
From Nonpreemptive to Preemptive Scheduling

From Single-Processor to Multi-Processor∗

Mohammad Mahdi Jaghoori
LIACS, Leiden University, The Netherlands

CWI, Amsterdam, The Netherlands
jaghouri@cwi.nl

ABSTRACT
The use of automata for specifying patterns of task genera-
tion has broaden the perspective of schedulability analysis;
scheduling has moved from periodic or rate-monotonic to
aperiodic and non-uniform tasks. The question of schedula-
bility in this setting, however, is not always decidable; with
a preemptive scheduler, it is shown to be decidable for very
restricted task models, e.g., when a task is modeled merely
as a fixed computation time. In this paper, we consider the
possibility of specifying tasks using timed automata. We
show that, in this more complex setting, decidability holds
not only for non-preemptive schedulers but also for preemp-
tive schedulers if a minimum delay is assumed between con-
secutive preemptions. In practice, this minimum can be a
multiple of the CPU clock speed. We show further how
to extend from a single processor to multi-processor models
with shared and/or separate queues.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Schedul-
ing ; D.2.4 [Software Engineering]: Software/Program Ver-
ification—Model Checking

General Terms
Design, Verification

Keywords
Schedulability Analysis, Decidability, Multi-Processor, Timed
Automata

1. INTRODUCTION
Schedulability analysis is checking whether all tasks in a

real-time system can be scheduled and accomplished before
their deadlines. Traditional approaches to the problem of
scheduling consider an a priori given set of tasks with their

∗This work is supported by EU FP7-231620 project: HATS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

duration of execution with one or more processors and try
to find a possible ordering of tasks, with their assignment
to different processors, such that all tasks finish before their
deadlines. However, a reactive non-terminating system usu-
ally needs to process some (infinitely often) recurring tasks.
There have been many works in the areas of scheduling of
periodic to rate-monotonic tasks.

The introduction of task automata [6] has broaden the
perspective of schedulability analysis to non-uniformly re-
curring tasks. Decidability issues have been studied for dif-
ferent settings of single- and multi-processor systems [6, 12].
It is shown that for nonpreemptive schedulers, this problem
is decidable; whereas, for preemptive schedulers in general
it is undecidable. In certain cases, for example if a task is
merely represented by an exact execution time, the problem
becomes decidable. Modeling a task simply by an execution
time is not enough in many cases; e.g., if tasks need to gen-
erate sub-tasks, if there are dependencies between tasks, or
if there are shared resources other than the processor.

In this paper, we study decidable settings of nonpreemp-
tive to preemptive schedulers on single and multiple proces-
sor systems while tasks are specified themselves as timed au-
tomata. This is in line with [9, 10] that use timed automata
for specifying task details in actor-based and concurrent ob-
jects settings. In this setting, an actor/object has a proces-
sor for executing its tasks. A new task on an actor/object is
triggered by receiving a message which requires the execu-
tion of the corresponding method. The usage of an object
is abstractly defined in its behavioral interface, which is in
fact an extension of task automata (because tasks are spec-
ified here). Jaghoori et al. [9, 10] consider a nonpreemptive
single processor setting. Their work has been applied [4,
8] to the concurrent object language Creol [11], where the
possibility of voluntarily releasing the processor during ex-
ecution of a method gives rise to a cooperative scheduling
paradigm. Cooperative scheduling is in essence nonpreemp-
tive and therefore it is not suitable for a wild environment,
e.g., a general purpose operating system, but it is very pow-
erful if used with care for example in embedded systems
design; a task is not preempted in an unstable state whereas
all tasks are willing to yield the processor when safe.

Our first contribution is extending cooperative scheduling
to preemptive with minimum inter-preemption delays. This
assumption is in reality not too restrictive because there
is always such a delay as a multiple of the processor clock
speed. By encoding this in a decidable class of timed au-
tomata, we show that this problem is decidable. Since we
allow task behavior to be specified in timed automata, in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301636142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

principle we need the power of stopwatches to be able to
model preemption, which is undecidable in general. To be
able to model preemption, we restrict task specification au-
tomata to use only one clock which in turn cannot be reset
by the task itself; nonetheless, tasks can still generate other
tasks and subtasks.

