
Automata-Theoretic Protocol Programming

Parallel Computation,
Threads and Their Interaction,

Optimized Compilation,
[at a] High Level of Abstraction

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus Prof. Mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties

te verdedigen op donderdag 3 maart 2016
klokke 15:00 uur

door

Sung-Shik Theodorus Quirinus Jongmans
geboren te Seoul, Zuid Korea,

in 1987

Promotor
prof. dr. F. Arbab

Promotiecommissie
prof. dr. C. Baier Technische Universität Dresden
prof. dr. F.S. de Boer
dr. M.M. Bonsangue
prof. dr. H.J. van den Herik (secretaris)
prof. dr. J.N. Kok (voorzitter)
dr. A. Silva University College London

The work in this thesis has been carried out at CWI (Centrum Wiskunde &
Informatica) and Universiteit Leiden, under the auspices of the research school
IPA (Institute for Programming research and Algorithmics).

Contents

1 Introduction 1
1.1 Context . 1

The Protocol Concern . 1
Today’s Abstractions . 5

1.2 Problem . 9
Three Major Issues . 9
Partial Solutions . 16

1.3 Contribution & Organization . 17
Abstract Proposal . 17
Concrete Instantiation . 22

2 DSL for Interaction I: Semantics 27
2.1 Theory . 29

Interaction Languages . 29
Constraint Automata . 32
Behavior, Equivalence, and Congruence 39
Multiplication and Subtraction 42

2.2 Practice . 48

3 DSL for Interaction II: Syntax 51
3.1 Theory . 53

Compositional Construction of Constraint Automata 53
Graphical Representation: Reo 56
Textual Representation: FOCAML 61

3.2 Practice . 72
Editor . 72
Example I: OddFibonacci . 74
Example II: Chess . 76
Example III: NAS Parallel Benchmarks 79

4 Basic Compilation 93
4.1 Theory . 95

Basics . 95
Distributed Approach . 98

CONTENTS

Centralized Approach . 101
Distribution versus Centralization 101

4.2 Practice . 104
Compiler . 104
Run-Time Library . 105
Compiler-Generated Code . 110
API for Ports . 117
Experiments I: Protocols . 121
Experiments II: Programs . 124

5 Improved Compilation I: Local Multiplication 125
5.1 Theory . 127

Hybrid Approach . 127
L-Multiplication . 130
First Characterization . 133
Cheaper Characterization . 134
Practical Characterization . 138
Related Work on Distributed Coordination 140
Nonassociativity . 141

5.2 Practice . 149
Compiler . 150
Experiments I: Protocols . 151
Experiments II: Programs . 156

6 Improved Compilation II: Syntactic Subtraction 173
6.1 Theory . 175

64 Syncs . 175
Normalization . 176
Syntactic Subtraction . 178

6.2 Practice . 182
Compiler . 182
Experiments I: Protocols . 183
Experiments II: Programs . 186

7 Improved Compilation III: Commandification 201
7.1 Theory . 203

Data Commands . 203
Commandification . 207
Commandification with Cycles 212
Commandification in Constraint Automata 217

7.2 Practice . 221
Compiler . 221
Experiments I: Protocols . 221
Experiments II: Programs . 224

CONTENTS

8 Improved Compilation IV: Queue-Inference 237
8.1 Theory . 239

Manual Optimization . 239
Multiconstraint Automata . 243
Operations on Multiconstraint Automata 247
Homogenization . 254

8.2 Practice . 258
Compiler . 258
Experiments I: Protocols . 259
Experiments II: Programs . 261

9 Conclusion 275
9.1 Summary . 275
9.2 Future Work . 292

Abstract 295

Curriculum Vitae 299

Bibliography 301

Index 325

Chapter 1

Introduction

1.1 Context

The Protocol Concern

Since the late 1950s, hardware manufacturers double the number of transistors
on chips roughly every two years, as Moore predicted already in 1965 [Moo98].
Until the early 2000s, hardware manufacturers used this exponential increase
in transistors for speeding up unicore processors, capable of processing exactly
one instruction stream. As a result, software engineers enjoyed a “free lunch”
during the second half of the twentieth century: without effort from their side,
every new generation of unicore processors executed existing programs twice
as fast as those of the generation before. Unfortunately, the free lunch ended
in 2005 [Sut05]. Although Moore’s Law continued to hold, hardware manufac-
turers ran into three major obstacles—“walls”—that prevented them from di-
recting the still exponential increase in transistors further toward faster unicore
processors [ABC+06].

First, energy consumption grows disproportionately with clock frequency:
a linear increase in clock frequency requires a quadratic (or worse) increase
in energy consumption [Pos14]. Beside environmental and financial repercus-
sions, this Power Wall causes higher-frequency unicore processors to generate
more heat than conventional cooling technology can dissipate, ultimately lead-
ing to hardware failure. Second, memory accesses generally take substantially
more time than do instructions [WM95]. This Memory Wall makes increasing
the clock frequency of unicore processors beyond a certain threshold ineffec-
tive. Third, techniques for finding implicit instruction-level parallelism (ILP) in
single instruction streams (e.g., branch prediction, out-of-order execution), use-
ful for keeping unicore processors busy during delays (e.g., memory accesses),
seem to have reached their limits [HP11a]. This ILP Wall calls for more explicit
means of expressing, controlling, and exploiting parallelism.

To mitigate the previous three walls, hardware manufacturers switched
from unicore processors to multicore processors around 2005: instead of equip-

1

CHAPTER 1. INTRODUCTION 2

D
E

C
L

A
R

A
T

IV
E

IM
P

E
R

A
T

IV
E

specification S

instr. streams B

Figure 1.1: From a declarative specification S to its imperative implementation
as instruction streams B.

ping processors with one fast computational core (say, 5–7 GHz), hardware
manufacturers started using the still exponential increase in transistors for con-
structing processors with multiple slower cores (say, 2–3 GHz). Although this
move to multicore technology has enabled hardware manufacturers to keep up
with Moore’s Law, software engineers of sequential programs no longer enjoy
free exponential speedups: a multicore processor with a single core executes
a sequential program just as fast as one with two, four, or any other number
of cores. To harness the power of today’s multicore processors, therefore, soft-
ware engineers must write parallel programs capable of dividing instructions
evenly over, for instance, all twelve cores of Intel’s modern E5-2690V3 proces-
sor. More importantly, however, to harness the power of tomorrow’s multicore
processors, software engineers must write parallel programs also capable of
dividing instructions evenly over 32 or 1024 cores in the future—today’s paral-
lel programs must scale. Only if their parallel programs exhibit scalability can
software engineers again enjoy a free lunch.

Conceptually, every parallel “program-in-execution” consists of (i) a num-
ber of workers, which perform the actual computation, and (ii) a number of proto-
cols, which state the rules of interaction that the workers must abide by. Interac-
tion covers both communication (e.g., a worker sends a value to another worker)

CHAPTER 1. INTRODUCTION 3

and synchronization (e.g., a worker waits for another worker). Software engi-
neers of parallel programs essentially bridge a gap between:

• high-level declarative specifications of workers and protocols—some vague
idea in their minds, a number of semiformal UML charts, or maybe even
temporal logic formulas!—which abstractly define what must happen;

• low-level imperative implementations as instruction streams, which con-
cretely define how things happen.

Figure 1.1 shows this gap. Instead of writing instruction streams directly, how-
ever, software engineers usually write their parallel programs as higher-level
code from which a compiler later derives lower-level instruction streams. Typ-
ically, such parallel programs consist of (i) computation code for worker subpro-
grams and (ii) interaction code for protocol subprograms. Note that sequential pro-
grams constitute the special class of parallel programs consisting of one worker
subprogram and zero protocol subprograms. Henceforth, I therefore no longer
distinguish between sequential programs and parallel program, simply writ-
ing “program” to refer to any kind of parallel program.

Ideally, twice as many cores execute scalable programs twice as fast. Such
scalability, however, does not come easily. In fact, already in the late 1960s,
Amdahl discovered that many programs—except those of the “embarrassingly
parallel” kind, which require very few to no interaction—cannot indefinitely
benefit from more parallel processing [Amd67]. In particular, Amdahl argued
that on n > 1 cores, the execution time of a program, denoted by time(n),
depends on its truly parallel fraction, denoted by 0 ≤ par ≤ 1, and its execution
time on a single core, denoted by time(1), as follows:

time(n) =
(

(1− par) +
par

n

)
· time(1) (1.1)

Defining the speedup of a program—a measure for its scalability—as time(1)
divided by time(n), Amdahl subsequently derives the following equation:

speedupA(n) =
1

(1− par) + par
n

(1.2)

This equation reveals that even with infinitely many cores (i.e., if n → ∞),
the sequential fraction 1−par of a program bounds its scalability. For instance,
according to Amdahl’s Law, a program with par = 0.9 can achieve only a 10-fold
speedup at best. More concretely, on Intel’s previously mentioned E5-2690V3
processor, a program with par = 0.9 achieves only a 5.7-fold speedup, despite
this processor having as much as twelve cores.

A recent study by Yavitz et al. makes the previous analysis even more seri-
ous [YMG14]. By explicitly accounting for the execution time of protocol sub-
programs, denoted by protocols(n), Yavitz et al. derive the following equation:

speedupY(n) =
1

(1− par) + par
n + protocols(n)

(1.3)

CHAPTER 1. INTRODUCTION 4

D
E

C
L

A
R

A
T

IV
E

IM
P

E
R

A
T

IV
E

specification S

impl. user-thr. I

expl. user-thr. I ′

kernel-thr. I ′′

instr. streams B

Figure 1.2: From a declarative specification S to its imperative implementa-
tion as instruction streams B, possibly past several intermediate imperative
implementations I , I ′, and I ′′ at increasingly low levels of abstraction: implicit
user-threads, explicit user-threads, and kernel-threads. Single arrows repre-
sent manual labor by a software engineer; double arrows represent automatic
labor by a compiler.

(As this equation suggests, the execution time of protocol subprograms de-
pends on the number of cores. The exact shape of this dependency differs
between programs: as n approaches infinity, at least protocols(n) > 0 and for
some programs even protocols(n) → ∞.) In the analysis of Yavitz et al., thus,
not only its sequential fraction but also its protocol subprograms bound the
scalability of a program. Indeed, maximizing par—suggested by Amdahl’s
Law—improves scalability only to some extent, while reducing protocols(n)
becomes increasingly important as par increases.

The work of Yavitz et al. implies that to enjoy a free lunch in this multi-
core era, software engineers better write efficient and scalable protocol subpro-
grams. I call this The Protocol Concern.

CHAPTER 1. INTRODUCTION 5

Today’s Abstractions

Fortunately, software engineers do not need to bridge the gap in Figure 1.1
all by themselves: several levels of abstraction on top of the hardware hide in-
creasingly more details that software engineers rather not concern themselves
with. Figure 1.2 shows three major such levels. Each of these levels supports
some form of concurrent “subprograms-in-execution” called threads that to-
gether constitute a full “program-in-execution”. All threads belonging to the
same program-in-execution have access to the same piece of memory by de-
fault. Threads can use this shared memory for interacting with each other.

The levels of abstraction in Figure 1.2 differ in the extent to which software
engineers manually manage threads in their programs.

• Operating systems provide the first level of abstraction: kernel-threads
in kernel space, where an operating system schedules kernel-threads on
cores (i.e., an operating system decides about which kernel-thread runs
on which core at which time). Software engineers can manage kernel-
threads directly with system calls to the operating system. Most soft-
ware engineers, however, use higher-level application programming inter-
faces (API). I therefore ignore this level of abstraction as a serious alterna-
tive for general-purpose software engineering and mention it only as the
foundation of higher-level APIs.

• Programming languages provide the second and third level of abstrac-
tion: explicit or implicit user-threads in user space, where the implementa-
tion of a user-threading API schedules user-threads on kernel-threads.

Explicit user-threading APIs hide all system calls required for directly
managing kernel-threads from software engineers. Examples include
POSIX threads, Windows threads, and Java threads. Using these APIs,
software engineers implement their worker specifications explicitly as
user-threads: to write a program using an explicit user-threading API,
software engineers organize that program into a number of worker sub-
programs, each of which explicitly defines a user-thread, and protocol
subprograms. Afterward, the implementation of the API takes care of
concurrently executing those worker subprograms, as user-threads.

Implicit user-threading APIs, in contrast, hide from software engineers
not only kernel-thread management but also to a large extent user-thread
management. Examples include thread pools (e.g., OpenMP [DM98], Intel
Cilk Plus [Rob13], Intel TBB [Rei07], Microsoft TPL [LSB09], Apple GCD,
Java executors [GPB+06]) and actors (e.g., ERLANG processes [AVWW96],
Scala/Akka actors [HO09, Hal12]).

– Using thread pool APIs, software engineers implement their worker
specifications as tasks, subprograms typically smaller than subpro-
grams for explicitly defined user-threads. At run-time, tasks get
submitted to a queue monitored by a pool of user-threads. When-
ever this queue becomes nonempty, a dormant user-thread from the

CHAPTER 1. INTRODUCTION 6

pool awakes and starts working on the new task. If every user-
thread in the pool already has work to do, the new task remains
pending until one of those user-threads runs out of work.
To write a program using a thread pool API, software engineers or-
ganize that program into a number of worker subprograms, each
of which defines a task, and protocol subprograms. Afterward, the
implementation of the API takes care of managing both the pool,
the queue, and a limited form of interaction among tasks. Some
thread pool APIs also provide user-friendly templates for common
task submission patterns (e.g., parallel loop iterations).

– Using actor APIs, software engineers implement their worker speci-
fications as actors, subprograms typically smaller than subprograms
for explicitly defined user-threads. At run-time, actors mix per-
forming computation with exchanging asynchronous messages in
an event-driven fashion. Whenever an actor sends a message to an-
other actor, that message first arrives in the receiving actor’s mail-
box. Once an actor has finished processing a message, it selects a
next message from its mailbox, should one exist. While processing
messages, actors perform computation and may send messages to
other actors. The pure actor abstraction hides the underlying user-
threads’ shared memory: pure actors communicate with each other
only through asynchronous messaging.
To write a program using an actor API, software engineers orga-
nize that program into a number of worker subprograms, each of
which defines an actor, and protocol subprograms. Afterward, the
implementation of the API takes care of buffering sent messages in
mailboxes, selecting the next buffered message for processing, and
scheduling actors on user-threads.

User-threading APIs usually provide a number of special concurrency con-
structs for implementing protocol specifications. For instance, explicit user-
threading APIs typically provide concurrency constructs such as atomic regis-
ters [Lam86], semaphores [Dij02], or monitors [Hoa74]. These constructs guaran-
tee mutual exclusion, to avoid data races among threads that interact with each
other through shared memory, by protecting that memory from hazardous con-
current accesses. Essentially, software engineers use concurrency constructs to
constrain the ways in which nondeterministic schedulers may schedule user-
threads on kernel-threads and kernel-threads on cores. Lee calls this an exercise
in “pruning nondeterminism” [Lee06]. For instance, while some thread per-
forms an operation on an atomic register, no scheduler may schedule another
thread to simultaneously perform an operation on the same register. Similarly,
as long as a semaphore has no permits to release, no scheduler may schedule a
thread to run past so-far failed attempts to acquire one. (Attempts to acquire a
permit from an empty semaphore fail until another thread releases one.)

Without scheduling constraints imposed by concurrency constructs for mu-
tual exclusion, interaction through shared memory may occur in unsafe ways.

CHAPTER 1. INTRODUCTION 7

1 public class UnsafeProducersConsumerProgram {
2 private volatile Object buffer;
3

4 public UnsafeProducersConsumerProgram() {
5 (new Producer()).start();
6 (new Producer()).start();
7 (new Consumer()).start();
8 }
9

10 private class Producer extends Thread {
11 public void run() {
12 while (true) {
13 Object datum = Thread.currentThread().getId();
14 while (buffer != null);
15 buffer = datum;
16 } } }
17

18 private class Consumer extends Thread {
19 public void run() {
20 while (true) {
21 while (buffer == null);
22 Object datum = buffer;
23 System.out.println(datum);
24 buffer = null;
25 } } } }

Figure 1.3: Unsafe producers/consumer program for LateAsyncMerger2 in Java

To illustrate this point, suppose that I must write a program that consists of
three workers: two producers, which repeatedly produce data (e.g., fetch their
own id) and send data, and one consumer, which repeatedly receives data and
consumes data (e.g., print the received ids to the console). My protocol specifi-
cation states that the producers communicate their data to the consumer:

• asynchronously: a producer proceeds after its send before the consumer
has completed a corresponding receive;

• reliably: the consumer receives all data sent unchanged;

• unordered: the producers send their data in any order;

• transactionally: a send and its corresponding receive occur atomically
(i.e., after a send by a producer, no producer can send until the consumer
has completed a corresponding receive)

I call this protocol LateAsyncMerger2. Figure 1.3 shows an unsafe Java program
for LateAsyncMerger2: although Java’s shared memory straightforwardly sup-
ports asynchronous and unordered communication, the program in Figure 1.3
guarantees neither transactionality nor reliability, because it lacks concurrency
constructs for mutual exclusion. For instance, both producers may, at the same
time, evaluate shared variable buffer to null (line 14), after which both of

CHAPTER 1. INTRODUCTION 8

1 public class SafeProducersConsumerProgram {
2 private volatile Object buffer;
3 private Semaphore notEmpty;
4 private Semaphore notFull;
5

6 public SafeProducersConsumerProgram() {
7 notEmpty = new Semaphore(0);
8 notFull = new Semaphore(1);
9 (new Producer()).start();

10 (new Producer()).start();
11 (new Consumer()).start();
12 }
13

14 private class Producer extends Thread {
15 public void run() {
16 while (true) {
17 Object datum = Thread.currentThread().getId();
18 notFull.acquire();
19 buffer = datum;
20 notEmpty.release();
21 } } }
22

23 private class Consumer extends Thread {
24 public void run() {
25 while (true) {
26 notEmpty.acquire();
27 Object datum = buffer;
28 notFull.release();
29 System.out.println(datum);
30 } } } }

Figure 1.4: Safe producers/consumer program for LateAsyncMerger2 in Java

them write the value of their local variable datum to buffer (line 15). If the sec-
ond producer to perform this write does so before the consumer reads buffer
(line 22), the datum sent by the first producer gets lost, thereby violating both
transactionality and reliability. In contrast, Figure 1.4 shows a safe Java pro-
gram that does satisfy all four protocol requirements. It uses two semaphores.
These semaphores guarantee that between a write to buffer by a producer and
a read of buffer by the consumer, no producer overwrites buffer.

In this subsection, I mentioned several abstractions that today’s software
engineers use to write programs for multicore processors. I tried to focus on
“leading” thread-based technology, based on recent literature: Poss discusses
POSIX threads, Java threads, OpenMP, and Intel TBB [Pos14], Silberschatz et al.
discuss POSIX threads, Windows threads, Java threads, OpenMP, Apple GCD,
Java executors, and Intel TBB [SGG13], while Vajda et al. discuss OpenMP, In-
tel Cilk Plus, Intel TBB, Microsoft TPL, Apple GCD, and ERLANG actors [Vaj11].
(Poss remarks, however, that given the relatively short time since the introduc-
tion of the first multicore processors, much of the new technology developed
has neither matured nor stabilized yet, and he expects the landscape to change
in the coming decade.) Despite all these abstractions, many of today’s software

CHAPTER 1. INTRODUCTION 9

engineers still need to manually address The Protocol Concern with classical
concurrency constructs for mutual exclusion, invented many decades ago. In
fact, even software engineers who use implicit user-threading APIs often need
to resort to such constructs from underlying explicit user-threading APIs to im-
plement their protocol specifications. For instance, pure actor APIs hide the
underlying shared memory and provide only asynchronous messaging con-
structs to implement protocol specifications. While this works well for simple
asynchronous communication protocols, it may complicate controlling other
kinds of interaction. Some actor APIs therefore allow software engineers to
mix asynchronous messaging with shared memory interaction, thereby break-
ing the pure agent abstraction and necessitating the exposure and usage of con-
currency constructs for mutual exclusion (provided by the underlying explicit
user-threading API). For instance, Tasharofi et al. discovered that software
engineers often mix Scala/Akka actors with Java threads [TDJ13]. The same
holds for implementing protocol specifications beyond those implemented in-
side thread pool APIs. On all threading levels of abstraction, thus, concurrency
constructs for mutual exclusion play a crucial role in contemporary software
engineering for multicore processors.

1.2 Problem

Three Major Issues

Although explicit and implicit user-threading APIs narrow the conceptual spec-
ification/implementation gap in Figure 1.1, a rather wide gap still remains in
Figure 1.2. One may concretely measure the size of this gap by comparing the
textual length of a specification to the number of lines of code of its implemen-
tation. Alternatively, one may more abstractly measure the size of this gap in
terms of the kinds of resources, physical or virtual, that software engineers need
to manually manage in their programs. (Generally, the more such resources
software engineers needs to manage, the more details they need to concern
themselves with, and the more lines of code their programs consist of.) For in-
stance, at the lowest level of abstraction, software engineers manually manage
physical processors. One level above, software engineers no longer manage
physical processors but only their virtual representations as kernel-threads in
kernel space. One level above, software engineers no longer manage kernel-
threads but only their representations as user-threads in user space. One level
above, software engineers no longer manage user-threads but higher-level ab-
stractions on top of those user-threads (e.g., thread pools, actors). Even at this
highest level in Figure 1.2, however, software engineers still manually man-
age one particularly significant resource: shared memory, to lesser or greater
degree (e.g., with or without automated garbage collection).

As explained in the previous subsection, to manually manage shared mem-
ory, software engineers require concurrency constructs for mutual exclusion.
Such constructs give rise to three major issues that software engineers face

CHAPTER 1. INTRODUCTION 10

when addressing The Protocol Concern.

• Issue 1: Writing correct protocol subprograms

Although widely used, concurrency constructs for mutual exclusion pro-
voke controversy: their use inflicts unreasonable demands on the rea-
soning capabilities of software engineers, notably because of the unpre-
dictable ways in which threads interact with each other [CL00]. After all,
software engineers often cannot predict every way in which schedulers
may seemingly nondeterministically schedule threads. Consequently,
hazardous executions may arise out of unforeseen schedules. Examples
of resulting bugs include data races, exemplified already in Figure 1.3,
and deadlocks, where interdependent threads fail to make progress.

Lee wrote a seminal essay on the problems of controlling seemingly non-
deterministic schedulers with concurrency constructs for mutual exclu-
sion [Lee06]. Lee argues that although explicit user-threading APIs com-
prise only a minor syntactic change to conventional sequential languages,
their use has profound—and hard to manage—semantic repercussions:
suddenly, also schedulers affect programs’ functional semantics. As a
solution, Lee proposes to discard interaction through shared memory,
thereby eliminating the influence of nondeterministic schedulers on in-
teraction. Instead, workers should interact with each other only via well-
defined interfaces to protocols, where software engineers can judiciously
introduce nondeterminism just whenever necessary.

Arbab provides a different perspective on the same issue [Arb11]. Gen-
erally, programs without concurrency constructs for mutual exclusion
allow every possible instance of interaction to occur at any time. By
imposing mutual exclusion to (parts of) such programs, software engi-
neers essentially constrain which of those instances actually may occur.
In this approach to constraining schedulers, however, neither interaction
nor protocols comprise first-class entities: as Arbab observes, interaction
becomes only an “implicit, nebulous and intangible” byproduct of action
(i.e., sequences of reads/writes to shared memory, mixed with opera-
tions of concurrency constructs). Arbab argues that this implicitness se-
riously complicates implementing protocol specifications. After all, one
can hardly reason about something that one cannot easily see. Although
the idea of constraining which instances of interaction may occur has no
fundamental shortcomings, actually imposing such constraints through
hand-written code in an action-based programming model—one without
first-class constructs for interaction/protocols—demands prohibitively
great intellectual effort and ingenuity from software engineers.

• Issue 2: Writing efficient/scalable protocol subprograms

Even if software engineers succeed in writing correct interaction code,
writing interaction code that performs well constitutes a whole other
challenge. This challenge has two components. On the one hand, soft-

CHAPTER 1. INTRODUCTION 11

D
E

C
L

A
R

A
T

IV
E

IM
P

E
R

A
T

IV
E

specification S

expl. user-thr. I0 I1 Ik

kernel-thr. I ′

instr. streams B

f

g1 gk ◦ · · · ◦ g2

Figure 1.5: From a declarative specification S to its imperative implementation
as instruction streams B, including k optimizations between intermediate im-
perative implementations I0, . . . , Ik (at the explicit user-threads level). Single
arrows represent manual labor by a software engineer; double arrows repre-
sent automatic labor by a compiler.

ware engineers should strive for efficient protocol subprograms, by min-
imizing the absolute resource consumption of their interaction code. On
the other hand, software engineers should strive for scalable protocol sub-
programs, by minimizing the increase in resource consumption as paral-
lelism increases. A highly efficient protocol subprogram may have poor
scalability, while a highly scalable protocol subprogram may have poor
efficiency. Software engineers should therefore strive for both.

Figure 1.5 exemplifies the process typically involved in writing efficient/
scalable interaction code. First, software engineers transform specifica-
tion S into an initial implementation I0 using shared memory and con-
currency constructs for mutual exclusion (provided by an explicit user-
threading API), denoted by arrow f . Subsequently, these software en-
gineers incrementally improve the protocol subprograms in I0 into im-
plementations I1, . . . , Ik by applying a number of protocol optimizations
(e.g., introducing more fine-grained locking in a concurrent queue for
asynchronous communication), denoted by arrows g1, . . . , gk. Finally, a

CHAPTER 1. INTRODUCTION 12

D
E

C
L

A
R

A
T

IV
E

IM
P

E
R

A
T

IV
E

specification S

expl. user-thr. I0 I1 Ik

kernel-thr. I ′

instr. streams B

f f -1

g
k ◦ · · · ◦

g
1 ◦

f

g1 gk ◦ · · · ◦ g2

Figure 1.6: Irrecoverability of a specification S from its implementation I0. Sin-
gle arrows represent manual labor by a software engineer; double arrows rep-
resent automatic labor by a compiler.

compiler derives the final instruction streams B.

The largely manual approach shown in Figure 1.5—and common in con-
temporary software engineering—forces software engineers to take re-
sponsibility for the laborious and error-prone activities of defining, se-
lecting, and applying every gi and, moreover, for establishing that ev-
ery gi preserves the semantics of implementation Ii−1. Ideally, of course,
a compiler instead of software engineers should perform this work, in a
provably correct way. But although decades of research has resulted in
a battery of many important optimization techniques, current compilers
typically cannot apply protocol optimizations.

To further illustrate this point, Figure 1.6 shows the problem that a mod-
ern compiler (e.g., javac, gcc) faces in applying protocol optimizations.
For such a compiler to decide which optimization it can—and should—
apply to which parts of implementation I0, it essentially needs to recon-
struct specification S. Only then, when a compiler knows the intention
that software engineers had when they wrote I0, can it decide which por-
tions of the interaction code admit which protocol optimization. In other
words, before a compiler can optimize anything, it first needs to apply

CHAPTER 1. INTRODUCTION 13

the inverse of f to f(S) to resurrect the lost “what”, S. Generally, how-
ever, compilers cannot do this: in going from a declarative specification
to one specific imperative implementation, certain information gets irre-
trievably lost or becomes practically impossible to extract from the result-
ing code. Indeed, exposing shared memory to software engineers forces
those software engineers to implement their protocol specifications in ex-
cessive detail, without explicitly preserving their intention. Consider, for
instance, the following C code:

for (int i = 0; i < 10; i++)
a[i] = some_function(rand()); // without side effects

If I intended just to assign the output of some_function to every a[i],
for random inputs x, a compiler can parallelize the loop. However, if I
additionally intended the resulting array to have the same content in exe-
cutions with the same random seed (e.g., to reproduce bugs), a compiler
cannot parallelize the loop: in that case, the order of generating random
numbers matters. Just from this code, thus, neither a compiler nor a hu-
man can judiciously decide about loop parallelization.

Although the previous example does not concern a protocol optimiza-
tion, it well-illustrates a principle that applies also to such optimizations:
typically, compilers cannot reconstruct all intention behind interaction
code consisting of seemingly unrelated reads/writes to shared memory,
mixed with operations of concurrency constructs for mutual exclusion.
Consequently, no compiler that I know of supports protocol optimiza-
tions. Instead, software engineers have to take direct responsibility for
such optimizations, thereby adding even more complexity to an already
daunting task.

Incidentally, the annotations used in implicit user-threading APIs (e.g.,
OpenMP) serve to explicitly preserve some intention information that
otherwise gets lost in translation, which the compiler leverages to pro-
duce more optimized instruction streams. For instance, with OpenMP, I
can annotate the loop in my previous C code with the following pragma
to inform the compiler that it may parallelize the loop:

#pragma omp parallel for

• Issue 3: Writing modular protocol subprograms

Concurrency constructs such as atomic registers, semaphores, and moni-
tors neither enforce nor encourage good practices for writing interaction
code. Consequently, software engineers frequently succumb to the temp-
tation of not separating interaction code from computation code. This
issue differs from the previous two issues, because it does not complicate
“writing code” directly. However, it does complicate many other aspects
of software engineering, as also argued for by Arbab [Arb11].

CHAPTER 1. INTRODUCTION 14

Notions as “modularization” and “separation of concerns” have a long
history in computer science [Dij82, Par72], and they have driven the de-
velopment of software engineering practices for decades. In fact, already
in the early 1970s, Parnas attributed three advantages to abiding by these
principles:

“(1) managerial—development time should be shortened be-
cause separate groups would work on each module with little
need for communication; (2) product flexibility—it should be
possible to make drastic changes to one module without a need
to change others; (3) comprehensibility—it should be possible
to study the system one module at a time.” [Par72]

Also in the specific context of concurrency, researchers have studied sep-
aration of computation from interaction well before multicore processors
became ubiquitous. Already in the early nineties, for instance, Arbab
et al. investigated this principle in the context of the language Mani-
fold [AHS93]. Later, separation of computation from interaction played
a defining role both in the IWIM model [Arb96] and in exogenous coordina-
tion [Arb98]. More recently, Basu et al. advocated separation of com-
putation from interaction in their work on the BIP component frame-
work [BBS06].

Nevertheless, and despite Parnas’ advantages, linguistic support for sep-
aration of computation from interaction has scarcely received due atten-
tion: neither concurrency constructs for mutual exclusion, nor the APIs
that provide such constructs, nor the languages that support those APIs
enforce modularization of interaction code. As a result, dispersing in-
teraction code among computation code comprises a common practice
for implementing protocol specifications. Such dispersal may even seem
natural, as protocol subprograms typically consist not only of concur-
rency constructs but also of basic computation constructs (e.g. condi-
tional statements). After all, concurrency constructs alone have too lit-
tle expressive power to comprehensively implement nontrivial protocol
specifications. The use of basic computation constructs in interaction
code obscures the conceptual distinction between workers and protocols.
But natural as the resulting dispersal of interaction among computation
may seem, it does harm.

To illustrate such dispersal—and its deficiencies—reconsider the produc-
ers/consumer program in Figure 1.4. One cannot easily point to coherent
segments of the code that actually implement the protocol specification.
Indeed, only the combination of lines 2, 3, 4, 7, 8, 18, 19, 20, 26, 27, and
28 does so. In this example, thus, I have not isolated the interaction code
in a distinct module; I have not separated my concerns. Therefore, the
advantages of modularization identified by Parnas do not apply. In fact,
the “monolithic program” in Figure 1.4 suffers from their opposites.

CHAPTER 1. INTRODUCTION 15

(1) Groups of software engineers cannot independently write compu-
tation code and interaction code of monolithic programs. More-
over, software engineers cannot straightforwardly reuse computa-
tion code or interaction code of monolithic programs.

(2) Small changes to a protocol specification require nontrivial changes
throughout its monolithic implementation. For instance, suppose
that I want to restrict the producers in Figure 1.4 such that they send
data only in alternating order. Implementing such turn-taking re-
quires significant changes.

(3) Software engineers cannot study entangled computation and inter-
action code in isolation: to reason about the correctness of either,
they must analyze monolithic programs in their entirety.

The impact of these shortcomings only increases when programs grow
larger, interaction among threads intensifies, and protocol complexity
increases—a reasonable prospect in the current multicore era.

Importantly, I have not artificially fabricated the Java program in Fig-
ure 1.4 as a strawman just to make a point. Instead, I meticulously de-
rived that program from pseudocode in Ben-Ari’s textbook on concur-
rent and distributed programming [Ben06]. This shows that computer
scientists and lecturers actually teach and encourage students to disperse
interaction code among computation code.

To summarize, concurrency constructs for mutual exclusion give rise to
three major issues: (i) they complicate writing correct protocol subprograms,
because they complicate reasoning about programs’ behavior, (ii) they com-
plicate writing efficient/scalable protocol subprograms, because they fail to
preserve important intention information, which makes it impossible for com-
pilers to automatically perform protocol optimizations on behalf of software
engineers, and (iii) they complicate writing modular protocol subprograms,
because they neither enforce nor encourage syntactic separation of computa-
tion code from interaction code. Concurrency constructs for mutual exclu-
sion, thus, seem to constitute an inadequate idiom for implementing proto-
col specifications. For instance, software engineers should write directly that a
worker sends two floats and receives an array of reals for a response—not indi-
rectly that a thread allocates shared memory and performs pointer arithmetic.
Or, software engineers should write directly that communication between two
workers inhibits interaction among other workers—not indirectly that threads
acquire and release semaphore permits. Or, software engineers should write di-
rectly that workers exchange data synchronously—not indirectly that threads
wait on a monitor until they get notified. Instead, a suitable level of abstrac-
tion should enable software engineers to write directly the intention behind
their protocols—not indirectly the lower-level mechanics. Compilers should
take care of the latter.

If only software engineers, language designers, and computer scientists
could abolish concurrency constructs for mutual exclusion. Manual manage-

CHAPTER 1. INTRODUCTION 16

ment of shared memory, however, necessitates the use of such constructs to
prevent data races. Therefore, to really abolish concurrency constructs for mu-
tual exclusion, software engineers need a new level of abstraction that hides
shared memory from them, far above implicit user-threading APIs. Effectively,
such a new level of abstraction further narrows the remaining conceptual gap
in Figure 1.2.

Partial Solutions

Transactional memory provides a means of controlling concurrent accesses to
shared memory as an alternative to concurrency constructs for mutual exclu-
sion. Although originally described by Knight in the late 1980s and popu-
larized by Herlihy and Moss in the early 1990s [Kni86, HM93], the advent of
multicore processors caused a renewed interest in transactional memory from
both academia and industry. Support for transactional memory can exist in
hardware or in software. Below, I focus on the software variant, first described
by Shivat and Touitou [ST97]. Primarily, transactional memory supports trans-
actions: sequences of reads/writes to shared memory that occur atomically.
Whenever two running transactions access the same memory location, one of
these transactions aborts, rollbacks all the changes it has made so far, and re-
runs itself. The other transaction may proceed. Whenever a transaction runs
to completion without conflicting memory accesses, it commits all the changes
it has made. Because the implementation of a transactional memory API man-
ages transactions transparent to software engineers, higher-level transactions
should simplify programming compared to lower-level concurrency constructs
for mutual exclusion. As such, transactional memory addresses the first issue
in the previous subsection.

Although every single transaction corresponds to a single protocol, not ev-
ery single protocol corresponds to a single transaction: generally, the imple-
mentation of a protocol may require multiple transactions. As far as I know,
no existing transactional memory API provides constructs for composing full
protocol subprograms out of transactions as first-class entities in a structural
way. As such, transactional memory fails to address the third issue in the pre-
vious subsection. Moreover, transactions typically consist of low-level com-
putation code. Thus, although transactional memory seems more high-level
than concurrency constructs for mutual exclusion, it does not raise the level
of abstraction high enough: by lack of structural ways to implement proto-
col specifications as first-class entities and because transactions consist of low-
level code, software engineers leave still too much of their intention implicit,
thereby inhibiting compilers from performing protocol optimizations. The fact
that decades after its inception, and after a great proliferation of interest and
research from the early 2000s onward, performance still remains a major is-
sue with transactional memory seems to support this view [CBM+08, Her14].
Thus, transactional memory comprises only a partial solution to the issues in
the previous subsection.

Algorithmic skeletons, introduced by Cole in the late 1980s [Col88], provide

CHAPTER 1. INTRODUCTION 17

software engineers a means of writing programs by composing templates of
common patterns of parallel computation and interaction. Algorithmic skele-
ton APIs conveniently hide all workers and protocols inside their implementa-
tion, thereby completely relieving software engineers from the task of imple-
menting protocol specifications. While several standalone algorithmic skeleton
APIs exist [GL10], also some of the thread pool APIs discussed in Section 1.1
provide simple algorithmic skeletons. Algorithmic skeleton APIs seem useful
in cases where programs can indeed break down into the algorithmic skele-
tons provided by those APIs. In other cases, software engineers still need to
manually address The Protocol Concern, resort to concurrency construct for
mutual exclusion to implement their protocol specifications, and consequently
suffer from the issues in the previous subsection. Thus, algorithmic skeleton
APIs comprise a complete solution to the issues in the previous subsection if
applicable, no solution otherwise, and therefore only a partial solution in gen-
eral. However, the principles behind algorithmic skeletons—instead of their
prepackaged implementations in APIs—seem generally useful. After all, al-
gorithmic skeletons essentially constitute parallel design patterns that can help
software architects and engineers in specifying and implementing their paral-
lel programs [ABD+09, MSM05, MRR12], much in the same way as the classical
software design patterns help in developing object-oriented programs.

1.3 Contribution & Organization

Abstract Proposal

In the previous section, I argued that concurrency constructs for mutual exclu-
sion cause three issues, each of which makes addressing The Protocol Concern
problematic. To abolish such constructs, software engineers need a new level of
abstraction that hides shared memory, far above implicit user-threading APIs.
In this thesis, I present such a new level of abstraction.

Figure 1.7 shows the main idea. I aim to provide software engineers an
intention-expressing level of abstraction with interaction-explicit constructs for
writing protocol subprograms. In the resulting software engineering work-
flow, shown in Figure 1.8, software engineers still write their worker subpro-
grams in a general-purpose language (GPL) for computation, such as Java or C.
Almost orthogonally, however, software engineers write their protocol subpro-
grams in a complementary domain-specific language (DSL) for interaction. In the
words of Van Deursen et al. [vDKV00], such a DSL “is a programming language
that offers, through appropriate notations and abstractions [for interaction],
expressive power focused on, and usually restricted to, a particular problem
domain [namely implementing protocol specifications].” Beside protocol sub-
programs, a DSL for interaction should also allow software engineers to write a
simple main subprogram for establishing proper links between worker subpro-
grams and protocol subprogram. To obtain instruction streams for a program
so composed, a DSL compiler first derives code in the GPL from the protocol

CHAPTER 1. INTRODUCTION 18

D
E

C
L

A
R

A
T

IV
E

IM
P

E
R

A
T

IV
E

specification S

intention M0 M1 Mk

instr. streams B

f
g1 gk ◦ · · · ◦ g2

Figure 1.7: From a declarative specification S to its imperative implementa-
tion as instruction streams B, including k optimizations between intermedi-
ate declarative implementations M0, . . . ,Mk (at an intention-expressing level).
Single arrows represent manual labor by a software engineer; double arrows
represent automatic labor by a compiler.

subprograms and the main subprogram in the DSL. After this first compilation
step, the full program exists as GPL code. In a second compilation step, a GPL
compiler derives instruction streams from the GPL code, as usual.

Conceptually, every worker accesses only its own local memory. To interact
with each other, then, workers perform blocking I/O operations on ports. Ports
interface workers to their environment; they constitute the boundary between
workers and protocols. Every worker has its own set of ports, and every port
owned by a worker plays one of two roles relative to that worker: output ports
allow workers to offer data to (the other workers in) their environment through
put operations, while input ports allow workers to accept data from (the other
workers in) their environment through get operations. Whenever a worker
puts a datum to an output port, that worker does not know whereto that da-
tum goes. Similarly, whenever a worker gets a datum from an input port,
that worker does not know wherefrom that datum comes (cf. exogenous coor-
dination [Arb04]). Only the protocol—seen as an active entity—“knows” and
“decides” about how data flow between ports. Whenever a worker performs

CHAPTER 1. INTRODUCTION 19

specification of workers/protocols

implementations of
workers in a GPL

implementations
of protocols (and
a main) in a DSL

implementations
of protocols (and
a main) in a GPL

instruction streams

GPL compiler

DSL compiler

software engineers

manual

automatic

Figure 1.8: Software engineering with an interaction level of abstraction

an I/O operation on a port, that operation becomes pending on that port. At the
same time, the worker becomes suspended and will not resume until the protocol
on the other side of the port—again seen as an active entity—has completed the
I/O operation. Whenever an I/O operation completes on a port, the worker
that performed that I/O operation exchanges a datum through that port. Impor-
tantly, qualifiers “input” and “output” do not state an inherent property of a
port but merely a role that a port plays from a particular perspective. For instance,
I call the output port (from the perspective) of a worker an input port (from the
perspective) of a protocol, and vice versa. Because protocols—not workers—
constitute the primary subject of study in this thesis, henceforth, I qualify ports

CHAPTER 1. INTRODUCTION 20

1 public interface OutputPort {
2 public void put(Object datum) throws InterruptedException;
3 public void putUninterruptibly(Object datum);
4 public void resume() throws InterruptedException;
5 }

6 public interface InputPort {
7 public Object get() throws InterruptedException;
8 public Object getUninterruptibly();
9 public Object resume() throws InterruptedException;

10 }

Figure 1.9: Java API for ports

as “input” or “output” by default from a protocol perspective, unless explicitly
stated otherwise.

