � JC2K

]
for all C1 , C2

]
and

[[[
C1 ∈ Ci−1 \ Ci and C2 ∈ {{αi} ∪

⋃
C∈Ci C}

]
implies JC1K � JC2K

]
for all C1 , C2

]
Then, by rewriting under ZFC, conclude:[[[

C1 6= C2 and C1 , C2 ∈ Ci−1 \ Ci
]

implies JC1K � JC2K
]

for all C1 , C2

]
and

[[[
C1 ∈ {{αi} ∪

⋃
C∈Ci C} and C2 ∈ Ci−1 \ Ci

]
implies JC1K � JC2K

]
for all C1 , C2

]
and

[[[
C1 ∈ Ci−1 \ Ci and C2 ∈ {{αi} ∪

⋃
C∈Ci C}

]
implies JC1K � JC2K

]
for all C1 , C2

]
Then, by rewriting under ZFC, conclude

[[[
C1 6= C2 and C1 , C2 ∈ (Ci−1 \Ci)∪{{αi}∪

⋃
C∈Ci C}

]
implies

JC1K � JC2K
]

for all C1 , C2

]
. Then, by applying W1 , conclude

[[[
C1 6= C2 and C1 , C2 ∈ Ci

]
implies

JC1K � JC2K
]

for all C1 , C2

]

34

	Introduction
	Context
	Problem
	Contribution

	Reo Coordination Language
	Design: Theoretical Justification
	Hybrid Connector Implementations
	Hybrid-Code Generator

	Implementation: Practical Realization
	Hybrid Connectors
	Hybrid Code Generator

	Case Study
	Related Work
	Related Work on Reo
	Related Work on Distributed Orchestration/Workflow

	Conclusion
	References
	Appendix A: Case Study: Distribution of CA-Implementations
	Appendix B: Proof of Lemma 2
	Appendix C: Proof of Lemma 3
	Appendix D: Proof of Lemma 4