We require that there is a minimum delay delta between
every two preemptions, and that delta should be a natural
number. The execution time of tasks however need not be
an exact integer value, e.g., a task could be modeled as a
timed automaton that finishes between 2 and 3 time units.
Furthermore, our model of the scheduler can start the next
task immediately; i.e., for the above example, it does not
have to wait for 3 time units to start the next task.

As our second contribution, we extend the schedulability
analysis to a multiprocessor setting and show that schedu-
lability remains decidable. It covers both cooperative and
preemptive scheduling. We consider two settings for multi-
processing: shared and separate queues for different proces-
sors. The shared queue setting for nonpreemptive scheduling
has been studied by de Boer et al. [5]. Further, we study
multiple queues for multiple processors with or without task
migration. We show a general technique for modeling a load
balancing strategy between different processors.

The rest of the paper is organized as follows. We give the
formal definitions of timed automata in Section 2. The basis
of the encoding is the way to specify tasks behavior and their
generation, explained in Section 3. In section 4 we review
cooperative scheduling for single processor systems and then
extend it to preemptive scheduling given a fixed minimum
inter-preemption delay. Section 5 explains how to migrate
from single to multiple processors. We prove decidability
by reducing schedulability to the problem of reachability in
timed automata. Section 6 concludes the paper.

Related Work. Our work builds on top of task automata
[6] and therefore can handle nonuniformly recurring tasks.
Krcal et al. [12] extend task automata to multi-processors.
These works consider full-fledged preemptive scheduling and
show its undecidability in general. They show that with un-
restricted preemption, we need to dramatically restrict the
task behavior specification to make schedulability analysis
decidable, e.g., tasks are mere computation times and can-
not affect generation of new tasks. Jaghoori et al. [9] apply
schedulability analysis to object-oriented systems where a
task corresponds to a method, and therefore it can generate
subtasks; but they only consider nonpreemptive scheduling.

In this paper, we take the ideas of Jaghoori et al. in
specifying tasks as timed automata and extend it to multi-
processor (with shared/separate queues, with/without task
migration) and preemptive scheduling. The shared queue
setting for nonpreemptive scheduling has been studied by
de Boer et al. [5]. Due to the undecidability results of
task automata, we do not handle full-fledged preemption;
instead, to allow more flexible task specifications, we restrict
the scheduler such that there is always a minimum delay
between two preemptions.

Decidable classes of task automata [6] with preemptive
schedulers are restricted to priority-based scheduling, e.g.,
Fixed-Priority Scheduling and Earliest-Deadline First. With
the assumption of a minimum delay between preemptions, as
by de Boer et. al [5], we can handle any kind of scheduling,
e.g., a round-robin preemptive scheduler.

Like the works mentioned above [6, 9, 12], we deal with
schedulability analysis of design models (specified in au-
tomata), and not directly with analysis of code implemented
in programming languages, as [3] do. With the techniques
we provide, one can decide about application-specific schedul-
ing strategies at design time. To ensure schedulability of an
implemented program one needs to check its conformance
with the schedulable design models.

2. PRELIMINARIES
In this section, we define timed automata [1] as it forms

the basis of our analyses. Suppose B(C) is the set of all clock
constraints on the set of clocks C. A timed automaton over
actions Σ and clocks C is a tuple 〈L, l0,−→, I〉 representing

• a finite set of locations L (including initial location l0);

• the set of edges −→⊆ L× B(C)× Σ× 2C × L; and,

• a function I : L 7→ B(C) assigning an invariant to each
location.

An edge (l, g, a, r, l′) implies that action ‘a’ may change
the location l to l′ by resetting the clocks in r, if the clock
constraints in g (as well as the invariant of l′) hold. Since we
use Uppaal [13], we allow defining variables of type boolean
and bounded integers. Variables can appear in guards and
updates; clocks can be reset to integer values.