As suggested above (“every worker accesses only its own local memory”),
and crucially important for resolving the first issue on page 10, put and get
have value-passing semantics instead of reference-passing semantics: whenever
a worker exchanges a datum on a port, the run-time system that implements
put/get should make a deep copy of that datum, no matter its size. Although
value-passing semantics (i.e., conceptually private memory) makes software
engineers’ job of reasoning about their programs easier than reference-passing
semantics (i.e., conceptually shared memory), the necessary run-time copying
of data requires substantial resources. Fortunately, through static code analysis
techniques for worker subprograms, compilers may—transparent to software
engineers—determine when value-passing and reference-passing coincide and
substitute the latter for the former. For instance, if a worker puts a variable to
a port and never accesses/mutates that variable in the future, and if the datum
in this variable flows to only one other worker, the run-time system does not
need to copy that datum. Van de Nes studied compilation techniques for sub-
stituting reference-passing for value-passing in his MSc thesis [vdN15]. I do not
discuss such techniques further in this thesis, because they involve analyses of
computation code; such analyses lie beyond my current scope. Abstracting
away this class of optimizations, for the examples in this thesis, I stipulate that
software engineers judiciously substituted reference-passing for value-passing,
whenever safe and necessary. After all, although discouraged for nonexperts
to simplify programming, value-passing allows software engineers to emulate
reference-passing by having workers exchange references as values and, sym-
metrically, by having workers interpret such values as references to a shared
medium (e.g., memory, a file system, or online resources).

Figure 1.9 shows a Java API for ports, whose implementation I present in
Chapter 4; Figure 1.10 shows another version of the producers/consumer pro-
gram of before, which uses this API. (These figures constitute one of the rare
exceptions in this thesis, where I qualify ports as “input” or “output” from the
perspective of workers.) More precisely, Figure 1.10 shows only the worker
subprograms of the full program. In this new version, the producers and the

CHAPTER 1. INTRODUCTION 21

1 public class Producer extends Thread {
2 private OutputPort port;
3

4 public Producer(OutputPort port) {
5 this.port = port;
6 }
7

8 public void run() {
9 while (true) {

10 Object datum = Thread.currentThread().getId();
11 this.port.putUninterruptibly(datum);
12 } } }

13 public class Consumer extends Thread {
14 private InputPort port;
15

16 public Consumer(InputPort port) {
17 this.port = port;
18 }
19

20 public void run() {
21 while (true) {
22 Object datum = this.port.getUninterruptibly();
23 System.out.println(datum);
24 } } }

25 public class ModularProducersConsumerProgram {
26 public ModularProducersConsumerProgram(
27 OutputPort A, OutputPort B, InputPort C) {
28

29 (new Producer(A)).start();
30 (new Producer(B)).start();
31 (new Consumer(C)).start();
32 } }

Figure 1.10: Modular producers/consumer program in Java

consumer interact with each other only via ports, passed to the program as ac-
tual parameters of the constructor: one producer thread has access to Output-
Port A, the other producer has access to OutputPort B, and the consumer has
access to InputPort C. To this program, Parnas’ advantages of modularization
apply. First, groups of software engineers can write the protocol subprogram in
the DSL independently from the worker subprograms in Java. Moreover, soft-
ware engineers can easily reuse the protocol subprogram. Second, software
engineers can change the protocol subprogram without touching the worker
subprograms. Third, software engineers can analyze the protocol subprogram
separate from the worker subprograms.

By using a GPL for writing computation code and a DSL for writing interac-
tion code, software engineers syntactically separate worker subprograms from
protocol subprograms. The natural modularization of protocols resulting from
this separation resolves Issue 3 on page 13 and promotes protocol reuse. More-

CHAPTER 1. INTRODUCTION 22

over, a true intention-expressing DSL for interaction preserves enough infor-
mation for a compiler to perform protocol optimizations (without the need to
reconstruct such intention information). As such, this compiler relieves soft-
ware engineers from the responsibility of manually performing protocol opti-
mizations, by automatically selecting and applying such optimizations itself.
The compiler designer of such optimizations, instead of software engineers,
becomes responsible for proving the correctness of those optimizations. For-
mally establishing such desirable properties, however, remains a one-shot ac-
tivity (cf. ad-hoc reasoning about every manually protocol-optimized program
with concurrency construct for mutual exclusion). Typically, because DSL code
has a higher level of abstraction than GPL code, proving properties of proto-
col optimizations in this way becomes simpler and more mathematically ele-
gant than reasoning about GPL code. As such, a true intention-expressing DSL
resolves Issue 2 on page 10; I present such a DSL in this thesis and give con-
crete examples of protocol optimizations that its compiler supports. Finally,
because workers no longer interact with each other through shared memory
but through value-passing I/O operations and protocols, schedulers no longer
affect the correctness of programs. And because interaction no longer occurs as
a byproduct of seemingly unrelated reads/writes and concurrency constructs,
but as first-class entities in DSL code, interaction and protocols become explicit
artifacts. Both these improvements simplify reasoning about protocols and in-
teraction among workers, thereby resolving Issue 1 on page 13.

Concrete Instantiation

In this thesis, I present the theory and practice of a true intention-expressing
DSL for interaction, called FOCAML, pronounced “foe camel”, with emphasis
on “foe”. Despite its similar name—an acronym whose meaning I clarify in
Chapter 3—FOCAML has no relation to the OCAML language.

As any DSL for interaction, FOCAML provides constructs for implement-
ing protocol specifications. Essentially, such specifications define the admissi-
ble instances of interaction among workers during runs of programs. A pro-
tocol, thus, imposes constraints on which instances of interaction may occur
when (i.e., which I/O operations may synchronously complete on which ports
in which instant). In FOCAML, software engineers represent such constraints
compositionally as multiplication expressions over a special kind of finite au-
tomata; I further motivate my choice for automata on page 32. By their defini-
tion, these automata capture the intention behind protocols as precisely as pos-
sible. Drawing strong inspiration from previous work by Baier et al. [BSAR06]
and Arbab [Arb04], I first define FOCAML’s semantics and syntax, in that order.
My main contribution, then, consists of the theory and practice of a FOCAML
compiler, including protocol optimizations. As such, this thesis essentially in-
stantiates Figure 1.7, for FOCAML. Figure 1.11 shows this instantiation.

• In Chapter 2, I define the automata-based semantics of FOCAML.

CHAPTER 1. INTRODUCTION 23

D
E

C
L

A
R

A
T

IV
E

IM
P

E
R

A
T

IV
E

specification S

FOCAML M0 M1 M2 M3 M4 M5

Java threads I1 I2 I3 I4 I5

kernel-threads I ′1 I ′2 I ′3 I ′4 I ′5

x86 B1 B2 B3 B4 B5

f
g1 g2 g3 g4 g5

h1 h2 h3 h4 h5

Figure 1.11: Instantiation of Figure 1.7

• Chapter 3 covers arrow f in Figure 1.11. In this chapter, I define the
syntax of FOCAML, which software engineers can use for writing their
protocol subprograms; essentially, FOCAML allows software engineers to
concisely and compositionally write multiplication expressions over au-
tomata.

In this chapter, I also present example FOCAML code—including code for
protocols in NASA’s well-established NAS Parallel Benchmarks [BBB+91,
BBB+94]—which I use throughout this thesis both as running examples
and for experimentation with my FOCAML compiler.

• Chapter 4 covers arrows g1 and h1 in Figure 1.11. In this chapter, I discuss
basic compilation approaches for FOCAML.

In arguably the most natural compilation approach, a FOCAML compiler
generates a thread for every automaton in a multiplication expression
over automata. At run-time, the resulting threads concurrently run and
use a consensus algorithm to synchronize their behavior (i.e., synchro-
nize the firings of their transitions). Natural as this may seem, the process
of reaching consensus inflicts significant overhead. Transformation g1
improves this approach by serializing all parallelism among automata al-
ready at compile-time, by computing their full product, thereby avoiding

CHAPTER 1. INTRODUCTION 24

the need for a consensus algorithm at run-time.

In this chapter, I also present a basic FOCAML-to-Java compiler, which ap-
plies g1 before generating Java code (i.e., transformation h1), and discuss
experiments performed with this compiler.

• Chapter 5 covers arrows g2 and h2 in Figure 1.11. In this chapter, I discuss
an improved compilation approach for FOCAML, formalized and proven
correct at the higher level of automata instead of at the lower level of GPL
code.

As the experimental results in Chapter 5 show, transformation g1 can
cause both compile-time and run-time performance problems related to
(i) exponential growth of serialized automata and (ii) oversequentializa-
tion of serialized automata. Transformation g2 compensates for those
problems by applying more selective serialization, thereby recovering
useful parallelism among automata.

In this chapter, I also present an improved FOCAML-to-Java compiler,
which applies g1 and g2 before generating Java code (i.e., transforma-
tion h2), and discuss experiments performed with this compiler.

• Chapter 6 covers arrows g3 and h3 in Figure 1.11. In this chapter, I discuss
an improved compilation approach for FOCAML, formalized and proven
correct at the higher level of automata instead of at the lower level of GPL
code.

As the experimental results in Chapters 4 and 5 show, the neutral element
for automaton product (modulo some behavioral congruence) does not
behave neutrally with respect to performance: it degrades performance.
This phenomenon does not stand by itself but rather symptomizes a more
fundamental problem. Transformation g3 solves this problem, thereby
improving the performance of nearly every FOCAML program.

In this chapter, I also present an improved FOCAML-to-Java compiler,
which applies g1, g2, and g3 before generating Java code (i.e., transfor-
mation h3), and discuss experiments performed with this compiler.

• Chapter 7 covers arrows g4 and h4 in Figure 1.11. In this chapter, I discuss
an improved compilation approach for FOCAML, formalized and proven
correct at the higher level of automata instead of at the lower level of GPL
code.

As part of firing a transition at run-time, a thread for an automaton must
solve one or more constraint satisfaction problems. However, the use
of general solvers and algorithms inflicts significant overhead. Trans-
formation g4 reduces such overhead by computing a dedicated solver for
constraint satisfaction problems at compile-time, thereby minimizing the
time spent on solving at run-time.

CHAPTER 1. INTRODUCTION 25

In this chapter, I also present an improved FOCAML-to-Java compiler,
which applies g1, g2, g3, and g4 before generating Java code (i.e., trans-
formation h4), and discuss experiments performed with this compiler.

• Chapter 8 covers arrows g5 and h5 in Figure 1.11. In this chapter, I discuss
an improved compilation approach for FOCAML, formalized and proven
correct at the higher level of automata instead of at the lower level of GPL
code.

As the experimental results in Chapter 7 show, the performance of compi-
ler-generated code for certain protocols degrades as the number of work-
ers increases, even though one may reasonably expect performance to
stay constant. Here, problematically, threads defined by such compiler-
generated code check the transitions in their corresponding automata for
enabledness only one after the other, in linear time. As the number of
transitions often increases with the number of workers, also the run time
of such threads increases. Transformation g5 resolves this issue by iden-
tifying cases as this and by subsequently injecting data structures that
allow threads to check linearly many transitions in constant time.

In this chapter, I also present an improved FOCAML-to-Java compiler,
which applies g1, g2, g3, g4 and g5 before generating Java code (i.e., trans-
formation h5), and discuss experiments performed with this compiler.

I conclude this thesis in Chapter 9 with a summary and future work. As in this
chapter, throughout this thesis, I discuss related work whenever relevant—”by
need”—instead of in separate chapters or sections.

The concrete syntax of FOCAML, additional definitions, and detailed proofs
of all lemmas and theorems in this thesis appear in a separate technical re-
port [Jon16].

With Arbab, Halle, and Santini, I previously published parts of this the-
sis in seven conference/workshop papers [JA13a, JA13b, JA14, JA15a, JA15b,
JHA14a, JSA14] and in two journal papers [JA16, JSA15], all as first/lead au-
thor. This thesis, however, contains also a significant body of new material
that I have not yet submitted for publication, notably my experimental results.
At the beginning of every new section, I indicate the publication status of the
material presented in that section. The other six conference/workshop pa-
pers [JA11, JCP12, JHA14b, JKA11, JKA16, JSS+12] and the other three journal
papers [JA12, JCP16, JSS+14] that I published as first/lead author during my
PhD project, with Afsarmanesh, Arbab, Clarke, Halle, Kappé, Krause, Proença,
Santini, and Sargolzaei, do not fit the scope of this thesis; I cite some of them at
the appropriate places in this thesis, though.

Chapter 2

DSL for Interaction I:
Semantics

As defined in Chapter 1, a true intention-expressing DSL for interaction pro-
vides constructs for implementing protocol specifications as first-class entities
that preserve as much intention information from software engineers as pos-
sible. To achieve this, such constructs should very precisely capture the in-
tention that people have when they use the word “protocol”. In this thesis, I
therefore commit myself to the Oxford Advanced American Dictionary, which
informally defines “protocol” as follows:

“3 [countable] (computing) a set of rules that control the way data is
sent between computers”—[Lea11, page 1179]

In this chapter, I present the semantics of a true intention-expressing DSL for
interaction, whose programs satisfy this dictionary definition, replacing “com-
puters” with “workers” according to terminology established in Chapter 1. In
this DSL, significantly, protocols (i.e., admissible interaction, i.e., constraints on
interaction as explained in Chapter 1) constitute the set of first-class entities
(i.e., mathematical relations, concisely represented through automata, as ex-
plained in this chapter) and primary units of composition, built out of atomic
protocols—interactions—which explicitly constrain the timing, ordering, and
data-flows between actions. This strongly contrasts, for instance, process cal-
culi, where processes constitute the set of first-class entities and primary units
of composition, built of out atomic processes—actions—which only implicitly
may (or may not!) induce interaction.

In Section 2.1, I present both elementary machinery for modeling “[...] the
way data is sent between workers” and complementary machinery for model-
ing “a set of rules that control [...]”. In Section 2.2, I briefly discuss a practical
incarnation of the theoretical work in Section 2.1.

27

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 29

2.1 Theory

(I have not yet submitted the material in this section for publication.)

Interaction Languages

In this thesis, as explained in Chapter 1, interaction among workers occurs
through blocking I/O operations with value-passing semantics on their ports.
Workers may have access to multiple ports, each of which they may use for a
different purpose or even in different protocols. Consequently, modeling pro-
tocols at the finer level of “interaction among ports” instead of at the coarser
level of “interaction among workers” improves the accuracy of the resulting
models. Indeed, in contrast to the latter approach, the former approach enables
me to state precisely through which of a worker’s ports certain interaction oc-
curs. The compiler that I present in Chapter 4 actually requires this level of
precision. Therefore, in what follows, I develop machinery for modeling “the
way data is exchanged through ports” instead of “sent between workers”.

As a first step, I formally define two essential ingredients: ports and data.

Definition 1 (ports). A port is an unstructured object. P denotes the set of all
ports, ranged over by p. 2P denotes the set of all sets of ports, ranged over by P, V .

22
P

denotes the set of all sets of sets of ports, ranged over by E. 22
2P

denotes the set
of all sets of sets of sets of ports, ranged over by G.

Definition 2 (data). A datum is an unstructured object. D denotes the set of all
data, ranged over by d, such that P ∩ D = ∅.

Definition 3 (empty datum). nil is an unstructured object such that nil /∈ D.

The extra condition in Definition 2 means that workers do not communicate
their ports to other workers; the theory presented in this chapter does not sup-
port mobility as in π-calculus. In fact, in practice, the value-passing semantics
of I/O operations inhibits this. Nevertheless, as explained in Chapter 1, noth-
ing prevents a worker from sending a reference to a port as a value to another
worker; and symmetrically, nothing prevents this other worker from interpret-
ing and using this value as a reference to a port. Whenever software engineers
set this up, however, they also take full responsibility for the consequences.
Definition 3 asserts the existence of a distinguished empty datum. The exact
content of P and D depends on the context of their use and formally does not
matter much. For instance, if I use Java for writing worker subprograms, D
contains all Java objects. Henceforth, I write elements of P in capitalized lower
case sans-serif (e.g., A, B, C, In1, Out2), while I write elements of D in lower case
monospace (e.g., 1, 3.14, true, "foo"). At this point, I do not yet distinguish
input ports from output ports; this comes later, in the next subsection.

Out of ports and data, I construct interaction letters, so called for a reason
that becomes clear shortly. Every interaction letter models one instance of in-
teraction, in which particular data pass through particular ports. Formally, I

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 30

define an interaction letter λ as a partial function that associates a datum d
with every port p in its domain, where λ(p) = d means that d passes through p
in the instance of interaction modeled by λ.

Definition 4 (interaction letters). An interaction letter is a partial function from
ports to data. LETT = (P⇀ D) \ ∅ denotes the set of all interaction letters, ranged
over by λ. 2LETT denotes the set of all sets of interaction letters, ranged over by Λ.

Suppose that one producer has access to port A, the other producer to port B,
and the consumer to port C in the producers/consumer example in Chapter 1.
In that case, interaction letter {A 7→ "foo"}models an instance of interaction in
which one producer exchanges datum "foo"—a string—through port A with
its environment. Similarly, interaction letter {C 7→ "foo"} models an instance
of interaction in which the consumer exchanges "foo" through port C with its
environment. Together, these two instances of interaction can model the asyn-
chronous send/receive of "foo" from a producer (on port A) to the consumer
(on port C). Similarly, interaction letter {A 7→ "foo",C 7→ "foo"} can model an
instance of interaction in which a producer and the consumer synchronously
exchange "foo". The LateAsyncMerger2 protocol in Chapter 1 forbids such syn-
chronous communication, though, so this third instance of interaction should
never occur.

Out of interaction letters, I construct interaction words, so called for a rea-
son that becomes clear shortly. Every interaction word models one chain of
interaction, in which infinitely many instances of interaction follow each other.
Formally, I define an interaction word w as an infinite sequence of nonempty
interaction letters λ1λ2· · ·, where λi models the i-th instance of interaction in
the chain of interaction modeled by w.

Definition 5 (interaction words). An interaction word is an infinite sequence
of interaction letters. WORD = LETTω denotes the set of all interaction words,
ranged over by w.

Continuing the previous example, the following four interaction words model
chains of interaction in which, from left to right, (i) only one producer commu-
nicates with the consumer, (ii) both producers communicate with the consumer
(iii) both producers synchronously communicate with the consumer, and (iv)
both producers nontransactionally communicate with the consumer:

(i) (ii) (iii) (iv)

{A 7→ "foo"} {A 7→ "foo"} {A 7→ "foo",C 7→ "foo"} {A 7→ "foo"}
{C 7→ "foo"} {C 7→ "foo"} {B 7→ "bar",C 7→ "bar"} {B 7→ "bar"}
{A 7→ "bar"} {B 7→ "bar"} {A 7→ "baz",C 7→ "baz"} {C 7→ "foo"}
{C 7→ "bar"} {C 7→ "bar"} {B 7→ "qux",C 7→ "qux"} {C 7→ "bar"}

...
...

...
...

LateAsyncMerger2 forbids the chains of interaction modeled by (iii) and (iv).

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 31

Out of interaction words, I construct interaction languages, so called for a
reason that becomes clear shortly. Every interaction language models a collec-
tion of chains of interaction. Formally, I define an interaction language L as a
set of interaction words.

Definition 6 (interaction languages). An interaction language is a set of inter-
action words. LANG = 2WORD denotes the set of all interaction languages, ranged
over by L.

Continuing the previous example, the following interaction language models
all chains of interaction admitted by LateAsyncMerger2.w

w ∈WORD
and

[[
i mod 2 = 0 implies Dom(w(i)) ⊂ {A,B}

]
for all i

]
and

[[
i mod 2 = 1 implies Dom(w(i)) = {C}

]
for all i

]


The machinery presented so far models the second component of the dic-
tionary definition on page 27 as follows. First, an interaction word (i.e., a chain
of interaction) models one infinite “way data is exchanged through ports” in
one particular infinite run of a program. Then, an interaction language (i.e.,
a collection of chains of interaction) models a collection of infinite ways “data
is exchanged through ports”. One can model finite ways “data is exchanged
through ports” by extending finite sequences to infinite sequences as usual.

Interaction letters, interaction words, and interaction languages go by dif-
ferent names in the literature. For instance, Izadi et al. call interaction letters
records, interaction words streams of records, and interaction languages languages
of records [IBC11, Iza11]. Alternatively, both Baier et al., Klein, and Klüppelholz
et al. call interaction letters concurrent I/O operations and interaction words
I/O streams [BBK+10, BBKK09a, BBKK09b, BKK11, KB09, KB10, Kle12, Klü12],
while Arbab et al. call interaction words scheduled data streams [ABdBR07].
Each of those names refers to the same kind of mathematical object, though.
Tuples of timed data streams (TDS) comprise a different but still related kind
of mathematical object, originally introduced by Rutten and Arbab and later
further developed by Arbab into abstract behavior types [AR03, Arb05]. Every
tuple of TDSs contains one TDS for every port of interest. Every TDS, in turn,
consists of two infinite sequences: a time stream of monotonically increasing
real numbers and a data stream of data. A TDS for a port p subsequently models
that the i-th datum in the data stream flows through p at the time represented
by the i-th real number in the time stream. Consequently, tuples of TDSs con-
tain not only information about the order in which instances of interaction take
place but also more precise timing information. For instance, if I need to extract
the full instance of interaction that occurs at time 3.14, I check for every port
(i) which index 3.14 has in that port’s time stream, and if such an index indeed
exists, (ii) which datum occurs in that port’s data stream at that index.

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 32

Constraint Automata

If an interaction language contains exactly those interaction words that model
the chains of interaction admitted by some protocol, this interaction language
indeed models that protocol. To model protocols in terms of interaction lan-
guages, thus, I need a method of concisely specifying the content of interaction
languages. This brings me to the first component of the dictionary definition
on page 27: I need machinery for modeling “a set of rules that control [the
second component]”. I intend to capture such “a set of rules” that a protocol
consists of with an automaton of some kind, and in particular, with that au-
tomaton’s transition relation. By constructing this automaton such that it accepts
interaction words, each of its transitions effectively models one of the stateful
“rules that control the way data is exchanged through ports”.

Naively, I may adopt the set of all interaction letters as my alphabet and
use Büchi automata as interaction language acceptors. In this approach, every
infinite sequence of transitions straightforwardly corresponds to exactly one
interaction word. However, such an explicit representation of interaction letters
on transitions has a problem: if the set of all data D contains infinitely many el-
ements, so does the set of all interaction letters LETT. In that case, the resulting
Büchi automata have infinite transition relations, which I cannot account for.

Instead of labeling a transition t with an interaction letter, I label t with a
symbolic representation of a possibly infinite set of interaction letters Λ. Every
such a representation consists of two elements: a synchronization constraint and
a data constraint. A synchronization constraint specifies the domain of every
interaction letter in Λ. This models which ports participate in every instance
of interaction modeled by Λ. Formally, I define a synchronization constraint
as a set of ports. A data constraint specifies two things. First, it specifies to
which data every interaction letter in Λ maps the ports in its domain. This
models which data pass through which ports in every instance of interaction
modeled by Λ. Second, it specifies the content of memory cells before and after
firing t. This models how internal buffers in a protocol evolve. Shortly, I define
a data constraint as a formula in a first-order calculus with variables, constants,
functions, and relations [Rau10a]. Before I can do so, however, I first need to
introduce other machinery.

I start by formally defining memory cells.

Definition 7 (memory cells). A memory cell is an unstructured object. M de-
notes the set of all memory cells, ranged over by m. 2M denotes the set of all sets of
memory cells, ranged over by M .

The exact content of M depends on the context of its use and does not matter
much. Henceforth, I write elements of M in lower case sans-serif (e.g., x, buff1).

Out of memory cells and data, I construct memory snapshots. Every memory
snapshot models the content of memory cells in some time instant. Formally, I
define a memory snapshot µ as a partial function that associates a datum d to
every memory cell m in its domain, where µ(m) = d means that m contains d
in the time instant modeled by µ.

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 33

Definition 8 (memory snapshots). A memory snapshot is a partial function from
memory cells to data. SNAPSH = M⇀ D denotes the set of all memory snapshots,
ranged over by µ.

Suppose that the producers and the consumer use buffer x for temporary stor-
age of their data in the producers/consumer example in Chapter 1. In that
case, {x 7→ 0}models the initial content of the buffer (i.e., an arbitrarily selected
datum), while {x 7→ "foo"} models the content of the buffer after a producer
has sent "foo" to the consumer.

I proceed by defining variables in the calculus, called data variables. Every
data variable models a container for data. For instance, ports can hold data,
so every port serves as a data variable in the calculus. Similarly, memory cells
can hold data, but the meaning of “to hold” differs in this case. Ports hold data
only during an instance of interaction (i.e., transiently, in passing). In contrast,
memory cells hold data also before and after an instance of interaction. Conse-
quently, in the context of data variables, a memory cell before an instance of
interaction and the same memory cell after that instance have a different iden-
tity. After all, the content of the memory cell may have changed in between.
Therefore—inspired by notation from Petri nets [Rei85]—for every memory
cell m, both •m and m• serve as data variables: •m refers to the datum in m
before an instance of interaction, while m• refers to the datum in m after that
instance. I abbreviate sets {•m |m ∈M} and {m• |m ∈M} as •M and M•.

Definition 9 (data variables). A data variable is an object x generated by the
following grammar:

x ::= p | •m | m• (data variables)

X denotes the set of all data variables. 2X denotes the set of all sets of data variables,
ranged over by X .

I assign meaning to data variables with data assignments.

Definition 10 (data assignments). A data assignment is a partial function from
data variables to data. ASSIGNM = X⇀ D denotes the set of all data assignments,
ranged over by σ. 2ASSIGNM denotes the set of all sets of data assignments, ranged
over by Σ.

I proceed by defining constants, functions, and predicates in the calculus.
To avoid excessive machinery—but at the cost of formal precision—I do not
distinguish constant, function, and predicate symbols from their interpretation
as data, functions on data, and relations on data [Rau10a]. Instead, I directly
refer to data, data functions, and data relations.

Definition 11 (data functions). A data function is a function from tuples of data
to data. F =

⋃{Dk → D | true} denotes the set of all data functions, ranged over
by f .

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 34

Definition 12 (data relations). A data relation is a relation on tuples of data.
R =

⋃{2Dk | true} denotes the set of all data relations, ranged over by R.

Henceforth, I write elements of F in camel case monospace (e.g., divByThree,
inc), while I write elements of R in capitalized camel case monospace (e.g.,
Odd, SmallerThan).

Out of data variables, data, and data functions, I construct data terms. Every
data term represents a datum. This models an operation on (some of) the data
involved in an instance of interaction.

Definition 13 (data terms). A data term is an object t generated by the following
grammar:

t ::= x | d | f(t1, . . . , tk≥1) (data terms)

TERM denotes the set of all data terms. 2TERM denotes the set of all sets of data
terms, ranged over by T .

Henceforth, let <TERM denote some strict total order on TERM.
Given a data assignment whose domain includes at least the data variables

in a data term t, one can evaluate t to a datum. (To evaluate t, additionally, every
data function application in t must have the right number of inputs: the arity
of a data function and its number of inputs must match. Henceforth, I tacitly
assume that this always holds true.)

Definition 14 (evaluation). eval : ASSIGNM×TERM → D∪ {nil} denotes the
function defined by the following equations:

evalσ(x) =

{
σ(x) if x ∈ Dom(σ)
nil otherwise

evalσ(d) = d

evalσ(f(t1, . . . , tk)) =


f(evalσ(t1), . . . , evalσ(tk)) if

evalσ(t1) 6= nil
and · · · and
evalσ(tk) 6= nil


nil otherwise

Out of data terms, data relations, and data variables, I finally construct a
first-order calculus of data constraints. Although this calculus supports ex-
istential quantification, it does not support universal quantification for two
reasons. First, universal quantification seems only marginally useful in this
thesis (i.e., I do not miss the extra expressiveness that it would provide). More
importantly, however, inclusion of universal quantification would complicate
computing a particular normal form of data constraints in Chapter 6.

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 35

σ |= > (2.1)

[
m ∈M implies
σ |= •m = m•

]
for all m

σ |= K(M)
(2.2)

evalσ(t1) = evalσ(t2) 6= nil
σ |= t1 = t2

(2.3)
(evalσ(t1), . . . , evalσ(tk)) ∈ R

σ |= R(t1, . . . , tk)
(2.4)

σ |= χ1 and σ |= χ2

σ |= χ1 ∧ χ2

(2.5)
σ |= χ1 or σ |= χ2

σ |= χ1 ∨ χ2
(2.6)

Free(a) ⊆ Dom(σ)
and σ 6|= a

σ |= ¬a (2.7)
σ |= φ[d/x] for some d

σ |= ∃x.φ (2.8)

σ |= φ1 and · · · and σ |= φk
σ |= φ1 ∧ · · · ∧ φk

(2.9)
σ |= φ1 or · · · or σ |= φk

σ |= φ1 ∨ · · · ∨ φk
(2.10)

Figure 2.1: Addendum to Definition 16

Definition 15 (data constraints). A data constraint is an object φ generated by
the following grammar:

M ::= any subset of M
a ::= ⊥ | > | K(M) | t = t | R(t1, . . . , tk≥1) (data atoms)
` ::= a | ¬a (data literals)
χ ::= ` | χ ∧ χ | χ ∨ χ (data formulas)
φ ::= χ | ∃x.φ | φ1 ∧ · · · ∧ φk≥2 | φ1 ∨ · · · ∨ φk≥2 (data constraints)

DC denotes the set of all data constraints. 2DC denotes the set of all sets of data
constraints, ranged over by Φ.

To simplify some of the proofs later in this thesis, the grammar features mul-
tiary conjunction and disjunction in addition to their binary versions. Also,
negation cannot occur freely but only in data literals, because free occurrences
of negation seriously complicate data constraint normalization.

Henceforth, let <DC denote a strict total order on DC, let
∧

Φ denote the
unique multiary conjunction of the data constraints in Φ under <DC, and let

∨
Φ

similarly denote a unique multiary disjunction.
Every data constraint characterizes a set of interaction letters—its seman-

tics—through an entailment relation. Let φ[t/x] denote data constraint φ with
data term t substituted for every occurrence of data variable x (in a capture-
free way).

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 36

Definition 16 (entailment). |= ⊆ ASSIGNM × DC denotes the smallest relation
induced by the rules in Figure 2.1.

Contradiction, tautology, (multiary) conjunction, and (multiary) disjunction
have standard semantics [Rau10a]. Negation ¬a means that, despite all free
variables in a having a value, a does not hold true; the extra condition on the
free variables in a ensures the monotonicity of entailment. Data atom K(M)
means that every memory cell in M keeps the same value before and after an
instance of interaction. Data atom t1 = t2 means that t1 and t2 evaluate to the
same datum. Typical examples include p1 = p2 (i.e., the same datum passes
through ports p1 and p2), p = m• (i.e., the datum that passes through port p
enters the buffer modeled by memory cell m), and p = •m (i.e., the datum
in the buffer modeled by memory cell m exits that buffer and passes through
port p). Tautology > means that it does not matter which data flow through
which ports.

Henceforth, let ⇒ and ≡ denote the implication relation and the equiva-
lence relation on data constraints, derived from |= in the usual way [Rau10a].
Furthermore, let Variabl(φ) denote the set of data variables in φ, let Free(φ) de-
note its set of free data variables, and let Bound(φ) denote its multiset of bound
data variables (i.e., Bound(φ) contains as many occurrences of x as the number
of quantifiers that bind x in φ).

Let X denote a set of data variables. I call a data constraint φ good under X
if (i) φ has no free data variables outside X and (ii) the structure of φ either al-
lows for moving all existential quantifiers outward, in a semantics-preserving
way, or already satisfies such a prenex normal form. More precisely, to move ex-
istential quantifiers outward, (ii.a) φ must have no bound data variables in X
and (ii.b) every existential quantifier in φ must bind a unique data variable.
Typically, X contains all data variables for ports and memory cells in (a tran-
sition in) a constraint automaton a. By subsequently requiring that all data
constraints in a come from Good(X), condition (i) ensures that the protocol
modeled by a cannot affect interaction on ports and memory cells outside its
own scope. Condition (ii) plays a role in data constraint normalization, which
I discuss in more detail in Chapter 6.

Definition 17 (goodness). Good : 2X → 2DC denotes the function defined by the
following equation:

Good(X) =

{
φ

Free(φ) ⊆ X and Bound(φ) ∩X = ∅
and |Bound(φ)| = |Bound(φ) ∩ X|

}
∪ {φ | Free(φ) ⊆ X and φ = ∃x1. . . .∃xl.(χ1 ∧ . . . ∧ χk)}

To understand the previous definition, recall that Bound(φ) denotes a multiset,
whereas X denotes an ordinary set. Then, observe that Bound(φ) ∩ X contains
only the distinct elements in Bound(φ). Thus, if the multiset Bound(φ) con-
tains more elements than the ordinary set Bound(φ)∩X, at least two existential
quantifiers in φ bind the same data variable; condition (ii.b) forbids this.

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 37

I proceed by defining first-order constraint automata with memory, each of
which models a protocol, usually called just “constraint automata” in this the-
sis. Formally, I define a constraint automaton a as a tuple consisting of a set of
states Q, a triple of three sets of ports (P all, P in, P out), a set of memory cells M ,
a transition relation−→, and an initial configuration (q0, µ0). Set P all contains all
ports that participate in the protocol modeled by a, while P in and P out contain
only its input ports and its output ports (where “input” and “output” qualify
ports from the protocol perspective). Although P all contains the union of P in

and P out, the converse not necessarily holds true: beside input and output
ports, P all may contain also internal ports. If a constraint automaton has inter-
nal ports, I call it a composite; otherwise, I call it a primitive.

Definition 18 (states). A state is an object. Q denotes the set of all states, ranged
over by q. 2Q denotes the set of all sets of states, ranged over by Q.

Definition 19 (constraint automata). A constraint automaton is a tuple:

(Q, (P all, P in, P out),M,−→, (q0, µ0))

where:

• Q ⊆ Q (states)

• (P all, P in, P out) ∈ 2P × 2P × 2P such that: (ports)

P in, P out ⊆ P all and P in ∩ P out = ∅

• M ⊆M (memory cells)

• −→ ⊆ Q× 2P
all × Good(P all ∪ •M ∪M•)×Q such that: (transitions)[

q
P,φ−−→ q′ implies

φ ∈ Good(P ∪ •M ∪M•)

]
for all q, q′, P, φ

• (q0, µ0) ∈ Q× (M → D) (initial configuration)

AUTOM denotes the set of all constraint automata, ranged over by a, b, c,d. 2AUTOM

denotes the set of all sets of constraint automata, ranged over by A,B. 22
AUTOM

denotes the set of all sets of sets of constraint automata, ranged over by A.

Figure 2.2 shows a first example. In graphical representations of constraint
automata, I annotate ports in synchronization constraints with superscripts
“in” and “out” to indicate their polarity; internal ports have no explicit annota-
tion. Henceforth, let Stat(a) denote the state space of a constraint automaton a,
let Port(a) denote its set of ports, let Input(a) and Output(a) denote its set of in-
put and output ports, let Memor(a) denote its set of memory cells, let Trans(a)
denote its transition relation, let init(a) denote its initial configuration, and
let Dc(a) denote the set of data constraints that occur on its transitions.

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 38

Q = {q1, q2}
(P all, P in, P out) = ({A,B,C}, {A,B}, {C})
M = {x}

−→ =

(q1, {A},A = x•, q2),
(q1, {B},B = x•, q2),
(q2, {C}, •x = C, q1),


(q0, µ0) = (q1, {x 7→ 0})

Textual representation

{Ain},A = x•

{Bin},B = x•

{Cout}, •x = C

Graphical representation

Figure 2.2: Constraint automaton for the LateAsyncMerger2 protocol in the pro-
ducer/consumer example in Chapter 1. One producer has access to port A, the
other producer has access to port B, the consumer has access to port C, and the
producers and the consumer use buffer x for temporary storage of data.

“This thesis’ constraint automata” (i.e., first-order constraint automata with
memory) generalize “original constraint automata” previously developed by
Baier et al. [BSAR06]: original constraint automata constitute the subset of
this thesis’ constraint automata without memory cells and without existential
quantification, data functions, and data relations in data constraints. By subse-
quently removing also data constraints, this thesis’ constraint automata further
reduce to port automata, first studied by Koehler and Clarke [KC09]. (In turn,
the semantic domain of the connector algebras developed by Bliudze and Sifakis
essentially consist of single-state port automata [BS08, BS10].) Extensions of
original constraint automata with memory (but still without existential quan-
tification, data functions, and data relations in data constraints) include con-
straint automata with state memory, used in work of Pourvatan et al. and for-
malized in a categorical setting by Krause et al. [KGdV13, PSAB12, PSHA12].
To my knowledge, Klüppelholz and Baier first articulated the distinction be-
tween explicit representations of interaction letters (concurrent I/O operations
in their terminology) and symbolic representations of sets of interaction letters
as transition labels [KB09]. Pushing their symbolic representation one step fur-
ther than here, though, Klüppelholz and Baier in fact combine synchronization
constraints and data constraints into single symbolic objects, called I/O con-
straints. As another novelty at that time, their calculus of I/O constraints sup-
ports arbitrary data relations (but no data functions or existential quantifica-
tion). Under some restrictions [Klü12], the model checker developed by Baier
et al. can verify original constraint automata extended with data functions and
data relations [BBK+10, BBKK09a]. Finally, the encoding of original constraint
automata as purely logical constraints developed by Clarke et al. and Proença
also supports existential quantification, unary data functions, and data rela-
tions, as this thesis’ constraint automata [CPLA11, PC13a, PC13b, Pro11].

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 39

Behavior, Equivalence, and Congruence

The memory cells in constraint automata may remind one of stacks in classi-
cal pushdown automata [HMU06]: both memory cells and stacks register be-
haviorally relevant—yet ultimately hidden—information, beyond observable
behavior. In defining the runs of a constraint automaton, I therefore recall
and adopt the following concepts from pushdown automata theory. An in-
stantaneous description of a pushdown automaton consists of three elements:
its current state, the remaining input tape, and the current content of its stack.
A pushdown automaton can move from one instantaneous description to the
next by firing a transition out of its current state, thereby possibly changing its
state, certainly consuming the first input symbol on the tape (i.e., a letter), and
possibly changing its stack. A sequence of successive moves, starting from an
initial instantaneous description, results in a run. By replacing “input tape”
with “interaction word”, “input symbol” with “interaction letter”, and “stack”
with “set of memory cells”, the previous concepts become applicable also to
constraint automata. First, I formally define an instantaneous description as
a triple (q, w, µ) consisting of a state q, an interaction word w, and a memory
snapshot µ.

Definition 20 (instantaneous descriptions). DESCR = Q×WORD×SNAPSH
denotes the set of all instantaneous descriptions.

For a constraint automaton a with memory cellsM to move from an instan-
taneous description (q, λw, µ) to another instantaneous description (q′, w, µ′),
several conditions must hold. Obviously, a should have a transition (q, P, φ, q′)
from state q to state q′. Second, memory snapshots µ and µ′ should have ex-
actly M as their domain (i.e., in making a transition, a cannot affect memory
cells that it does not know about). Third, interaction letter λ should satisfy the
synchronization constraint of the transition: λ should have exactly P as its do-
main. Finally, the data assignment composed of λ, µ and µ′ should satisfy data
constraint φ. These conditions ensure that at least the first instance of interac-
tion in the chain of interaction modeled by interaction word λw respects the
protocol modeled by a. Importantly, unless φ explicitly states otherwise (e.g.,
by using the K predicate), the content of memory cells in M can nondetermin-
istically change during a move. As an alternative to the previous conditions, a
can also move from (q, w, µ) to (q′, w, µ′) if a transition from q to q′ with an
empty synchronization constraint exists: such an unobservable transition does
not contribute to the observable chain of interaction modeled by w.

Definition 21 (moves-to). ` ⊆ AUTOM×DESCR×DESCR denotes the smallest
relation induced by the rules in Figure 2.3.

Let w denote an interaction word, and let a denote a constraint automaton
with initial configuration (q0, µ0). If a has an infinite run starting from instan-
taneous description (q0, w, µ0), interaction word w belongs to the interaction
language of a. In that case, a accepts w. Because internal choices in a constraint

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 40

q
P,φ−−→ q′

and Dom(µ) = Dom(µ′) = M
and Dom(λ) = P
and λ ∪ {•m 7→ µ(m) |m ∈M} ∪ {m• 7→ µ′(m) |m ∈M} |= φ

(q, λw′, µ) `(·,·,M,−→,·) (q′, w′, µ′)
(2.11)

q
∅,φ−−→ q′

and Dom(µ) = Dom(µ′) = M
and {•m 7→ µ(m) |m ∈M} ∪ {m• 7→ µ′(m) |m ∈M} |= φ

(q, w, µ) `(·,·,M,−→,·) (q′, w, µ′)
(2.12)

Figure 2.3: Addendum to Definition 21

automaton do not matter for modeling protocols in this thesis (i.e., I model
protocols only in terms of observable data-flows on ports), I consider the set of
all interaction words accepted by a the behavior of a.