Networks of timed automata. A system may be described
as a collection of communicating timed automata. In these
automata, the action set is partitioned into input, output
and internal actions. The behavior of the system is defined
as the parallel composition of those automata A1 ‖ · · · ‖ An.
Semantically, the system can delay if all automata can delay
and can perform an action if one of the automata can per-
form an internal action or if two automata can synchronize
on complementary actions (inputs and outputs are comple-
mentary). In a network of timed automata, variables can be
defined locally for one automaton, globally (shared between
all automata), or as parameters to the automata.

Marking a location urgent indicates that the automaton
cannot spend any time in that location. This is equivalent
to resetting a fresh clock x in all of its incoming edges and
adding an invariant x ≤ 0 to the location. In a network of
timed automata, the enabled transitions from an urgent lo-
cation may be interleaved with the enabled transitions from
other automata (while time is frozen). Like urgent locations,
committed locations freeze time; furthermore, if any process
is in a committed location, the next step must involve an
edge from one of the committed locations.

3. TASK GENERATION AND SPECIFICA-
TION

We explain how to model task generation and specifica-
tions with timed automata in Uppaal. This enables verifi-
cation right away. Task names are defined as unique integer
constants so we can refer to task types by their names. A
task generation automaton uses the channel invoke to send
a message; the name of the message sent is assigned to the
global variable msg and its deadline is given in the variable
deadline. Receiving a message triggers a new task. In Fig-
ure 1, Task1 and Task2 are generated intermittently, while
the generation speed is controlled by the constant SPEED.

invoke!
msg:=task2,
y:=0, deadline:=10

y >= SPEED invoke!
deadline:=12, msg:=task1

Task Generation Automata

B
c <= 5

A
c <= 3

start[task1_1]?
c := 0

c == 5

finish!

c==3 delegate!
msg = task1_1

start[task1]?
c := 0 c<=3

finish!

c==3 invoke!
deadline = 12,
msg = task1

start[task2]?
c := 0

Task1 Task2

Figure 1: Task Generation and Specification

An automaton specifying a task (or subtask) behavior
starts by waiting for synchronization on the start channel
and finishes with the finish channel; the task behavior is
modeled in between. This way we can control a task’s exe-
cution. The channels start and finish are urgent, i.e., once
a synchronization is enabled it is taken without delay; thus
context-switch between two tasks takes no time. The finish
transition goes back to the initial location to make it possi-
ble to execute the task again later. It is important that all
locations in task specification automata have a time upper
bound as an invariant, otherwise, schedulability is trivially
not satisfied.

Task1 and Task2 need 8 and 3 time units for complete
execution, respectively. Execution of Task2 generates a new
instance of Task1 using the invoke channel during its ex-
ecution. Task1 is modeled in two parts. First it goes to
location A where after 3 time units, it releases the proces-
sor, i.e., it delegates the rest of the task as a subtask Task1 1
to be scheduled again in the queue and then finishes. The
start transition for subtask Task1 1 goes to location B which
completes the remainder of Task1 in 5 time units.

In each round of the task generation automaton, two in-
stances of Task1 and one instance of Task2 are generated;
their execution time adds up to 19. A single processor sys-
tem is therefore schedulable only if SPEED is at least 19.

4. SINGLE PROCESSOR: FROM COOPER-
ATIVE TO PREEMPTIVE SCHEDULING

It is shown in [9] that a queue length of MAX=ddmax/bmine
is enough for schedulability analysis of single processor sys-
tems: If there are more tasks in the queue at a time, they
inevitably require more than dmax to finish (because each
task takes more than bmin to execute), which implies non-
schedulability.

We repeat the cooperative scheduling framework of [9]
with the difference that we take dispatcher and error handler
out of the scheduler automata (see Figure 2). This simplifies
our extensions in later parts. To analyze a system in Up-
paal, we make a network of timed automata with instances
of task generation and specifications automata and the au-
tomata for scheduling, task dispatching and error handling.

4.1 Cooperative Scheduling
Cooperative scheduling means that tasks may release the

processor before their completion, e.g., Task1 as specified in
Section 3. Assume that Task2 is triggered immediately af-
ter Task1. When Task1 releases the processor, Task2 finds
a chance for execution before the subtask Task1 1. Other-

i:int[0,MAX-1]
scheduling policy

insert(i,dca)
delegate?
dca = ca[0]

invoke?dca=firstFree(),
x[dca] = 0, d[dca] = deadline

Idle Running

finish?
shift(),
xdone := 0

start[q[0]]!

Error

i : int[0,MAX-1]
counter[i] > 0
&& x[i] > d[i]

Queue and Scheduler — Dispatcher and Error handler

Figure 2: Cooperative scheduling, single processor

wise, Task2 would have no chance of meeting its deadline
with a nonpreemptive scheduler. Nevertheless, we need an
Earliest Deadline First (EDF) scheduler to make sure Task2
is scheduled before Task1 1.

To store tasks we use an array q, which holds the tasks
in the order they should be executed (q[0] is currently ex-
ecuting). The function insert puts a new task in its right
place based on the scheduling policy. As the scheduler is
nonpreemptive, it can never put a task at q[0] unless the
queue is empty. When the processor is idle, the dispatcher
automaton starts q[0] (see Figure 2). When a task finishes,
the queue q is shifted to remove the finished task. The clock
xdone is reset whenever a task finishes. xdone can be tested
in the task generation automata (as is the tradition in Task
Automata [6]).

With a queue of length MAX we associate arrays x and
d of MAX clocks and integers. The clock assigned to the
task q[i] is determined by ca[i]. When q[i] is added to the
queue x[ca[i]] is reset and d[ca[i]] is set to its deadline; the
remaining deadline of q[i] at any later point is calculated by
d[ca[i]]− x[ca[i]]. When receiving a message on invoke, the
‘first free’ clock is selected and assigned to the new task. For
a subtask generated on delegate channel, the clock assigned
to currently running task is reused; thus, the subtask inherits
the deadline of the original task. counter keeps track of the
number of tasks using each clock.

The transition of error handler is taken if a clock (with
a nonzero counter) exceeds its deadline. The property to
check for schedulability analysis is:

E <> ErrHandler.Error || tail > MAX

EDF Strategy. EDF needs to dynamically check clock val-
ues of all tasks to compute their remaining deadlines. There-
fore it has to be implemented as a guard to select the proper
i for inserting the new task. One can specify EDF in Up-
paal by writing the following guard in the queue/scheduler
automaton:

(i == 0 and tail == 0) or
(i > 0 and i ≤ tail and
fora l l (m : int [1 ,MAX−1])

(m ≥ i or x[ca[m]]− x[dca] ≥ d[ca[m]]− d[dca])
and fora l l (m : int [1 ,MAX−1])

(m < i or m ≥ tail or
x[ca[m]]− x[dca] < d[ca[m]]− d[dca])

)

The first line distinguishes the case of an empty queue when
0 is chosen for i. In other cases, it cannot choose 0 which is
the running task (the second line). By using the two forall

expressions, we find the point where the remaining dead-
line of the new (sub)task, i.e., d[dca]−x[dca], fits. If there
are multiple tasks with the same priority (i.e., remaining

Idle Running
p<=delta

p==delta stop!
val:=v[0]+delta

shift()

finish? shift(), xdone:=0
start[q[0]]!

val:=v[0], p:=0

l
c<=w

delegate!
msg := T1

c<w
stop?

start[T1]?
c := val,
val := 0

Preemptive dispatcher Addendum to tasks

B
c<=5

A
c<=3

start[Task1_3]?
c:=val, val:=0

delegate!
msg:=Task1_3

c<5
stop?

start[Task1_2]?
c:=val, val:=0
delegate!
msg:=Task1_2

c<3
stop?

start[Task1_1]?
c := 0 c == 5

finish!

c == 3 delegate!
msg = Task1_1

start[Task1]?
c := 0

c<=3

start[Task2_1]?
c:=val,
val:=0

delegate!
msg := Task2_1

c<3
stop?

finish! c==3
invoke!

deadline = 12,
msg = Task1

start[Task2]?
c := 0

Preemptible task specifications

Figure 3: Changes for preemptive scheduling

deadline), they will be handled in a first-come first-served
manner; therefore, the choice of i is deterministic.