Definition 22 (behavior). Behav : AUTOM → LANG denotes the function de-
fined by the following equation:

Behav(a) = {w | init(a) = (q, µ) and (q, w, µ) `a (q′, w′, µ′) `a · · ·}

The existence of an infinite run of a constraint automaton a on an interaction
word w essentially means that the protocol modeled by a admits every step of
“the way data is exchanged through ports” modeled by w. As such, a—and in
particular its transition relation—indeed models “a set of rules that control the
way data is exchanged through ports”, thereby faithfully capturing the dictio-
nary definition on page 27.

Two constraint automata model the same protocol if those two automata
have the same behavior, up to internal choices (i.e., they accept exactly the
same interaction words). This intuition induces a straightforward and natural
notion of behavioral equivalence on constraint automata, based on equality of
their accepted interaction languages.

Definition 23 (behavioral equivalence). ≈ ⊆ AUTOM × AUTOM denotes the
smallest relation induced by the following rule:

Behav(a1) = Behav(a2)

a1 ≈ a2
(2.13)

Proving behavioral equivalence between constraint automata plays an impor-
tant role in establishing the correctness of protocol optimizations, including
those presented later in this thesis. As in Milner’s work on CCS [Mil89], how-
ever, the previous behavioral equivalence based on interaction languages has

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 41

a practical problem: although it does denote an equivalence relation in its tech-
nical sense, ≈ does not denote a congruence relation under certain operations
(discussed shortly). This complicates proving behavioral equivalences.

Inspired by Milner’s bisimulation—but no less by the variant of bisimula-
tion developed by Baier et al. [BSAR06]—I therefore introduce a congruence
relation on constraint automata that subsumes ≈. Then, in the rest of this the-
sis, to prove behavioral equivalence between constraint automata, instead, I
prove behavioral congruence to imply behavioral equivalence. Keep in mind,
however, that only behavioral equivalence truly matters in the end; behavioral
congruence just serves as a means to achieve that end.

First, I define the behavioral preorder to establish when a constraint automa-
ton a2 simulates a constraint automaton a1. In that case, a relation R on the
states of a1 and a2 exists such that, for every state q1 of a1, if:

• R relates q1 to a state q2 of a2

• and a1 has a transition from q1 to a state q′1 that admits a set of interaction
letters Λ,

then:

• a2 has a transition from q2 to a state q′2 that admits at least the interaction
letters in Λ

• and R relates q′1 to q′2.

In other words, a2 can always simulate every transition that a1 can make, even
its unobservable transitions. One may weaken this notion of strong simulation
by ignoring unobservable transitions, but I neither need nor pursue such a
notion of weak simulation in this thesis.

Definition 24 (behavioral preorder). � ⊆ 2Q×Q ×AUTOM×AUTOM denotes
the smallest relation induced by the following rule:

R ⊆ Q1 ×Q2 and q01 R q02

and


[[q1 P,φ1−−−→1 q

′
1

and q1 R q2

]
implies φ1 ⇒

∨{
φ2

q2
P,φ2−−−→2 q

′
2

and q′1 R q′2

}]
for all q1, q

′
1, q2, P, φ1


(Q1, (P

all, P in, P out),M,−→1, (q
0
1 , µ

0))
�R (Q2, (P

all, P in, P out),M,−→2, (q
0
2 , µ

0))

(2.14)

(Technically, the ternary relation � does not denote a preorder because of its
third operand, but I ignore this minor detail here by abuse of terminology.)
Out of the behavioral preorder, I construct the behavioral congruence.

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 42

Definition 25 (behavioral congruence). ' ⊆ AUTOM × AUTOM denotes the
smallest relation induced by the following rule:[

a1 �R a2 and a2 �R-1 a1

]
for some R

a1 ' a2
(2.15)

The following theorem states that behavioral congruence implies behavioral
equivalence. This result shows that I can indeed use ' to establish ≈.

Theorem 1. a1 ' a2 implies a1 ≈ a2

In the next subsection, I present actual congruence results for '.

Multiplication and Subtraction

As in all engineering disciplines, composition—the act of building more com-
plex objects out of simpler ones—and abstraction—the act of hiding objects’
irrelevant details—play an important role in software engineering. This holds
true also for implementing protocol specifications. Therefore, I define two op-
erations on constraint automata: multiplication for composition and subtraction
for abstraction.

Multiplication consumes two constraint automata a1 and a2 as input and
produces a constraint automaton as output. I formally define multiplication
on constraint automata as a partial function. This partiality models that not
all protocols can compose into a new one: two protocols can compose only
if (i) each of their shared ports serves as an input port in one protocol and
as an output port in the other and (ii) these two protocols have no shared
buffers. Because constraint automata have a rather involved structure, the
formal definition of multiplication may look deceivingly complex. Therefore,
I first present a more informal description to explain the main concepts in-
volved. Let a1 denote (Q1, (P

all
1 , P in

1 , P
out
1),M1,−→1, (q

0
1 , µ

0
1)), and let a2 de-

note (Q2, (P
all
2 , P in

2 , P
out
2),M2,−→2, (q

0
2 , µ

0
2)). Assuming that conditions (i) and

(ii) hold true, I take the following steps to multiply a1 and a2.

• First, I take the Cartesian product of Q1 and Q2 as the new set of states,
and I take the pair of q01 and q02 as the new initial state (inside the new
initial configuration).

• Second, I take the union of P all
1 and P all

2 as the new set of all ports. Sub-
sequently, I put every port in P in

1 ∪ P in
2 in the new set of input ports,

except those that serve also as output ports. Similarly, I put every port
in P out

1 ∪ P out
2 in the new set of output ports, except those that serve also

as input ports. Ports with “mixed polarity” (e.g., those that serve as input
port in a1 and as output port in a2) become internal ports in the product.

• Third, I take the union of M1 and M2 as the new set of memory cells, and
I take the union of µ0

1 and µ0
2 as the new initial memory snapshot (inside

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 43

the new initial configuration). Because (ii) holds true, µ0
1 ∪ µ0

2 denotes a
well-defined function over domain M1 ∪M2.

• Finally, I must construct a new transition relation out of −→1 and −→2. I
do so with three rules.

The first rule states that a transition of a1 involving a shared port can fire
iff a transition of a2 involving that same shared port synchronously fires.
In other words, a1 and a2 must agree on synchronously firing transitions
involving shared ports. The concept of agreement plays an important
role in Chapter 5. Here, I call the kind of agreement required between a1

and a2 weak. The reason for this particular modifier becomes clear in
Chapter 5, where I also introduce a notion of strong agreement.

The second rule states that a transition of a1 involving no shared ports
can fire at any time. This means that the protocol modeled by a1 admits
the instances of interaction controlled by that transition regardless of the
protocol modeled by a2 in the composition of those protocols. Indeed, if
the protocol modeled by a2 does not know about a port, it cannot exercise
any kind of control over how interaction occurs on that port. (Formally,
I should carefully ensure that firings of such a transition in a1 do not
affect the memory cells in a2. After all, during every move, the content
of memory cells may nondeterministically change unless explicitly stated
otherwise.) The third rule states the same as the second rule but with a1

and a2 reversed.

For technical convenience—especially later in this thesis—I define multiplica-
tion as just explained in three steps. First, I define weak agreement. Second,
I define an agreement-parametric multiplication, which takes three instead of
two operands: an agreement relation and two constraint automata. Although
not directly useful, in Chapter 5, agreement-parametric multiplication enables
me to straightforwardly define a different multiplication, based on another
form of agreement. Third, I instantiate generalized multiplication with weak
agreement.

Definition 26 (agreement). An agreement relation is a relation ∗ such that:

∗ ⊆ (2P × 2P)× (2P × 2P) and


(P all

1 , P1) ∗ (P all
2 , P2) implies[

(P2 \ P1) ∩ P all
1 = ∅

and (P1 \ P2) ∩ P all
2 = ∅

] 
for all P1, P

all
1 , P2, P

all
2


AGREEM denotes the set of all agreement policies.

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 44

q1
P1,φ1−−−→1 q

′
1 and q2

P2,φ2−−−→2 q
′
2 and (P all

1 , P1) ∗ (P all
2 , P2)

q
P1∪P2,φ1∧φ2−−−−−−−−−→� q′

(2.17)

q1
P1,φ1−−−→1 q

′
1 and q2 ∈ Q2 and P all

2 ∩ P1 = ∅
(q1, q2)

P1,φ1∧K(M2)−−−−−−−−→� (q′1, q2)
(2.18)

q2
P2,φ2−−−→2 q

′
2 and q1 ∈ Q1 and P all

1 ∩ P2 = ∅
(q1, q2)

P2,φ2∧K(M1)−−−−−−−−→� (q1, q
′
2)

(2.19)

Figure 2.4: Addendum to Definition 28

Definition 27 (weak agreement). ♦ ⊆ (2P×2P)×(2P×2P) denotes the smallest
relation induced by the following rule:

P1 ⊆ P all
1 and P2 ⊆ P all

2 and P all
1 ∩ P2 = P all

2 ∩ P1

(P all
1 , P1) ♦ (P all

2 , P2)
(2.16)

Lemma 1. ♦ ∈ AGREEM

Definition 28 (agreement-parametric multiplication).
� : AGREEM×AUTOM×AUTOM ⇀ AUTOM denotes the partial function defined
by the following equation:

Q1,P all
1 ,
P in
1 ,

P out
1

 ,

M1,
−→1,

(q01 , µ
0
1)


�∗



Q2,P all
2 ,
P in
2 ,

P out
2

 ,

M2,
−→2,

(q02 , µ
0
2)


=



Q1 ×Q2, P all
1 ∪ P all

2 ,
(P in

1 ∪ P in
2) \ (P out

1 ∪ P out
2),

(P out
1 ∪ P out

2) \ (P in
1 ∪ P in

2)

 ,

M1 ∪M2,
−→�,

((q01 , q
0
2), µ0

1 ∪ µ0
2)


if

P
all
1 ∩ P all

2 =
(P in

1 ∩ P out
2) ∪ (P out

1 ∩ P in
2)

and M1 ∩M2 = ∅


where −→� denotes the smallest relation induced by the rules in Figure 2.4.

Definition 29 (multiplication). � : AUTOM ×AUTOM ⇀ AUTOM denotes the
partial function defined by the following equation:

a1 � a2 = a1 �♦ a2

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 45

{Ain,P1out},
A = P1

�

{Bin,P2out},
B = P2

�

{P1in,P3out},
P1 = P3

{P2in,P3out},
P2 = P3

�
{P3in},
P3 = x•

{Cout},
•x = C

=
{Ain,P1out,Bin,P2out},

A = P1 ∧ B = P2

{Ain,P1out},
A = P1 ∧ K(∅)

{Bin,P2out},
B = P2 ∧ K(∅)

�

{P1in,P3out},
P1 = P3

{P2in,P3out},
P2 = P3

�
{P3in},
P3 = x•

{Cout},
•x = C

=

{Ain,P1,P3out},
A = P1 ∧ K(∅) ∧ P1 = P3

{Bin,P2,P3out},
B = P2 ∧ K(∅) ∧ P2 = P3

�
{P3in},
P3 = x•

{Cout},
•x = C

=

{Ain,P1,P3},
A = P1 ∧ K(∅) ∧

P1 = P3 ∧ P3 = x•

{Bin,P2,P3},
B = P2 ∧ K(∅) ∧

P2 = P3 ∧ P3 = x•

{Cout}, •x = C

Figure 2.5: Multiplication of four constraint automata

Figure 2.5 shows an example. Henceforth, whenever I write “multiplication”,
I always mean multiplication as in Definition 29 unless explicitly stated other-
wise. Multiplication satisfies commutativity and associativity up-to behavioral
congruence.

Essentially, multiplication glues together the constituent protocols modeled
by its multiplicands on their shared ports. In particular, every rule involving
a shared port in one constituent protocol (i.e., a transition in a constraint au-
tomaton) must “synchronize” with every rule involving the same shared port
in the other constituent protocol. Such synchronization ensures that every in-

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 46

stance of interaction admitted by their composition abides by every relevant
rule in both constituent protocols. This kind of composition has two interesting
properties: multiparty synchronization and indirect synchronization. Multiparty
synchronization means that through successive applications, � can synchro-
nize transitions in one constraint automaton with transitions in multiple other
constraint automata. For instance, � synchronizes the transitions in the mid-
dle constraint automaton on the second line in Figure 2.5 with transitions in
both the left constraint automaton (multiplied on the third line) and the right
constraint automaton (multiplied on the fourth line). Indirect synchronization
means that through successive applications, � can synchronize transitions in
a constraint automaton with transitions in another constraint automaton via a
number of “intermediate” constraint automata. For instance, � synchronizes
the transitions in the left constraint automaton on the second line in Figure 2.5
with the lower transition in the right constraint automaton (multiplied on the
fourth line) via the transitions in the middle constraint automaton (multiplied
on the third line). Indirect synchronization enables compositional construction
of globally synchronous composites out of locally synchronous primitives.

The following theorems state that ' denotes a congruence under � and �.

Theorem 2.
[

a1 �∗ a3,a2 �∗ a4 ∈ AUTOM
and a1 ' a2 and a3 ' a4

]
implies a1 �∗ a3 ' a2 �∗ a4

Theorem 3.
[

a1 � a3,a2 � a4 ∈ AUTOM
and a1 ' a2 and a3 ' a4

]
implies a1 � a3 ' a2 � a4

Subtraction consumes a constraint automaton a and a port p as input and
produces a constraint automaton as output. To subtract p from a, I remove p
from every set of ports that a consists of, including synchronization constraints
of transitions, and I existentially quantify p away in every data constraint.

Definition 30 (subtraction). � : AUTOM × P → AUTOM denotes the function
defined by the following equation:

(Q, (P all, P in, P out),M,−→, (q0, µ0))� p =
(Q, (P all \ {p}, P in \ {p}, P out \ {p}),M,−→�, (q

0, µ0))

where −→� denotes the smallest relation induced by the following rule:

q
P,φ−−→ q′

q
P\{p},∃p.φ−−−−−−−→� q′

(2.20)

Figure 2.6 shows an example. (The constraint automaton in Figure 2.6 accepts
exactly the same interaction language as the interaction language accepted by
the constraint automaton in Figure 2.2, modulo the subtracted ports.)

Subtraction as defined in Definition 30 specializes a more general subtrac-
tion on constraint automata, where also the right-hand side denotes a con-

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 47

{Ain,P31,P3},
A = P1 ∧ K(∅) ∧

P1 = P3 ∧ P3 = x•

{Bin,P2,P3},
B = P2 ∧ K(∅) ∧

P2 = P3 ∧ P3 = x•

{Cout}, •x = C

� P1� P2� P3

=

{Ain,P3}, ∃P1.(A = P1 ∧ K(∅)
∧ P1 = P3 ∧ P3 = x•)

{Bin,P3}, ∃P1.(B = P2 ∧ K(∅)
∧ P2 = P3 ∧ P3 = x•)

{Cout}, •x = C

� P2� P3

=

{Ain,P3}, ∃P2.∃P1.(A = P1 ∧ K(∅)
∧ P1 = P3 ∧ P3 = x•)

{Bin,P3}, ∃P2.∃P1.(B = P2 ∧ K(∅)
∧ P2 = P3 ∧ P3 = x•)

{Cout}, •x = C

� P3

=

{Ain}, ∃P3.∃P2.∃P1.(A = P1 ∧ K(∅)
∧ P1 = P3 ∧ P3 = x•)

{Bin}, ∃P3.∃P2.∃P1.(B = P2 ∧ K(∅)
∧ P2 = P3 ∧ P3 = x•)

{Cout}, •x = C

Figure 2.6: Subtraction of ports from the constraint automaton in Figure 2.5

straint automaton (instead of just a port). Because I do not need such general
subtraction in this thesis, I skip it here and present only Definition 30.

The following theorem states that ' denotes a congruence under �.

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 48

Theorem 4.
[
p ∈ P and a1 ' a2

]
implies a1 � p ' a2 � p

The following theorem states that subtraction of unshared ports distributes
over multiplication up-to behavioral congruence. Consequently, I can incre-
mentally subtract internal ports, which constraint automata cannot share by
definition, during a bigger multiplication.

Theorem 5.[
p /∈ Port(a1) ∩ Port(a2)
and a1 � a2 ∈ AUTOM

]
implies (a1 � a2)� p ' (a1 � p) � (a2 � p)

Definition 29 of � extends the definition of multiplication on original con-
straint automata developed by Baier et al. [BSAR06], mainly by accounting for
memory cells in Rules 2.18 and 2.19. Pourvatan et al. only informally define
a multiplication on constraint automata with state memory, without mention-
ing a K-like predicate to account for nondeterministic changes to the content of
memory cells [PSAB12, PSHA12]. Krause et al. generalize the multiplication
of Pourvatan et al. as pullbacks in a category of constraint automata with state
memory [KGdV13], allowing those automata to synchronize not only on ports
but also on memory cells and states. The definition of Krause et al. general-
izes also Definition 29, but I do not need this level of generality in this thesis.
Finally, Klüppelholz introduces another generalization of the multiplication of
Baier et al. that, as Definition 29, takes into account ports’ direction [Klü12].

Definition 30 of � significantly differs from the subtraction developed by
Baier et al. [BSAR06], which not only removes ports but also eliminates unob-
servable transitions. Klüppelholz calls the former kind of subtraction structure-
preserving and the latter kind aggregating [Klü12]. Memory cells in constraint
automata make elegantly defining aggregating subtraction quite challenging; I
leave this for future work.

2.2 Practice

(I have not yet submitted the material in this section for publication.)

I developed a Java library for constraint automata, multiplication, and sub-
traction, with separate classes for constraint automata (class Automaton), their
states (class State), their transitions (class Transition), data constraints (class
Constraint), ports (class Port), and more. Importantly, I use these classes
only for representing constraint automata and not for running them. In partic-
ular, class Port does not implement interfaces InputPort and OutputPort in
Figure 1.9; I come to that later, in Chapter 4.

To multiply constraint automata, the library often needs to evaluate the
weak agreement relation in Definition 27 (i.e., k1k2 times, where k1 and k2 de-
note the number of transitions in the multiplicands). To do this efficiently, in
terms of both time and space, I wrote a special data structure for sets. Every

CHAPTER 2. DSL FOR INTERACTION I: SEMANTICS 49

time the library constructs a new Port, it gives this Port a unique positive
integer id. Subsequently, it can represent set membership of Ports as a binary
string, where a 1 in the i-th position means that a set includes the Port with id i
(similarly, a 0 means exclusion). The library can subsequently store such binary
strings as arrays of ints (whose length depends on the total number of Ports in
the two multiplicands) and perform operations on sets—containment, union,
intersection, complementation, difference–using integer arithmetic. This spe-
cial data structure for sets led to significantly better performance than, for in-
stance, java.util.HashSet, which I used in earlier versions of this library.

Software engineers using the library can construct Automatons either di-
rectly or indirectly. In the direct method, software engineers directly use the
constructor of Automaton (through a factory design pattern) to obtain an empty
Automaton. Subsequently, because they have an Automaton object at their dis-
posal, those software engineers can directly use methods of that object for
adding States and Transitions. However, because the direct method ex-
poses Automaton objects to software engineers, those software engineers can
use all public methods of those objects. For software engineers who work on
the library itself (i.e., me), the risks involved seem controllable and reasonably
within those software engineers’ field of responsibility. For software engineers
who merely use the library, in contrast, exposing Automaton objects seems a
bad idea. After all, those objects have public methods that only the library it-
self should invoke. Such software engineers, therefore, need a more controlled
environment in which they can construct Automatons.

In the indirect method, software engineers write a subclass of abstract class
UserDefinedAutomaton. This abstract class has an Automaton among its pri-
vate fields (inaccessible from its subclasses) and, through its protected methods
(accessible from its subclasses), exposes only methods for adding States and
Transitions. The library sets the private Automaton in a UserDefinedAutoma-
ton through a package-visible method (i.e., Automaton and UserDefinedAu-
tomaton must live in the same package for this to work). This indirect method
allows software engineers who merely use the library to construct their own
Automatons for subsequent multiplication and subtraction in a safe manner.

The library for constraint automata forms a crucial component of the com-
piler that I present in Chapters 4–8.

Chapter 3

DSL for Interaction II: Syntax

By their definition in Chapter 2, every constraint automaton models “a set of
rules that controls the way data is exchanged through ports”. Thus, by the
dictionary definition on page 27, every constraint automaton models a pro-
tocol. In principle, then, constraint automata per se constitute an intention-
expressing DSL for interaction that software engineers can use for implement-
ing their protocol specifications. Exposing software engineers directly to con-
straint automata, however, has at least one major disadvantage: constraint au-
tomata quickly grow prohibitively large.

In this chapter, I present two complementary syntaxes for representing mul-
tiplication expressions of constraint automata: an existing graphical syntax
based on Reo [Arb04] and a new textual syntax called First-Order Constraint
Automata with Memory Language (FOCAML). The graphical syntax perhaps ap-
peals better to intuition, while the textual syntax has more expressive power. In
Section 3.1, I first elaborate on the previously stated disadvantage of using con-
straint automata directly as syntax. Subsequently, I present Reo and FOCAML.
In Section 3.2, I present an editor for FOCAML, including an interpreter, and
discuss some nontrivial examples.

51

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 53

{Din},
D = x•

{Ein},
E = y•

{Din,Ein},
D = x• ∧ E = y•

{Fout},
•x = F

{Ein, Fout},
E = y• ∧ •x = F

{Ein},
•x = x•

∧ E = y•

{Fout},
•y = F

{Din},
•y = y•

∧ D = x•

{Din, Fout},
D = x• ∧ •y = F)

{Fout},
•y = F

{Fout},
•x = F

Figure 3.1: Constraint automaton for the EarlyAsyncMerger2 protocol. One pro-
ducer has access to port D, the other producer has access to port E, the con-
sumer has access to port F, and the producers and the consumer use buffers x
and y for temporary storage of data.

3.1 Theory

(I have not yet submitted the material in this section for publication.)

Compositional Construction of Constraint Automata

To illustrate the previous point that constraint automata quickly grow pro-
hibitively large, suppose that I must write a program that consists of k pro-
ducers and a consumer. My protocol specification states that the producers
send their data to the consumer asynchronously, reliably, unordered, but not
transactionally (cf. the LateAsyncMerger2 protocol in Chapter 1). Depending
on the value of k, I call this protocol EarlyAsyncMerger2, EarlyAsyncMerger3, etc.
For instance, Figure 3.1 shows a reasonably small constraint automaton for
EarlyAsyncMerger2. Generally, however, the constraint automaton for k pro-
ducers has as many as 2k states. This example, then, shows that the approach
of using constraint automata directly as syntax scales poorly. Instead, software
engineers should leverage constraint automata’s compositionality: they should
implement complex protocol specifications out of implementations of simpler
ones, by multiplying primitive constraint automata into composites.

Compositional construction forms the core of both the graphical Reo syntax
and the textual FOCAML syntax, presented in detail in the next subsections.
To implement protocol specifications using these syntaxes, software engineers
draw/write declarative multiplication expressions over a core set of constraint

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 54

A

B

C

LateAsyncMerger2

D

E

F

EarlyAsyncMerger2

Figure 3.2: Graphical syntax for the constraint automata in Figures 2.2 and 3.1

1 LateAsyncMerger2(a,b;c) = {
2 Sync(a;P1) mult Sync(b;P2) mult Merger2(P1,P2;P3) mult Fifo(P3;c)
3 }

4 EarlyAsyncMerger2(d,e;f) = {
5 Fifo(d;P1) mult Fifo(e;P2) mult Merger2(P1,P2;P3) mult Sync(P3;f)
6 }

Figure 3.3: Textual syntax for the constraint automata in Figures 2.2 and 3.1

automata. As a preview, Figures 3.2 and 3.3 show the graphical and textual
syntax for LateAsyncMerger2 and EarlyAsyncMerger2. As I demonstrate shortly,
contrasting their constraint automata, the graphs for EarlyAsyncMergerk grow
only linearly in k—instead of exponentially—while its texts even stay constant
(one of the reasons why I consider the latter syntax the more expressive one).

Figure 3.4 shows the parametric constraint automata that I selected for in-
clusion in the core set in this thesis, and which essentially mirror the “typical
set” of primitives used in Reo (discussed in more detail shortly). Parametric
constraint automata define sets of constraint automata, called families, whose
elements I call members. Formally, I define families as functions from the fol-
lowing function space:⋃{ Ni︸︷︷︸

natural number
parameters

× (D ∪ F ∪ R)j︸ ︷︷ ︸
extralogical
parameters

×Pk ×Ml︸ ︷︷ ︸
unobservable
parameters

×Pm × Pn︸ ︷︷ ︸
observable
parameters

→ AUTOM | i, j, k, l,m, n ≥ 0}

Thus, every family has i natural number parameters, j extralogical parameters for
data, data functions, and data relations (i.e., the extralogical elements of the
data constraint calculus in Chapter 2), k + l unobservable parameters for k inter-
nal ports and l memory cells, and m+ n observable parameters for n input ports
and m output ports (where “input” and “output” qualify ports from the proto-
col perspective). For instance, in Figure 3.4, Sync has two observable parame-
ters, one for an input port and one for an output port, and no other parameters
(i.e., i = j = k = l = 0 and m = n = 1); Fifo has, additionally, an unobservable
parameter for a memory cell (i.e., i = j = k = 0 and l = m = n = 1); BinRel has
one extralogical parameter for a data relation and two observable parameters
for input ports (i.e., i = k = l = n = 0, j = 1, and m = 2). By instantiating

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 55

{pin
1 , p

out
2 }, p1 = p2

Sync(p1; p2)

{pin
1 },>

{pin
1 , p

out
2 }, p1 = p2

LossySync(p1; p2)

{pin
1 },

m• = p1

{pout
2 },

p2 = •m

Fifo{;m}(p1; p2)

{pin
1 , p

out
2 }, f(p1) = p2

Transformer〈f〉(p1; p2)

{pin
1 },¬R(p1)

{pin
1 , p

out
2 }, R(p1) ∧ p1 = p2

Filter〈R〉(p1; p2)

{pin
1 , p

in
2 }, R(p1, p2)

BinRel〈R〉(p1, p2;)

{pin
1 , p

out
3 },

p1 = p3

{pin
2 , p

out
3 },

p2 = p3

Merger2(p1, p2; p3)

{pin
1 , p

out
2 , pout

3 },
p1 = p2 ∧ p1 = p3

Replicator2(p1; p2, p3)

{pin
1 , p

in
2 , p

out
3 },

f(p1, p2) = p3

BinOp〈f〉(p1, p2; p3)

Figure 3.4: Parametric constraint automata in the core set

the parameters of a family with values (i.e., by applying the function to those
values), I obtain one of its members. Henceforth, let FAM denote the set of all
families (i.e., the previous function space).

I use the following notational format for signatures of families:

namelist of natural number parameters〈list of extralogical parameters〉
{list of unobservable parameters}

(list of observable parameters)

In this format, as in Figure 3.4, I separate internal ports from memory cells
in the list of unobservable parameters by a semicolon, and I do the same for
separating input ports from output ports in the list of observable parameters.
Also, for notational convenience, I omit lists of natural number, extralogical,
and unobservable parameters whenever i = 0, j = 0, or k+l = 0. If a family has
natural number parameters, I sometimes write its name with a natural number
subscript to denote the “subfamily” corresponding to that natural number, as
a kind of function restriction. None of the families defined in Figure 3.4 have
natural number parameters. Henceforth, as before, I write names of families in
capitalized lower case sans-serif (e.g., Filter, LateAsyncMerger2) and use these
names also for their corresponding protocols.

Figure 3.5 describes the behavior of the members of the families defined in
Figure 3.4, in terms of the data-flows between ports permitted by those mem-
bers. Although the choice of core set may matter for software engineers from a
usability/productivity perspective, it generally does not matter from a compi-
lation point of view: the techniques that I present later in this thesis work with

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 56

Sync(p1; p2) Infinitely often atomically
[
accepts a datum d on its in-

put port p1, then offers d on its output port p2
]
.

LossySync(p1; p2) Infinitely often atomically
[
accepts a datum d on its in-

put port p1, then either offers d on its output port p2 or
loses d

]
.

Fifo{;m}(p1; p2) Infinitely often first atomically
[
accepts a datum d on

its input port p1, then stores d in its memory cell m
]

and subsequently atomically
[
loads d from m, then of-

fers d on its output port p2
]
.

Filter〈R〉(p1; p2) Infinitely often either atomically
[
accepts a datum d on

its input port p1, then establishes that d satisfies data
relation R, then offers d on its output port p2

]
or atom-

ically
[
accepts a datum d on p1, then establishes that d

violates R, then loses d
]
.

Transformer〈f〉(p1; p2) Infinitely often atomically
[
accepts a datum d on its in-

put port p1, then applies data function f to d, then of-
fers f(d) on its output port p2

]
.

BinRel〈R〉(p1, p2;) Infinitely often, atomically
[
accepts data d1 and d2 on

its input ports p1 and p2, then loses d1 and d2
]
, if d1

and d2 satisfy R.

Merger2(p1, p2; p3) Infinitely often atomically
[
accepts a datum d either on

its input port p1 or on its input port p2, then offers d on
its output port p3

]
.

Replicator2(p1; p2, p3) Infinitely often atomically
[
accepts a datum d on its in-

put port p1, then offers d on its output ports p2 and p3
]
.

BinOp〈f〉(p1, p2; p3) Infinitely often atomically
[
accepts data d1 and d2 on

its input ports p1 and p2, then applies data function f
to d1 and d2, then offers f(d1, d2) on its output port p3

]
.

Figure 3.5: Data-flow description of the behavior of the members of the families
defined in Figure 3.4

arbitrary constraint automata and do not depend on my choice of core set—if
someone else prefers a different core set than the one in Figure 3.4, no problem.

Graphical Representation: Reo

Instead of exposing software engineers directly to constraint automata—as if
constraint automata by themselves constitute a DSL for interaction—software
engineers should compositionally construct constraint automata by multiply-
ing members of the families defined in Figure 3.4. To productively develop

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 57

p1 p2

Sync(p1; p2)

p1 p2

LossySync(p1; p2)

p1 p2m

Fifo{;m}(p1; p2)

p1 p2f

Transformer〈f〉(p1; p2)

p1 p2R

Filter〈R〉(p1; p2)

p1 p2R

BinRel〈R〉(p1, p2;)

p1

p2

p3

Merger2(p1, p2; p3)

p1

p2

p3

Replicator2(p1; p2, p3)

p1

p2

p3

f

BinOp〈f〉(p1, p2; p3)

Figure 3.6: Hyperarcs for the families defined in Figure 3.4

the multiplication expressions required for applying this approach, however,
software engineers need a more intuitive syntax than just primitive constraint
automata. In this subsection, I present a first candidate, based on the previ-
ous data-flow description of behavior in Figure 3.5. Using this syntax, already
briefly exemplified in Figure 3.2, software engineers draw multiplication ex-
pressions as data-flow hypergraphs. Every vertex in such a graph represents a
port; every hyperarc represents a constraint automaton that controls the inter-
action on its connected ports. To understand the behavior of a multiplication
expression, software engineers can simply “follow the data-flows” through its
corresponding hypergraph. Technically, every hypergraph represents a family
of constraint automata. To get a member of the family represented by a hyper-
graph, first, for every hyperarc in that hypergraph, get a member of the family
represented by that hyperarc. Subsequently, multiply those per-hyperarc mem-
bers and subtract all internal ports to get the required constraint automaton.

Figure 3.6 shows a hyperarc for every family defined in Figure 3.4; Fig-
ure 3.7 shows, for three new families, hypergraphs composed out of the hyper-
arcs in Figure 3.6, their shorthands (as a single hyperarc), and their parametric
constraint automata with simplified data constraints (e.g., I replaced data re-
lation True with > and eliminated a number of existential quantifiers result-
ing from subtracting internal ports after multiplication). Here and henceforth,
white vertices represent input and output ports, while shaded vertices repre-
sent internal ports. Members of the three families in Figure 3.6 reappear later
in this thesis and behave as follows. Members of SyncDrain simply instantiate
BinRel with data relation True. Stipulating that True holds true of any two data,
SyncDrain(p1, p2;) infinitely often atomically

[
accepts data d1 and d2 on its in-

put ports p1 and p2, then loses d1 and d2
]
. AsyncDrain forms the asynchronous

version of SyncDrain: AsyncDrain(p1, p2;) infinitely often atomically
[
accepts a

datum d either on its input port p1 or on its input port p2, then loses d
]
. Finally,

Blocker forms a reliable, strict version of Filter: Blocker〈R〉(p1; p2) infinitely of-
ten

[
accepts a datum d on its input port p1, then offers d on its output port p2,

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 58

{pin
1 , p

in
2 },>

p1 p2

p1 p2True

SyncDrain(p1, p2;)

{pin
1 },>

{pin
2 },>

p1 p2

p1 p2

AsyncDrain(p1; p2)

{pin
1 , p

out
2 }, R(p1) ∧ p1 = p2

p1 p2R

p1 p2

R

Blocker〈R〉(p1; p2)

Figure 3.7: Hypergraphs, shorthands, and parametric constraint automata for
families SyncDrain, AsyncDrain, and Blocker

Source node Sink node Mixed node Mergers/Replicators
for a node with three
data sources/sinks

Figure 3.8: Nodes

if d satisfies data relation R
]
.

The previous graphical syntax essentially yields Reo [Arb04, Arb11], an
existing graphical language for compositional construction of interaction pro-
tocols, manifested as circuits. Circuits consist of typed channels (edges) and
nodes (vertices), organized in a graph-like structure. The type of a channel de-
termines both its data-flow behavior and the appearance of its corresponding
edge. Every channel consists of two ends and a constraint that relates the timing
and the contents of the data-flows at those ends. Channel ends have one of two
types: source ends accept data into their channels (i.e., a source end of a chan-
nel connects to that channel’s data source/producer), while sink ends dispense
data out of their channels (i.e., a sink end of a channel connects to that chan-
nel’s data sink/consumer). Reo makes no other assumptions about channels
and allows, for instance, channels with two source ends. Every family defined
in Figure 3.4 with two ports corresponds to a channel type in Reo; the first two
rows in Figure 3.6 show their corresponding edges. Of these six channel types,
only BinRel does not yet appear in the literature on Reo; the other channel types
have roughly the same appearance in this thesis as in that literature. Users of
Reo may freely define their own channels with custom semantics.

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 59

p1

p2

p3

LateAsyncMerger2(p1, p2; p3)

p1

p2

p3

EarlyAsyncMerger2(p1, p2; p3)

p2p1

AsyncDrain(p1, p2;)

p1 p2

R

Blocker〈R〉(p1; p2)

Figure 3.9: Circuits for families LateAsyncMerger2, EarlyAsyncMerger2, Async-
Drain, and Blocker (cf. Figures 3.2 and 3.7)

Channel ends coincide on nodes. Every node has at least one coincident
channel end. Depending on its coincident channel ends, a node has one of the
three types shown in Figure 3.8. A source node has only coincident source ends.
Similarly, a sink node has only coincident sink ends. Finally, a mixed node has
both coincident source and coincident sink ends. The source nodes and sink
nodes of a circuit constitute its set of boundary nodes. The boundary nodes of
a circuit permit I/O operations, while a circuit uses its mixed nodes only for
internally routing data. Every sink channel end coincident on a node serves as
a data source for that node. Analogously, every source channel end coincident
on a node serves as a data sink for that node.

Contrasting channels, all nodes have the same, fixed data-flow behavior:
repeatedly, a node nondeterministically selects an available datum out of one
of its data sources and replicates this datum into each of its data sinks. A node’s
nondeterministic selection and its subsequent replication constitute one atomic
execution step; nodes cannot store, generate, or lose data. Members of the
Merger2 family model the nondeterministic selection behavior of a node with
two data sources. Similarly, members of the Replicator2 family model the repli-
cation behavior of a node with two data sinks. A node with m data sources
and n data sinks then corresponds to the multiplication of m−1 Merger2 mem-
bers and n− 1 Replicator2 members. Figure 3.8 exemplifies this for m = n = 3.
Henceforth, because it makes the previous data-flow hypergraphs more con-
cise, instead of explicitly drawing internal sequences of Merger2 and Replicator2
members, I collapse them into nodes. Figure 3.9 exemplifies this for previ-
ous hypergraphs. In figures, nodes have a larger diameter than ports (twice
as large, in fact) and a slightly lighter shade of gray than internal ports. By
borrowing this node notation from Reo, I essentially adopt Reo as a graphical
syntax for multiplication expressions of constraint automata. Therefore, as in
Reo, I call the previous hypergraphs just circuits in the rest of this thesis.

As another example, Figure 3.10 shows the, by now, classical circuit for

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 60

p1

p2

p3

p1

p2

p3

{pin
1 , p

out
2 },

p1 = p2

{pin
1 , p

out
3 },

p1 = p3

Router2(p1; p2, p3) Router node and
its corresponding Mer-
gers/Routers

Figure 3.10: Circuit, shorthand, and parametric constraint automaton for fam-
ily Router2 (left) and router node (right)

the Router2 family. Router2 forms the “inverse” of Merger2: Router2(p1; p2, p3)
infinitely often atomically

[
accepts a datum d on its input port p1, then of-

fers d either on its output port p2 or on its output port p3
]
. The inverse prop-

erty means that Merger2(p1; p2, p3) and Router2(p2, p3; p1) have exactly the same
transitions; just the directions of their ports differs. In Reo, Router2 has so many
applications, as a building block for more complex circuits, that it gave rise to
its own special node type: router nodes. Merely a syntactic sugar (i.e., a graph-
ical shorthand for its equivalent pure subcircuit), a router node has nondeter-
ministic selection behavior not only for its data sources but also for its data
sinks. A router node with m data sources and n data sinks then corresponds to
the multiplication of m − 1 Merger2 members and n − 1 Router2 members, as
shown in Figure 3.10. As with sequences of Merger2 and Replicator2 members,
I collapse sequences of Merger2 and Router2 members into router nodes.

For a circuit to make a global execution step—usually instigated by pend-
ing I/O-operations on its boundary nodes—its channels and its nodes must
reach consensus about their global behavior, to guarantee mutual consistency
of their local execution steps (e.g., a node should not replicate a data item into
a channel with an already full buffer). Then, circuit-wide data-flow emerges.

Arbab originally introduced Reo for coordinating components in compo-
nent-based systems [Arb04]. Since its introduction, however, researchers have
used Reo also in other contexts where concurrency and interaction play a role,
including service-oriented systems, multi-agent systems and even biological
systems (Arbab provides references [Arb11]); to adopt Reo in the context of
multicore processors seems only a natural next step in the evolution of Reo’s
application domains. By now, many formal semantics of Reo exist [JA12]. In
fact, Baier et al. originally presented constraint automata as a semantics for
Reo [BSAR06]. I took the opposite approach in this thesis: I started from con-
straint automata as an intention-expressing mechanism for modeling protocols
and now adopt Reo as a first possible syntax. Other options include zero-safe
Petri nets, BPMN, BPEL, and UML activity/sequence diagrams, each of whose
constructs easily translate into constraint automata [AKM08, AM08, CKA10,
MAB11, TVMS08]. Alternatively, the connector algebras of Bliudze and Sifakis

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 61

may serve as a syntax for (at least a subset of) constraint automata [BS08, BS10].
Finally, Dokter et al. recently compared Reo and BIP [DJAB15].

Textual Representation: FOCAML

Although wonderful for quickly scribbling circuits, visualizing data-flows, and
prototyping, Reo’s graphical syntax has a disadvantage: it does not support
repetition or instantiation constructs. For instance, in the beginning of this
section, I introduced EarlyAsyncMerger2, EarlyAsyncMerger3, etc., as separate
families of constraint automata. It makes more sense, however, to define only
one family LateAsyncMerger with a natural number parameter k that controls
the number of input ports of its members. Reo does not support such natu-
ral number parametrization, forcing me to draw a separate circuit for every
possible number of producers. To overcome this limitation, I present a second
syntax for representing multiplication expressions of constraint automata. As
stated in the introduction of this chapter, I call this textual syntax FOCAML. The
full concrete syntax of FOCAML appears in a separate technical report [Jon16];
below, I present a summary sufficient for understanding the examples in this
thesis.

Every FOCAML program consists of a number of nonrecursive family defi-
nitions (i.e., protocol subprograms) and a main definition (i.e., a main subpro-
gram).

• A family definition consists of a signature and a body.
A signature declares the formal parameters of a family definition and has
a structure very similar to the function signatures of families used so far:
every signature consists of a name, an optional list of natural number
parameters between square brackets, an optional list of extralogical pa-
rameters between angle brackets, and a mandatory list of port and/or
port array parameters between parentheses (with inputs and outputs sep-
arated by a semicolon). Because of these bracketing conventions, natu-
ral number parameters, extralogical parameters, and port parameters re-
quire no additional type annotations; array parameters, in contrast, have
a “[]” suffix. Figures 3.3, 3.11, and 3.12 show examples of signatures (ig-
nore their bodies for the moment). Contrasting the function signatures
of families used so far, signatures in FOCAML have no unobservable pa-
rameters. Instead, a FOCAML interpreter automatically generates fresh
internal ports and memory cells by need.
Arrays allow software engineers to pass multiple ports to the body of
a family definition through a single parameter. Technically, every array
parameter in a signature also implicitly declares an extra natural number
parameter for its length, accessible through the # operator (as exempli-
fied in the body of Merger and Router in Figure 3.12). This implicit kind
of natural number parametrization enables software engineers to write,
for instance, Merger (which generalizes Merger2 from having two to k in-
put ports, through an array parameter). Alternatively, the explicit kind of

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 62

1 SyncDrain(in1,in2;) = { BinRel<'True'>(in1,in2;) }

2 AsyncDrain(in1,in2;) = {
3 Sync(in1;P1)
4 mult Sync(in2;P2)
5 mult Merger2(P1,P2;P3)
6 mult Replicator2(P3;P4,P5)
7 mult SyncDrain(P4,P5;)
8 }

9 Blocker<R>(in;out) = {
10 Sync(in;P1)
11 mult Replicator2(P1;P2,P6)
12 mult Filter<R>(P2;P3)
13 mult Replicator2(P3;P4,P5)
14 mult Sync(P4;out)
15 mult SyncDrain(P5,P6;)
16 }

17 Router2(in;out1,out2) = {
18 Sync(in;P1)
19 mult Replicator2(P1;P2,P14)
20 mult Replicator2(P2;P3,P8)
21 mult LossySync(P3;P4)
22 mult Replicator2(P4;P5,P6)
23 mult Sync(P5;out1)
24 mult Sync(P6;P7)
25 mult LossySync(P8;P9)
26 mult Replicator2(P9;P10,P11)
27 mult Sync(P10;out2)
28 mult Sync(P11;P12)
29 mult Merger2(P7,P12;P13)
30 mult SyncDrain(P13,P14;)
31 }

Figure 3.11: FOCAML definitions for families SyncDrain, AsyncDrain, Blocker,
and Router

natural number parametrization, between square brackets in a signature,
enables software engineers to write, for instance, FifoK (which gener-
alizes Fifo from having a 1-capacity to a k-capacity buffer). FOCAML’s
abstract syntax, presented shortly, contains the available array construc-
tors (see also the concrete syntax [Jon16]); its denotational semantics, also
presented shortly, defines their straightforward meaning.

The body of a family definition consists of an expression over instan-
tiated signatures, operator mult(iplication), operator prod(uct), opera-
tor if/then/else, and operator let/in. Operator prod binds its natural
number identifier to every value in its range and forms the product of
its body for each of those bindings (cf. looping constructs in imperative
languages); see also the denotational semantics below. The FOCAML syn-
tax has no explicit operator for subtraction. Instead, when interpreting a

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 63

1 SyncK[k](in;out) = {
2 if (k == 1) {
3 Sync(in;out)
4 } else {
5 Sync(in;P[1])
6 mult { prod i:1..k-2 { Sync(P[i];P[i+1]) } }
7 mult Sync(P[k-1];out)
8 } }

9 FifoK[k](in;out) = {
10 if (k == 1) {
11 Fifo(in;out)
12 } else {
13 Fifo(in;P[1])
14 mult { prod i:1..k-2 { Fifo(P[i];P[i+1]) } }
15 mult Fifo(P[k-1];out)
16 } }

17 Merger(in[];out) = {
18 let k = #in {
19 if (k == 1) {
20 Sync(in[1];out)
21 } else if (k == 2) {
22 Merger2(in[1],in[2];out)
23 } else {
24 Merger2(in[1],in[2];P[2])
25 mult { prod i:3..k-1 { Merger2(P[i-1],in[i];P[i]) } }
26 mult Merger2(P[k-1],in[k];out)
27 } } }

28 Router(in;out[]) = {
29 let k = #out {
30 if (k == 1) {
31 Sync(in;out[1])
32 } else if (k == 2) {
33 Router2(in;out[1],out[2])
34 } else {
35 Router2(P[2];out[1],out[2])
36 mult { prod i:3..k-1 { Router2(P[i];P[i-1],out[i]) } }
37 mult Router2(in;P[k-1],out[k])
38 } } }

39 LateAsyncMerger(in[];out) = { Merger(in[1..#in];P) mult Fifo(P;out) }

40 EarlyAsyncMerger(in[];out) = {
41 let k = #in {
42 { prod i:1..k { Fifo(in[i];P[i]) } } mult Merger(P[1..k];out)
43 } }

Figure 3.12: FOCAML definitions for families SyncK, FifoK, Merger, LateAsync-
Merger, and EarlyAsyncMerger

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 64

1 main = {
2 LateAsyncMerger2(A,B;C)
3 } among {
4 Producer(A) and Producer(B) and Consumer(C)
5 }

Figure 3.13: Producers/consumer program for LateAsyncMerger2 in FOCAML
(cf. Figures 1.4 and 1.10)

family definition, a FOCAML interpreter automatically subtracts all ports
that occur in the body of that definition but not in its signature (cf. lo-
cal variables). Henceforth, I call such ports local ports. As a notational
convention, I write identifiers for ports/arrays in lowercase, while I cap-
italize actual values for ports/arrays. Figures 3.3, 3.11, and 3.12 show
example bodies (cf. Figures 3.2, 3.7, and 3.10). Note that Figure 3.12 also
shows k-parametric versions of LateAsyncMerger2 and EarlyAsyncMerger2
in Figure 3.3.

• A main definition consists of an optional list of program arguments (at
run-time passed via the command line) and a main body. The main body
consists of a list of instantiated family signatures and, separated by key-
word among, an optional list of instantiated foreign signatures. Every
instantiated family signature in the former list refers to a protocol sub-
program in FOCAML (i.e., a family definition); if present, every foreign
signature in the latter list refers to a worker subprogram in a comple-
mentary GPL (e.g., a public static method in Java or a function in C). By
sharing ports between family signatures and foreign signatures, the main
body states which links exist at run-time between protocols and work-
ers. Mainly for testing purposes, software engineers may omit the list
of foreign signatures; doing so does not yield a comprehensive program,
but my FOCAML interpreter (briefly described later in this chapter) and
compiler (in detail discussed in Chapters 4–8) will still process the list of
instantiated family signatures and generate code for them.

Figure 3.13 shows an example of a main subprogram for the producers/
consumer example in Chapter 1. I can nearly effortlessly change the pro-
tocol in this program just by replacing LateAsyncMerger2 with, for in-
stance, EarlyAsyncMerger2 in the main body. This shows that FOCAML
enables software engineers to easily change implementations of proto-
col specifications without affecting computation code (cf. Parnas’ advan-
tages of modularization in Chapter 1).

FOCAML has more features, including a basic macro system and constructs for
supplementing the core set with new families of constraint automata. I do not
discuss these practically important but theoretically insignificant features here.

Before giving a precise definition of the denotational semantics of FOCAML,
I first explain this semantics more informally and by example. Recall that

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 65

a FOCAML program represents a multiplication expression of constraint au-
tomata. With that in mind, I define the denotational semantics of instantiated
family signatures (in the main body or in the body of a family definition) in-
ductively over the set of all constraint automata. For the base case, every in-
stantiated signature of

[
a core set family defined in Figure 3.4

]
denotes the cor-

responding member of that family. Inductively, then, every instantiated signa-
ture of

[
a family defined in the program text

]
denotes the multiplication of the

denotations of the instantiated signatures in its body, minus local ports. For
instance, LateAsyncMerger2(A,B;C) has the following denotation (including
automatic subtraction of the ports denoted by P1, P2, and P3):

JLateAsyncMerger2(A,B;C)K

=


JSync(A;P1)K
� JSync(B;P2)K
� JMerger2(P1,P2;P3)K
� JFifo(P3;C)K

� JP1K � JP2K � JP3K

=


Sync(A;P1)
� Sync(B;P2)
�Merger2(P1,P2;P3)
� Fifo(P3;C)

� P1� P2� P3

For the last step in this derivation to hold true, trivially let A, B, C, P1, P2, and
P3 denote A, B, C, P1, P2, and P3. For the actual computation of the final
multiplication expression, see Figures 2.5 and 2.6. As another example, Late-
AsyncMerger(A[1..2];C) has the following denotation (including automatic
subtraction of the ports denoted by P[1], P[2], and P):

JLateAsyncMerger(A[1..2];C)K
= (JMerger(A[1..2];P)K � JFifo(P;B)K)� JPK

= (


JSync(A[1];P[1])K� JMerger2(A[2],P[1];P[2])K
� JSync(P[2];P)K


� JP[1]K � JP[2]K

� JFifo(P;B)K)� JPK

'


JSync(A[1];P[1])K
� JMerger2(A[2],P[1];P[2])K
� JSync(P[2];P)K
� JFifo(P;B)K

� JP[1]K � JP[2]K � JPK

The last step in this derivation holds true, because the denotations of P[1] and
P[2] do not occur in the constraint automaton denoted by Fifo(P;B). In those
cases, subtraction can move outward by Theorem 5.

Constraint automata have enough expressive power for modeling compu-
tation. Sirjani et al., for instance, used the “original constraint automata” by
Baier et al.—a subset of the constraint automata in this thesis—to model ac-
tors [SJBA06]. Technically, the extent of this expressiveness depends on the

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 66

I ∈ Identifier

B ∈ Boolean

N ∈ Natural
E ∈ Extralogical
P ∈ Port

Ar ∈ Array

FD ∈ FamilyDefinition
MD ∈ MainDefinition

R ∈ Program

BE ∈ BooleanExpression

NE ∈ NaturalExpression
EE ∈ ExtralogicalExpression
PE ∈ PortExpression

ArE ∈ ArrayExpression
?E ∈ N/E/P/ArExpression

AE ∈ AutomatonExpression

Figure 3.14: Abstract syntax domains of FOCAML

BE ::= B | NE1 == NE2 | !BE | BE1 && BE2 | BE1 || BE2
NE ::= N | I | NE1 + NE2 | NE1 - NE2 | NE1 * NE2 | NE1 / NE2 | NE1 % NE2 | #I
EE ::= E | I
PE ::= P | Ar[NE] | I | I[NE]

ArE ::= [PE1, . . . ,PEk] | Ar[NE1..NE2] | I | I[NE1..NE2]
?E ::= NE | EE | PE | ArE
AE ::= I ?E1 · · · ?Ek

| AE1 mult AE2
| prod I:NE1..NE2 AE
| if BE then AE1 else AE2
| let I = NE AE

FD ::= I I1 · · · Ik = AE
MD ::= main = AE

G ::= FD G | G FD | MD

Figure 3.15: Abstract syntax of FOCAML

set of all data D. For instance, if D contains data structures for unbounded
tapes, constraint automata can simulate Turing machines. With such a D, I can
model the behavior of worker subprograms referenced by instantiated foreign
signatures in a FOCAML program as constraint automata. The denotational se-
mantics of the main definition of that program then consists of a multiplication
of the constraint automata for its instantiated family and foreign signatures. I
discuss the behavior of main definitions in a more operationally in Chapter 4.

Having presented the denotational semantics of FOCAML informally, I now
make it precise. Figure 3.14 shows the domains for FOCAML’s abstract syn-

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 67

tax; Figure 3.15 shows its abstract syntax. I use this abstract syntax only in
FOCAML’s denotational semantics, below, so it captures only the essence of
what FOCAML programs represent: (multiplications of) constraint automata.
With this goal in mind, Figure 3.15 applies two notable abstractions to the con-
crete syntax [Jon16]): (i) signatures consist of one unbracketed/unordered list
of implicitly typed identifiers for natural numbers, extralogicals, ports, and ar-
rays and (ii) main definitions consist of an expression of constraint automata,
thereby abstracting away the concrete distinction between protocols and work-
ers, each of which semantically just denotes a constraint automaton.

Figure 3.16 shows the domains for FOCAML’s denotational semantics; Fig-
ures 3.17–3.20 show its denotational semantics, annotated with comments to
clarify their definitions. Some additional general remarks:

• Recall that family definitions have no recursion (for simplicity and be-
cause no theoretical need for it seems to exist), and note that this de-
notational semantics evaluates family definitions in an eager fashion (to
detect erroneous definitions early and because FOCAML has no infinite
expansion).

• In Figure 3.19, let prim denote a function that maps identifiers to families
of primitive constraint automata while generating fresh memory cells by
need; under the core set in this thesis, prim maps identifiers to the families
of constraint automata in Figure 3.4. For instance, under Figure 3.4, prim
contains (among others):

IJSyncK 7→ λp1.λp2.Sync(p1; p2)

and:
IJFifoK 7→ λp1.λp2.Fifo{; fresh}(p1; p2)

where fresh denotes a fresh memory cell. Technically, fresh abstracts away
a straightforward bookkeeping mechanism in the denotational semantics
that ensures uniqueness of memory cells in different constraint automata.
For families with more than one memory cell parameter, I “invoke” fresh
separately for each of those parameters (e.g., Fifo2{; fresh, fresh}(p1; p2)),
although in such cases, technically, fresh needs an extra parameter to dis-
tinguish the second “invocation” from the first one.

• I stipulate that whenever one of the subphrases of a phrase has no de-
notation, that phrase itself has no denotation either. Similarly, I stipulate
that whenever the formal and actual parameters of an instantiated sig-
nature do not match, that instantiated signature has no denotation. A
type checker may detect such errors already before actually evaluating
the denotational semantics of a program. Finally, every identifier for an
input/output port in a signature of a family definition should occur ex-
actly once in the body of that family definition, while every local port in
a body should occur at most twice in that body: at most once as an input
port and at most once as an output port. Otherwise, I stipulate that this

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 68

• Identifiers, I

• Booleans, B = {false, true}

– .
= : N× N→ B (equality on naturals)

– ¬ : B→ B (negation)

– ∧,∨ : B× B→ B (conjunction, disjunction)

• Naturals, N = {0, 1, 2, . . .}

– +,× : N× N→ N (addition, multiplication)

– −,÷,mod : N× N⇀ N (subtraction, division, modulo)

• Extralogicals, Extr = D ∪ F ∪ R

• Ports, P

• Arrays, P[] = N⇀ P

– ∅ : P[] (new)

– ·{· 7→·} : P[]× N× P→ P[] (mutator)

– ·[·] : P[]× N⇀ P (accessor)

– |·| : P[]→ N (length)

• Constraint automata, AUTOM

– ⊗ : AUTOM × AUTOM ⇀ AUTOM (multiplication)

– 	 : AUTOM × P→ AUTOM (subtraction)

• Environment values, EnvVal = N ∪ Extr ∪ P ∪ P[] ∪ FAM

• Environments, Env = I⇀ EnvVal

– ∅ : Env (new)

– ·{· 7→·} : Env × I× EnvVal→ Env (mutator)

– (· ·) : Env × I⇀ EnvVal (accessor)

Figure 3.16: Denotational semantics domains

body has no denotation. Again, a type checker may detect violation of
this requirement. I leave developing the theory of such a type checker for
future work.

• I stipulate that structural disambiguation of (similarly named) local ports
in different family definitions has occurred already before evaluating the
denotational semantics of a program.

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 69

• IJ·K : Identifier→ I is a bijection.

• BJ·K : Boolean→ B is a bijection.

• BEJ·K : BooleanExpression→ Env ⇀ B
BEJBK = λe.BJBK
BEJIK = λe.(e IJIK) if (e IJIK) ∈ B
BEJNE1 == NE2K = λe.((NEJNE1K e) = (NEJNE2K e))
BEJ!BEK = λe.¬(BEJBEK e)
BEJBE1 && BE2K = λe.((BEJBE1K e) ∧ (BEJBE2K e))
BEJBE1 || BE2K = λe.((BEJBE1K e) ∨ (BEJBE2K e))

• NJ·K : Natural→ N is a bijection.

• NEJ·K : NaturalExpression→ Env ⇀ N
NEJNK = λe.NJNK
NEJIK = λe.(e IJIK) if (e IJIK) ∈ N
NEJNE1 + NE2K = λe.((NEJNE1K e) + (NEJNE2K e))
NEJNE1 * NE2K = λe.((NEJNE1K e)× (NEJNE2K e))
NEJNE1 - NE2K = λe.((NEJNE1K e)− (NEJNE2K e))
NEJNE1 / NE2K = λe.((NEJNE1K e)÷ (NEJNE2K e))
NEJNE1 % NE2K = λe.((NEJNE1K e) mod (NEJNE2K e))
NEJ#IK = λe.|e IJIK| if (e IJIK) ∈ P[]

• EJ·K : Extralogical→ Extr is a bijection.

• EEJ·K : ExtralogicalExpression→ Env ⇀ Extr
EEJEK = λe.EJEK
EEJIK = λe.(e IJIK) if (e IJIK) ∈ Extr

Figure 3.17: Denotational semantics (I)

FOCAML comprises a declarative, textual syntax for multiplication expres-
sions of constraint automata. From a different point of view, one may also
present FOCAML as a textual version of Reo; Baier et al. and Klüppelholz de-
veloped an alternative, imperative textual syntax of Reo [BBKK09a, Klü12],
called Reo Scripting Language (RSL). RSL originated from research on Vere-
ofy [BBK+10, BBKK09a, BBKK09b, BKK11, KB09, KKSB11], a model checker
for Reo based on constraint automata. In RSL, software engineers write exactly
how to construct a particular Reo circuit rather than expressing what that cir-
cuit constitutes, as in FOCAML. This imperative style of programming in RSL
makes RSL more verbose than FOCAML and comprises the main fundamental
difference between these two languages. As an example of this difference, Fig-
ure 3.21 shows a member of the Sequencer4 family; Figure 3.22 shows a circuit
for that same member; Figure 3.23 shows a FOCAML definition for the entire
Sequencer family and a main definition for the same member as in the previous

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 70

• PJ·K : Port→ P is an injection.
P maps every P (the name of a port in a program text) to a port in P. I
explain the injectivity of P below, when I discuss Ar.

• PEJ·K : PortExpression→ Env ⇀ P
PEJPK = λe.PJPK
PEJAr[NE]K = λe.ArJArK[NEJNEK e]
PEJIK = λe.(e IJIK) if (e IJIK) ∈ P
PEJI[NE]K = λe.(e IJIK)[NEJNEK e] if (NEJNEK e) ∈ Dom(e IJIK)
PE either maps a PE and a curried environment e to a port, or PE
has no denotation under e. PE uses e

[
to get a port or an array for

an I
]

and/or
[
to get an array index denoted by an NE

]
. Note that the

side condition for I[I] in the fourth equation implies (e IJIK) ∈ P[],
analogous to the side conditions for I in the third equation.

• ArJ·K[·] : (Array× N)→ P \ Img(P) is an injection.
Ar maps every pair of an Ar (the name of an array of ports in a program
text) and a natural number (an index in that array) to a port in P\ Img(P).
The exclusion of the image of P from the codomain of Ar ensures, to-
gether with injectivity (and an implicit assumption that P \ Img(P) has
countably many elements), that P and Ar map their arguments to unique
ports.

• ArEJ·K : ArrayExpression→ Env ⇀ P[]
ArEJ[PE1, . . . ,PEk]K = λe.∅{1 7→ (PEJPE1K e)}· · ·{k 7→ (PEJPEkK e)}
ArEJAr[NE1..NE2]K = λe.∅{1 7→ (PEJAr[NE1]K e)}

· · ·
{NEJ#Ar[NE1..NE2]K 7→ (PEJAr[NE2]K e)}

ArEJIK = λe.(e IJIK) if (e IJIK) ∈ P[]
ArEJI[NE1..NE2]K =
λe.∅{1 7→ (PEJI[NE1]K e)}· · ·{NEJ#Ar[NE1..NE2]K 7→ (PEJI[NE2]K e)}

ArE either maps an ArE and a curried environment e to an array,
or ArE has no denotation under e. If one of ArE’s subphrases has no
denotation, also ArE itself has no denotation. Array indices start at 1.

• ?EJ·K : (N/E/P/ArExpression→ Env ⇀ N ∪ Extr ∪ P ∪ P[]
?EJNEK = λe.NEJNEK
?EJEEK = λe.EEJEEK
?EJPEK = λe.PEJPEK
?EJArEK = λe.ArEJArEK
?E consists of the union of NE, EE, PE and ArE.

Figure 3.18: Denotational semantics (II)

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 71

• AEJ·K : AutomatonExpression→ Env ⇀ AUTOM
AEJI ?E1 · · · ?EkK = λe.((prim ∪ e) IJIK (?EJ?E1K e) · · · (?EJ?EkK e))
AEJAE1 mult AE2K = λe.((AEJAE1K e)⊗ (AEJAE2K e))
AEJprod I:NE1..NE2 AEK = λe.(a1 ⊗ · · · ⊗ az) if z > 0

for z = 1 + (NEJNE2K e)− (NEJNE1K e)
and a1 = AEJAEK e{IJIK 7→ NEJNE1K e}
and · · ·
and az = AEJAEK e{IJIK 7→ NEJNE2K e}

AEJif BE then AE1 else AE2K = λe.

{
(AEJAE1K e) if (BEJBEK e) = true
(AEJAE2K e) if (BEJBEK e) = false

AEJlet I = NE AEK = λe.(AEJAEK e{IJIK 7→ (NEJNEK e)})
AE either maps an AE and a curried environment e to a constraint
automaton, or AE has no denotation under e. If one of AE’s subphrases
has no denotation, also AE itself has no denotation. Similarly, if the
formal and actual parameters in AE do not match (i.e., the first equation),
AE has no denotation.

• FDJ·K : FamilyDefinition→ Env ⇀ Env
FDJI I1 · · · Ik = AEK =

λe.e


IJIK 7→ λ]1.· · ·λ]k.((AEJAEK e′)	 (P \ (P ∪ P []))

for e′ = e{IJI1K 7→]1}· · ·{IJIkK 7→]k}
and P = {] |] ∈ Img(e′) ∩ P}
and P [] =

⋃{Img(]) |] ∈ Img(e′) ∩ P[]}


FD either maps an FD and a curried environment e to a new, ex-
tended environment, or FD has no denotation under e. If one of FD’s
subphrases has no denotation, also FD itself has no denotation. Other-
wise, FD adds a new mapping to e, from identifier IJIK to a function that
consumes a list of natural numbers, extralogicals, ports, and port arrays
as input, all ranged over by], and produces a constraint automaton as
output. This function, then, essentially defines a family of constraint
automata. Each of the formal parameters—the identifiers denoted by I1
up to Ik—become bound to an actual parameter]i in environment e′.
P and P [] contain the ports in]1, . . . ,]k: the former contains individual
ports, while the latter contains ports in arrays. Abusing notation (techni-
cally, � takes individual ports as input instead of sets), FD subtracts all
nonparameter ports outside P and P [] from the denotation of AE.

Figure 3.19: Denotational semantics (III)

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 72

• MDJ·K : MainDefinition→ Env ⇀ AUTOM
MDJmain = AEK = λe.(AEJAEK e)

• GJ·K : Program→ Env ⇀ AUTOM
GJFD GK = λe.(GJGK (FDJFDK e))
GJG FDK = λe.(GJGK (FDJFDK e))
GJMDK = λe.(MDJMDK e)

Figure 3.20: Denotational semantics (IV)

figures; Figure 3.24 shows an RSL definition, taken from the Vereofy user man-
ual [BKK10]. The instantiated family signature Sequencer([A,B,C,D];) has a
denotation behaviorally equivalent to the constraint automaton in Figure 3.21
but not structurally equal. In particular, I simplified the data constraints in the
denotation of Sequencer([A,B,C,D];), for the sake of clarity and presentation,
to obtain the constraint automaton in Figure 3.21.

Members of Sequencer impose an order in which puts of workers can com-
plete: first a put on A completes, then one on B, then one on C, and finally one
on D. The FOCAML definition in Figure 3.23 expresses this protocol in a declar-
ative style, as an essentially mathematical multiplication expression. The RSL
definition in Figure 3.24, in contrast, expresses this protocol in an imperative
style (i.e., first create a full Fifo, then create a SyncDrain, then join the sink end
of the full Fifo with the second source end of the SyncDrain on a node, etc.), as
witnessed by the use of sequential composition (semicolon) and the for key-
word for repetition. Other differences between FOCAML and RSL include use
of signatures and linguistic emphasis on constraint automata (in FOCAML) or
Reo (in RSL).

3.2 Practice

(I have not yet submitted the material in this section for publication.)

Editor

I developed an editor/parser/interpreter for FOCAML as a plugin for Eclipse
4.x. The editor has basic features such as syntax highlighting and error report-
ing. To provide this functionality, the editor automatically invokes a FOCAML
parser (written with ANTLR) and a FOCAML interpreter every time the user
makes changes to a FOCAML program. The FOCAML interpreter implements
the denotational semantics in the previous subsection by generating a list of
primitive constraint automata for every instantiated family signature in the
main definition of a FOCAML program. Such a list represents a multiplication
expression over those primitives, similar to the last line in the example deriva-

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 73

{Ain},> {Bin},> {Cin},>

{Din},>

Figure 3.21: Constraint automaton for the Sequencer4 protocol. The first worker
has access to port A, the second to port B, the third to port C, and the fourth to
port D.

1

DCBA

Figure 3.22: Circuit for a member of subfamily Sequencer4

1 Sequencer(in[];) = {
2 FifoFull<'1'>(P1[1];P2[1])
3 mult { prod i:2..#in { Fifo(P1[i];P2[i]) } }
4 mult { prod i:1..#in { Replicator2(P2[i];P1[i+1],P3[i]) } }
5 mult { prod i:1..#in { SyncDrain(in[i],P3[i];) } }
6 mult Sync(P1[#in+1];P1[1])
7 }

8 main = { Sequencer([A,B,C,D];) }

Figure 3.23: FOCAML definition for family Sequencer

1 CIRCUIT SEQUENCER<k> {
2 F[0] = new FIFO1_FULL<1>(A[0];B[0]);
3 SD[0] = new SYNC_DRAIN(C[0],D[0]);
4 Node[0] = join(B[0],D[0]);
5 for (i = 1; i < k; i = i + 1) {
6 F[i] = new FIFO1(A[i];B[i]);
7 SD[i] = new SYNC_DRAIN(C[i],D[i]);
8 Node[i] = join(B[i],D[i]);
9 Node[i-1] = join(Node[i-1],A[i]);

10 }
11 Node[k-1] = join(Node[k-1],A[0]);
12 for (i = 0; i < k; i = i + 1) {
13 source[i] = C[i];
14 } }

Figure 3.24: RSL definition for family Sequencer [BKK10]

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 74

{Ain},
[•y = x• ∧ add(•x, •y) = y•

∧ ¬Odd(y•)
]

{Ain,Bout,Cout},
[•y = x• ∧ add(•x, •y) = y•

∧ Odd(y•) ∧ B = y• ∧ C = y•
]

with initial memory snapshot {x 7→ 0, y 7→ 1}

Figure 3.25: Constraint automaton for the OddFibonacci2 protocol. The pro-
ducer has access to port A, one consumer has access to port B, the other con-
sumer has access to port C, and the producers and the consumer use buffers x
and y for temporary storage of data.

tions in the previous subsection (for the denotational semantics of LateAsync-
Merger2(A,B;C) and LateAsyncMerger(A[1..2];C)), without having to actu-
ally compute the corresponding constraint automaton (which may demand
substantial computational resources). Eventually, a FOCAML compiler may still
have to compute this corresponding constraint automaton, but I decouple that
effort from FOCAML interpretation. If the FOCAML interpreter succeeds in in-
terpreting an instantiated family signature, it displays a list of the primitives
denoted by that signature in a designated view in Eclipse. The FOCAML in-
terpreter also has a rather ad-hoc type checker (not formalized), primarily to
provide meaningful error messages to users.

The editor/parser/interpreter plugin for FOCAML can also translate Reo
circuits—formatted by using the ECT plugins for Eclipse (see http://reo.
project.cwi.nl), which constitute an IDE for Reo—into FOCAML code. This
translation makes all compilation techniques presented in this thesis directly
applicable to Reo as well, not only in theory but also in practice.

Example I: OddFibonacci

Suppose that I must write a program that consists of a producer and k con-
sumers. My protocol specification states that the producer sends its data to
the consumers synchronously but “predictably unreliably” in the following
sense. After the i-th send of the producer, the consumers synchronously re-
ceive the i-th Fibonacci number, denoted by fib(i), if fib(i) mod 2 = 1. Oth-
erwise, if fib(i) mod 2 = 0, the consumers do not receive anything (and their
pending operations remain pending). Either way, the datum originally sent
by the producer never reaches the consumers and gets lost in communication.
The OddFibonacci family of constraint automata for this protocol has one nat-
ural number parameter, for k. Although its practical use may seem question-
able, OddFibonacci well-illustrates the expressiveness of constraint automata
and serves as a useful example later on.

Figure 3.25 shows a member of the OddFibonacci2 subfamily; Figure 3.26
shows a circuit for that same member; Figure 3.27 shows a FOCAML definition
for the entire OddFibonacci family and a main definition for the same member
as in the previous figures. Some clarifications and remarks:

http://reo.project.cwi.nl
http://reo.project.cwi.nl

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 75

add

1

0

A Odd
B

C

Figure 3.26: Circuit for a member of subfamily OddFibonacci2

1 Replicator(in;out[]) = {
2 let k = #out {
3 if (k == 1) {
4 Sync(in;out[1])
5 } else if (k == 2) {
6 Replicator2(in;out[1],out[2])
7 } else {
8 Replicator2(P[2];out[1],out[2])
9 mult { prod i:3..k-1 { Replicator2(P[i];P[i-1],out[i]) } }

10 mult Replicator2(in;P[k-1],out[k])
11 } } }

12 OddFibonacciPart(a,c;f,h) = {
13 Fifo(a;B)
14 mult Sync(c;D)
15 mult BinOp<'add'>(B,D;E)
16 mult Replicator2(E;f,G)
17 mult Filter<'Odd'>(G;h)
18 }

19 OddFibonacci(in;out[]) = {
20 OddFibonacciPart(A,C;F,H)
21 mult Fifo(F;P1)
22 mult FifoFull<'1'>(P1;P2)
23 mult Replicator2(P2;C,P3)
24 mult Replicator2(P3;P4,P5)
25 mult SyncDrain(P4,in;)
26 mult Sync(P5;P6)
27 mult FifoFull<'0'>(P6;A)
28 mult Replicator(H;P7[1..#out])
29 mult { prod i:1..#out { Sync(P7[i];out[i]) } }
30 }

31 main = { OddFibonacci(A;[B,C]) }

Figure 3.27: FOCAML definitions for families Replicator, OddFibonacciPart, and
OddFibonacci, and a main definition for a member of OddFibonacci2

• The extralogical symbols in the data constraints in Figure 3.25 have the
following meaning. Data term add(x1, x2) evaluates to x1 + x2. Data
relation Odd(x) holds true iff x mod 2 = 1.

• Memory cells x and y in the constraint automaton in Figure 3.25 gener-

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 76

ally contain fib(i−2) and fib(i− 1). The first line of their data constraint
guarantees that both transitions in this automaton update the datum in x
to the datum previously in y (after which x contains fib(i−1)), while they
update the datum in y to the sum of the data previously in x and y (after
which y contains fib(i)). The left transition permits instances of interac-
tion where fib(i) mod 2 = 1 holds true, in which case (i) the producer
and the consumers synchronize and (ii) the consumers receive the i-th
Fibonacci number. The right transition permits instances of interaction
where fib(i) mod 2 = 0 holds true, in which case the producer does not
communicate with the consumers whatsoever (even though the put of
the producer succeeds from the perspective of the producer, who never
knows that its datum never reaches the consumers).

• In Figure 3.27, the purpose of separating OddFibonacciPart(a,c;f,h)
from OddFibonacci(in;out[1..k]), which may seem rather arbitrary—
or even pointless—at this point, becomes clear in Chapter 6.

• The instantiated family signature OddFibonacci(A;[B,C]) has a denota-
tion behaviorally equivalent to the constraint automaton in Figure 3.25
but not structurally equal. In particular, I simplified the data constraints
in the denotation of OddFibonacci(A;[B,C]), for the sake of clarity and
presentation, to obtain the constraint automaton in Figure 3.25.

Example II: Chess

The following example originates from a discussion with Kasper Dokter, a
close colleague and fellow PhD student at CWI.

Kasper participates in a chess competition. After every game, Kasper uses
special chess programs, called chess engines, to help him analyze his play. Chess
engines algorithmically try to find the best move in a certain input position (i.e.,
a state of the game board). Unfortunately, chess has a huge state space, and
chess engines typically lack the resources to exhaustively explore this whole
space. Instead, through heuristics and user-controllable search parameters,
chess engines usually use their limited resources to make a best-effort approx-
imation of the theoretically best move. Different chess engines support differ-
ent such heuristics and parameters. Consequently, different chess engines may
find different approximations of the theoretically best move when presented
the same input position.

Kasper wanted to write a program that automatically invokes a number
of different chess engines on the same position, compares their results, per-
haps analyzes the different results some more, and repeats this process for the
successor positions corresponding to the computed best moves. Specifically,
Kasper wanted to implement the protocol specification of this program using
Reo. This ambition caught my interest, because the work involved seemed
quite nontrivial. In the end, Kasper’s chess program inspired me to write my
own chess program, whose protocol includes the same elements that made

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 77

Kasper’s original chess program interesting to me. The set of workers in my
program consists of k chess engines for “Team White”, one chess engine for
“Team Black”, and a display. With the right complementary protocol, my pro-
gram simulates a game of chess between Team White and Team Black, where
the display shows the current position on a virtual game board on the screen.
Next, I discuss what comprises this protocol.

The k + 1 chess engines in my program use at least two buffers to interact
with each other, namely to store a history of the moves played so far (which ef-
fectively represents the current position of the game). Depending on whether
Team White or Team Black played the last move, exactly one of these “history
buffers” contains an up-to-date history. Initially, the “black history buffer” (for
when Team Black played the last move) contains the empty history. In the
first instance of interaction, the k chess engines for Team White synchronously
receive the empty history from the black history buffer. Subsequently, these
chess engines evaluate this sequence to an actual position and try to find a best
move. Afterward, these chess engines synchronously send their raw output
into their environment. This environment takes care of parsing this raw out-
put (i.e., extracting the best move), combining the proposed best moves into
one definite move for Team White (e.g., by majority vote), delivering this move
to the display, appending this move to the previous move history, and storing
the updated move history in the white history buffer. All this, including the
sends by the chess engines, occurs synchronously, as part of one atomic in-
stance of interaction. After the previous two instances of interaction involving
Team White, two similar such instances occur for Team Black, except that Team
Black consists of only one chess engine, which makes some steps unnecessary.
Afterward, the black history buffer contains a datum again, and the whole pro-
cess repeats itself until the game ends. At any time during the game, whenever
the display receives a new move, it updates the screen accordingly. The Chess
family of constraint automata for this protocol has one natural number param-
eter, for k.

Figure 3.28 shows a member of the Chess3 subfamily; Figure 3.29 shows
a circuit for that same member; Figure 3.30 shows a FOCAML definition for
the entire Chess family and a main definition for the same member as in the
previous figures.

The extralogical symbols in the data constraints in Figure 3.28 have the fol-
lowing meaning. Data term parse(x) evaluates to a string representation of
the best move in raw output x. Data term concatenate(x1, x2) evaluates to the
concatenation of x1 and x2. For instance, concatenate("d2d4 f7f5", "c2c4")
evaluates to "d2d4 f7f5 c2c4" (this string, suggested to me for inclusion in
this thesis by Kasper, describes a chess opening called the Dutch Defense).
Data term majority(x) evaluates to the space-separated substring in x with
the most occurrences in x. For instance, majority("d2d4 d2d4 e2e4") evalu-
ates to "d2d4". Data relation Move(x) holds true iff x represents a valid move
(in which case the game has not finished yet).

As in the previous subsection, and for the same reason, the instantiated
family signature

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 78

{WHistout
1 ,WHistout

2 ,WHistout
3 },




•xWhite = yWhite•

∧ •xWhite = WHist1
∧ •xWhite = WHist2
∧ •xWhite = WHist3




{WBestin
1 ,WBestin

2 ,WBestin
3 ,WMoveout},

∃x.(x = majority(concatenate(parse(WBest3), concatenate(parse(WBest2), parse(WBest1))))
∧ concatenate(•yWhite, x) = xBlack• ∧ Move(x) ∧ x = WMove)

{BHistout},
[•xBlack = yBlack•

∧ •xBlack = BHist

]

{BBestin,BMoveout},
concatenate(•yBlack,BBest) = xWhite• ∧ Move(BBest) ∧ BBest = BMove

with initial memory snapshot
{
xWhite 7→ "", xBlack 7→ "",
yWhite 7→ "", yBlack 7→ ""

}
Figure 3.28: Constraint automaton for the Chess3 protocol. For i ∈ {1, 2, 3}, ev-
ery chess engine i for Team White has access to port WHisti and to port WBesti,
the chess engine for Team Black has access to port BHist and port BBest, the dis-
play has access to ports WMove and BMove, and the chess engines use buffers
xWhite, xBlack, yWhite, and yBlack for temporary storage of data.

Mo
ve

BMove

con
cat

ena
te

BHist BBest

parse

majority

""

Mo
ve

WMove

con
cat

ena
te

WHist3WBest3

parse

WHist2WBest2

parse

WHist1WBest1

parse

concatenate

concatenate

majority

Figure 3.29: Circuit for a member of subfamily Chess3, where gray boxes repre-
sent chess engines

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 79

1 Concatenator(in[];out) = {
2 Sync(in[1];P[1])
3 mult { prod i:1..#in-1 { BinOp<'concatenate'>(in[i+1],P[i];P[i+1]) } }
4 mult Sync(P[#in];out)
5 }

6 Team(in,best[];hist[],move,out) = {
7 Replicator2(in;P1,P5)
8 mult Fifo(P1;P2)
9 mult Replicator2(P2;P3,P4)

10 mult Replicator(P5;hist[1..#hist])
11 mult { prod i:1..#best { Transformer<'parse'>(best[i];P6[i]) } }
12 mult Concatenator(P6[1..#best];P7)
13 mult Transformer<'majority'>(P7;P8)
14 mult Replicator2(P8;P9,P10)
15 mult SyncDrain(P3,P9;)
16 mult Filter<'Move'>(P10;P11)
17 mult Replicator2(P11;P12,P13)
18 mult Sync(P12;move)
19 mult BinOp<'concatenate'>(P4,P13;out)
20 }

21 Chess(white_best[],black_best;white_hist[],black_hist,white_move,black_move) = {
22 Team(
23 white_in,white_best[1..#white_best];
24 white_hist[1..#white_hist],white_move,white_out
25)
26 mult Fifo(white_out;black_in)
27 mult Team(black_in,[black_best];[black_hist],black_move,black_out)
28 mult FifoFull<'""'>(black_out;white_in)
29 }

30 main = {
31 Chess([WBest1,WBest2,WBest3],BBest;[WHist1,WHist2,WHist3],BHist,WMove,BMove)
32 }

Figure 3.30: FOCAML definitions for families Concatenator, Team, and Chess,
and a main definition for a member of Chess3

Chess(
[WBest1,WBest2,WBest3],BBest;
[WHist1,WHist2,WHist3],BHist,WMove,BMove

)

has a denotation behaviorally equivalent to the constraint automaton in Fig-
ure 3.28 but not structurally equal.

Example III: NAS Parallel Benchmarks

In the late 1980s and early 1990s, the NASA Advanced Supercomputing (NAS)
Division—then called the Numerical Aerodynamic Simulation (NAS) Program—
at NASA Ames Research Center faced a “grand challenge” [BBB+94]: “to ad-

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 80

vance the state of computational aerodynamics” and “to provide the Nation’s
aerospace research and development community by the year 2000 a high-per-
formance, operational computing system capable of simulating an entire aero-
space vehicle system within a computing time of one to several hours”. The de-
velopment of new supercomputing technology for large-scale parallel process-
ing seemed imperative to the successful completion of this challenge. At some
point, as part of this program, researchers at NASA Ames realized that “bench-
marking and performance evaluation of [highly parallel systems] has not kept
pace with advances in hardware, software and algorithms” and, specifically,
that “there is as yet no generally accepted benchmark program or even a bench-
mark strategy for these systems”. Filling this void, Bailey et al. developed a
new set of benchmark specifications for evaluating the performance of highly
parallel system, derived from computational fluid dynamics (CFD) applications,
called the NAS Parallel Benchmarks (NPB) [BBB+91, BBB+94]. NPB has become
“a popular set of kernels and applications used for supercomputer evalua-
tion” [HP11c]. In fact, already ten years after its release, the high-performance
computing (HPC) community had accepted NPB as “an instrument for evaluat-
ing performance of parallel computers, compilers, and tools” [FSJY02], having
become “a standard indicator of computer performance”.

The first implementations of NPB consisted of C and Fortran code, using
MPI; later, Jin et al. wrote another implementation, using OpenMP [JFY99]. In
the early 2000s, as interest in Java by the HPC community increased, Frumkin
et al. derived an implementation of NPB in Java from the existing OpenMP
version [FSJY02, FSJY03]. Because the compiler that I present in later chapters
generates Java code, this Java implementation of NPB seems an interesting ref-
erence point against which to evaluate the performance of Java code compiled
from FOCAML programs for NPB. Moreover, because the NPB suite consists
of full programs—instead of just protocols—experiments with NPB provide
a complementary perspective on the performance of my compiler-generated
code, beside experiments that focus exclusively on protocols alone.