4.2 Preemptive Scheduling
Preemptive scheduling in general is undecidable for task

automata in single-processor [6] and multi-processor settings
[12]. Since we can encode the simple model of tasks with
feedback used in timed automata in our framework, this un-
decidability result will carry over to our setting. However,
we show below that if a fixed minimum delay is always as-
sumed between every two preemptions, the problem becomes
decidable. If we consider the clock speed of the processor as
time unit, this delay can be represented as a natural number.
We call this delay delta.

De Boer et. al [5] reported on a method of integer preemp-
tion. Like task automata, they restrict task specifications to
mere execution times. Unlike task automata, they handle a
round-robin scheduler. In this chapter, we explain how to
model integer preemption while tasks are specified as timed
automata which may create other tasks or subtasks. We re-
strict task specification automata such that only one clock
is used to keep track of time during task execution and this
clock is not reset by the task itself.

Preemptible Task Specifications. Given task specifications
in timed automata (as in previous section), we explain below
a method for automatically adding transitions to these au-
tomata to make them preemptible. We model preemptions
that happen after delta time units (unless the currently run-
ning task is finished before preemption). The ‘addendum’
in Figure 3 shows three transitions that should be added to
every location l of all task specification automata, except for
the initial and final locations (before the finish transition).
Below we explain these transitions.

• We add a channel called stop. When the task is at
location l, it may be preempted by synchronizing on
the channel stop. The stop transition is taken only
if the clock c is strictly smaller than w, where w is
the time upper bound on location l. This is to ensure
maximal progress before preemption, i.e., for example,
a task is not preempted if it can finish in zero time.

The decision when a task should be preempted is taken
by the dispatcher automaton explained later.

• When a task is stopped, the rest of it should be put
back in the queue as a subtask. This is done using
the delegate channel. T1 used in this figure should
be replaced with a new subtask name (defined as a
unique integer constant in the Uppaal model). If (the
remainder of) the running task has the highest priority
in the queue, it will be restarted immediately. This is
naturally handled by the delegation mechanism.

• When a task is preempted, in principle its clock has
to be stopped. Arbitrarily stopping clocks makes our
timed automata models undecidable [1]. Since we only
allow preemption at integer points, we show how to
simulate this behavior without really stopping the clocks.
The idea is that the queue automaton remembers the
clock value when it should be stopped; we add the ar-
ray v to store these integer clock values. When the task
is resumed (start [T1]?) we reset the clock to this value
(c := val). The value of val is set by the dispatcher
according to the stored value in the queue. The rea-
son val is reset to zero afterwards is explained with the
dispatcher automaton.

Figure 3 shows how the specifications of Task1 and Task2
are updated. The new subtasks for these automata are
Task1 2, Task1 3 and Task2 1. As shown in this exam-
ple, preemptible tasks can be modeled on top of cooperative
models; i.e., we can use the cooperative model of Task1 that
releases the processor during execution. This gives us more
flexibility in scheduling of tasks.

Preemptive Dispatcher. The dispatcher automaton can-
not stay in the Running location more than delta time units,
modeled as an invariant on the new clock p. At this point,
it preempts the currently running task, it removes this task
from the queue by shifting, and then dispatches the first task
in the queue, i.e., q[0].

As explained in the last bullet above, we add an array v
to the queue to remember the last value of a task clock at
the time of preemption. The insert function assigns the last
value of val to the corresponding element of v. For new tasks
(triggered on the invoke channel) val is zero; this is ensured
by resetting val on the start transition in the addendum to
task specifications, explained above. When a task is started,
the dispatcher assigns the stored value v[0] to val which is
then assigned to the computation clock c of the started task.
The task is preempted exactly after delta time units; there-
fore, the dispatcher assigns v[0] + delta to val which is then
used by the insert function for the new instance of the sub-
task. To handle the v element of the queue for each task, the
shift function of the queue is updated in a straightforward
manner. The structure of the queue/scheduler automaton
is not changed.

The choice of urgent and committed locations in the dis-
patcher and addendum of task specifications is critical. Af-
ter a synchronization on stop, the synchronization on dele-
gate happens; remember from Figure 2 that afterwards the
task is inserted in the queue (due to a committed location in
the queue/scheduler automaton). Then, only after all com-
mitted locations are processed, the urgent location in the
dispatcher is processed and the queue is shifted. This is im-

portant because the insert function still cannot put a task
at q[0], which is in turn because the running task cannot
be preempted at any arbitrary time. Performing the shift
at the end gives the new subtask to be at the head of the
queue after shift (if it has the highest priority).

After stopping a task, its automaton will be in initial loca-
tion (see the addendum in Figure 3). This allows execution
of other instances of the same task type if there are many
of them in the queue and the scheduling strategy requires
so. This approach can be used to implement a round-robin
behavior when multiple tasks in the queue have equal pri-
ority. In resolving equal priorities, usually the first-come
first-served strategy is applied. By using delegation for pre-
emption, the currently running task will be put at the back
of other tasks with equal priority.

If one wishes to keep first-come first-served strategy for
resolving equal priorities, but does not wish to give a round-
robin behavior, i.e., when a high-priority task is started it
will not be intervened by tasks of equal priority, one should
add another channel for preemption, with similar behavior
as delegate, except that it handles equal priorities in a last-
come first-served manner.

5. FROM SINGLE TO MULTI-PROCESSOR
We describe below how the task and scheduler models of

single-processor systems described above can be extended
to a multi-processor setting. We show this extension for the
simpler case of cooperative scheduling, however, the exten-
sion for preemptive scheduling is the same. We identify two
ways of scheduling in multi-processors: A shared queue be-
tween the processors or separate queues. The former case is
more suitable for a multi-core environment, while the latter
is in line with the traditional parallel computing approach.
In each setting, there are two possibilities with respect to
task migration. Task migration means that different pieces
of a task may get executed on different processors. With a
shared queue it is natural to allow task migration assuming
a negligible penalty for it, while with separate queues it is
easier to disallow task migration. We will, however, consider
allowing and disallowing task migration in both cases.

In multi-processor with n processors, in principle n tasks
can be executed at the same time. This means that the
length of schedulable queues should be multiplied by n. In
the setting of shared queues, we need to analyze a queue
with a length of up to n × ddmax/bmine. When there is a
queue for each processor, each queue should be analyzed up
to a length of ddmax/bmine.

5.1 Multi-Core: Shared Queue
Since the queue is shared between the cores, there will be

one instance of the queue/scheduler automaton. To model a
multi-core system, the idea is to replicate the task dispatcher
automaton per core. This also requires instantiating the task
specification automata once per core. These automata will
be parameterized in processor-core identity (cf. Figure 4).
Parameterizing the task specification automata requires pa-
rameterization of the start and finish channels to be able to
interact properly with the respective dispatcher automaton.

The queue is divided in two parts: the running tasks and
waiting tasks. There are as many running tasks as there are
cores, given by an integer constant CORES. To respect the
nonpreemptive nature of the scheduler, it cannot insert a
task in the first CORES elements of the queue (correspond-

B
c<=2

A
c <= 3

start[task1_1][cid]?
c := 0

c == 2

finish[cid]!

c==3 delegate[cid]!
msg := task1_1

start[task1][cid]?
c := 0

c<=3
finish[cid]!

c==3invoke!
msg := task1,
deadline:=12

start[task2][cid]?
c := 0

Task Specification Automata parameterized in core ID

i:int[0,MAX-1]
scheduling policy

insert(i,dca)
cid:int[0,CORES-1]

delegate[cid]? dca = ca[cid]

invoke?dca=firstFree(),
x[dca] = 0, d[dca] = deadline

Idle Running

finish[cid]?
shift(cid),
xdone := 0

start[q[cid]][cid]!