The Java implementation of NPB consists of seven benchmarks: four com-
putational kernels (this implementation of NPB excludes its fifth “embarrass-
ingly parallel” kernel) and three simulated CFD applications. The four com-
putational kernels represent common numerical methods in CFD applications.
More specifically [BBB+94]:

• NPB-FT (Fourier transform)
Benchmark that computes the solution of a partial differential equation,
using the forward and inverse Fast Fourier Transform algorithm.

• NPB-MG (multigrid)
Benchmark that computes an approximate solution u to the discrete Pois-
son problem∇2u = v, using the V-cycle multigrid algorithm.

• NPB-CG (conjugate gradient)
Benchmark that computes an estimate of the largest eigenvalue of a sym-

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 81

metric positive definite sparse matrix with a random pattern of nonzeros,
using the conjugate gradient algorithm.

• NPB-IS (integer sorting)
Benchmark that computes a sorted list of uniformly distributed integer
keys, using a histogram-based integer sorting algorithm.

Beside these four computational kernels, the three simulated CFD applications
compute the solution of a synthetic system of nonlinear partial differential
equations, using techniques similar to those used in real CFD applications.
Contrasting real CFD applications, however, these benchmarks lack pre- and
postprocessing and have no disk I/O. As such, these benchmarks constitute
stripped-down, but still representative, versions of real CFD applications, sim-
ulating both their interaction and computation aspects. These three bench-
marks, called NPB-BT (block tridiagonal systems of equations), NPB-SP (scalar
pentadiagonal systems), and NPB-LU (lower and upper triangular systems),
differ in their algorithm for solving Navier-Stokes equations [BBB+94].

Every benchmark in the Java implementation of NPB consists of one mas-
ter and k slaves. In each of these benchmarks, initially, all slaves wait for their
master to dispatch work. Subsequently, every slave starts performing its as-
signed work, while the master waits until it has received a signal from every
slave about the completion of its work. Thus, all benchmarks incorporate the
classical master–slaves interaction pattern, implemented in Java with invocations
to methods wait and notify for monitor-based synchronization and shared
memory for data communication. Figure 3.31 shows Java code for this pattern.
Note that the master dispatches the same work, here represented by an Object,
to every worker in the same iteration of the main loop (i.e., the master invokes
newWork outside the inner loop). This Object contains information specific
to the current iteration of the main loop that the workers should be aware of
when performing their computation. Additionally, the workers access global
data structures in shared memory (e.g., an array partitioned into per-worker
subarrays and distributed among the workers during initialization).

In all but one benchmarks, slaves interact only with their master and never
with each other (i.e., they have no dependencies among them). In those bench-
marks, thus, the previous master–slaves interaction pattern covers all instances
of interaction. In benchmark NPB-LU, in contrast, the slaves additionally have
pipelined dependencies between them. Frumkin et al. ensure the satisfaction
of these dependencies in their implementation by using a relay-race interaction
pattern. In this pattern, the master dispatches work to all its slaves but waits
only for the last one to finish (according to some total order on the slaves).
Meanwhile, every slave waits for a signal from its predecessor before it starts
performing its assigned work (possibly in a number of steps), except for the
first slave, who immediately starts. Once a slave completes (a step of) its work,
it sends a signal to its successor, except for the last slave, who signals the mas-
ter. Figure 3.32 shows Java code for this pattern.

I took the Java implementation of NPB as my starting point for developing

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 82

1 public class abstract Master extends Thread {
2 public volatile Slave[] slaves;
3

4 protected abstract Object newWork();
5

6 public void run() {
7 while (true) {
8 Object work = newWork();
9 for (int i = 0; i < slaves.length; i++) {

10 slaves[i].work = work;
11 slaves[i].done = false;
12 synchronized (slaves[i]) {slaves[i].notify()}
13 }
14 synchronized (this) {
15 for (int i = 0; i < slaves.length; i++)
16 while (!slaves[i].done)
17 try {wait();} catch (InterruptedException exc) {}
18 } } } }

19 public abstract class Slave extends Thread {
20 public volatile Master master;
21 public volatile Object work;
22 public volatile boolean done = true;
23

24 protected abstract void work(); // accesses global data structures in shared memory
25

26 public void run() {
27 while (true) {
28 synchronized (this) {
29 while (done)
30 try {wait();} catch (InterruptedException exc) {}
31 }
32 work();
33 done = true;
34 synchronized (master) {master.notify();}
35 } } }

Figure 3.31: Java code for the master–slaves interaction pattern [FSJY02]

a FOCAML implementation of NPB. First, I isolated all instances of the master–
slaves interaction pattern (in all benchmarks) and the relay-race interaction
pattern (in NPB-LU). I subsequently rewrote the Java code for those patterns
from their previous monitor-based versions in Figures 3.31 and 3.32 into port-
based versions in Figure 3.33, thereby effectively “factoring out” all interaction
code from the original codebase. (These figures constitute one of the rare ex-
ceptions in this thesis, where I qualify ports as “input” or “output” from the
perspective of workers.) Beside the modifications in Figure 3.33, I also modi-
fied the constructors of masters and slaves (primarily adding InputPort and
OutputPort parameters), and some associated initialization code. Mainly, this
added initialization code distributes references to large global data structures in
shared memory among the workers, as values. In principle, the compiler should
automatically infer when to substitute reference-passing for value-passing, but

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 83

1 public abstract class RelayRaceMaster extends Master {
2 public void run() {
3 while (true) {
4 Object work = newWork();
5 for (int i = 0; i < slaves.length; i++) {
6 slaves[i].work = work;
7 slaves[i].done = false;
8 synchronized (slaves[i]) {slaves[i].notify()}
9 }

10 synchronized (this) {
11 while (!slaves[slaves.length].done)
12 try {wait();} catch (InterruptedException exc) {}
13 } } } }

14 public abstract class RelayRaceSlave extends Slave {
15 public volatile int todo = 0;
16 public volatile int nSteps;
17 public volatile int id;
18

19 public void run() {
20 while (true) {
21 synchronized (this) {
22 while (done)
23 try {wait();} catch (InterruptedException exc) {}
24 for (int i = 0; i < nSteps; i++) {
25 if (id > 0)
26 while (todo == 0)
27 try {wait();} catch (InterruptedException exc) {}
28 work();
29 todo--;
30 if (id < master.slaves.length - 1)
31 synchronized (master.slaves[id + 1]) {
32 master.slaves[id + 1].todo++;
33 master.slaves[id + 1].notify();
34 } }
35 done = true;
36 if (id == master.slaves.length - 1)
37 synchronized (master) {master.notify();}
38 } } } }

Figure 3.32: Java code for the relay-race interaction pattern [FSJY02]

as I explained in Chapter 1, such optimization techniques lie beyond my cur-
rent scope; see the MSc thesis of Van de Nes [vdN15]. Once I had completed
all these modifications, I only needed to write FOCAML family definitions for
the protocols in the two interaction patterns, plus a main definition for every
benchmark (to hook the Java code into the FOCAML code).

Before turning to the FOCAML code, note the following: PortBasedRelay-
RaceSlave contains no information whatsoever about the relation between, on
the one hand, Ports X and Y and, on the other hand, their connected slaves.
In contrast, the monitor-based code for the relay-race interaction pattern in
Figure 3.32 explicitly encodes the fact that a slave depends on its predecessor
and successor. By factoring out the interaction code from the original code-

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 84

1 public abstract class PortBasedMaster extends Master {
2 public volatile OutputPort A;
3 public volatile InputPort B;
4

5 public void run() {
6 while (true) {
7 Object work = newWork();
8 for (int i = 0; i < slaves.length; i++)
9 A.putUninterruptibly(work);

10 for (int i = 0; i < slaves.length; i++)
11 B.getUninterruptibly();
12 } } }

13 public abstract class PortBasedSlave extends Slave {
14 public volatile OutputPort A;
15 public volatile InputPort B;
16

17 public void run() {
18 while (true) {
19 B.getUninterruptibly();
20 work();
21 A.putUninterruptibly(new Object());
22 } } }

23 public abstract class PortBasedRelayRaceMaster extends PortBasedMaster {
24 public void run() {
25 while (true) {
26 Object work = newWork();
27 for (int i = 0; i < slaves.length; i++)
28 A.putUninterruptibly(work);
29 B.getUninterruptibly();
30 } } }

31 public abstract class PortBasedRelayRaceSlave extends PortBasedSlave {
32 public volatile int nSteps;
33 public volatile int id;
34 public volatile OutputPort X;
35 public volatile InputPort Y;
36

37 public void run() {
38 while(true) {
39 B.getUninterruptibly();
40 for (int i = 0; i < nSteps; i++) {
41 if (id > 0)
42 X.getUninterruptibly();
43 work();
44 if (id < master.slaves.length - 1)
45 Y.putUninterruptibly(new Object());
46 }
47 if (id == master.slaves.length)
48 A.putUninterruptibly(new Object());
49 } } }

Figure 3.33: Java code for the master–slaves and relay-race interaction patterns
based on ports (cf. Figures 3.31 and 3.32)

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 85

base, I pushed the information about interaction between slaves to the FOCAML
implementation of the corresponding protocol specification, as demonstrated
shortly. PortBasedRelayRaceSlave, then, illustrates a key point of using a sep-
arate DSL for interaction: worker subprograms in a complementary GPL con-
tain no information about interaction or protocols, making both worker and
protocol subprograms simpler to write and reason about and more reusable.

To model the master–slaves interaction pattern using constraint automata,
I break this pattern down into two constituent protocols: one for the master
to dispatch work to its slaves and one for the slaves to signal their master
about the completion of their work. For each of these two protocols, I define
two families of constraint automata, with—technically speaking—behaviorally
nonequivalent members (the purpose of which I explain shortly). This yields
a total of four families: MasterToSlavesA and SlavesToMasterA, whose members
rather literally correspond to the Java code in Figure 3.31, and MasterToSlavesB
and SlavesToMasterB, whose members correspond to that code less literally but
nevertheless respect the intention behind the master–slaves interaction pattern.
Each of these families has a natural number parameter for their number of
slaves. Members of MasterToSlavesA and SlavesToMasterA straightforwardly
compose into members of the MasterSlavesInteractionPatternA family, which
comprehensively models the master–slaves interaction pattern; the same holds
true of MasterToSlavesB, SlavesToMasterB, and MasterSlavesInteractionPatternB.

Figures 3.34 and 3.35 show members of the MasterToSlavesA2 and SlavesTo-
MasterA2 subfamilies; Figure 3.36 shows circuits for those same members; Fig-
ure 3.37 shows FOCAML definitions for the entire MasterToSlavesA family, the
entire SlavesToMasterA family, the entire MasterSlavesInteractionPatternA fam-
ily, and a main definition for a member of the latter family corresponding to
the multiplication of the same members as in the previous figures. As in the
previous subsections, and for the same reasons as there, the instantiated family
signatures MasterToSlavesA(A;[B,C]) and SlavesToMasterA([D,E];F) have
a denotation behaviorally equivalent to the constraint automata in Figures 3.34
and 3.35 but not structurally equal.

Members of MasterSlavesInteractionPatternA enforce an order in which the
master signals its slaves and vice versa, achieved through members of Se-
quencer. The Java code for the master–slaves interaction pattern in Figure 3.31
also enforces such an order, through Java’s fixed iteration order in loops. I
use Fifos just before the output ports in members of MasterToSlavesA and just
after the input ports in members of SlavesToMasterA to make the interaction
between a master and its slaves asynchronous. This corresponds to the non-
blocking semantics of notify in the Java code (i.e., a notify invocation imme-
diately returns; it does not go to sleep until another thread invokes wait). As
such, members of MasterSlavesInteractionPatternA rather literally correspond to
the Java code in Figure 3.31.

The constraint automaton in Figure 3.34 furthermore shows that, in princi-
ple, the MasterToSlavesA protocol admits the following questionable sequence
of interaction: (i) the master puts on A to dispatch work to the slave on B, (ii)
the master puts on A to dispatch work to the slave on C, (iii) the slave on B

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 86

{Ain},
A = x•

{Ain},
•x = x•

∧ A = y• {Bout},
•y = y•

∧ •x = B

{Ain},
•y = y•

∧ A = x• {Bout},
•y = y•

∧ •x = B

{Cout},
C = y•

{Ain},
A = y•

{Cout},
•x = x•

∧ •y = C

{Bout,Cout},
•x = B ∧ •y = C

{Cout},
•y = C

{Ain,Cout},
A = x• ∧ •y = C

{Cout},
•x = x•

∧ •y = C

{Bout},
•x = B

{Bout,Cout},
•x = B ∧ •y = C

{Bout},
•x = B

{Ain,Bout},
A = y• ∧ •x = B

with initial memory snapshot {x 7→ 0, y 7→ 0}

Figure 3.34: Constraint automaton for the MasterToSlavesA2 protocol. The mas-
ter has access to port A, one slave has access to port B, the other slave has access
to port C, and the master and the slaves use buffers x and y for temporary stor-
age of data.

{Din},
D = x•

{Ein},
•x = x•

∧ E = y•

{Fout},
•y = y•

∧ •x = F {Din},
•y = y•

∧ D = x•

{Fout},
•x = x•

∧ •y = F

{Fout},
•y = F

{Din, Fout},
D = x• ∧ •y = F

{Fout},
•x = F

{Ein},
E = y•

{Din},
D = x•

{Ein},
•x = x•

∧ E = y•

{Din,Ein},
D = x• ∧ E = y•

{Ein, Fout},
E = y• ∧ •x = F

{Ein},
E = y•

{Din},
•y = y•

∧ D = x•

{Din,Ein},
D = x• ∧ E = y•

with initial memory snapshot {x 7→ 0, y 7→ 0} and

Figure 3.35: Constraint automaton for the SlavesToMasterA2 protocol. One
slave has access to port D, the other slave has access to port E, the master has
access to port F, and the slaves and the master use buffers x and y for temporary
storage of data.

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 87

A C

1

B

MasterToSlavesA2

D F

E

1

SlavesToMasterA2

Figure 3.36: Circuits for members of subfamilies MasterToSlavesA2 and Slaves-
ToMasterA2

50 MasterToSlavesA(in;out[]) = {
51 let n = #out {
52 Sync(in;P1)
53 mult Router(P1;P2[1..n])
54 mult { prod i:1..n { Sync(P2[i];P3[i]) } }
55 mult { prod i:1..n { Replicator2(P3[i];P4[i],P5[i]) } }
56 mult Sequencer(P4[1..n];)
57 mult { prod i:1..n { Fifo(P5[i];out[i]) } }
58 } }

59 SlavesToMasterA(in[];out) = {
60 let n = #in {
61 { prod i:1..n { Fifo(in[i];P1[i]) } }
62 mult { prod i:1..n { Replicator2(P1[i];P2[i],P3[i]) } }
63 mult Sequencer(P2[1..n];)
64 mult { prod i:1..n { Sync(P3[i];P4[i]) } }
65 mult Merger(P4[1..n];P5)
66 mult Sync(P5;out)
67 } }

68 MasterSlavesInteractionPatternA(
69 master_in,slaves_in[];
70 slaves_out[],master_out
71) = {
72 MasterToSlavesA(master_in;slaves_out[1..#slaves_out])
73 mult SlavesToMasterA(slaves_in[1..#slaves_in];master_out)
74 }

75 main = MasterSlavesInteractionPatternA(A,[D,E];[B,C],F)

Figure 3.37: FOCAML definitions for families MasterToSlavesA, SlavesToMas-
terA, and MasterSlavesInteractionPatternA, and a main definition for a member
of MasterSlavesInteractionPatternA2

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 88

{Ain},A = x• ∧ A = y•

{Bout},
•y = y• ∧ •x = B

{Cin},
•y = C

{Cin},
•x = x• ∧ •y = C

{Bout},
•x = B

{Bout,Cout}, •x = B ∧ •y = C

Figure 3.38: Constraint automaton
for the MasterToSlavesB2 protocol.
The master has access to port A, one
slave has access to port B, the other
slave has access to port C, and the
master and the slaves use buffers x
and y for temporary storage of data.

A

B

C

Figure 3.39: Circuit for a member of
subfamily MasterToSlavesB2

gets on B to receive its assigned work, (iv) the master puts on A to dispatch
more work to the slave on B, and (v) the slave on B gets for the second time on
B, presumably after having finished its first piece of work, but before the slave
on C has received anything. Considered in isolation, the interaction code in
Figure 3.31 (i.e., wait, notify, and synchronized) admits the same sequence of
interaction, and so, also in this respect, MasterSlavesInteractionPatternA rather
literally corresponds to the code in that figure. In practice, however, the previ-
ous sequence of interaction never occurs—neither in the original monitor-based
code nor in my modified port-based code—because the complementary com-
putation code provides additional guarantees. Notably, the master waits for a
signal of every slave after it has dispatched work. Although I can express such
guarantees directly in FOCAML code, thereby embedding them in the protocol,
I do not pursue that in MasterSlavesInteractionPatternA, which I want to keep as
close to the Java code as possible for a fairer comparison.

Figure 3.38 show a member of the MasterToSlavesB2 subfamily; Figure 3.39
shows a circuit for that same member; Figure 3.40 shows FOCAML definitions
for the entire MasterToSlavesB family, the entire SlavesToMasterB family, the en-
tire MasterSlavesInteractionPatternB family, and a main definition for a member
of the latter family corresponding to the multiplication of the same member as
in the previous figures and the constraint automaton in Figure 3.1. The latter
figure shows a member of the SlavesToMasterB2 subfamily, which equals the
EarlyAsyncMerger2 subfamily; Figure 3.2 shows a circuit for that same member.
As before, and for the same reasons as there, the instantiated family signatures
MasterToSlavesB(A;[B,C]) and SlavesToMasterB([D,E];F) have a denota-

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 89

1 MasterToSlavesB(in;out[]) = {
2 let n = #out {
3 Sync(in;P1)
4 mult Replicator(P1;P2[1..n])
5 mult { prod i:1..n { Sync(P2[i];P3[i]) } }
6 mult { prod i:1..n { Fifo(P3[i];out[i]) } }
7 } }

8 SlavesToMasterB(in[];out) = { EarlyAsyncMerger(in[1..#in];out) }

9 MasterSlavesInteractionPatternB(
10 master_in,slaves_in[];
11 slaves_out[],master_out
12) = {
13 MasterToSlavesB(master_in;slaves_out[1..#slaves_out])
14 mult SlavesToMasterB(slaves_in[1..#slaves_in];master_out)
15 }

16 main = MasterSlavesInteractionPatternB(A,[D,E];[B,C],F)

Figure 3.40: FOCAML definitions for families MasterToSlavesB, SlavesToMas-
terB, and MasterSlavesInteractionPatternB, and a main definition for a member
of MasterSlavesInteractionPatternB2

tion behaviorally equivalent to the constraint automata in Figures 3.38 and 3.1
but not structurally equal.

Contrasting members of MasterSlavesInteractionPatternA, members of Mas-
terSlavesInteractionPatternB enforce no order in which the master sends signals
to its slaves and vice versa. Instead, using MasterSlavesInteractionPatternB, the
master dispatches work to all its slaves at the same time, achieved through
members of Replicator. To justify this act of eliminating the order that Frumkin
et al. impose in their Java code for the master–slaves interaction pattern in
Figure 3.31 observe that this order hardly seems an intentional part of their
protocol specification but rather, an artifact of using Java: Frumkin et al. sim-
ply cannot express in Java that the iteration order of a loop does not matter.
As such, Frumkin et al. had no choice but to “overimplement” their protocol
specification, and in the process, make their true intention practically impossi-
ble to retrieve by the Java compiler. After all, how can the Java compiler make
a similar “soft” analysis as mine to determine that Frumkin et al. not truly
intended to impose an order but that the Java language simply forced them
to do so? This question matters from a performance point of view, because
it seems quite reasonable to assume that eliminating the order leads to better
performance (or at least not worse); actual experiments follow in this thesis.
In FOCAML, contrasting Java, I can express that the master dispatches work
to all its slaves instantaneously, synchronously, atomically, by using Replica-
tor. By doing so, I avoid overimplementing the protocol specification, leaving
room for the FOCAML compiler to decide whether or not imposing an order
makes sense from a performance point of view. Moreover, using MasterSlaves-

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 90

{Relout},
[
increment(•x) = x•

∧ •x = Rel

]

{Acqout},



decrement(•x) = x•

∧ •x = Acq
∧ GreaterThan0(•x)




Figure 3.41: Constraint automaton
for the Semaphore protocol.
One slave has access to port Acq, the
other slave has access to port Rel,
and the slaves use buffer x for tem-
porary storage of data.

0

Gr
ea
te
rT
ha
n0

Acq

decrement

Rel

in
cr
em
en
t

Figure 3.42: Circuit for a member of
family Semaphore

InteractionPatternB, the master needs to perform only one put to dispatch work
instead of k, for k slaves; this further simplifies the code in Figure 3.33.

To model the relay-race interaction pattern using constraint automata, I
break this pattern down into three constituent protocols: one for the master to
dispatch work to its slaves (as in the master–slaves interaction pattern), one for
the slaves to signal their neighbors, and one for the last slave to signal its mas-
ter about the completion of all the work. For the first of these three protocols,
I reuse families MasterToSlavesA and MasterToSlavesB; for the third of these
three protocols, I use family Fifo. For the second of these three protocols, I de-
fine the Semaphore family of constraint automata. Every member of Semaphore
effectively behaves as a classical semaphore between one “releasing worker”
and one “acquiring worker”. As before, MasterToSlavesA and MasterToSlavesB
have a natural number parameter for their number of slaves. The number of
slaves also determines the number of Semaphores necessary to implement the
relay-race interaction pattern. Members of MasterToSlavesA, Semaphore, and
Fifo straightforwardly compose into members of the RelayRaceInteractionPat-
ternA family, which comprehensively models the relay–race interaction pat-
tern; the same holds true of MasterToSlavesB, Semaphore, Fifo, and RelayRaceIn-
teractionPatternB.

Figure 3.41 shows a member of the Semaphore family; Figure 3.42 shows
a circuit for that same member; Figure 3.37 shows FOCAML definitions for
the entire Semaphore family, the entire RelayRaceInteractionPatternA family, and
the entire RelayRaceInteractionPatternB family. Finally, Figure 3.44 shows a cir-
cuit for the multiplication of a member of MasterToSlaves2 and a member of

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 91

1 Semaphore(;acq,rel) = {
2 Fifo(P1;P2)
3 mult FifoFull<'0'>(P2;P3)
4 mult Router2(P3;P4,P9)
5 mult Blocker<'GreaterThan0'>(P4;P5)
6 mult Replicator2(P5;P6,P7)
7 mult Sync(P6;acq)
8 mult Transformer<'decrement'>(P7;P8)
9 mult Sync(P9;P10)

10 mult Replicator2(P10;P11,P12)
11 mult Sync(P11;rel)
12 mult Transformer<'increment'>(P12;P13)
13 mult Merger2(P8,P13;P1)
14 }

15 RelayRaceInteractionPatternA(
16 master_in,last_slaves_in;
17 slaves_out[],master_out,slaves_acq[],slaves_rel[]
18) = {
19 let n = #slaves_out {
20 MasterToSlavesA(master_in;slaves_out[1..#slaves_out])
21 mult { prod i:1..n { Semaphore(;slaves_acq[1+(i%n)],slaves_rel[i]) } }
22 mult Fifo(last_slaves_in;master_out)
23 } }

24 RelayRaceInteractionPatternB(
25 master_in,last_slaves_in;
26 slaves_out[],master_out,slaves_acq[],slaves_rel[]
27) = {
28 let n = #slaves_out {
29 MasterToSlavesB(master_in;slaves_out[1..#slaves_out])
30 mult { prod i:1..n { Semaphore(;slaves_acq[1+(i%n)],slaves_rel[i]) } }
31 mult Fifo(last_slaves_in;master_out)
32 } }

Figure 3.43: FOCAML definitions for families Semaphore, RelayRaceInteraction-
PatternA, and RelayRaceInteractionPatternB

Semaphore. The extralogical symbols in the data constraints in Figure 3.41 have
the following obvious meaning: data term increment(x) evaluates to x + 1,
data term decrement(x) evaluates to x−1, while data relation GreaterThan0(x)
holds true iff x > 0.

CHAPTER 3. DSL FOR INTERACTION II: SYNTAX 92

0

Gr
ea
te
rT
ha
n0

Acq

decrement

Rel

in
cr
em
en
t

A C

1

B

Figure 3.44: Circuit for the multiplication of a member of subfamily MasterTo-
SlavesA2 and a member of family Semaphore, where gray boxes represent the
master (left) and its two workers (right)

Chapter 4

Basic Compilation

In Chapters 2 and 3, I presented the semantics and syntax of FOCAML. In this
chapter, I continue my presentation of FOCAML with the introduction of its first
compiler, called Lykos. This name reflects my “reverse approach” of starting
from constraint automata and later adopting Reo as a syntax as opposed to
starting from Reo and later adopting constraint automata as a semantics, as
follows:

lykos
αβγ···−−−−→ λυκoς

english−−−−→ wolf reverse−−−−→ flow
greek−−−→ ρεo

abc···−−−→ reo

In Section 4.1, I present the principles behind basic FOCAML compilation.
In particular, I discuss two opposite compilation approaches: one that yields
maximally parallel code (with high throughput, at the cost of high latency)
and another that yields maximally sequential code (with low latency, at the
cost of low throughput). In Section 4.2, I present Lykos. Lykos generates Java
code under the second compilation approach. I also give code examples and
conclude with some experimental results on performance.

93

CHAPTER 4. BASIC COMPILATION 95

4.1 Theory

(With Arbab, I previously published fragments of the material in this section in work-
shop papers [JA13b, JA14] and in a journal paper [JA16].)

Basics

Recall from Chapter 1 that using a DSL for interaction, software engineers write
their worker subprograms in a GPL and their protocol/main subprograms in
a complementary DSL; a compiler for that DSL subsequently generates GPL
code for DSL code and properly blends all GPL code together. True to this
approach, on input of a FOCAML program, a FOCAML compiler generates a
number of GPL subprograms: one protocol subprogram for every instantiated
family signature in the main body (which represents a member of a family of
constraint automata) and one main subprogram for the main body itself. Each
of these compiler-generated subprograms constitutes a separate syntactic mod-
ule, where the precise meaning of “module” depends on the GPL (e.g., a pack-
age in Java or a collection of functions with a special name prefix in C). Com-
bined with the hand-written worker subprograms in the GPL—also referenced
in the main body, through instantiated foreign signatures—these subprograms
compose into a full, modular GPL program.

Every worker/protocol/main subprogram defines one or more virtual units
of parallelism [BST89], henceforth often just called “units”: a worker subpro-
gram defines one worker unit, a protocol subprogram defines one or more pro-
tocol units, and the main subprogram defines one main unit. The exact number
of protocol units defined by a protocol subprogram depends on the specific
compilation approach, two basic alternatives of which I explain shortly. At
run-time, virtual units of parallelism map to physical threads but not neces-
sarily in a one-to-one fashion. As the number of protocol units, this mapping
depends on the specific compilation approach.

Figure 4.1 shows two of the most basic compilation approaches. These ap-
proaches constitute the two ends of a spectrum of compilation approaches that
vary in the amount of sequentiality/parallelism in their resulting code: the
Centralized Approach on the left yields maximally sequential code, whereas the
Distributed Approach on the right yields maximally parallel code. For those two
approaches, and with Java as the complementary GPL, Figures 4.3 and 4.4 ex-
emplify the relation between a specification, the worker/protocol/main sub-
programs in its implementation, the virtual units of parallelism defined by
those subprograms, and the underlying physical threads. Both figures show
the same passive objects, which means that the existence of those passive ob-
jects does not depend on the specific compilation approach. The content of
those passive objects, however, does differ between the Distributed Approach
and the Centralized Approach. In particular, as shown in Figures 4.3 and 4.4,
these differences manifest not only in the number of protocol units, but they
also affect the mapping of those units to threads at run-time. I explain these dif-

CHAPTER 4. BASIC COMPILATION 96

instantiated family signature

a1, . . . ,an>0

a

a a1 (x) · · · (x) an

interpret

�,�

generateCodedistr

generateCodecentr

(maximally
sequential)

(maximally
parallel)

Figure 4.1: Basic compilation approaches

1 LossyFifo(in;out) = { LossySync(in;P) mult Fifo(P;out) }

2 main = { LossyFifo(A;B) } among { Producer(A) and Consumer(B) }

Figure 4.2: FOCAML definition for family LossyFifo and a main definition for a
member of LossyFifo among two workers

ferences in more detail in the next subsections. Regardless of the specific com-
pilation approach, every worker/main unit maps to its own separate thread.

Generally, at run-time, execution of a full GPL program obtained from a
FOCAML program starts with the main unit, which (i) constructs port data
structures, (ii) constructs and starts protocol units, and (iii) constructs and
starts worker units. As part of their construction, the main unit passes port
data structures to worker- and protocol units through their parameters. Doing

CHAPTER 4. BASIC COMPILATION 97

specification

FOCAML
program
(Fig. 4.2)

Producer
subprogr.
(Fig. 1.10)

Consumer
subprogr.
(Fig. 1.10)

LossyFifo
subprogr.

main
subprogr.

Producer
unit

Consumer
unit

LossySync
unit

Fifo
unit

main
unit

Java
thread

Java
thread

Java
thread

Java
thread

Java
thread

FO
C

A
M

L
co

de
G

P
L

co
de

(J
av

a)
V

ir
tu

al
un

it
s

of
pa

ra
lle

lis
m

Ph
ys

ic
al

th
re

ad
s

Workers Protocol Main

Figure 4.3: Relation between passive objects (squares) and active objects (cir-
cles) in the Distributed Approach on input of the FOCAML program in Fig-
ure 4.2

so establishes links between those units of parallelism that receive the same
port data structure. Afterward, every port data structure has exactly two such
units as its “users”. Worker units can perform blocking I/O operations on port
data structures; protocol units can monitor port data structures for occurrences
of such events. More precisely, worker units act proactively; protocol units act
reactively, in an event-driven fashion. Whenever a worker unit performs an
I/O operation on the data structure for a port p, it informs the “neighboring”
protocol unit, which shares access to this data structure, about this p-event and
afterward becomes suspended until its operation completes. The neighboring
protocol unit subsequently resumes from its suspended base state to start a
new round of event-handling. In every such round, a protocol unit checks if
a “suitable” subset of pending I/O operations exists, whose elements would
yield an admissible instance of interaction in its current state upon their syn-

CHAPTER 4. BASIC COMPILATION 98

specification

FOCAML
program
(Fig. 4.2)

Producer
subprogr.
(Fig. 1.10)

Consumer
subprogr.
(Fig. 1.10)

LossyFifo
subprogr.

main
subprogr.

Producer
unit

Consumer
unit

LossyFifo
unit

main
unit

Java
thread

Java
thread

Java
thread

FO
C

A
M

L
co

de
G

P
L

co
de

(J
av

a)
V

ir
tu

al
un

it
s

of
pa

ra
lle

lis
m

Ph
ys

ic
al

th
re

ad
s

Workers Protocol Main

Figure 4.4: Relation between passive objects (squares) and active objects (cir-
cles) in the Centralized Approach on input of the FOCAML program in Fig-
ure 4.2. Dashed arrows indicate that the LossyFifo unit does not map to its
own separate thread but “piggybacks” on the threads of the two worker units,
as explained in more detail on page 101.

chronous completion. If so, the protocol unit effectuates that instance of inter-
action: it completes the pending I/O operations involved, thereby allowing the
worker units that performed those I/O operations to resume. Otherwise, if no
suitable subset exists, (i) the new I/O operation becomes pending on p, (ii) all
previously pending I/O operations remain pending, and (iii) the worker unit
that performed the I/O operation on p remains suspended.

Distributed Approach

A FOCAML compiler that generates code under the Distributed Approach takes
two steps on input of an instantiated family signature. In the first step, the

CHAPTER 4. BASIC COMPILATION 99

compiler calls a FOCAML interpreter to obtain a list of the n “small” primitive
constraint automata a1, . . . ,an denoted by the input signature. In the second
step, the compiler translates this collection of small automata to a GPL protocol
subprogram. This protocol subprogram defines n protocol units. Individu-
ally, every one of these protocol units locally simulates a small automaton ai;
collectively, these protocol units globally simulate the product of a1, . . . ,an.
To achieve the latter, the protocol units need to synchronize their local behav-
ior with each other: before doing anything, all protocol units must reach con-
sensus about (i) which instances of interaction they admit, given their current
local states and pending I/O operations, and (ii) which of those admissible
instances they plan on actually effectuating. In other words, these protocol
units must reach consensus about (i) which global transitions they can fire by
synchronously firing their local transitions and (ii) which of those global tran-
sitions they actually plan on firing. Thus, these protocol units effectively mul-
tiply a1, . . . ,an at run-time. In Figure 4.1, I denote the code of the n protocol
units by a1, . . . , an, the code of their consensus algorithm by (x), and the full
protocol subprogram constituted by those pieces of code by a1 (x) · · · (x) an.
Here, the placement of (x) between a1, . . . , an indicates that the consensus al-
gorithm denoted by (x) actually multiplies constraint automata (in the sense
of Definition 29 of �). I consider this a maximally parallel setup, thereby stipu-
lating that the families of constraint automata in the core set in Figure 3.4 have
indivisible constraint automata as their members.

As an example, Figure 4.3 shows the relation between passive objects and
active objects in the Distributed Approach for the FOCAML program in Fig-
ure 4.2. In this case, the protocol subprogram defines two protocol units. Each
of these protocol units maps to a separate thread at run-time.

Protocol units in the Distributed Approach need to respond to two kinds of
events. Internal events occur whenever one protocol unit sends a control mes-
sage to another protocol unit, through a shared internal port data structure, as
part of their consensus algorithm. Boundary events occur whenever a worker
unit performs an I/O operation on a shared port data structure. (In the Dis-
tributed Approach, thus, every port data structure either has a worker unit
and a protocol unit as its users or it has two protocol units as its users.) Despite
their conceptual differences, a protocol unit can handle internal and boundary
events in nearly the same way. Figure 4.5 shows a simplified event-handler for
a protocol unit that simulates a small automaton. I do not intend this figure
to convey a real “algorithm”; it serves just as a stylized description of what
event-handling roughly entails in the Distributed Approach. In particular, for
simplicity, Figure 4.5 intentionally misses a number of actually essential steps
(e.g., for dealing with cases where a protocol unit simultaneously receives mes-
sages from different protocol units, which may cause deadlock if handled un-
carefully). Clarke et al. and Proença et al. developed distributed algorithms,
run-time systems, and optimization techniques that take these issues into ac-
count [CCA07, CP12, CPLA11, PC13a, PC13b, PCdVA11, PCdVA12, Pro11],
formulated in terms of mathematical objects structurally different from con-
straint automata but nevertheless strongly related. I ignore those issues here,

CHAPTER 4. BASIC COMPILATION 100

Input: a port p on which an event occurred, a context P ctxt ⊆ P in ∪ P out of global boundary
ports with a pending I/O operation, and the current local state qi of ai
Output: q′i holds the next local state of ai.
Effect: either, through the firing of enabled local transitions (including a local transition of ai),
an enabled global transition fires (if the I/O operations pending on the ports in P ctxt satisfy
that transition’s label), or all global transitions are disabled (otherwise).

1. Wake up, and assign qi to q′i.

2. Assign ∅ to Φ, a variable for a set of data constraints.

3. For all transitions qi
Pi,φi−−−−→i q

′
i, ordered nondeterministically:

(a) If p /∈ Pi, continue (i.e., skip to the next iteration).

(b) If Pi ∩ (P in ∪ P out) 6⊆ P ctxt (i.e., not all boundary ports involved in the current
local transition have a pending I/O operation), continue.

(c) Assign {φ} to Φ′, a variable for a set of data constraints.

(d) For all ports p′ ∈ Pi \ (P in ∪ P out):

i. Send a message to the protocol unit that shares access to p′ to ask which
data constraints must hold for that unit to fire a transition involving p′.

ii. Await an answer message Φ′′ from that protocol unit.
iii. Assign {φ′ ∧ φ′′ | φ′ ∈ Φ′ and φ′′ ∈ Φ′′} to Φ′.

(e) Assign Φ ∪ Φ′ to Φ.

4. If the p-event originated from a worker unit:

(a) For all data constraints φ ∈ Φ:

i. Compute a data assignment σ that respects the pending I/O operations
and satisfies φ; continue if no such σ exists.

ii. Distribute data among local ports and memory cells according to σ.
iii. Send σ to all protocol units sent messages to in Step 3.

iv. Compute a q′ such that qi
Pi,φi−−−−→ q′ and Pi ⊆ Dom(σ) and σ |= φi.

v. Assign q′ to q′i, and abort the loop.

(b) If the previous loop never made it to Step 4-a-v, send ∅ (i.e., the empty data
assignment) to all protocol units sent messages to in Step 3.

Else, if the p-event originated from a protocol unit:

(a) Send an answer message Φ to that protocol unit.

(b) Await a message with a data assignment σ.

(c) If σ 6= ∅, distribute data among local ports and memory cells according to σ.

(d) Send σ to all protocol units sent messages to in Step 3.

(e) If σ 6= ∅, compute a q′ such that qi
Pi,φi−−−−→ q′ and Pi ⊆ Dom(σ) and σ |= φi.

(f) If σ 6= ∅, assign q′ to q′i.

5. Go dormant.

Figure 4.5: Simplified p-event-handler for a protocol unit that simulates a small
automaton ai = (Qi, (P

all
i , P

in
i , P

out
i),Mi,−→i, (q

0
i , µ

0
i)) in the Distributed Ap-

proach, where P in and P out denote the sets of global input and output ports

CHAPTER 4. BASIC COMPILATION 101

because I do not use the Distributed Approach further in this thesis.

Centralized Approach

A FOCAML compiler that generates code under the Centralized Approach takes
three steps on input of an instantiated family signature. In the first step, the
compiler obtains a list of n small primitive constraint automata a1, . . . ,an as
in the Distributed Approach, by calling a FOCAML interpreter. In the second
step, the compiler multiplies those small automata and subtracts all internal
ports to get one “large” composite constraint automaton a. In the third step,
the compiler translates this large automaton to a protocol subprogram a in the
complementary GPL. This protocol subprogram defines exactly one protocol
unit, which simulates a. I consider this a maximally sequential setup, because
this protocol unit serializes all parallelism among the small automata.

As an example, Figure 4.4 shows the relation between passive objects and
active objects in the Centralized Approach for the FOCAML program in Fig-
ure 4.2. In contrast to the protocol units in Figure 4.3, the protocol unit in
Figure 4.4 does not map to its own separate thread at run-time. Instead, the
worker threads execute the interaction code in the compiler-generated proto-
col subprogram. Doing so results in better performance. To understand this
claim, suppose that the protocol unit in Figure 4.4 does map to its own separate
thread. In that case, every time a worker unit becomes suspended until its I/O
operation completes, its thread goes to sleep. Simultaneously, the thread of its
neighboring protocol unit awakes in an attempt to handle this new event. The
worker unit remains suspended, and its thread remains asleep, at least until
the event-handler of its neighboring protocol unit terminates. But then, the
sleeping worker thread might as well have executed all event-handling code
itself, on behalf of the neighboring protocol unit. This would have eliminated some
of the overhead in threads going to sleep and waking up. In fact, if all worker
threads collectively handle events on behalf of the protocol unit in this way,
this protocol unit does not need its own separate thread anymore, eliminating
also the general overhead of managing an extra thread. Generally, the smaller
the number of threads without sacrificing useful parallelism, the better.

The single protocol unit in the Centralized Approach needs to respond only
to boundary events. (In the Centralized Approach, thus, every port data struc-
ture has a worker unit and a protocol unit as its users.) Figure 4.5 shows a
simplified event-handler for a protocol unit that simulates a large automaton.
I do not intend this figure to convey a real “algorithm”; it serves just as a styl-
ized description of what event-handling roughly entails in the Centralized Ap-
proach.

Distribution versus Centralization

The Distributed Approach and the Centralized Approach differ essentially in
when multiplication takes place. In the Distributed Approach, multiplica-
tion occurs on-line, dynamically at run-time; in the Centralized Approach,

CHAPTER 4. BASIC COMPILATION 102

Input: a port p on which an event occurred, a context P ctxt ⊆ P in ∪ P out of boundary ports
with a pending I/O operation, and the current state q
Output: q′ holds the next state.
Effect: either an enabled transition fires (if the I/O operations pending on the ports in P ctxt

satisfy that transition’s label), or all transitions are disabled (otherwise).

1. Wake up, and assign q to q′.

2. For all transitions q
P,φ−−→ q′′, ordered nondeterministically:

(a) If p /∈ P , continue.

(b) If P ∩ (P in ∪ P out) 6⊆ P ctxt, continue.

(c) Compute a data assignment σ that respects the pending I/O operations and
satisfies data constraint φ; continue if no such σ exists.

(d) Distribute data among ports and memory cells according to σ.

(e) Assign q′′ to q′.

(f) Abort the loop.