Queue: delegate parameterized — Dispatcher

Figure 4: Cooperative scheduling, Multi-core

ing to the running tasks) unless they are empty. This affects
the implementation of the insert function. Furthermore, the
shift function is updated such that it does not shift the run-
ning tasks; instead it shifts the waiting tasks and assigns the
next task to the core that has just finished.

Obviously, one can use the multi-core model and set CORES

to one to obtain a single processor model.
When a subtask is generated, the delegate channel uses

the core ID to identify the running task that triggered the
subtask. This helps the scheduler find the clock assigned
to the parent task, which should be reused for the subtask
(in order to inherit the remaining deadline). Nevertheless,
the subtask is simply put back in the queue (i.e., the insert
function is not changed); this means that the subtask may
be executed on a different processor from the parent task.

To disallow task migration, we can add an extra element
to the queue for each task to keep track of the core ID on
which it has been assigned before. This value is initially set
to a value that does not correspond to any core ID. The
insert function will use the core ID reported by the delegate
channel to fill this element. The shift function can assign a
subtask to a core only if it has the same ID.

5.2 Multi-Processor: Multiple Queues
To model a multiple queues, we need to replicate the

queue, in addition to the dispatcher and error handler, for
every processor. To this end, the automata must be parame-
terized in processor identifiers. This enables each queue/pro-
cessor to define its own local scheduling strategy.

i:int[0,MAX-1]
scheduling policy

insert(msg,i,dca)
delegate[p]?
dca = ca[0][p]

invokeAt[p]?dca=firstFree(),
x[dca][p] = 0, d[dca][p] = deadline

invoke?
target = find(msg)

invokeAt[target]!

Parameterized Queues — Load Balancer

Figure 5: Multi-Processor with Separate Queues

Like in multi-core, task specification automata are param-
eterized in processor ID, which means that start and finish
channels are also parameterized. In the case of subtask gen-
eration (along delegate channel) the task will be added to
the queue of the same processor (no task migration).

New tasks (that are generated on the invoke channel)
should be spread on different queues. One way to achieve
this is to require the task generation and specification au-
tomata to specify directly the target queue for each task.
This means that the invoke channel will be parameterized
in processor ID, too.

An alternative and more elegant solution is adding a load
balancer automaton. The load-balancer intervenes every
message and directs it to the processor with smaller load;
or in general, based on its load balancing strategy. To do
so, the load balancer receives all communication on the in-
voke channel. Instead the queue automata receive messages
on the new invokeAt channel, which is parameterized in the
processor ID. The load balancer forwards the messages along
invokeAt channel to the proper target queue (see Figure 5).

The load balancing strategy is implemented in the find
function in this figure. The function find could look into the
queues of different processors for load balancing, or could
simply decide based on the message type. If the load balanc-
ing strategy should be based on the remaining deadlines of
tasks, which involves checking clock values, the strategy has
to be implemented as a guard, similar to the EDF scheduling
policy explained in Section 4.1.

To allow task migration across queues, one can define a
new channel delegateAt, in much the same way as invokeAt.
The load balancer then needs to receive all delegated sub-
tasks and decide whether a new target results in better over-
all performance.

6. DISCUSSION AND CONCLUSION
In this paper, we focused on the practical side of schedula-

bility analysis, i.e., decidable cases. To escape from undecid-
ability of preemptive scheduling, Fersman et al. [6] simplify
the task model. On the contrary, we allow task behaviors to
be specified with timed automata and restrict the scheduler:
we assume a minimum delay between preemptions, which in
reality could be a multiple of the CPU clock speed.