3. Go dormant.

Figure 4.6: Simplified p-event-handler for a protocol unit that simulates a large
automaton (Q, (P all, P in, P out),M,−→, (q0, µ0)) in the Centralized Approach

1 Alice(in;out) = { Sync(in;out) }
2 Bob (in;out) = { Sync(in;out) }
3 Carol(in;out) = { Sync(in;out) }
4 Dave (in;out) = { Sync(in;out) }

5 AliceBobCarol(in;out) = {
6 Alice(in,P1) mult Bob(P1,P2) mult Carol(P2;out)
7 }

8 AliceBobCarolDave(in[];out[]) = {
9 AliceBobCarol(in[1];out[1]) mult Dave(in[2];out[2])

10 }

11 main = {
12 AliceBobCarolDave(A[1..2];B[1..2])
13 } among {
14 Producer(A[1]) and Producer(A[2]) and Consumer(B[1]) and Consumer(B[2])
15 }

Figure 4.7: Alice, Bob, Carol, and Dave in FOCAML

multiplication occurs off-line, statically at compile-time. Consequently, in the
Distributed Approach, compilation requires few resources while execution re-
quires many (i.e., the consensus algorithm), while in the Centralized Approach,
compilation requires many resources (i.e., the product computation) while ex-
ecution requires few.

CHAPTER 4. BASIC COMPILATION 103

A1 B1

Alice Bob Carol

A2 B2

Dave

Figure 4.8: Alice, Bob, Carol, and Dave in Reo

I define the latency of a compiler-generated protocol subprogram as the av-
erage number of time units required to fire a transition (i.e., effectuate one in-
stance of interaction); I define its throughput as the average number of tran-
sitions fired per time unit. The Distributed Approach and the Centralized
Approach have opposite latency/throughput characteristics. To illustrate this
point, suppose that I compile the FOCAML program in Figure 4.7 twice (see also
its Reo equivalent in Figure 4.8), once for every approach.

• The protocol subprogram generated under the Distributed Approach de-
fines four protocol units, which I anthropomorphize as Alice, Bob, Carol,
and Dave. Each of these protocol units maps to its own thread. When-
ever an I/O operation occurs on A[1], Alice awakes to handle this event
(see Figure 4.5). She then asks Bob which data constraints must hold for
him to fire a transition involving the port data structure shared between
Alice and Bob. Bob awakes upon receiving Alice’s message and, in turn,
asks Carol which data constraints must hold for her to fire a transition
involving the port data structure shared between Bob and Carol. Upon
receiving Bob’s message, also Carol awakes. If B[1] has a pending I/O
operation, she replies the data constraint on her transition to Bob; other-
wise, she replies⊥. Once Bob has received Carol’s reply, he prepares and
replies a set of data constraints to Alice based on the message he received
from Carol. Alice can subsequently determine whether she, Bob, and
Carol can synchronously fire local transitions that compose into an ad-
missible global transition, by searching for a satisfying data assignment
for one of the compound data constraints that she received from Bob.
Note that, to find such a data assignment, Alice does not need access
to port data structures other than her own (i.e., A[1], whose pending put
contains the datum to propagate to Carol via Bob). Once computed, Alice
sends the satisfying data assignment to Bob, after which Bob sends this
assignment to Carol. Carol, finally, looks up the datum assigned to the
variable for B[1] in this satisfying data assignment and exchanges this
datum through B[1] to the worker that performed a get on B[1] (i.e., as
Alice, also Carol needs access only to her own port data structures). In
parallel to the communication between Alice, Bob, and Carol, by Defini-
tion 29 of � (which admits true concurrency), Dave can independently
try to fire his transition whenever an I/O operation occurs on A[2] or
B[2]. After all, Dave controls the interaction on port data structures that

CHAPTER 4. BASIC COMPILATION 104

Alice, Bob, and Carol do not know about and vice versa.

Thus, the distributed nature of Alice, Bob, and Carol (i.e., the commu-
nication necessary for them to synchronously fire their local transitions)
negatively affects latency; the parallelism between them and Dave (i.e.,
the ability of Dave to fire his transition independently of theirs) positively
affects throughput.

• The protocol subprogram generated under the Centralized Approach de-
fines only one protocol unit. Whenever an I/O operation occurs on A[1],
this protocol unit checks if its transition involving A[1] (i.e., the transition
composed of Alice’s, Bob’s, and Carol’s local transitions) can fire. While
this happens, however, the protocol unit cannot fire other transitions. In
other words, if an I/O operation occurs on A[2] just after the occurrence
of the I/O operation on A[1], the protocol unit cannot try to fire its tran-
sition involving A[2] (i.e., Dave’s transition) as long as it has not finished
handling the event on A[1].

Thus, the centralized nature of the single protocol unit for Alice, Bob,
Carol, and Dave (i.e., the fact that it does not require a consensus algo-
rithm and, as such, avoids a major source of overhead) positively affects
latency; its sequentiality (i.e., its inability to simultaneously fire multiple
transitions) negatively affects throughput.

In summary, a FOCAML compiler that generates code under the Distributed
Approach generally yields protocol subprograms with high latency and high
throughput; a FOCAML compiler that generates code under the Centralized
Approach generally yields protocol subprograms with low latency and low
throughput. The compiler that I present in Section 4.2 generates code under the
Centralized Approach. In Chapter 5, I refine this approach to recover “useful
parallelism”, thereby improving throughput.

4.2 Practice

(I have not yet submitted the material in this section for publication.)

Compiler

I extended the basic Eclipse editor/parser/interpreter plug-in for FOCAML,
presented in Chapter 3, with a FOCAML compiler that generates Java code.
This FOCAML-to-Java compiler, called Lykos , closely follows the Centralized
Approach as presented in Section 4.1. To multiply small automata (resulting
from interpreting an instantiated family signature) into a large automaton, as
the Centralized Approach demands, Lykos uses the Java library for represent-
ing constraint automata and their operations in Chapter 2. To generate code
for a large automaton, then, Lykos uses ANTLR’s StringTemplate technology.
StringTemplate consists of a grammar for writing templates and a Java library

CHAPTER 4. BASIC COMPILATION 105

through which to invoke a template engine. Given a template and a set of data,
the template engine “fills” the “holes” in the template with that data. In the
case of Lykos, the template consists of Java code and the set of data consists of
a data structure for the large automaton computed previously.

This template approach to generating code easily supports new target lan-
guages: the template-to-fill forms the only truly Java-specific aspect of Lykos
(along with the Java run-time library to actually run the generated code, of
course). This means that extending Lykos to other target languages requires
relatively little effort: just write a new template. As concrete evidence in sup-
port of this claim, a master student has recently extended Lykos with a tem-
plate to generate C code, only as a minor part of his MSc thesis. For the run-
time library, a target language should support just some form of threading and
mutual exclusion (i.e., I do not use any exotic Java-specific features), which
most—if not all—modern GPLs do.

The output of Lykos consists of a program-independent run-time library,
a custom main subprogram, a custom protocol subprogram, and a number of
Runnable classes that wrap around hand-written worker subprograms. Each of
these subprograms defines one virtual unit of parallelism. Every worker unit
maps to its own thread. The resulting worker threads execute not only compu-
tation code but also interaction code, on behalf of the protocol unit defined by
the protocol subprogram (as explained in Section 4.1). Thus, the protocol unit
does not map to its own separate thread at run-time.

Run-Time Library

Figure 4.9 shows the part of the run-time library concerned with contexts.

• Every Context represents a registry of the I/O operations pending on the
input and output ports of a constraint automaton (where “input” and
“output” qualify ports from the protocol perspective).

A Context has a field for storing an array of AtomicIntegers to enable
lock-free concurrent accesses and updates with bitwise operators. Each
of the 32 bits in an AtomicInteger represents the (un)availability of an
I/O operation on a port. For instance, suppose that I have ports A, B, and
C. Indexing from right to left, the following integers—in Java 7 syntax—
denote sets {A}, {A,C}, and {A,B,C}:

0b0000_0000_0000_0000_0000_0000_0000_0001
0b0000_0000_0000_0000_0000_0000_0000_0101
0b0000_0000_0000_0000_0000_0000_0000_0111

To (un)register ports in a Context, a thread should first compute their
corresponding integer mask. Subsequently, it can add or remove that mask,
using Java’s bitwise operators to efficiently manipulate the Context’s in-
ternal integers. Similarly, threads use bitwise operators to check if a
Context contains certain ports.

CHAPTER 4. BASIC COMPILATION 106

1 public class Context {
2 public final AtomicInteger[] integers;
3

4 public Context(int nPorts) {
5 this.integers = new AtomicInteger[(nPorts / 32) + 1];
6 for (int i = 0; i < this.integers.length; i++)
7 this.integers[i] = new AtomicInteger();
8 }
9

10 public void add(int index, int mask) {
11 AtomicInteger integer = integers[index];
12 int bits = integer.get();
13 while (!integer.compareAndSet(bits, bits | mask))
14 bits = integer.get();
15 }
16

17 public boolean contains(int index, int mask) {
18 return mask == (integers[index].get() & mask);
19 }
20

21 public void remove(int index, int mask) {
22 AtomicInteger integer = integers[index];
23 int current = integer.get();
24 while (!integer.compareAndSet(current, current & ~mask))
25 current = integer.get();
26 } }

Figure 4.9: Java run-time library (contexts)

Figure 4.10 shows the part of the run-time library concerned with automata,
states, and transitions.

• Every Automaton represents a constraint automaton. An Automaton has
fields for storing a Context to register pending I/O operations and a
Semaphore (from package java.util.concurrent) to guarantee mutual
exclusion among threads trying to execute code on its behalf (i.e., worker
threads). Compiler-generated subclasses of Automaton typically have a
number of extra fields for storing States and bookkeeping information
(e.g., to account for the initial/current state). In the next subsection, I
give examples of compiler-generated subclasses of Automaton.

• Every State represents a state in a constraint automaton. Implemen-
tations of State typically have a number of fields for storing outgoing
Transitions and bookkeeping information (e.g., to account for fairness).
Threads can cause an Automaton to reach a State, making that State the
current State of that Automaton. In the next subsection, I give examples
of compiler-generated implementations of State.

• Every Current represents the current state in a constraint automaton.

• Every Transition represents a transition out of a state in a constraint
automaton. In method checkDataConstraint, the current thread checks

CHAPTER 4. BASIC COMPILATION 107

1 public abstract class Automaton extends Thread {
2 public final Context context;
3 public final Semaphore semaphore = new Semaphore(1);
4

5 public Automaton(int nPorts) {
6 this.context = new Context(nPorts);
7 } }

8 public interface State {
9 public void reach();

10 }

11 public class Current {
12 public volatile State state;
13 }

14 public abstract class Transition {
15 protected boolean checkDataConstraint() {
16 return true;
17 }
18

19 protected abstract boolean fire();
20 }

Figure 4.10: Java run-time library (automata, states, transitions)

whether the data constraint of the Transition involved holds true given
the currently pending I/O operations and the content of memory cells.
The default implementation simply returns true; usually, compiler-gen-
erated subclasses of Transition override this implementation. Threads
can attempt to make a transition by invoking method fire. If successful,
this method returns true; otherwise, it returns false. In the next subsec-
tion, I give examples of compiler-generated subclasses of Transition.

Figure 4.11 shows the part of the run-time library concerned with event-han-
dlers.

• Every Handler represents an event-handler for I/O operations on a par-
ticular port. A Handler has fields for storing a Semaphore, passed to it
through its constructor, to guarantee mutual exclusion in executing code
of its corresponding Automaton (i.e., the Semaphore passed to a Handler
and the Semaphore on line 3 in Figure 4.10 should refer to the same ob-
ject).

Whenever a worker thread performs an I/O operation, it should first
register that I/O operation in a Context via the appropriate Handler.
Afterward, until some thread has completed the I/O operation, worker
threads can use method callSync to execute the actual event-handling
code in method call, under mutual exclusion (i.e., only one Handler of
an Automaton may run at a time). If this method returns false, the worker

CHAPTER 4. BASIC COMPILATION 108

21 public abstract class Handler {
22 public final Semaphore semaphore;
23

24 public Handler(Semaphore semaphore) {
25 this.semaphore = semaphore;
26 }
27

28 public boolean callSync() throws InterruptedException {
29 semaphore.acquire();
30 boolean isCompleted = call();
31 semaphore.release();
32 return isCompleted;
33 }
34

35 public abstract boolean call();
36 public abstract void register();
37 }

Figure 4.11: Java run-time library (event-handlers)

1 public enum IO { PERFORMED, COMPLETED }

2 public abstract class Port {
3 public final Semaphore semaphore = new Semaphore(0);
4

5 public volatile Handler handler;
6 public volatile IO status;
7 public volatile Object buffer;

8 public class MemoryCell {
9 public volatile Object content;

10 }

Figure 4.12: Java run-time library (ports and memory cells)

thread has failed to complete the I/O operation. In that case, the I/O op-
eration should remain pending. In the next subsection, I give examples
of compiler-generated implementations of Handler.

Figure 4.12 shows the part of the run-time library concerned with ports and
memory cells.

• Every Port represents a port controlled by a constraint automaton.

A Port has a field buffer to store the datum involved in a pending I/O
operation, a field status to store the status of a pending I/O operation, a
Handler for events caused by puts or gets (depending on the direction of
the Port), and a Semaphore for threads to block on (until an I/O operation
becomes COMPLETED).

• Every MemoryCell represents a memory cell in a constraint automaton.

CHAPTER 4. BASIC COMPILATION 109

1 public class OutputPortImpl extends Port implements OutputPort {
2 public void put(Object datum) throws InterruptedException {
3 buffer = datum;
4 status = IO.PENDING;
5 handler.register();
6 resume();
7 }
8

9 public void putUninterruptibly(Object datum) {
10 while (true)
11 try {
12 put(datum);
13 return;
14 } catch (InterruptedException exc) { break; }
15 while (true)
16 try {
17 resume();
18 return;
19 } catch (InterruptedException exc) {}
20 }
21

22 public void resume() throws InterruptedException {
23 while (status != IO.COMPLETED && !handler.callSync())
24 semaphore.acquire();
25 } }

26 public class InputPortImpl extends Port implements InputPort {
27 public Object get() throws InterruptedException {
28 buffer = null;
29 status = IO.PENDING;
30 handler.register();
31 return resume();
32 }
33

34 public Object getUninterruptibly() {
35 while (true)
36 try {
37 return get(datum);
38 } catch (InterruptedException exc) { break; }
39 while (true)
40 try {
41 return resume();
42 } catch (InterruptedException exc) {}
43 }
44

45 public Object resume() throws InterruptedException {
46 while (status != IO.COMPLETED && !handler.callSync())
47 semaphore.acquire();
48 return buffer;
49 } }

Figure 4.13: Implementation of the Java API for ports in Figure 1.9

CHAPTER 4. BASIC COMPILATION 110

Finally, Figure 4.13 shows the implementation of the Java API for ports in Fig-
ure 1.9, based on class Port in Figure 4.12. (These figures constitute one of
the rare exceptions in this thesis, where I qualify ports as “input” or “output”
from the perspective of workers.) Whenever a worker thread puts a datum to
an OutputPortImpl, (i) it temporarily stores that datum in field buffer, (ii) it
updates field status to remember that it has PERFORMED an I/O operation, (iv)
it registers the I/O operation through the Handler, and (v) it actually runs the
Handler through method callSync. If method callSync returns true, in which
case the worker thread has COMPLETED the put, the worker thread immediately
returns; otherwise, the worker thread blocks on a Semaphore either until it gets
a new chance to complete the put itself or until another thread has done so
on its behalf. Should an InterruptedException occur during a put, the in-
terrupted thread can later resume this I/O operation using method resume.
Method putUninterruptibly demonstrates this idiom. Methods get and re-
sume of OutputPortImpl work similarly. Software engineers should write their
programs against interfaces OutputPort and InputPort; they should never use
classes OutputPortImpl and InputPortImpl directly.

I concentrated on the core functionality of the run-time library, intentionally
omitting some of its more advanced features such as I/O operations with time-
outs and internal transitions. Although Lykos supports these features, their
explanation goes beyond my current intent of giving only a broad overview.

Compiler-Generated Code

To exemplify compiler-generated code, Figure 4.15 and further show the code
generated by Lykos on input of instantiated family signature LateAsyncMerg-
er2(A,B;C) (cf. Figure 3.3), with compiler flag IGNORE_DATA raised. When
raised, this flag signals to Lykos that data do not matter. Lykos subsequently
generates code in which transitions can fire without checking their data con-
straints. Abstracting away data constraints in this way makes it easier to ex-
plain and understand the general structure of the generated code. In Chapter 7,
I discuss checking data constraints in more detail. In practice, software engi-
neers may raise the IGNORE_DATA-flag whenever they want to use a data-aware
protocol in a data-unaware fashion (i.e., as a pure data-insensitive synchroniza-
tion protocol).

First, Figure 4.14 shows a typical main method that uses a Protocol (dis-
cussed shortly) to control the interaction between two Producers and a Con-
sumer in Figure 1.10. (This figure constitutes one of the rare exceptions in this
thesis, where I qualify ports as “input” or “output” from the perspective of
workers.) As this figure shows, sharing ports (i.e., passing the same Port to
multiple constructors of Protocol/Producer/Consumer) links workers to pro-
tocols. Lykos automatically generates a main method similar to the one in Fig-
ure 4.14, thereby producing a full executable program.

Figure 4.15 shows class Protocol. Instances of this class fully encapsu-
late the LateAsyncMerger2 protocol, first informally described on page 7 and
later formalized as a constraint automaton in Figure 2.2. A Protocol has fields

CHAPTER 4. BASIC COMPILATION 111

1 public class ProducersConsumerProgram {
2 public static void main(String[] args) {
3 OutputPort A = Ports.newOutputPort();
4 OutputPort B = Ports.newOutputPort();
5 InputPort C = Ports.newInputPort();
6 new Protocol((Port) A, (Port) B, (Port) C);
7 (new Producer(A)).start();
8 (new Producer(B)).start();
9 (new Consumer(C)).start();

10 } }

Figure 4.14: Producers/consumer program for LateAsyncMerger2 in Java, gen-
erated for LateAsyncMerger2(A,B;C)

1 public class Protocol {
2 final Automaton7 automaton7;
3 final Port A;
4 final Port B;
5 final Port C;
6 final MemoryCell memoryCell1 = new MemoryCell();
7

8 public Protocol(Port A, Port B, Port C) {
9 this.A = A;

10 this.B = B;
11 this.C = C;
12 this.automaton7 = new Automaton7();
13 initialize();
14 }
15

16 public void initialize() {
17 this.A.handler = new HandlerForA(this);
18 this.B.handler = new HandlerForB(this);
19 this.C.handler = new HandlerForC(this);
20 this.automaton7.initialize(this);
21 } }

Figure 4.15: Class Protocol, generated for LateAsyncMerger2(A,B;C)

for storing an Automaton (which represents the constraint automaton in Fig-
ure 2.2), three Ports (which represent its input ports A and B and its output
port C, where “input” and “output” qualify ports from the protocol perspec-
tive), and a MemoryCell (which represents its memory cell x). In the construc-
tor, the current thread stores the provided Port arguments in their correspond-
ing fields. Subsequently, the current thread creates and stores a new Automa-
ton, namely an instance of compiler-generated subclass Automaton7 (discussed
shortly). In method initialize, the current thread creates and stores new
Handlers in the appropriate fields of A, B, and C, namely instances of compi-
ler-generated classes HandlerForA, HandlerForB, and HandlerForC (discussed
shortly). Subsequently, the current thread further initializes the previously
constructed Automaton.

CHAPTER 4. BASIC COMPILATION 112

1 class Automaton7 extends Automaton {
2 final Automaton7State1 state1;
3 final Automaton7State2 state2;
4 final Current current = new Current();
5

6 public Automaton7() {
7 super(3);
8 this.state1 = new Automaton7State1();
9 this.state2 = new Automaton7State2();

10 }
11

12 public void initialize(Protocol protocol) {
13 this.state1.initialize(protocol);
14 this.state2.initialize(protocol);
15 this.state1.reach();
16 } }

Figure 4.16: Class Automaton7, generated for LateAsyncMerger(A,B;C)

Figure 4.16 shows class Automaton7. (The “7” has no real significance; it
serves just as an internal identifier during compilation.) Every instance of this
class represents the constraint automaton in Figure 2.2. An Automaton7 has
fields for storing two States (which represent the states in the constraint au-
tomaton in Figure 2.2) and a Current (which represents its current state). In
the constructor, the current thread creates and stores two new States, namely
instances of compiler-generated subclasses Automaton7State1 and Automa-
ton7State2 (discussed shortly). In method initialize, the current thread
further initializes the previously constructed States. Subsequently, the current
thread sets state1 as the initial/current State, by invoking method reach.

Figure 4.17 shows classes Automaton7State1 and Automaton7State2. Ev-
ery instance of the former class represents the left state in Figure 2.2; every
instance of the latter class represents the right state. An Automaton7State1
has fields for storing two Transitions (which represent the outgoing transi-
tions from the left state in Figure 2.2), a Current (which represents the current
state of the constraint automaton), and two Ports (which represent ports A
and B, involved in those transitions). In the constructor, the current thread
creates and stores two new Transitions, namely instances of compiler-gen-
erated subclasses Automaton7Transition1 and Automaton7Transition2 (dis-
cussed shortly). In method initialize, the current thread sets the remaining
uninitialized fields with information from the provided Protocol argument.
Subsequently, the current thread further initializes the previously constructed
Transitions. In method reach, the current thread updates the current.state
and releases a permit to A’s and B’s semaphore. These new permits may wake
up worker threads (who previously invoked method acquire on line 24 in Fig-
ure 4.12), thereby offering them another attempt at handling their still-pending
I/O operations (by invoking method callSync on line 23 in Figure 4.12). Such
another attempt must take place, because following a state change, a new set
of admissible transitions becomes available, which affects the potential for I/O

CHAPTER 4. BASIC COMPILATION 113

1 class Automaton7State1 implements State {
2 final Automaton7Transition1 transition1;
3 final Automaton7Transition2 transition2;
4

5 Current current;
6 Port A;
7 Port B;
8

9 public Automaton7State1() {
10 this.transition1 = new Automaton7Transition1();
11 this.transition2 = new Automaton7Transition2();
12 }
13

14 public void initialize(Protocol protocol) {
15 this.current = protocol.automaton7.current;
16 this.A = protocol.A;
17 this.B = protocol.B;
18 this.transition1.initialize(protocol);
19 this.transition2.initialize(protocol);
20 }
21

22 @Override
23 public void reach() {
24 current.state = this;
25 A.semaphore.release();
26 B.semaphore.release();
27 } }

28 class Automaton7State2 implements State {
29 final Automaton7Transition3 transition3;
30

31 Current current;
32 Port C;
33

34 public Automaton7State2() {
35 this.transition3 = new Automaton7Transition3();
36 }
37

38 public void initialize(Protocol protocol) {
39 this.current = protocol.automaton7.current;
40 this.C = protocol.C;
41 this.transition3.initialize(protocol);
42 }
43

44 @Override
45 public void reach() {
46 current.state = this;
47 C.semaphore.release();
48 } }

Figure 4.17: Java code generated for LateAsyncMerger(A,B;C)—class Automa-
ton7State1

CHAPTER 4. BASIC COMPILATION 114

1 class Automaton7Transition1 extends Transition {
2 Context context;
3 Port A;
4 Automaton7State2 target;
5

6 public initialize(Protocol protocol) {
7 this.context = protocol.automaton7.context;
8 this.A = protocol.A;
9 this.target = protocol.automaton7.state2;

10 }
11

12 protected boolean checkSynchronizationConstraint() {
13 return true && context.contains(0, 0b00000000000000000000000000000001);
14 }
15

16 @Override
17 protected boolean fire() {
18 boolean canFire = checkSynchronizationConstraint() && checkDataConstraint();
19 if (canFire) {
20 context.remove(0, 0b00000000000000000000000000000001);
21 A.status = IO.COMPLETED;
22 A.semaphore.release();
23 target.reach();
24 }
25 return canFire;
26 } }

Figure 4.18: Class Automaton7Transition1, generated for LateAsyncMerg-
er(A,B;C)

operations to complete. For instance, the right state in Figure 2.2 has no out-
going transitions involving port A. So, if a worker thread invokes A.put, while
the Automaton7 has state2 as its current.state (which represents the right
state in Figure 2.2), method callSync invoked on line 23 in Figure 4.12 returns
false after which the worker thread goes to sleep on the next line. As soon as
the Automaton7 reaches state1, however, the worker thread should wake up
to invoke method callSync again. After all, the left state in Figure 2.2 (repre-
sented by state1) has an outgoing transition involving port A, so the pending
I/O operation on A can now complete.

Figure 4.18 shows class Automaton7Transition1. Every instance of this
class represents the {A}-transition in Figure 2.2, from the left state to the right
state. An Automaton7Transition1 has fields for storing a Context, a Port
(which represents port A involved in the {A}-transition in Figure 2.2), and
a State (which represents its target state). In method initialize, the cur-
rent thread sets these fields with information from the provided Protocol ar-
gument. In method checkSynchronizationConstraint, the current thread
checks if the context has a bit set for A. In method fire, the current thread
first checks the synchronization constraint and the data constraint. If those
constraints hold true, the current thread unsets the bit previously set for A in
the context, it updates the A.status accordingly, and it wakes up the worker

CHAPTER 4. BASIC COMPILATION 115

thread that performed an I/O operation on A. Subsequently, the current thread
sets target as the current.state, by invoking method reach.

Because I raised the IGNORE_DATA-flag, Automaton7Transition1 just inher-
its method checkDataConstraint from superclass Transition, whose trivial
implementation simply returns true (see Figure 4.10), thereby effectively ig-
noring data constraints. Without this flag raised, to properly deal with data
constraints, Lykos generates code that calls a simple constraint solver with for-
ward checking [Apt09a, BMFL02]. Essentially, for a given data constraint φ, this
constraint solver tries to find a data assignment σ such that σ |= φ (i.e., σ sat-
isfies φ). Because the constraint solver that I use does not advance the state-
of-the-art in constraint solving, I skip a further explanation of its workings for
now; I discuss data constraints in more detail in Chapters 6 and 7.

Figure 4.19 shows classes Automaton7Transition2 and Automaton7Tran-
sition3. Every instance of the former class represents the {B}-transition in
Figure 2.2, from the left state to the right state; every instance of the latter class
represents the {C}-transition, from the right state to the left state. To highlight
their differences, I grayed out the similar parts in Figure 4.19 with respect to
Figure 4.18.

Figure 4.20 shows class HandlerForA. Every instance of this class represents
an event-handler for I/O operations on port A. An HandlerForA has fields for
storing a Context, a Port (which represents port A in the constraint automa-
ton in Figure 2.2), a Current (which represents its current state), and a State
(which represents its left state). In the constructor, the current thread sets these
fields with information from the provided Protocol argument. In method
call, the current thread first checks if the previously performed I/O opera-
tion has already completed. If so, the current thread returns. Otherwise, the
current thread checks if current.state equals state1, and if so, whether the
Transition out of this state can fire. If so, the current thread returns. Oth-
erwise, the current thread removes all permits from A’s semaphore (to avoid
excessive awakenings) and returns.

Figure 4.21 shows classes HandlerForB and Automaton7HandlerForC. Ev-
ery instance of the former class represents an event-handler for I/O operations
on port B; every instance of the latter class represents an event-handler for I/O
operations on port C. To highlight their differences, I grayed out the similar
parts in Figure 4.21 with respect to Figure 4.20.

The Handlers in Figures 4.20 and 4.21 handle I/O operations in only one
State by attempting to fire only one Transition. This makes these Han-
dlers rather simple. Generally, however, Handlers may handle I/O operations
in any number of states by attempting to fire any number of Transitions.
Figure 4.22 shows class HandlerForABC to exemplify the general pattern in
such cases. Every instance of this Handler represents a comprehensive event-
handler for Automaton7 (i.e., not tied to any particular Port), which any thread
can call at any time in an attempt to fire any Transition. Normally, Lykos
does not generate such comprehensive Handlers, because per-port Handlers,
which attempt to fire only those Transitions that actually involve the Port
on which an I/O operation became pending, have lower overhead. After all,

CHAPTER 4. BASIC COMPILATION 116

1 class Automaton7Transition2 extends Transition {
2 Context context;
3 Port B;
4 Automaton7State2 target;
5

6 public initialize(Protocol protocol) {
7 this.context = protocol.automaton7.context;
8 this.B = protocol.B;
9 this.target = protocol.automaton7.state2;

10 }
11

12 protected boolean checkSynchronizationConstraint() {
13 return true && context.contains(0, 0b00000000000000000000000000000010);
14 }
15

16 @Override
17 protected boolean fire() {
18 boolean canFire = checkSynchronizationConstraint() && checkDataConstraint();
19 if (canFire) {
20 context.remove(0, 0b00000000000000000000000000000010);
21 B.status = IO.COMPLETED;
22 B.semaphore.release();
23 target.reach();
24 }
25 return canFire;
26 } }

27 class Automaton7Transition3 extends Transition {
28 Context context;
29 Port C;
30 Automaton7State2 target;
31

32 public initialize(Protocol protocol) {
33 this.context = protocol.automaton7.context;
34 this.C = protocol.C;
35 this.target = protocol.automaton7.state1;
36 }
37

38 protected boolean checkSynchronizationConstraint() {
39 return true && context.contains(0, 0b00000000000000000000000000000100);
40 }
41

42 @Override
43 protected boolean fire() {
44 boolean canFire = checkSynchronizationConstraint() && checkDataConstraint();
45 if (canFire) {
46 context.remove(0, 0b00000000000000000000000000000100);
47 C.status = IO.COMPLETED;
48 C.semaphore.release();
49 target.reach();
50 }
51 return canFire;
52 } }

Figure 4.19: Classes Automaton7Transition2 and Automaton7Transition3,
generated for LateAsyncMerger(A,B;C)

CHAPTER 4. BASIC COMPILATION 117

1 class HandlerForA extends Handler {
2 final Context context;
3 final Port A;
4 final Current current;
5 final Automaton7State1 state1;
6

7 public HandlerForA(Protocol protocol) {
8 super(protocol.automaton7.semaphore);
9 this.context = protocol.automaton7.context;

10 this.A = protocol.A;
11 this.current = protocol.automaton7.current;
12 this.state1 = protocol.automaton7.state1;
13 }
14

15 @Override
16 public boolean call() {
17 if (A.status == IO.COMPLETED) return true;
18 if (current.state == state1 && state1.transition1.fire()) return true;
19 A.semaphore.drainPermits();
20 return false;
21 }
22

23 @Override
24 public void register() {
25 context.add(0, 0b00000000000000000000000000000001);
26 } }

Figure 4.20: Class HandlerForA, generated for LateAsyncMerger(A,B;C)

performing an I/O operation on a Port can never cause method fire to return
true on a Transition that does not even involve that Port; making such su-
perfluous fire invocations only degrades performance. So, I wrote the code
in Figure 4.22 by hand and show it here only to exemplify the general code
structure of Handlers. HandlerForABC in Figure 4.22 differs from the previ-
ous Handlers in Figures 4.20 and 4.21 primarily in the for-loop on lines 23–27.
In this loop, the current thread iterates over the outgoing Transitions of Au-
tomaton7State1 until it successfully fires one. To guarantee a limited form of
fairness, threads use trFromState1Index to remember the index of the Tran-
sition that most recently successfully fired in state1. Then, the next time a
thread executes the for-loop, it will attempt to fire that Transition only last,
thereby giving priority to the other outgoing Transitions.

API for Ports

Typically, when using FOCAML, software engineers see neither the run-time
library nor the compiler-generated code that I presented in this section up
to now—at least they do not have to. Instead, software engineers see only
the API for ports, which I presented already in Figure 1.9, in Chapter 1 (al-
though for simplicity, I omitted variants of put and get with timeouts from
that figure). Two basic examples of the usage of this API in worker subpro-

CHAPTER 4. BASIC COMPILATION 118

1 class HandlerForB extends Handler {
2 final Context context;
3 final Port B;
4 final Current current;
5 final Automaton7State1 state1;
6

7 public HandlerForB(Protocol protocol) {
8 super(protocol.automaton7.semaphore);
9 this.context = protocol.automaton7.context;

10 this.B = protocol.B;
11 this.current = protocol.automaton7.current;
12 this.state1 = protocol.automaton7.state1;
13 }
14

15 @Override
16 public boolean call() {
17 if (B.status == IO.COMPLETED) return true;
18 if (current.state == state1 && state1.transition2.fire()) return true;
19 B.semaphore.drainPermits();
20 return false;
21 }
22

23 @Override
24 public void register() {
25 context.add(0, 0b00000000000000000000000000000010);
26 } }

27 class HandlerForC extends Handler {
28 final Context context;
29 final Port C;
30 final Current current;
31 final Automaton7State2 state2;
32

33 public HandlerForC(Protocol protocol) {
34 super(protocol.automaton7.semaphore);
35 this.context = protocol.automaton7.context;
36 this.C = protocol.C;
37 this.current = protocol.automaton7.current;
38 this.state2 = protocol.automaton7.state2;
39 }
40

41 @Override
42 public boolean call() {
43 if (C.status == IO.COMPLETED) return true;
44 if (current.state == state2 && state2.transition3.fire()) return true;
45 C.semaphore.drainPermits();
46 return false;
47 }
48

49 @Override
50 public void register() {
51 context.add(0, 0b00000000000000000000000000000100);
52 } }

Figure 4.21: Classes HandlerForB and HandlerForC, generated for LateAsync-
Merger(A,B;C)

CHAPTER 4. BASIC COMPILATION 119

1 class HandlerForABC extends Handler {
2 final Context context;
3 final Current current;
4 final Automaton7State1 state1;
5 final Automaton7State1 state2;
6 final Transition[] trFromState1;
7

8 int trFromState1Index = 0;
9

10 public HandlerForABC(Protocol protocol) {
11 super(protocol.automaton7.semaphore);
12 this.context = protocol.automaton7.context;
13 this.current = protocol.automaton7.current;
14 this.state1 = protocol.automaton7.state1;
15 this.state2 = protocol.automaton7.state2;
16 this.trFromState1 = new Transition[] {
17 this.state1.transition1, this.state1.transition2
18 };}
19

20 @Override
21 public boolean call() {
22 if (current.state == state1)
23 for (int i = trFromState1Index; i < trFromState1Index + 2; i++)
24 if (trFromState1[i % 2].fire()) {
25 trFromState1Index = (i + 1) % 2;
26 return true;
27 }
28 if (current.state == state2 && state2.transition3.fire()) return true;
29 return false;
30 }
31

32 @Override
33 public void register() {
34 throw new UnsupportedOperationException();
35 } }

Figure 4.22: Class HandlerForABC, hand-written for LateAsyncMerger(A,B;C)

1 public class Benchmark {
2 public static AtomicLong N_GETS;
3 public static AtomicLong N_PUTS;
4 public static CyclicBarrier BARRIER;
5 public static Semaphore SEMAPHORE;
6 }

Figure 4.23: Java code for the performance experiments in this thesis (I)

grams (Producer and Consumer) appeared already in Figure 1.10, in Chap-
ter 1. Another four examples of the usage of this API in worker subprograms
(PortBasedMaster, PortBasedSlave, PortBasedRelayRaceMaster, and Port-
BasedRelayRaceSlave) appeared already in Figure 3.33, in Chapter 3.

As a further illustration, Figures 4.23–4.25 show two more example worker

CHAPTER 4. BASIC COMPILATION 120

1 public class BenchmarkProducer extends Thread {
2 private Datum datum;
3 private OutputPort port;
4

5 public BenchmarkProducer(OutputPort port) {
6 this.port = port;
7 }
8

9 @Override
10 public void run() {
11 warmUp();
12 try {Benchmark.BARRIER.await();} catch (Exception exc) {System.exit(1);}
13 measure();
14 }
15

16 private void warmUp() {
17 Benchmark.SEMAPHORE.release();
18 try {
19 while (!Thread.interrupted()) port.put(0);
20 } catch (InterruptedException exception) {}
21 }
22

23 private void measure() {
24 int i = 0;
25 try {
26 port.resume();
27 while (!Thread.interrupted()) {
28 port.put(0);
29 i++;
30 }
31 } catch (InterruptedException exception) {}
32 Benchmark.N_PUTS.addAndGet(i);
33 Benchmark.SEMAPHORE.release();
34 } }

Figure 4.24: Java code for the performance experiments in this thesis (II)

subprograms (BenchmarkProducer and BenchmarkConsumer), where, in con-
trast to the previous examples, I use the interrupt mechanism of put/get to
temporarily break, and later resume, I/O operations. (These figures constitute
one of the rare exceptions in this thesis, where I qualify ports as “input” or
“output” from the perspective of workers.) More precisely, a BenchmarkPro-
ducer (BenchmarkConsumer) first performs a number of puts (gets) to warm
up the JVM, until it gets interrupted by the main thread (i.e., after the main
thread decides that the JVM had enough time to warm up, based on user input,
not shown). Subsequently, again until it gets interrupted, the BenchmarkPro-
ducer (BenchmarkConsumer) performs a number of puts (gets), while it keeps
count of its completed puts (gets). After the interrupt, the BenchmarkProducer
(BenchmarkConsumer) adds its local count to a global count of all completed
puts (gets). Note that a BenchmarkProducer not really produces actual data
but always exchanges 0 through its Port. Similarly, a BenchmarkConsumer sim-
ply ignores all data it exchanges through its Port.

CHAPTER 4. BASIC COMPILATION 121

1 public class BenchmarkConsumer extends Thread {
2 private Datum datum;
3 private InputPort port;
4

5 public BenchmarkConsumer(InputPort port) {
6 this.port = port;
7 }
8

9 @Override
10 public void run() {
11 warmUp();
12 try {Benchmark.BARRIER.await();} catch (Exception exc) {System.exit(1);}
13 measure();
14 }
15

16 private void warmUp() {
17 Benchmark.SEMAPHORE.release();
18 try {
19 while (!Thread.interrupted()) port.get();
20 } catch (InterruptedException exception) {}
21 }
22

23 private void measure() {
24 int i = 0;
25 try {
26 port.resume();
27 while (!Thread.interrupted()) {
28 port.get();
29 i++;
30 }
31 } catch (InterruptedException exception) {}
32 Benchmark.N_GETS.addAndGet(i);
33 Benchmark.SEMAPHORE.release();
34 } }

Figure 4.25: Java code for the performance experiments in this thesis (III)

I used the classes in Figures 4.23–4.25 in the experiments in the next subsec-
tion, where I measure the performance of FOCAML-to-Java-compiled protocol
subprograms through the number of completed puts/gets by BenchmarkPro-
ducers/BenchmarkConsumers; note that BenchmarkProducers and Benchmark-
Consumers remain oblivious to the actual protocol among them—they merely
see their own Port—so I can conveniently (re)use them, without modifications,
with any protocol instantiated in the main thread.

Experiments I: Protocols

As a first performance evaluation, and primarily to find weak spots of Lykos
that require improvement—so, definitely not to show what perfect code Lykos
generates—I performed a number of experiments. For these experiments, I se-
lected the families of constraint automata defined in Figure 3.12 (namely SyncK,
FifoK, Merger, Router, LateAsyncMerger, and EarlyAsyncMerger), OddFibonacci,

CHAPTER 4. BASIC COMPILATION 122

and Chess, all introduced and described in Chapter 3. The natural number
parameters of these families enable me to study the scalability of code gener-
ated for their members as the value of their parameter increases. Henceforth,
I denote this parameter by k, for all families. For SyncK and FifoK, parame-
ter k controls the number of SyncKs/FifoKs. For Merger, LateAsyncMerger and
EarlyAsyncMerger, parameter k controls the number of producers. For Router
and OddFibonacci, parameter k controls the number of consumers. For Chess,
parameter k controls the number of chess engines.

For every selected family, I ran Lykos under a five-minute timeout from an
Eclipse instance with 2048 MB of memory to generate code for the following
twelve values of k:

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64

In total, thus, I tried to generate 96 protocol implementations. Subsequently,
I ran every piece of generated code five times on a machine with 24 cores
(two Intel E5-2690V3 processors in two sockets), without Hyper-Threading and
without Turbo Boost (i.e., with a static clock frequency). To measure the per-
formance of only the compiler-generated code, I used computationally empty
producers and consumers (very similar to those in Figure 1.10). In each run,
then, I measured the number of rounds that every Protocol could complete in
four minutes of execution time after warming up the Java virtual machine for
thirty seconds.

For members of the SyncK family, every round consists of a synchronous
put/get by the producer/consumer. This requires firing one transition. For
members of the FifoK family, every round consists of a put by the producer
followed by an asynchronous get by the consumer. This requires firing two
transitions. For members of the Merger family, every round consists of a put/
get by one of the producers/the consumer. This requires firing one transition.
For members of the Router family, every round consists of a put/get by the
producer/one of the consumers. This requires firing one transition. For mem-
bers of both the LateAsyncMerger family and the EarlyAsyncMerger family, every
round consists of a put by one of the producers followed by an asynchronous
get by the consumer. This requires firing two transitions. For members of
the OddFibonacci family, every round consists of a put by the producer and, in
case of an odd Fibonacci number, an additional synchronous get by each of the
consumers. Either case requires firing one transition. For members of the Chess
family, every round consists of a full cycle through the constraint automaton in
Figure 3.28. This requires firing four transitions.

Figure 4.26 shows the per-family performance charts, averaged over five
runs. The solid lines represent the actual measurements; the dotted lines rep-
resent inverse-proportional growth with respect to k = 1. I adopt inverse-pro-
portionality as an elementary point of reference, because it constitutes a criti-
cal threshold for scalability: if performance drops below inverse-proportional
growth, performance deteriorates faster in k than k itself (e.g., doubling k more
than halves the number of completed rounds). Importantly, the inverse-pro-
portional curves in Figure 4.26 merely indicate a lower bound to good scalability:

CHAPTER 4. BASIC COMPILATION 123

SyncK FifoK

Merger Router

LateAsyncMerger EarlyAsyncMerger

OddFibonacci Chess

Figure 4.26: Performance (in number of completed rounds per four minutes) as
a function of the number of Syncs/Fifos/producers/consumers/chess engines,
denoted by k. See also the legend in Figure 9.1.

CHAPTER 4. BASIC COMPILATION 124

although growth below inverse-proportionality definitely indicates poor scal-
ability, growth above inverse-proportionality does not necessarily imply good
scalability—depending on the protocol, good scalability has stronger require-
ments. Thus, inverse-proportionality forms a necessary condition for good
scalability but not necessarily a sufficient one. I come back to this point ex-
tensively in Chapter 6, where I also explain in more detail the relation between
inverse-proportionality and good/poor scalability for the families with which
I experimented in this chapter.

Figure 4.26 shows no measurements for members of FifoK>6 and Early-
AsyncMerger>4: Lykos exceeded its available resources trying to compile these
members and thus failed to generate code. Moreover, after peeking at k = 2,
the performance of the code generated for members of FifoK degrades rapidly
as k increases. In fact, the performance measured for the FifoK6 member lies
below the critical threshold of inverse-proportionality, which indicates a se-
rious scalability problem. In Chapter 5, I study both these compile-time and
run-time problems.

Experiments II: Programs

With the FOCAML implementation of NPB presented in Chapter 3, I performed
a second series of experiments to also evaluate the performance of code gen-
erated by Lykos in full programs and gain more insight. More precisely, I ex-
perimented with two FOCAML versions of every benchmark in the Java imple-
mentation of NPB: one that imposes an order (i.e., a rather literal translation of
the Java implementation of NPB) and one that does not (i.e., a less literal but
still intention-preserving version), as explained in Chapter 3. In experiments
of the former kind, I evaluate members of MasterWorkersInteractionPatternA
(all benchmarks except NPB-LU) and RelayRaceInteractionPatternA (NPB-LU);
in experiments of the latter kind, I evaluate members of MasterWorkersInterac-
tionPatternB (all benchmarks except NPB-LU) and RelayRaceInteractionPatternB
(NPB-LU). As in the previous subsection, the natural number parameters of
these families enable me to study the scalability of compiler generated-code,
this time in the number of slaves.

For every benchmark and every version, I ran Lykos under a five-minute
timeout from an Eclipse instance with 4096 MB of memory to generate code for
the following six values of k:

2, 4, 8, 16, 32, 64

In total, thus, I tried to generate 84 full programs. Lykos, however, failed for
all k, for all benchmarks, for all versions. Essentially, the constraint automata
in these benchmarks suffer from the same compile-time problem as members
of FifoK and EarlyAsyncMerger in the previous subsection. Here, however, this
problem manifests already with the smallest value of k under consideration.
I explain this problem in more detail in Chapter 5 and, fortunately, provide a
solution as well.

Chapter 5

Improved Compilation I:
Local Multiplication

The experimental results in Chapter 4 show that the Centralized Approach has
two serious scalability problems. One of these problems manifests at compile-
time (i.e., the inability to generate code for Fifo>6, EarlyAsyncMerger>4, and all
FOCAML versions of the NPB benchmarks); the other manifests at run-time (i.e.,
the rapid performance degradation of Fifok as k increases, below inverse-pro-
portionality).

In this chapter, to solve these problems, I develop a new compilation ap-
proach, which strikes a middle ground between the Distributed Approach and
the Centralized Approach. In Section 5.1, I first provide a general description
of this new compilation approach. Subsequently, I present the technical de-
tails of its most important new element: the computation of a partition of a set
of constraint automata. These technicalities involve the introduction of a new
multiplication and require a thorough study of the circumstances in which the
old multiplication in Definition 29 coincides with this new multiplication. In
Section 5.2, I present an improved version of Lykos using this new compilation
approach, including new experimental results on performance.

Although the compilation approach presented in this chapter eventually
results in improved compiler-generated code, I define this improvement at the
higher level of constraint automata instead of at the lower level of GPL code.
Not only does this facilitate more elegant formal reasoning about correctness
(compared to reasoning directly about GPL code), but it also eases the auto-
matic application of this improvement by a FOCAML compiler. Moreover, it
makes this improvement independent of GPLs—Java in this thesis—so that the
same optimization automatically applies to, for instance, generated C code.

125

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 127

5.1 Theory

(With Arbab and Santini, I previously published fragments of the material in this sec-
tion in conference/workshop papers [JA13a, JA14, JSA14] and journal papers [JA16,
JSA15].)

Hybrid Approach

I start by explaining the two scalability problems with the Centralized Ap-
proach in more detail. First, to explain its compile-time problem, I repeat the
following observation from Chapter 4:

“[...] in the Centralized Approach, compilation requires many re-
sources [...] while execution requires few.”

As the experimental results in Chapter 4 show, the Centralized Approach re-
quires not just many resources but often too many resources. For instance,
members of the EarlyAsyncMergerk subfamily, defined in Figure 3.12, have as
many as 2k states. Each of those states models a permutation of the empti-
ness/fullness of k memory cells. Similarly, members of the FifoKk subfamily
have k memory cells, each of which can—at any instant—have content or not,
yielding an exponentially-sized state space. Members of the LateAsyncMergerk
subfamily, in contrast, do not have exponentially-sized state spaces, because
they have only one memory cell shared by all k producers (cf. one memory cell
for every producer as members of EarlyAsyncMerger have). In any case, mem-
bers of EarlyAsyncMerger256 have more states (roughly 1077) than the observ-
able universe has hydrogen atoms (overestimate: 1080). Although anecdotal,
this comparison “proves” not only the practical intractability of compiling in-
stantiated family signatures such as EarlyAsyncMerger(A[1..256],B) under
the Centralized Approach today but also its theoretical impossibility forever.
Because 256 producers seems not unreasonably many, solving this state space
explosion problem seems imperative.

To explain the run-time problem with the Centralized Approach, I repeat
the following observation from Chapter 4:

“a FOCAML compiler that generates code under the Centralized
Approach yields protocol subprograms with low latency and low
throughput.”

Indeed, the compiler-generated protocol subprogram for a “large” automaton
in the Centralized Approach defines exactly one protocol unit. Consequently,
when generating code under the Centralized Approach, a FOCAML compiler
effectively serializes all potential parallelism among the “small” automata that
multiply into such a large automaton. My comparison between the Distributed
Approach and the Centralized Approach in Chapter 4, involving AliceBob-
CarolDave in Figure 4.7, already showed such oversequentialization. Overse-
quentialization reduces throughput: in the worst case, the firing of one tran-
sition inhibits the parallel firing of other, completely independent transitions.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 128

instantiated family signature

a1, . . . ,an>0

a

a

B1, . . . , B1≤m≤n

b1, . . . , bm

b1 (.) · · · (.) bm a1 (x) · · · (x) an

interpret

�,�
partition

generateCodedistr

generateCodecentr

�,�

generateCodehybr

(maximally
sequential)

(maximally
parallel)

Figure 5.1: Hybrid compilation approach (cf. Figure 4.1)

As the number of independent transitions increases, this sequential bottleneck
becomes an increasingly pressing problem.

To solve these problems of state space explosion and oversequentialization,
I propose to adopt a new approach for FOCAML compilation: the Hybrid Ap-
proach, shown in Figure 5.1. On the sequentiality/parallelism-spectrum, the
Hybrid Approach sits somewhere between the Centralized Approach and the
Distributed Approach. The Hybrid Approach strikes a middle ground between
those two ends: it sequentializes all useless parallelism to preserve only useful
parallelism. I define useless/useful parallelism as follows.

• Protocol units exhibit useless parallelism whenever these protocol units
must reach consensus about their global behavior before any of them
can fire a local transition. In those cases, parallelism does not improve
throughput, while the communication overhead of reaching consensus
does reduce latency. Protocol units Alice, Bob, and Carol in the AliceBob-
CarolDave example in Chapter 4 illustrate useless parallelism: neither

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 129

Alice, nor Bob, nor Carol can fire a local transition without first having to
communicate with the others.

Generally, protocol units that exhibit useless parallelism require an ex-
pensive consensus algorithm, with global communication among everyone.
Previously, in Chapter 4, I denoted this algorithm by (x) and observed
that this algorithm effectively multiplies constraint automata at run-time,
in the sense of Definition 29.

• Protocol units exhibit useful parallelism whenever protocol units in one
subset can fire local transitions independently of protocol units in an-
other subset. In those cases, parallelism truly improves throughput. The
subset of protocol units consisting of Alice, Bob, and Carol and the sub-
set consisting of only Dave in the AliceBobCarolDave example illustrate
useful parallelism: Dave can fire a local transition without first having to
communicate with Alice, Bob, or Carol.

Generally, protocol units that exhibit useful parallelism require a cheap
consensus algorithm, with only local communication between neighbors.
Henceforth, in this chapter, I denote this algorithm by (.) and argue that
also this algorithm effectively multiplies constraint automata at run-time,
albeit under a different—yet equivalent—multiplication.

Seen from the perspective of the Centralized Approach, the Hybrid Approach
yields protocol subprograms that define m ≥ 1 protocol units instead of just
one (to preserve only useful parallelism); seen from the perspective of the Dis-
tributed Approach, the Hybrid Approach yields protocol subprograms that de-
fine m ≤ n protocol units instead of n (to sequentialize all useless parallelism).
In cases of only useless parallelism, the Hybrid Approach reduces to the Cen-
tralized Approach (i.e., m = 1); in cases of only useful parallelism, the Hybrid
Approach reduces to the Distributed Approach (i.e., m = n).

A FOCAML compiler that generates code under the Hybrid Approach takes
four steps to generate GPL code on input of an instantiated family signature. In
the first step, the compiler obtains a list of n small primitive constraint au-
tomata a1, . . . ,an in the same way as in the Distributed Approach and the
Centralized Approach, by calling a FOCAML interpreter. In the second step,
the compiler partitions the set of those small automata into m disjoint sub-
sets B1, . . . , Bm. In particular, it computes a reasonable partition, where:

• protocol units for constraint automata in the same subset exhibit useless
parallelism, while

• protocol units for constraint automata in different subset exhibit useful
parallelism.

In the third step, the compiler multiplies the small automata in every part Bi
and subtracts all internal ports, effectively serializing the useless parallelism
among those automata. This step yields m “medium” composite constraint
automata b1, . . . , bm. In the fourth step, the compiler translates these medium

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 130

automata to a protocol subprogram b1 (.) · · · (.) bm in the GPL. This protocol
subprogram defines m protocol units. Individually, every one of these proto-
col units locally simulates a medium automaton bi; collectively, these protocol
units globally simulate the product of b1, . . . , bm. As in the Distributed Ap-
proach, to achieve the latter, the protocol units need to synchronize their local
behavior with each other. Contrasting the Distributed Approach, however, by
the construction of the reasonable partition in the second step, this synchro-
nization needs to happen only locally between neighbors instead of globally
among everyone. In Figure 5.1, I denote the code of the corresponding cheap
consensus algorithm by (.), placed between b1, . . . , bn to emphasize that this
algorithm effectively multiplies constraint automata, just as the expensive con-
sensus algorithm denoted by (x) does.

I discuss the event-handlers for protocol units that simulate medium au-
tomata later in this section. For now, suffice it to say that such event-handlers
work roughly the same as the event-handler in Figure 4.5.

L-Multiplication

The main challenge with the Hybrid Approach lies in its second step: com-
puting a reasonable partition in a potentially huge search space. After all, the
number of unique partitions of a k-cardinality set grows superexponentially
in k [Kla10]. In one corner of this search space, by putting every ai in its own
subset to get a partition {{a1}, . . . , {an}}, the Hybrid Approach reduces to the
Distributed Approach; in its opposite corner, by putting every ai in the same
subset to get a partition {{a1, . . . ,an}}, the Hybrid Approach reduces to the
Centralized Approach. Typically, however, neither of these two corners yields
a reasonable partition. For now, I temporarily park the issue of computing rea-
sonable partitions. Instead, at this point, just out of scientific curiosity, I study
under which circumstances substituting (x) with (.) “preserves the original
behavior” (i.e., under which circumstances synchronizing the behavior of pro-
tocol units with the cheap consensus algorithm instead of the expensive one
preserves their original behavior, i.e., under which circumstances only local
communication between neighbors can safely replace global communication
among everyone). Incidentally, the insight resulting from this investigation
yields an algorithm for computing reasonable partitions as well.

The previous observation that (x) applies� at run-time implies that—from
the opposite perspective—� models (x). Interestingly, I can similarly define
another multiplication that models (.). After doing so, instead of studying the
interchangeability of (x) and (.) at the practical level of protocol units and
their consensus algorithms, I can more conveniently study it at the theoretical
level of constraint automata and their multiplications.

The “new” multiplication differs from the “old” multiplication only in how
new transition relations come about. With the old multiplication in Defini-
tion 29, a1 and a2 synchronously fire transitions that agree on the involvement
of shared ports under a rather weak notion of agreement: in addition to their
shared ports, a1 and a2 allow each other to involve also any number of un-

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 131

shared ports. This weak agreement, formalized in Definition 27 of ♦, gives rise
to powerful multiparty and indirect synchronization as explained in Chapter 2.
Exactly those properties, however, make (x) expensive: whenever a transition
in constraint automaton b1 and a transition in constraint automaton bk syn-
chronously fire via transitions in constraint automata b2, . . . , bk−1, at run-time,
their protocol units must globally communicate to ensure that the protocol unit
for b1 actually reaches consensus with the protocol unit for bk. With only lo-
cal communication between neighbors, as stipulated for (.), such multiparty
and indirect synchronization cannot happen. Therefore, to model (.), the new
multiplication must restrict these forms of synchronization by strengthening
the previous weak notion of agreement. Essentially, under the resulting strong
agreement, constraint automata forbid each other to involve unshared ports in
their synchronously firing transitions, whereas under the previous weak agree-
ment, constraint automata allow each other to do so (which ultimately gives
rise to multiparty and indirect synchronization). More precisely, under strong
agreement, transitions in a1 and a2 can synchronously fire only if one of those
transitions involves only shared ports, or if both transitions involve only un-
shared ports (i.e., at run-time, their protocol units communicate either only
locally or not whatsoever).

Definition 31 (strong agreement). � ⊆ (2P×2P)×(2P×2P) denotes the smallest
relation induced by the following rule:

P1 ⊆ P all
1 and P2 ⊆ P all

2 and

P all
1 ∩ P2 = P all

2 ∩ P1 = ∅
or P1 = P all

1 ∩ P2

or P2 = P all
2 ∩ P1


(P all

1 , P1) � (P all
2 , P2)

(5.1)

The following lemma states that strong agreement implies weak agreement.
This, combined with Lemma 1, also means that � actually constitutes an agree-
ment relation in the sense of Definition 26.

Lemma 2. (P all
1 , P1) � (P all

2 , P2) implies (P all
1 , P1) ♦ (P all

2 , P2)

Lemma 3. � ∈ AGREEM

The new multiplication, henceforth called l(ocal)-multiplication, consumes
two constraint automata a1 and a2 as input and produces a new constraint au-
tomaton as output in nearly the same way as the old multiplication, henceforth
called g(lobal)-multiplication: as g-multiplication, I define l-multiplication by in-
stantiating the generalized multiplication in Definition 28 with strong agree-
ment (instead of with weak agreement as in Definition 29 of �).

Definition 32 (l-multiplication). � : AUTOM × AUTOM ⇀ AUTOM denotes
the partial function defined by the following equation:

a1 � a2 = a1 �� a2

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 132

{Ain,Bout},
A = B

�

{Cin,Dout},
C = D


� {Bin,Din},>

=
{Ain,Cin,Bout,Dout},

A = B ∧ C = D

{Ain,Bout},
A = B

{Cin,Dout},
C = D

� {Bin,Din},>

=
{Ain,Cin,B,D},
A = B ∧ C = D

Figure 5.2: Left-associative l-multiplication of Sync(A;B), Sync(C;D), and
SyncDrain(B,D;)

{Ain,Bout},
A = B

�


{Cin,Dout},

C = D

� {Bin,Din},>



=

{Ain,Bout},
A = B

�

=

Figure 5.3: Right-associative l-multiplication of Sync(A;B), Sync(C;D), and
SyncDrain(B,D;)

L-multiplication satisfies commutativity and idempotence (up-to behavioral
congruence), but in contrast to g-multiplication, it does not satisfy associativ-
ity: generally, (a1 � a2) � a3 6' a1 � (a2 � a3). Figures 5.2 and 5.3 exemplify
this phenomenon: both the l-product in Figure 5.2 and the l-product in Fig-
ure 5.3 have one state, but the former l-product has one transition, whereas the

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 133

latter l-product has no transitions. I postpone a more detailed discussion of
l-multiplication’s nonassociativity until later in this section. To minimize num-
bers of parentheses, I assume right-associative notation for �. For instance, I
write a1 � a2 � a3 � a4 for a1 � (a2 � (a3 � a4)). The following theorem states
that ' denotes a congruence under �.

Theorem 6.
[

a1 � a3,a2 � a4 ∈ AUTOM
and a1 ' a2 and a3 ' a4

]
implies a1 � a3 ' a2 � a4

First Characterization

The fact that g-multiplication satisfies associativity, whereas l-multiplication
does not, already implies that substituting � with � not always “preserves
the original behavior” (in the sense previously explained). For instance, the
g-product of the constraint automata in Figure 5.3 (under the same placement
of parentheses) equals the l-product in Figure 5.2 but not the l-product in Fig-
ure 5.3. To determine when substituting�with� preserves the original behav-
ior, I first study under which conditions a g-product of two constraint automata
simulates their l-product and vice versa.

Lemma 2 immediately implies that a1�a2 simulates a1�a2. In other words,
a g-product of two constraint automata has at least the same transitions as their
l-product. At run-time, this means that protocol units that use a consensus al-
gorithm with global communication can effectuate at least the same instances
of interaction as those that use a consensus algorithm with only local commu-
nication. This makes perfect sense. The inverse statement, in contrast, does not:
protocol units that use a consensus algorithm with only local communication
may not effectuate the same instances of interaction as those that use a con-
sensus algorithm with global communication. In terms of constraint automata,
this corresponds to the fact that a1 � a2 not necessarily simulates a1 � a2. In-
deed, if transitions of a1 and a2 agree on the involvement of their shared ports
(which � requires), this does not necessarily mean that they involve no other
ports (which � additionally requires). To characterize the cases in which it
does, I define conditional strong agreement as a relation “between” � and ♦ (and
lifted from transitions to constraint automata): a1 and a2 conditionally strongly
agree iff, for each of their transitions, their weak agreement on the involvement
of their shared ports implies their strong agreement.

Definition 33 (Conditional strong agreement). ♦� ⊆ AUTOM × AUTOM de-
notes the smallest relation induced by the following rule:

[[q1 P1,φ1−−−→1 q
′
1 and q2

P2,φ2−−−→2 q
′
2

and (P all
1 , P1) ♦ (P all

2 , P2)

]
implies (P all

1 , P1) � (P all
2 , P2)

]
for all q1, q2, q

′
1, q
′
2, P1, P2, φ1, φ2

(·, (P all
1 , P in

1 , P
out
1), ·,−→1, ·) ♦� (·, (P all

2 , P in
2 , P

out
2), ·,−→2, ·)

(5.2)

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 134

The following lemma states that conditional strong agreement between two
constraint automata implies the behavioral congruence of their l-product and
their g-product.

Lemma 4.
[
a1 ♦� a2 and a1 � a2 ∈ AUTOM

]
implies a1 � a2 ' a1 � a2

As a generalization of Lemma 4, suppose that I have a list of k constraint
automata such that every i-th constraint automaton in this list conditionally
strongly agrees with the l-product of all higher positioned ones. The order of
the constraint automata matters, because � does not exhibit associativity. The
following theorem states that multiplying all constraint automata in the pre-
vious list with � or �, starting from the ones in the highest positions (i.e., the
most deeply nested ones under right-associative notation), yields behaviorally
congruent products.

Theorem 7.[
[

1 ≤ i < k implies
ai ♦� ai+1 � · · ·� ak

]
for all i

]
and a1 � · · ·� ak ∈ AUTOM

 implies a1� · · ·� ak ' a1� · · ·� ak

I call the premise in the previous theorem the ♦�-based characterization of when
substituting � with � preserves the original behavior.

The ♦�-based characterization has two disadvantages. First, to test if two
constraint automata a1 and a2 conditionally strongly agree, one must pair-
wise compare their transitions. By itself, this may already require a significant
amount of computation (i.e.,O(k1k2) for k1 = |Trans(a1)| and k2 = |Trans(a2)|).
Moreover, the ♦�-based characterization requires conditional strong agreement
not between individual constraint automata in the list but between their l-
products. Because l-multiplication generally does not preserve conditional
strong agreement, checking a list of constraint automata for satisfaction of
the ♦�-based characterization requires the potentially expensive computation
of many l-products. These disadvantages make the ♦�-based characterization
unattractive in practice. In the next subsection, I therefore study a cheaper
characterization.

Cheaper Characterization

I develop a cheaper characterization through a number of observations. First,
using only local communication between protocol units instead of global com-
munication clearly preserves the original behavior of independent protocol units
that do not need to communicate with each other whatsoever. Thus, substitut-
ing � with � should preserve the original behavior at least when applied to
constraint automata corresponding to such independent protocol units. I start
by formally defining the notion of independence.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 135

Definition 34 (independence). � ⊆ AUTOM × AUTOM denotes the smallest
relation induced by the following rule:

P all
1 ∩ P all

2 = ∅
(·, (P all

1 , ·, ·), ·, ·, ·) � (·, (P all
2 , ·, ·), ·, ·, ·) (5.3)

The following lemmas state (i) that independent constraint automata condi-
tionally strongly agree with each other and (ii) that l-multiplication preserves
independence.

Lemma 5. a1 � a2 implies a1 ♦� a2

Lemma 6.
[
a1 � a2 ∈ AUTOM and a � a1,a2

]
implies a � a1 � a2

Lemmas 5 and 6 and Theorem 7 imply that substituting � with � preserves
the original behavior if their multiplicands satisfy independence. Moreover,
checking for independence requires fewer resources than checking for condi-
tional strong agreement, namely O(1) instead of O(k1k2).

Although checking constraint automata for independence costs close to
nothing, the result implied by Lemmas 5 and 6 and Theorem 7 in its present
form has limited practical value: independent constraint automata only rarely
occur outside artificial examples. To get a more useful result, I introduce the
notion of slavery and afterward combine it with independence. I start by for-
mally defining when a constraint automaton a2 has enslaved a constraint au-
tomaton a1. In that case, every transition in a1 that involves some port shared
with a2, involves only ports shared with a2. In other words, a2 completely dic-
tates what a1 does whenever a transition in a1 involves at least one of their
shared ports. Importantly, this notion of slavery does not forbid a1 from firing
transitions that involve only ports that a2 does not know about (i.e., slaves can
secretly “rebel”). This enables other constraint automata to enslave a1 as well
(albeit with respect to different ports).

Definition 35 (slavery). 7→ ⊆ AUTOM × AUTOM denotes the smallest relation
induced by the following rule:

[[q1 P1,φ1−−−→1 q
′
1

and P1 ∩ P all
2 6= ∅

]
implies P1 ⊆ P all

2

]
for all q1, q

′
1, P1, φ1

(·, ·, ·,−→1, ·) 7→ (·, (P all
2 , ·, ·), ·, ·, ·) (5.4)

The following lemmas state that if one constraint automaton has enslaved an-
other constraint automaton, they conditionally strongly agree with each other
and that l-multiplication preserves slavery.

Lemma 7. a1 7→ a2 implies a1 ♦� a2

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 136

Lemma 8.
[

a1 � a2 ∈ AUTOM and a 7→ a1

and
[
a � a2 or a 7→ a2

]]
implies a 7→ a1 � a2

Lemma 9.
[

a1 � a2 ∈ AUTOM and a 7→ a2

and
[
a � a1 or a 7→ a1

]]
implies a 7→ a1 � a2

Lemmas 7, 8, and 9 and Theorem 7 imply that substituting � with � preserves
the original behavior if their multiplicands satisfy slavery. Moreover, check-
ing for slavery requires fewer resources than checking for conditional strong
agreement, namely O(k1) instead of O(k1k2).

By combining independence and slavery, I obtain conditional slavery.

Definition 36 (conditional slavery). �7→ ⊆ AUTOM×AUTOM denotes the small-
est relation induced by the following rule:

a1 6� a2 implies a1 7→ a2

a1 �7→ a2
(5.5)

The following lemmas state (i) that if one constraint automaton has condition-
ally enslaved another constraint automaton, they conditionally strongly agree
and (ii) that l-multiplication preserves conditional slavery.

Lemma 10. a1 �7→ a2 implies a1 ♦� a2

Lemma 11.
[
a1 � a2 ∈ AUTOM and a �7→ a1,a2

]
implies a �7→ a1 � a2

Lemmas 10 and 11 and Theorem 7 imply that substituting � with � preserves
the original behavior if their multiplicands satisfy conditional slavery. More-
over, checking for conditional slavery costs the same as checking for slavery
(i.e., less than checking for conditional strong agreement).

With conditional slavery, in contrast to independence alone, I can define
a sufficiently powerful characterization of when substituting � with � pre-
serves the original behavior. Similar to Theorem 7, suppose that I have a list
of k constraint automata such that every i-th constraint automaton in this list
has conditionally enslaved all constraint automata in a lower position. The
following theorem states that multiplying all constraint automata in the pre-
vious list with � or �, starting from the ones in the highest positions (i.e., the
most deeply nested ones under right-associative notation), yields behaviorally
congruent products.

Theorem 8.[
[
1 ≤ i < k implies
ai �7→ ai+1, . . . ,ak

]
for all i

]
and a1 � · · ·� ak ∈ AUTOM

 implies a1 � · · ·� ak ' a1 � · · ·� ak

I call the premise in the previous theorem the �7→-based characterization of when
substituting � with � preserves the original behavior.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 137

To give Theorem 8 a more natural interpretation, I strengthen its premise:
the following theorem states that substituting � with � preserves the origi-
nal behavior whenever I have (i) k constraint automata conditionally enslaved
by all other constraint automata and (ii) l pairwise independent “master” con-
straint automata.

Theorem 9.
[[ 1 ≤ i ≤ k implies

ai �7→ a1, . . . ,ai−1,
ai+1, . . . ,ak+l

 and

k + 1 ≤ i ≤ k + l implies
ai � ak+1, . . . ,ai−1,

ai+1, . . . ,ak+l

] for all i
]

and a1 � · · ·� ak+l ∈ AUTOM


implies a1 � · · ·� ak+l ' a1 � · · ·� ak+l

Because of their pairwise independence, protocol units for masters never di-
rectly communicate with each other. If multiple masters share the same slave,
though, their protocol units may communicate indirectly with each other, via
that slave. Such indirect communication occurs always asynchronously: other-
wise, in case of synchronous communication, the slave would have a transition
involving ports shared with multiple masters, which slavery forbids.

The previous interpretation of constraint automata as masters and slaves
corresponds to the notion of synchronous and asynchronous regions in the Reo
literature, perhaps first mentioned by Clarke et al. [CCA07]. Roughly, one can
always split a Reo circuit into subcircuits—its regions—such that interaction
on ports in such a subcircuit occurs always either asynchronously (i.e., every
firing transition involves at most one port) or eventually synchronously (i.e.,
at least one firing transition involves more than one port). Circuits have max-
imal synchronous regions in the sense that no two synchronous regions have
shared ports: every circuit has, by definition, only pairwise independent syn-
chronous regions. Consequently, the constraint automata for the synchronous
regions of a circuit can act as the l masters in Theorem 9. Dually, circuits have
minimal asynchronous regions in the sense that no asynchronous region con-
sists of more than one primitive. Asynchronous regions effectively constitute
asynchronous communication mediums between synchronous regions. Con-
sequently, the constraint automata for the asynchronous regions of a circuit
can act as a the k conditional slaves in Theorem 9.

Synchronous and asynchronous regions play an important role in Reo com-
pilers/interpreters that split circuits along the boundaries of their regions to
decouple those regions’ execution and improve performance. For his PhD the-
sis [Pro11], Proença developed the first implementation based on these ideas
and invented a new automaton model to reason about split circuits [PCdVA11,
PCdVA12]. Later, Clarke and Proença studied circuit splitting in the context
of coloring semantics [CP12]. They discovered that the standard version of col-
oring semantics has undesirable properties in the context of circuit splitting:
some split circuits that intuitively should behave as their originals neverthe-
less have inequivalent coloring semantics. To address this problem, Clarke

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 138

and Proença proposed a new variant of coloring semantics that better supports
locality and independence. Before developing the Hybrid Approach as pre-
sented in this section, with Clarke and Proença, I worked on a formalization
of circuit splitting in a process algebraic setting [JCP12, JCP16]. All this earlier
work on circuit splitting strongly inspired and influenced me in developing the
Hybrid Approach.

Practical Characterization

Although cheaper than the ♦�-based characterization, the �7→-based characteri-
zation still requires relatively many computational resources in practice. There-
fore, I strengthen it once more by introducing another relation on constraint au-
tomata: no-synchronization. Informally, a constraint automaton exhibits no-syn-
chronization if it never synchronizes any of its ports (i.e., each of its transitions
has a singleton synchronization constraint).

Definition 37 (no-synchronization). 1−→ ⊆ AUTOM denotes the smallest rela-
tion induced by the following rule:[

q
P,φ−−→ q′ implies |P | = 1

]
for all q, q′, P, φ

1−→ (·, ·, ·,−→, ·)
(5.6)

The following lemma states that no-synchronization implies conditional slav-
ery.

Lemma 12. 1−→a1 implies a1 �7→ a2

The following theorem follows from Lemma 12 and Theorem 9.

Theorem 10.
[[[1 ≤ i ≤ k

implies
1−→ai

]
and

k + 1 ≤ i ≤ k + l implies
ai � ak+1, . . . ,ai−1,

ai+1, . . . ,ak+l

] for all i
]

and a1 � · · ·� ak+l ∈ AUTOM


implies a1 � · · ·� ak+l ' a1 � · · ·� ak+l

I call the premise in the previous theorem the 1−→ -based characterization of when
substituting � with � preserves the original behavior.

Now, recall from earlier in this section that I actually wanted to find an algo-
rithm for computing reasonable partitions. Incidentally, the 1−→ -based charac-
terization yields such an algorithm, namely Algorithm 1. Algorithm 1 iterates
over an input set of n constraint automata and terminates in O(n2). In each
iteration, either it puts the current constraint automaton ai in a new subset
(if ai satisfies no-synchronization), or it computes a new subset for ai, possi-
bly including existing parts, such that the new subset contains all constraint

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 139

Algorithm 1 Algorithm for partitioning a set of constraint automata A

Require: Asmall = {a1, . . . ,an}

function ALGORITHM1(Asmall)
Asl := ∅
Am := ∅
i := 1

while i ≤ n do
if 1−→ ai then
Asl := Asl ∪ {{ai}}

else
A := {A | a ∈ A ∈ Am and ai 6� a}
Am := (Am \ A) ∪ {{ai} ∪

⋃A}
i := i+ 1

return Asl ∪ Am

Ensure:


Asl ∪ Am denotes a partition of Asmall

and Asl = {A1, . . . , Ak} and Am = {Ak+1, . . . , Ak+l}
and

[[
1 ≤ j ≤ k implies

1−→�Aj
]

for all j
]

and
[ k + 1 ≤ j ≤ k + l implies

�Aj ��Ak+1, . . . ,�Aj−1,�Aj+1, . . . ,�Ak+l

 for all j
]


for some A1, . . . , Ak+l, k, l

automata dependent—directly or indirectly—on ai. The following theorem
states the algorithm’s correctness: it yields a partition of the input set and this
partition satisfies the premise in Theorem 10.

Theorem 11. Algorithm 11 is correct.

Recall that a partition qualifies as reasonable if protocol units for constraint
automata in the same subset exhibit useless parallelism, while protocol units
for constraint automata in different parts exhibit useful parallelism. With re-
spect to the first requirement, because constraint automata in the same sub-
set all depend—directly or indirectly—on each other, their protocol units ex-
hibit useless parallelism. With respect to the second requirement, by order-
ing medium automata as in Theorem 10 (Theorem 11 guarantees the exis-
tence of a list so ordered), I can safely substitute all g-multiplications between
those medium automata with l-multiplications. At run-time, because g- and
l-multiplication model the expensive and the cheap consensus algorithm, the
protocol units for those medium automata require only the cheap consensus
algorithm instead of the expensive one and, as such, exhibit useful parallelism.
Thus, the partition computed by Algorithm 1 indeed qualifies as reasonable.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 140

The Hybrid Approach, and Algorithm 1 in particular, directly address the
problem of oversequentialization as introduced in the beginning of this chap-
ter. In contrast, the Hybrid Approach does not directly address the problem of
state space explosion. Nevertheless, Algorithm 1 solves also this other prob-
lem at least in this thesis. To see this, recall from Figure 3.4 that this thesis’ core
set contains only one family of constraint automata with more than one state—
Fifo—each of whose members satisfies no-synchronization. Consequently, ev-
ery Fifo gets its own singleton part, while all nonsingleton parts contain only
single-state primitives. Because the product of any number of single-state con-
straint automata has only one state as well, and because multiplication occurs
only on a per-subset basis in the Hybrid Approach, no state space explosion can
happen under the core set in Figure 3.4. Generally, if every family of constraint
automata with more than one state in a core set consists only of members that
satisfy no-synchronization, the Hybrid Approach has no state space explosion
problem.

Suppose that I can construct every constraint automaton out of members of
the families in Figure 3.4. Moreover, suppose that I have an algorithm for de-
composing every constraint automaton into such instances. Then, regardless of
the particular primitives in a core set, the Hybrid Approach never suffers from
state space explosion. After all, in that case, I can decompose every constraint
automaton with more than one state into a number of Fifos and a number of
single-state primitives. For arbitrary constraint automata, at this point, I have
evidence neither for nor against the feasibility of this approach. Other peo-
ple have worked on this topic for particular classes of constraint automata,
though: Arbab et al. and Baier et al. devised multiple algorithms for decom-
posing “original constraint automata” [ABdB+05, BKK14], Koehler and Clarke
proved a decomposition theorem for port automata [KC09], while Pourvatan et
al. developed a division for constraint automata with state memory [PSAB12].

Related Work on Distributed Coordination

Three decades ago, in the mid 1980s, Gelernter introduced the coordination
language Linda [Gel85]. At the heart of Linda lies the concept of a tuple space,
a structure in which both workers and tuples of data, originating from and ac-
cessible to those workers, “float”. Although a tuple space gives the program-
mer the illusion of shared memory, at the hardware level, this memory may
actually reside at n different locations. Several approaches to implementing
physically distributed tuple spaces exist. For instance, one can maintain the
entire tuple space at one of the n locations (e.g., Feng et al. [FWY96], Wyck-
off et al. [WMLF98]), but although simple to implement, this does not scale
well in the number of computation processes [FGY94]. The Centralized Ap-
proach presented in Chapter 4 actually has a similar scalability problem (due
to oversequentialization). Alternatively, one can scatter (with or without repli-
cation) the tuples in the tuple space over all n locations. Although such an ap-
proach has better scalability, one must resolve several issues to obtain a work-
able implementation, such as deciding where to store which tuple, efficiently

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 141

retrieving tuples, and load balancing [PA98]. Examples include the work by
Bjornson [Bjo93], Feng et al. [FGY94], Rowstron and Wood [RW96], Menezes
and Tolksdorf [MT03], and Atkinson [Atk10]. Although both distributed tuple
spaces and the Hybrid Approach facilitate a form of distributed coordination,
they differ in one fundamental aspect: whereas distributed tuple spaces dis-
tribute data (i.e., tuples), the Hybrid Approach distributes control (i.e., medium
automata).

Bonakdarpour et al. worked on an approach for automatically generating
distributed implementations for specifications in BIP [BBJ+12], a framework
for specifying component-based systems at three specification levels [BBS06]:
behavior of components, interaction between components, and priorities on
interaction. BIP forbids simultaneous execution of conflicting instances of in-
teraction (i.e., instances that involve overlapping sets of ports). In automat-
ically generated distributed implementations of BIP specifications, therefore,
Bonakdarpour et al. have to ensure that such conflicting interactions execute
mutually exclusively. To achieve this, Bonakdarpour et al. propose a three-
layered implementation architecture: the bottom layer consists of distributed
components, the middle layer consists of a number of interaction execution
engines, each responsible for executing its own subset of all interactions, and
the top layer resolves potential conflicts. In terms of this thesis and the Hy-
brid Approach, the bottom layer represents workers, while the middle layer
roughly represents a multiplication expression of constraint automata. Impor-
tantly, however, Bonakdarpour et al. aim for a finer distribution granularity
than I do, which requires them to handle conflicting interactions with their
third layer. I avoid this problem in the Hybrid Approach, by putting constraint
automata with “conflicting transitions” in the same subset at compile-time,
thereby effectively serializing those transitions at run-time; for performance
reasons, I prefer firing such transitions sequentially over adding an algorithm
for conflict resolution.

Nonassociativity

G-multiplication satisfies associativity, whereas l-multiplication does not, as al-
ready shown in Figures 5.2 and 5.3. So far, I worked around this limitation by
formulating the premises in Theorems 7, 9 and 10 in terms of carefully ordered
lists of constraint automata. Although this works fine in theory, the need for
such lists has a problematic consequence in practice: because � models (.)
(i.e., the cheap consensus algorithm, with only local communication between
neighbors), the order of the constraint automata in the list at compile-time es-
sentially fixes the order in which their protocol units may communicate with
each other to reach consensus at run-time. In other words, because (.) ac-
tually l-multiplies constraint automata, and because l-multiplication does not
satisfy associativity, (.) must ensure that its run-time multiplication “abides
by compile-time parentheses”. For instance, suppose that the third step in the
Hybrid Approach yields three medium automata b1, b2, and b3. Moreover,
suppose that b1�(b2�b3) ' b1�b2�b3 by Theorem 10, whereas (b1�b2)�b3 6'

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 142

a1 = q1

{A,B}

Alice(A; B)

a2 = q2

{B,C}

Bob(B; C)

a3 = q3

{C,D}

Carol(C; D)

q1(23)

{A,B,C,D}

a1 � (a2 � a3)

q(12)3

{A,B,C,D}

(a1 � a2) � a3

Figure 5.4: Two g-products of Alice(A;B), Bob(B;C), and Carol(C;D), without
data constraints for simplicity. States q1(23) and q(12)3 abbreviate (q1, (q2, q3))
and ((q1, q2), q3).

b1 � b2 � b3 by nonassociativity. In that case, instead of denoting the protocol
subprogram subsequently generated in the fourth step by b1 (.) b2 (.) b3 (as
suggested by the notation in Figure 5.1), perhaps I should denote this subpro-
gram more precisely by b1 (.)

[
b2 (.) b3

]
. After all, this notation explicitly

shows that the protocol units defined by b2 and b3 must always communicate
first with each other—and reach a local consensus (i.e., multiply b2 and b3)—
before any of them can communicate with the protocol unit defined by b1. Gen-
erally, such fixed communication orders deteriorate performance.

Interestingly, strictly speaking, one may apply the same reasoning to (x),
even though � satisfies associativity. First, one may argue that although I do
not write parentheses in b1 � b2 � b3 out of notational convenience (and be-
cause (x)’s associativity and commutativity make the placement of parenthe-
ses immaterial under behavioral congruence), strictly speaking, because � takes
two multiplicands by Definition 29, that expression nevertheless has parenthe-
ses somewhere. Subsequently, one may argue that strictly speaking, I should
denote the corresponding protocol subprogram either by b1 (x)

[
b2 (x) b3

]
or by

[
b1 (x) b2

]
(x) b3. Finally, one may conclude that strictly speaking, also

the Distributed Approach fixes a communication order at compile-time, which
protocol units should abide by at run-time. Intuitively speaking, however, such
strictness makes little sense: � satisfies associativity, therefore the order of ap-
plying multiplications on constraint automata does not matter, therefore the
order in which protocol units in the Distributed Approach communicate with
each other does not matter.

The previous mismatch results from the lack in formal precision about how
the protocol units defined by b1 (x) b2 (x) b3 should behave. Under a strict
perspective, protocol units must respect not only the behavior of b1�b2�b3 but
also this expression’s structure (i.e., the hidden placement of parentheses). For
performance reasons, however, I prefer a loose perspective: as long as protocol
units respect the behavior of an expression, whether or not their communica-
tion order respects the structure of the expression should not matter.

(Perhaps I seem to diverge from my original goal at this point, dwelling on
associativity in the Distributed Approach instead of dealing with nonassocia-
tivity in the Hybrid Approach. Shortly, however, I use the technique presented
in the former context to give a solution for the problem in the latter context.)