We extended our results to multi-processors, with shared
and separate queues, with or without task migration. There
are many ways to assign a scheduler: to each queue, to
each processor, their combination or hierarchical. For mul-
tiple queues, we showed a simple way to implement a load
balancer on top of queue-specific schedulers. Hierarchies of
schedulers can be implemented by multiple levels of the in-
voke channel as we showed for the load balancer. It is to
be noted that in all settings, the task generation automa-
ton is the same and applies to the whole single or multiple
processor system.

We showed decidability by encoding the problem in a de-
cidable class of timed automata [2]. However, problems in
the forward analysis algorithm in Uppaal make it unable to
handle the preemptive models. This seems to be related to
use of integer clock assignments, checking clock differences
(to formulate EDF) and channel synchronizations.

It is interesting to study how a time penalty for task mi-
gration in multi-processor systems could affect the schedu-
lability results. This could be implemented with a penalty
function in the load balancer automaton when dispatching
subtasks using the delegateAt channel.

Our goal in this paper was to show the decidability of the
schedulability problem in different settings by reducing it to
reachability of timed automata. In our encoding, there is
one clock for each queue slot; this is anyway necessary for

earliest deadline first strategy. For fixed priority scheduling,
one needs less clocks. One can improve the performance by
using less clocks as by Fersman et al. [7].

An independent line of future research is to pursue au-
tomatic code generation from schedulable design models.
Alternatively, one can study conformance of programs to
high-level schedulable designs.

7. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theoretical Computer Science, 126(2):183–235, 1994.

[2] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are
timed automata updatable? In Proc. Computer Aided
Verification (CAV’00), volume 1855 of LNCS, pages
464–479, 2000.

[3] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venter,
D. Weil, and S. Yovine. TAXYS: A tool for the
development and verification of real-time embedded
systems. In Proc. CAV’01, volume 2102 of LNCS,
pages 391–395. Springer, 2001.

[4] F. de Boer, T. Chothia, and M. M. Jaghoori. Modular
schedulability analysis of concurrent objects in Creol.
In Proc. Fundamentals of Software Engineering
(FSEN’09), volume 5961, pages 212–227, 2009.

[5] F. S. de Boer, I. Grabe, M. M. Jaghoori, A. Stam, and
W. Yi. Modeling and analysis of thread-pools in an
industrial communication platform. In Proc. 11th
International Conference on Formal Engineering
Methods (ICFEM’09), volume 5885 of LNCS, pages
367–386. Springer, 2009.

[6] E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task
automata: Schedulability, decidability and
undecidability. Information and Computation,
205(8):1149–1172, 2007.

[7] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi.
Schedulability analysis using two clocks. In Proc.
Tools and algorithms for the construction and analysis
of systems (TACAS’03), pages 224–239, Berlin,
Heidelberg, 2003. Springer-Verlag.

[8] M. M. Jaghoori and T. Chothia. Timed automata
semantics for analyzing Creol. In Proc. Foundations of
Coordination Languages and Software Architectures
(FOCLASA’10), EPTCS 30, pages 108–122, 2010.

[9] M. M. Jaghoori, F. S. de Boer, T. Chothia, and
M. Sirjani. Schedulability of asynchronous real-time
concurrent objects. J. Logic and Alg. Prog., 78(5):402
– 416, 2009.

[10] M. M. Jaghoori, D. Longuet, F. S. de Boer, and
T. Chothia. Schedulability and compatibility of real
time asynchronous objects. In Proc. RTSS’08, pages
70–79. IEEE CS, 2008.

[11] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A
type-safe object-oriented model for distributed
concurrent systems. Theoretical Computer Science,
365(1-2):23–66, 2006.

[12] P. Krcal, M. Stigge, and W. Yi. Multi-processor
schedulability analysis of preemptive real-time tasks
with variable execution times. In Proc. Formal
Modeling and Analysis of Timed Systems, volume 4763
of LNCS, pages 274–289, 2007.

[13] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
nutshell. STTT, 1(1-2):134–152, 1997.