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 143

q1(23) q(12)3

{A,B,C,D} {A,B,C,D}

q1(23) q(12)3

{A,B,C,D} {A,B,C,D}

Figure 5.5: Behaviorally equivalent constraint automata to a1 � (a2 � a3)
and (a1 � a2) � a3 in Figure 5.4. Dotted arrows represent internal transitions.

To make the two different perspectives more concrete, recall the AliceBob-
CarolDave example in Figure 4.7. As before, I anthropomorphize the protocol
units in this example as Alice, Bob, and Carol (Dave plays no role here). Fig-
ure 5.4 shows two g-products of Alice(A;B), Bob(B;C), and Carol(C;D). These
g-products differ primarily in the structure of their states, which reflects the
placement of parentheses in their expressions. For Alice, Bob, and Carol to
behave correctly under the strict perspective, depending on the placement of
parentheses at compile-time, they must behave either as the right-associative
or as the left-associative g-product in Figure 5.4 at run-time. The loose perspec-
tive, in contrast, allows Alice, Bob, and Carol to behave as any behaviorally
equivalent—not necessarily behaviorally congruent—constraint automaton at
run-time. For instance, they may behave as the constraint automata in Fig-
ure 5.5. In that case, whenever Alice, Bob, and Carol fire an internal transition
(cf. silent transitions in process calculi), they effectively change their commu-
nication order: in q1(23), Bob and Carol must go first, while in q(12)3, Alice and
Bob must go first. In other words, if Alice started communicating with Bob
to effectuate their previous instance of interaction, but if now Bob (instead of
Alice) starts communicating with Carol (instead of Bob) to effectuate their next
instance of interaction, somewhere in between those two instances, Alice, Bob,
and Carol must have fired a silent transition from q(12)3 to q1(23).

I can extend Figure 5.5 by taking not only associativity into account but also
commutativity. Doing so yields the behaviorally equivalent “huge” automaton
in Figure 5.6. One can easily check that, under this automaton, Alice, Bob, and
Carol can freely switch between all possible communication orders at run-time.
As such, this huge automaton provides a formal justification for why, in the
Distributed Approach, Alice, Bob, and Carol may dynamically change their
communication order. Next, I generalize this argument with a construction of
huge automata for arbitrary �-expressions.

Let =AC denote the smallest equivalence relation induced by the following
rules (i.e., add also rules for reflexivity, symmetry, and transitivity):

a1,a2 ∈ AUTOM

a1 � a2 =AC a2 � a1

a1,a2,a3 ∈ AUTOM

a1 � (a2 � a3) =AC (a1 � a2)� a3

Essentially, =AC denotes equality up-to associativity and commutativity. Given
this equality, let AUTOM/=AC denote the quotient set of AUTOM under =AC.
Because � satisfies associativity and commutativity up-to behavioral congru-
ence, every equivalence class in AUTOM/=AC contains only behaviorally con-

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 144

ı

q(12)3

q(32)1

q(31)2

q(23)1

q(21)3

q(13)2

q3(21)

q3(12)

q2(31)

q2(13)

q1(32)

q1(23)

Figure 5.6: Huge automaton for Alice(A;B), Bob(B;C), and Carol(C;D), without
data constraints for simplicity. Dotted arrows represent internal transitions;
continuous arrows represent {A,B,C,D}-labeled transitions.

gruent constraint automata. Let a denote a constraint automaton, and let A ∈
AUTOM/=AC denote its equivalence class. To construct a huge automaton for a,
first, I take the union of the constraint automata inA. This means that I take the
union of their state spaces and transition relations and, because all constraint
automata in A have the same ports, memory cells, and initial configuration,
I simply copy those elements from any one of them into the huge automaton
under construction. Second, I add a fresh initial state q0 and connect this state
to the (former) initial state of every a ∈ A with a (∅, K(M))-labeled transition.
Such internal transitions have K(M) as their data constraint to ensure that their
firing does not nondeterministically change the content of memory cells. Fi-
nally, I add a (∅, K(M))-labeled transition between all behaviorally congruent
states, in both directions.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 145

More formally, let R denote the largest set of relations such that R ∈ R
implies both a1 �R a2 and a2 �R

-1
a1 for some a1,a2 ∈ A (cf. behavioral

congruence in Definition 25).

Q = {q0} ∪⋃{Stat(a′) | a′ ∈ A}
−→ =

⋃{Trans(a′) | a′ ∈ A}
∪ {(q0, ∅, K(M), q′) | a′ ∈ A and init(a′) = (q′, µ′)}
∪ {(q, ∅, K(M), q′) | q R q′ and R ∈ R}

I conjecture that on input of an arbitrary constraint automaton, “hugeification”
so defined yields a behaviorally equivalent, yet behaviorally incongruent (be-
cause of its internal transitions), constraint automaton. After all, the added
internal transitions by themselves have no effect on the accepted interaction
language, and because these transitions connect only behaviorally congruent—
hence, behaviorally equivalent by Theorem 1—states, a huge automaton has
equivalent options for its behavior before and after firing these transitions.

The previous construction of huge automata essentially shows that protocol
units in the Distributed Approach may dynamically change their communica-
tion order: under the loose perspective, protocol units collectively simulate not
a constraint automaton that strictly reflects the placement of parentheses but a
huge, behaviorally equivalent one. As such, hugeification—and in particular
the definition of =AC—makes the importance of �’s associativity formally pre-
cise: it (together with commutativity) characterizes sets of behaviorally equiv-
alent constraint automata, each of which reflects a different communication
order, between which protocol units may freely switch at run-time. Of course,
no compiler should ever actually construct huge automata; I use hugeification
only as a means for formal reasoning.

L-multiplication, in contrast to g-multiplication, does not satisfy associativ-
ity. Hence, I cannot directly apply the previous hugeification technique in the
Hybrid Approach. Instead, I first need to establish under which conditions—if
any—� does satisfy associativity. I present such conditions in three lemmas.
The first lemma states that if a constraint automaton a2 has enslaved a con-
straint automaton a1, neither of which depends on a constraint automaton a3,
l-multiplication satisfies associativity.

Lemma 13. [
a1 � (a2 � a3), (a1 � a2)� a3 ∈ AUTOM
and a1,a2 � a3 and a1 �7→ a2

]
implies a1 � (a2 � a3) ' (a1 � a2)�

The second and the third lemma do not state associativity per se, but they state
important properties otherwise implied by associativity (together with com-
mutativity). The second lemma states that if both a2 and a3 have condition-
ally enslaved a1, while both a1 and a3 have conditionally enslaved a2 (i.e., a1

and a2 have enslaved each other), I can “swap” a1 and a2. The third lemma
has the same consequence but a different premise, namely that a1, a2, and a3

have no dependencies between each other.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 146

a1 � (a2 � (a3 � (a4 � (a5 � (a6 � (a7 � a8))))))

' a1 � (a2 � (a3 � (a4 � (a5 � (a7 � (a6 � a8))))))

' a1 � (a3 � (a2 � (a4 � (a5 � (a7 � (a6 � a8))))))

' a1 � (a3 � (a4 � (a2 � (a5 � (a7 � (a6 � a8))))))

' a1 � (a3 � (a4 � (a5 � (a2 � (a7 � (a6 � a8))))))

' a3 � (a1 � (a4 � (a5 � (a2 � (a7 � (a6 � a8))))))

' a3 � (a4 � (a1 � (a5 � (a2 � (a7 � (a6 � a8))))))

' a3 � (a4 � (a5 � (a1 � (a2 � (a7 � (a6 � a8))))))

' a3 � (a4 � (a5 � ((a1 � (a2 � a7))� (a6 � a8))))



a7 acquires a1 and a2

' a3 � (a4 � (a5 � (a6 � ((a1 � (a2 � a7)) � a8))))

' a3 � (a5 � (a4 � (a6 � ((a1 � (a2 � a7)) � a8))))

' a3 � (a5 � ((a4 � a6)� ((a1 � (a2 � a7)) � a8)))

 a6 acquires a4

' a3 � (a5 � ((a1 � (a2 � a7)) � ((a4 � a6)� a8)))

' a3 � (a5 � (a1 � (a2 � (a7 � ((a4 � a6)� a8)))))

}
a7 releases a1 and a2

Figure 5.7: Example reordering of a �-expression over slaves a1, a2, a3, a4,
and a5 and masters a6, a7, and a8

Lemma 14. [
a1 � (a2 � a3),a2 � (a1 � a3) ∈ AUTOM
and a1 �7→ a2,a3 and a2 �7→ a1,a3

]
implies a1 � (a2 � a3) ' a2 � (a1 � a3)

Lemma 15. [
a1 � (a2 � a3),a2 � (a1 � a3) ∈ AUTOM
and a1 � a2,a3 and a2 � a1,a3

]
implies a1 � (a2 � a3) ' a2 � (a1 � a3)

Each of these three lemmas has an intuitive meaning in terms of the mas-
ters/slaves interpretation of constraint automata in the premise in Theorem 9.
Lemma 14 means that I can “move” every slave “rightward” until it neighbors
the leftmost master. Dually, Lemma 15 means that I can move every master
“leftward” until it neighbors the rightmost slave. Finally, Lemma 13 means
that I can “group” any number of rightmost slaves and any number of leftmost
masters together (i.e., put parentheses around them). The actual proofs of these
results go by induction on the number of slaves and the number of masters.
Combined, for a given master aj , I can use these lemmas to move aj leftward,
move all aj ’s slaves rightward, and finally group aj and its slaves such that,
within this group, aj constitutes a most deeply nested l-multiplication (several
of which may exist). Figure 5.7 exemplifies such reordering.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 147

Every reordering of a �-expression as in the premise in Theorem 9 trans-
forms that expression into another expression. By Lemmas 13, 14, and 15, the
l-products to which these �-expressions evaluate live in the same equivalence
class (under behavioral congruence). Similarly, �-expressions up-to associa-
tivity live in the same equivalence class (under behavioral congruence). Thus,
by replacing the rule for associativity in the definition of =AC with a rule for
conditional associativity as stated in Lemmas 13, 14, and 15, I can construct a
new equivalence relation =cAC, take the quotient AUTOM/=cAC, and hugeify in
the same way as before. Every added internal transition in a huge automaton
so constructed models a reordering. Because constraint automata in the same
equivalence class under =cAC have congruent behavior—hence, equivalent be-
havior by Theorem 1—the same argument for the correctness of hugeification
applies as before.

The previous construction of huge automata essentially shows that only
protocol units for masters in the Hybrid Approach may start communicating
with their slaves at run-time. Moreover, by Definition 35 of slavery, none of
these slaves need to communicate with protocol units other than their masters
(i.e., each of their transitions that involves a shared port with a master involves
only shared ports with that master). It does not matter which particular master
among all masters goes first; expression reordering can occur for any master at
any time. In fact, even multiple masters (with disjoint sets of slaves) may start
communicating simultaneously. In that case, the corresponding expression just
has multiple most-deeply nested multiplications (e.g., (a1 � a2) � (a3 � (a4 �
a5))). Figures 5.8 and 5.9 show simplified event-handlers for a protocol unit
that simulates a master/slave (cf. Figures 4.5 and 4.6). I do not intend these
figures to convey real “algorithms”; they serve just as a stylized description of
what event-handling roughly entails in the Hybrid Approach.

Nonassociative parallel composition operators (such as �) occur also in the
literature on concurrency theory, where authors usually consider such opera-
tors defective. For instance, Vrancken set out to improve an earlier version of
the Algebra of Communicating Processes (with the empty process), because
the merge operator in that version “turned out not associative” [Vra97]; Baeten
and Van Glabbeek acknowledge that “this problem [a nonassociative merge
operator] was remedied” by Vrancken [BvG87]. In the context of timed au-
tomata with shared variables and action synchronization, Berendsen and Vaan-
drager point out that “the approach [to support shared variables and action
synchronization] in [6] [sic] is flawed since parallel composition is not asso-
ciative” [BV08]. Berendsen and Vaandrager also states that “commutativity
and associativity are highly desirable properties for parallel composition oper-
ators” [BV08]. Anantharaman et al., in turn, consider a process algebra with a
nonassociative synchronous composition operator, but they subsequently char-
acterize a class of processes for which this operator actually exhibits associa-
tivity and work only with processes from that class [ACH05]. Segala discusses
problems of defining a parallel composition operator for general probabilistic
automata, symptomized by nonassociativity [Seg95]. Finally, Klin and Sas-
sone notice that parallel composition in stochastic π-calculus generally fails

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 148

Input: a port p on which an event occurred, a context P ctxt ⊆ P in ∪ P out of global boundary
ports with a pending I/O operation, and the current local state qi of bi
Output: q′i holds the next local state of bi.
Effect: either, through the firing of enabled local transitions (including a local transition of bi),
an enabled global transition fires (if the I/O operations pending on the ports in P ctxt satisfy
that transition’s label), or all global transitions are disabled (otherwise).

1. Wake up, and assign qi to q′i.

2. Assign ∅ to Φ, a variable for a set of data constraints.

3. For all transitions qi
Pi,φi−−−−→i q

′
i, ordered nondeterministically:

(a) If p /∈ Pi, continue (i.e., skip to the next iteration).

(b) If Pi ∩ (P in ∪ P out) 6⊆ P ctxt (i.e., not all boundary ports involved in the current
local transition have a pending I/O operation), continue.

(c) Assign {φ} to Φ′, a variable for a set of data constraints.

(d) For all ports p′ ∈ Pi \ (P in ∪ P out):

i. Send a message to the protocol unit that shares access to p′ to ask which
data constraints must hold for that unit to fire a transition involving p′.

ii. Await an answer message Φ′′ from that protocol unit.
iii. Assign {φ′ ∧ φ′′ | φ′ ∈ Φ′ and φ′′ ∈ Φ′′} to Φ′.

(e) Assign Φ ∪ Φ′ to Φ.

4. For all data constraints φ ∈ Φ:

(a) Compute a data assignment σ that respects the pending I/O operations and
satisfies φ; continue if no such σ exists.

(b) Distribute data among local ports and memory cells according to σ.

(c) Send σ to all protocol units sent messages to in Step 3.

(d) Compute a q′ such that qi
Pi,φi−−−−→ q′ and Pi ⊆ Dom(σ) and σ |= φi.

(e) Assign q′ to q′i, and abort the loop.

5. If the previous loop never made it to Step 4-e, send ∅ (i.e., the empty data assignment)
to all protocol units sent messages to in Step 3.

6. Go dormant.

Figure 5.8: Simplified p-event-handler for a protocol unit that simulates a mas-
ter medium automaton bi = (Qi, (P

all
i , P

in
i , P

out
i),Mi,−→i, (q

0
i , µ

0
i)) in the Hy-

brid Approach, where P in and P out denote the sets of global input and output
ports

to exhibit associativity and investigate under which conditions it does [KS08].
However, as with � in this thesis, nonassociativity does not always pose prob-
lems. For instance, in the context of reachability analysis, Yeh investigates a
state space reduction technique for processes by adding distinguished actions
for suspending and resuming processes; in the resulting theory, parallel com-
position does not exhibit associativity [Yeh93]. As another example, Kuske &

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 149

Input: a port p on which an event occurred, a context P ctxt ⊆ P in ∪ P out of global boundary
ports with a pending I/O operation, and the current local state qi of bi
Output: q′i holds the next local state of bi.
Effect: either, through the firing of enabled local transitions (including a local transition of bi),
an enabled global transition fires (if the I/O operations pending on the ports in P ctxt satisfy
that transition’s label), or all global transitions are disabled (otherwise).

1. Wake up, and assign qi to q′i.

2. Assign ∅ to Φ, a variable for a set of data constraints.

3. For all transitions qi
Pi,φi−−−−→i q

′
i, ordered nondeterministically:

(a) If p /∈ Pi, continue (i.e., skip to the next iteration).

(b) If Pi ∩ (P in ∪ P out) 6⊆ P ctxt (i.e., not all boundary ports involved in the current
local transition have a pending I/O operation), continue.

(c) Assign Φ ∪ {φ} to Φ.

4. Send an answer message Φ to the protocol unit from which the p-event originated.

5. Await a message with a data assignment σ.

6. If σ 6= ∅, distribute data among local ports and memory cells according to σ.

7. If σ 6= ∅, compute a q′ such that qi
Pi,φi−−−−→ q′ and Pi ⊆ Dom(σ) and σ |= φi.

8. If σ 6= ∅, assign q′ to q′i.

9. Go dormant.

Figure 5.9: Simplified p-event-handler for a protocol unit that simulates a slave
medium automaton bi = (Qi, (P

all
i , P

in
i , P

out
i),Mi,−→i, (q

0
i , µ

0
i)) in the Hybrid

Approach, where P in and P out denote the sets of global input and output ports

Meinecke introduce a nonassociative product operator on branching automata
with costs [KM03]. Finally, the Orc orchestration language has three combi-
nators to express parallel execution, two of which exhibit neither associativity
nor commutativity [KQCM09].

L-multiplication as introduced in this chapter differs from previous nonas-
sociative parallel composition operators in the sense that even though it fails
to exhibit associativity in general, it exhibits associativity in all relevant cases
(Lemmas 13–15). As such, l-multiplication’s nonassociativity does not render
its definition defective. On the contrary: l-multiplication’s nonassociativity es-
sentially reflects the inherent asymmetry between masters and their slaves and,
consequently, constitutes a feature, not a bug.

5.2 Practice

(I have not yet submitted the material in this section for publication.)

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 150

Compiler

I extended Lykos with the ability to generate code under the Hybrid Approach,
controllable through flag PARTITION. When raised, Lykos partitions the set of
small automata as described in Section 5.1. Consequently, instead of generating
only a single protocol subprogram (as in Chapter 4), Lykos generates multiple
protocol subprograms, one for every previously computed medium automa-
ton. Each of these protocol subprograms defines a protocol unit, and every
such a protocol unit corresponds to either a master or a slave.

Recall from Chapter 4 that every port data structure at run-time has two
users: a protocol unit and either another protocol unit or a worker unit. In
the latter case, if a port data structure has a protocol unit and a worker unit as
its users, I call this protocol unit “on the boundary”. During compilation, to
ease code generation, Lykos ensures that every protocol unit on the bound-
ary corresponds to a master. The technique to do this consists, essentially,
of adding for every small automaton that satisfies no-synchronization an ex-
tra Sync “before” each of its input ports and an extra Sync “after” each of
its output ports (where “input” and “output” qualify ports from the proto-
col perspective). For instance, Lykos may replace Fifo(p1; p4) with Sync(p1; p2),
Fifo(p2; p3), and Sync(p3; p4). First, observe that Fifo(p1; p4) and the product
of Sync(p1; p2), Fifo(p2; p3), and Sync(p3; p4) have equivalent behavior. Indeed,
Sync forms some kind of neutral element for multiplication; I come back to
this point in Chapter 6. Thus, Lykos does not affect the original behavior of a
set of small automata by adding Syncs as just described. Second, observe that
because Fifo satisfies no-synchronization, it ends up in its own subset in the
partition and, by itself, constitutes one medium automaton—a slave. At the
same time, Sync(p1; p2) and Sync(p3; p4) share no ports and, thus, satisfy inde-
pendence. Consequently, also each of these two Syncs ends up in its own subset
in the partition and, by itself, constitutes a medium automaton—a master. By
adding Syncs for all small automata that satisfy no-synchronization in this way,
Lykos ensures that only protocol units for masters lie on the boundary.

As explained in Chapter 4, worker threads execute not only computation
code but also interaction code, on behalf of protocol units for masters that lie on
the boundary. In contrast to the situation in Chapter 4, however, every protocol
unit for a master—including those on the boundary—additionally has its own
thread. Usually, these protocol threads lie dormant. Only after a neighboring
protocol unit (for a slave) has made a transition, a protocol thread awakes and
starts a new round of event-handling. After all, if this neighbor has changed
state during its previous transition, in its new current state, it may have differ-
ent outgoing transitions, with different synchronization constraints, than be-
fore. Consequently, this neighbor may now agree to involve shared ports in
transitions that it could not agree to before, in its previous state (where it had
different outgoing transitions, with different synchronization constraints). All
threads ensure that they execute event-handlers in mutually exclusive fashion,
to avoid race conditions.

While every protocol unit for a master has its own thread, protocol units

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 151

for slaves do not have their own thread. Instead, threads that execute code (on
behalf) of protocol units for masters also execute code on behalf of protocol
units for slaves, in the same way that worker threads execute code on behalf
of protocol units. In other words, the same thread interleaves the execution of
Figure 5.8 (i.e., the protocol unit for a master) with the execution of Figure 5.9
(i.e., the protocol units for that master’s slaves), without going to sleep, awak-
ing other threads, or explicitly sending messages—the thread does all the work
itself. As a consequence, protocol units for slaves essentially degenerate into
purely passive entities—data structures—at run-time. For instance, the proto-
col unit for a Fifo effectively consists just of a variable (to hold the content of the
buffer) and a lock (to guarantee mutual exclusion). Whenever a thread fires a
transition of such a passive protocol unit for a slave, this thread also notifies all
neighboring protocol units (for masters) of a possible state change, as already
discussed above.

As another, minor optimization, Lykos carries out static analysis at compile-
time in an attempt to safely predict whether a protocol unit for a master can
reach consensus with its neighboring protocol units (for slaves) at run-time.
This works as follows. Suppose that a master and its slave share a port p (and
nobody else knows about p). Moreover, suppose that the slave has only one
transition (q, P, φ, q′) involving p (i.e., p ∈ P). Then, at compile-time, Lykos can
establish two facts about the situation at run-time in which the master success-
fully fires a local transition involving p: (i) its slave necessarily has q as its cur-
rent state, and (ii) the computed data assignment satisfies φ. Given those facts,
by adding φ already to the data constraint of every transition involving p in the
master at compile-time, communication and composition of data constraints at
run-time becomes unnecessary. Such manipulation at compile-time does not
strengthen the original data constraints too much, because the corresponding
transitions can fire only together with transition (q, P, φ, q′), in the master’s slave
anyway. Moreover, if the compiler manipulates data constraints in this way al-
ready at compile-time, to see if the master and its slave can agree at run-time,
a simple check for whether the slave has q as its current state suffices. This fur-
ther reduces the overhead of the already cheap consensus algorithm necessary
in the Hybrid Approach.

I skip code examples in this chapter, because the run-time library and the
compiler-generated code remain largely the same as what I showed already in
Chapter 4.

Experiments I: Protocols

I repeated the same experiments as in Chapter 4, generating code for members
of families SyncK, FifoK, Merger, Router, LateAsyncMerger, EarlyAsyncMerger,
OddFibonacci, and Chess with the PARTITION-flag raised, but otherwise un-
der the same conditions as in Chapter 4. Figure 5.10 shows per-family per-
formance charts, averaged over five runs. The solid lines represent the actual
measurements; the dotted lines represent inverse-proportional growth with re-
spect to k = 1. Recall from Chapter 4 that inverse-proportional growth forms

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 152

—same as in Figure 4.26—

SyncK FifoK

—same as in Figure 4.26—

Merger

—same as in Figure 4.26—

Router

LateAsyncMerger EarlyAsyncMerger

OddFibonacci Chess

Figure 5.10: Performance (in number of completed rounds per four minutes) as
a function of the number of Syncs/Fifos/producers/consumers/chess engines,
denoted by k. See the legend in Figure 9.1.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 153

a necessary condition (but not necessarily a sufficient one) for good scalabil-
ity. The red lines represent the new results; the blue lines represent the results
from Chapter 4. For SyncK, Merger, and Router, Lykos generated exactly the
same code as in Chapter 4. In these cases, the Hybrid Approach degenerates
into the Centralized Approach.

Figure 5.11 shows per-family speedup charts corresponding to the mea-
surements in Figure 5.10; the dotted lines represent equal performance. For
FifoK, the previous scalability problems, both at compile-time and at run-time,
have disappeared: at compile-time, Lykos (with the PARTITION-flag raised)
succeeded in generating code for all values of k without exhausting its avail-
able resources, while at run-time, the performance of the generated code stays
above the critical threshold of inverse-proportionality. For EarlyAsyncMerger,
the same observations hold true. In these cases, thus, the Hybrid Approach in-
deed solves the previous scalability problems. For LateAsyncMerger and Chess,
performance has also improved to greater and to lesser extent, indicating that
the recovery of useful parallelism as achieved in the Hybrid Approach can pay
off. But, code generated under the Centralized Approach for members of Late-
AsyncMerger and Chess with smaller values of k outperforms code generated
under the Hybrid Approach for those same members. This indicates that par-
allelism becomes more important as the number of workers increases.

Interestingly, FifoK and EarlyAsyncMerger exemplify situations where code
generated under the Hybrid Approach has, in fact, lower latency than code
generated under the Centralized Approach. This may come as a surprise, as
the Hybrid Approach requires a (cheap) consensus algorithm (which never-
theless inflicts overhead and thereby generally increases latency), whereas the
Centralized Approach does not. Sometimes, thus, code generated under the
Centralized Approach has another major source of overhead, which increases
latency more dramatically than the Hybrid Approach’s consensus algorithm
does (e.g., for members of FifoK and EarlyAsyncMerger for certain values of k).
This source of overhead consists of the number of transitions that a big au-
tomaton, as computed in the Centralized Approach, may have: whenever a
big automaton has many more transitions than every medium automaton in
the Hybrid Approach—this happens, for instance, if that number of transitions
increases exponentially in k, as with FifoK—it may take much longer for that
big automaton’s protocol unit to find an enabled transition than for the pro-
tocol units for those medium automata. This observation, then, constitutes
another point in favor of the Hybrid Approach.

Finally, for OddFibonacci, all code generated under the Centralized Ap-
proach actually outperforms all code generated under the Hybrid Approach.
Here, one witnesses overparallelization, where a number of parallel threads im-
plement an inherently sequential protocol specification. For all members of
OddFibonacci, the computed partition consists of seven subsets (independent
of the number of consumers), subsequently resulting in seven medium au-
tomata: three masters and four slaves (i.e., Fifos). However, as shown in the
constraint automaton for the OddFibonacci2 protocol in Figure 3.25, this pro-
tocol has no real parallelism to exploit among its workers: either all workers

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 154

—same as in Figure 4.26—

SyncK FifoK

—same as in Figure 4.26—

Merger

—same as in Figure 4.26—

Router

LateAsyncMerger EarlyAsyncMerger

OddFibonacci Chess

Figure 5.11: Speedup (relative to compiler-generated code in Chapter 4) as a
function of the number of Syncs/Fifos/producers/consumers/chess engines,
denoted by k. See the legend in Figure 9.1.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 155

synchronously complete their I/O operations (the left transition in Figure 3.25),
or the producer completes an I/O operation just by itself (the right transition).
Consequently, a parallel implementation of seven protocol units (three active
ones and four passive ones) incurs the overhead that parallelism entails with-
out gaining anything. As a result, such parallel implementations have poorer
performance than sequential ones, as shown in Figures 5.10 and 5.11.

Despite their overparallelization, the seven protocol units for every OddFi-
bonacci member exhibit “useful parallelism” according to its definition in Sec-
tion 5.1, a concept that I used as a guideline for computing reasonable parti-
tions. This suggests that to avoid overparallelization through more clever par-
titioning, I need to refine the definition of useful parallelism. After all, as the
experiments with OddFibonacci members demonstrate, the current definition
sometimes erroneously qualifies parallelism among protocol units as useful—
and thereby essentially misguides the computation of reasonable partitions—
while in practice, it leads to overparallelization.

To better explain the problem at hand, let a “sequence of dependent pro-
tocol units” start with one protocol unit, which depends on the next protocol
unit, which, in turn, depends on the third protocol unit, and so on. If such a
sequence of dependent protocol units starts and ends with the same protocol
unit, and none of the intermediate protocol units lie on the boundary, the par-
allelism among those intermediate protocol units serves no real purpose. For
instance (cf. OddFibonacci in Figures 3.26 and 3.27), suppose that the interme-
diate protocol units in a sequence of dependent protocol units correspond to
a Fifo, followed by a Sync, followed by another Fifo. Also, suppose that the
first/last protocol unit corresponds to a constraint automaton with a transition
involving (at least) the input port of the first Fifo and the output port of the
second Fifo. After firing this transition, the first/last protocol unit must wait
for the intermediate protocol units to fire their transitions (i.e., to transport the
new datum in the first buffer to the second buffer) before it can fire this transi-
tion again. The parallelism among those protocol units, therefore, has no real
advantage—but, in contrast, negatively affects performance—and sequential-
izing this whole sequence of dependent protocol units seems the better option.
In terms of the theory presented in this chapter, I can achieve such sequen-
tialization by letting the subset for the first/last protocol unit in the sequence
gobble up the subsets for the intermediate protocol units. Although I have a
fair understanding of the theory involved in this proposal, the actual practi-
cal consequences remain unclear to me and require further investigation. In
particular, one possible adverse side-effect that I foresee consists of the rein-
troduction of state space explosion (e.g., if the sequence of dependent protocol
units in the previous example consists of 64 Fifos, merging their corresponding
subsets in the partition eventually gives rise to a constraint automaton with 264

states). I leave a thorough study of this topic for future work.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 156

NPB-FT NPB-MG NPB-CG NPB-IS NPB-BT NPB-SP NPB-LU

W 32 ∞ ∞ ∞ 22 34 31
A 128 ∞ ∞ ∞ 62 62 62
B 256 ∞ ∞ ∞ 100 100 100
C 512 ∞ ∞ ∞ 160 160 160

Figure 5.12: Maximum number of slaves in the NPB benchmarks

Experiments II: Programs

I repeated the same experiments as in Chapter 4, generating code for the NPB
benchmarks with the PARTITION-flag raised, but otherwise under the same con-
ditions as in Chapter 4. Using the Hybrid Approach, in contrast to the Central-
ized Approach as used in Chapter 4, Lykos succeeded in generating code for
all values of k for all NPB kernel benchmarks, except NPB-MG, and for all but
the last value of k for the three NPB application benchmarks and NPB-MG.

To facilitate a fair comparison of the performance of different implementa-
tions of NPB, the NPB documentation—available at the NASA website—defines
five problem size classes, with predefined inputs, to run the benchmarks on:
class S (small size, just for testing), class W (1990s workstation size), class A
(1990s supercomputer size, larger than class W), class B (1990s supercomputer
size, roughly four times larger than class A), and class C (1990s supercomputer
size, roughly four times larger than class B). I ran every FOCAML-to-Java-com-
piled version of the NPB kernel benchmarks with inputs from class W, class
A, class B, and class C, while I ran every FOCAML-to-Java-compiled version of
the NPB application benchmarks with inputs only from class W and class A;
the latter benchmarks took, in the slowest cases, already over an hour, which
made further upscaling the problem size impractical. I ran these benchmarks
for every value of k ∈ {2, 4, 8, 16, 32, 64} for which Lykos succeeded in gener-
ating code, where k denotes the number of slaves, except if such a k exceeded
the maximum number of slaves for a given benchmark/class combination in
Figure 5.12 (these limits come from the Java implementation of NPB). As be-
fore, I used a machine with 24 cores (two Intel E5-2690V3 processors in two
sockets), without Hyper-Threading and without Turbo Boost (i.e., with a static
clock frequency).

Figures 5.13–5.20 show performance charts for the FOCAML-to-Java-com-
piled versions of the NPB kernel benchmarks (averaged over five runs), speed-
up charts (with respect to their Java versions by Frumkin et al.), and charts
about cache misses. The dotted red lines represent the MasterSlavesInteraction-
PatternA-based FOCAML-to-Java-compiled versions of the NPB kernel bench-
marks; the solid red lines represent the MasterSlavesInteractionPatternB-based
FOCAML-to-Java-compiled versions; the dotted black lines represents the Java
versions by Frumkin et al.

The machine on which I performed my experiments allowed me to monitor

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 157

NPB-FT, class W (performance) NPB-FT, class W (speedups)

NPB-FT, class A (performance) NPB-FT, class A (speedups)

NPB-FT, class B (performance) NPB-FT, class B (speedups)

NPB-FT, class C (performance) NPB-FT, class C (speedups)

Figure 5.13: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 158

NPB-FT, class W (L1-dcache misses) NPB-FT, class W (dTLB misses)

NPB-FT, class A (L1-dcache misses) NPB-FT, class A (dTLB misses)

NPB-FT, class B (L1-dcache misses) NPB-FT, class B (dTLB misses)

NPB-FT, class C (L1-dcache misses) NPB-FT, class C (dTLB misses)

Figure 5.14: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 159

NPB-MG, class W (performance) NPB-MG, class W (speedups)

NPB-MG, class A (performance) NPB-MG, class A (speedups)

NPB-MG, class B (performance) NPB-MG, class B (speedups)

NPB-MG, class C (performance) NPB-MG, class C (speedups)

Figure 5.15: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 160

NPB-MG, class W (L1-dcache misses) NPB-MG, class W (dTLB misses)

NPB-MG, class A (L1-dcache misses) NPB-MG, class A (dTLB misses)

NPB-MG, class B (L1-dcache misses) NPB-MG, class B (dTLB misses)

NPB-MG, class C (L1-dcache misses) NPB-MG, class C (dTLB misses)

Figure 5.16: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 161

NPB-CG, class W (performance) NPB-CG, class W (speedups)

NPB-CG, class A (performance) NPB-CG, class A (speedups)

NPB-CG, class B (performance) NPB-CG, class B (speedups)

NPB-CG, class C (performance) NPB-CG, class C (speedups)

Figure 5.17: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 162

NPB-CG, class W (L1-dcache misses) NPB-CG, class W (dTLB misses)

NPB-CG, class A (L1-dcache misses) NPB-CG, class A (dTLB misses)

NPB-CG, class B (L1-dcache misses) NPB-CG, class B (dTLB misses)

NPB-CG, class C (L1-dcache misses) NPB-CG, class C (dTLB misses)

Figure 5.18: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 163

NPB-IS, class W (performance) NPB-IS, class W (speedups)

NPB-IS, class A (performance) NPB-IS, class A (speedups)

NPB-IS, class B (performance) NPB-IS, class B (speedups)

NPB-IS, class C (performance) NPB-IS, class C (speedups)

Figure 5.19: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 164

NPB-IS, class W (L1-dcache misses) NPB-IS, class W (dTLB misses)

NPB-IS, class A (L1-dcache misses) NPB-IS, class A (dTLB misses)

NPB-IS, class B (L1-dcache misses) NPB-IS, class B (dTLB misses)

NPB-IS, class C (L1-dcache misses) NPB-IS, class C (dTLB misses)

Figure 5.20: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 165

cycles/miss nanoseconds/miss seconds/billion misses

L1-dcache ≥ 10 ≥ 3.8 ≥ 3.8
dTLB 7 2.3 2.3

Figure 5.21: Indication of costs involved in L1-dcache and dTLB misses on a 2.6
GHz machine with Intel i7 architecture [HP11b]

NPB-FT NPB-MG NPB-CG NPB-IS NPB-BT NPB-SP NPB-LU

W 34 881 1155 20 1800 5600 2400
A 34 121 1155 20 1800 5600 2000
B 104 601 5775 20 1800 5600 2000
C 104 681 5775 20 1800 5600 2000

Figure 5.22: Number of times that a master dispatches work to its slaves and
subsequently waits for their signal in the NPB benchmarks. To get the number
of transitions fired by a MasterSlavesInteractionPatternA-based FOCAML-to-Ja-
va-compiled version with k slaves, compute 4kn, where n comes from this fig-
ure; to get the number of transitions fired by a MasterSlavesInteractionPatternB-
based FOCAML-to-Java-compiled version with k slaves, compute (1 + 3k)n.

two kinds of cache misses: L1-dcache misses, which occur when the L1 cache of
the CPU does not contain a requested piece of data, and dTLB misses, which oc-
cur when the data TLB contains no entry for a provided virtual address to trans-
late into a physical address. Importantly, I measured cache misses during the
whole run of a program, from start to end, using perf-stat. These numbers,
thus, include also cache misses incurred during a program’s initialization and
finalization. In contrast, the time measurements, for which I reused the origi-
nal code by Frumkin et al., start only after initialization and end already before
finalization (i.e., my cache miss measurements span a longer interval than my
time measurements). Therefore, take my measurements on cache misses with
a grain of salt and use them just as a rough indication of cache behavior. Even
under this proviso, though, these measurements give meaningful insight into
the performance of compiler-generated code, as explained shortly. Figure 5.21
shows a conservative estimation of the costs involved in cache misses.

I make the following main observations about my experimental results:

• Overall, the MasterSlavesInteractionPatternB-based FOCAML-to-Java-com-
piled versions of the NPB kernel benchmarks outperform their Master-
SlavesInteractionPatternA-based FOCAML-to-Java-compiled versions (sol-
id red lines versus dotted red lines). Recall from Chapter 3 that the latter
versions impose an order in which the master sends signals to its slaves
and vice versa, whereas the former versions do not impose such an order.
As hinted at already in that chapter, not imposing an order indeed seems

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 166

to result in better performance.

• Despite the previous point, the Java versions of the NPB kernel bench-
marks by Frumkin et al. outperform many of their FOCAML-to-Java-com-
piled versions by a substantial margin. This shows that the code gener-
ated by Lykos leaves room for further improvements.

• The numbers of cache misses seem a fair indicator of performance: fewer
cache misses generally means better performance. This suggest that not
only the number of machine instructions derived from compiler-generat-
ed code matters, but also its impact on memory and cache usage. For in-
stance, the MasterSlavesInteractionPatternB-based FOCAML-to-Java-com-
piled versions of the NPB kernel benchmarks generally incur substan-
tially fewer cache misses than their MasterSlavesInteractionPatternA-based
FOCAML-to-Java-compiled versions.

Cache misses alone do not completely determine performance, though;
the number of machine instructions surely plays a role too (demonstrated
more clearly in the previous subsection, where I reported on experiments
with protocols in isolation). Consider, for instance, NPB-IS, class A. Al-
though the MasterSlavesInteractionPatternA-based FOCAML-to-Java-com-
piled version for k = 64 incurs substantially fewer cache misses than the
corresponding Java version, the latter version nevertheless substantially
outperforms the former one.

• Going from class W to class A, from class A to class B, and from class
B to class C, the speedup of the FOCAML-to-Java-compiled versions—or
rather, their slowdown—generally improve: as the problem size increases,
computation time progressively dominates total time, because interac-
tion time stays nearly constant (i.e., the fraction of interaction time di-
vided by computation time decreases as the problem size increases). As
a measure for interaction time, Figure 5.22 shows the number of times
that a master dispatches work to its slaves and subsequently waits for
their signal. Increasing problem sizes, thus, work in favor of relatively
slow implementations of protocol specifications due to “amortization of
slowness” over a longer total time.

• The previous point applies to NPB-FT, NPB-MG, and NPB-CG but seems
not to apply to NPB-IS, for which Figure 5.19 shows perhaps confusing
experimental results, especially for k = 64: in class W and class C, the Java
versions outperform the MasterSlavesInteractionPatternB-based FOCAML-
to-Java-compiled versions (dotted black lines versus solid red lines), but
in class A and class B, the latter versions somewhat surprisingly outper-
form the former versions. I speculate that this has something to do with
numbers of cache misses: as shown in Figure 5.20, for k = 64, in class
W and class C, the former versions incur substantially fewer cache misses
than the latter versions, but in class A and class B, the latter versions incur
substantially fewer cache misses than the former versions.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 167

To substantiate my speculation, as a first sanity check, I try to estimate the
effect of cache misses on performance in the following conservative back-
of-the-envelope calculation for k = 64 in class A. Using the numbers in
Figure 5.21, the MasterSlavesInteractionPatternB-based FOCAML-to-Java-
compiled version spends at least 2.5 seconds more on cache misses than
the Java version. By dividing this difference by the number of cores—
a coarse estimation of how cache misses affect wall clock time—I get
roughly a 100 milliseconds delay per core, about six times smaller than
the difference in performance in Figure 5.19 (assuming a uniform distri-
bution of the computational load over cores). Because I calculated con-
servatively (i.e., L1 cache misses cost substantially more than 10 cycles if
also the L2 cache does not contain the required data; cache misses and
computational load do not uniformly distribute over cores), these 100
milliseconds form a lower bound to the real delay per core caused by
cache misses. If anything, this calculation shows that my speculation,
that cache misses have a large enough impact to account for the observed
difference in performance, seems at least not unreasonable.

Having passed the sanity check, next, I investigate the phenomenon at
hand by studying the underlying reason for differences in cache misses.
It turns out that this correlates with how the Java virtual machine man-
ages the heap, the details of which I skip. Essentially, because the Master-
SlavesInteractionPatternB-based FOCAML-to-Java-compiled version has a
different memory usage than the Java version, the Java virtual machine
infers different sizes for the young/old generation portions of the heap
for these two versions. These different sizes manifest in different cache
behavior. To witness this, by explicitly setting the size of the young gen-
eration portion to the same value for both versions under study, not only
their number of cache misses become similar but also their performance.
This, then, serves as evidence for my previous speculation that their dif-
ference in number of cache misses causes the MasterSlavesInteractionPat-
ternB-based FOCAML-to-Java-compiled versions to outperform the Java
versions in class A and class B for k = 64.

Figures 5.23–5.28 show performance charts for the FOCAML-to-Java-com-
piled versions of the NPB application benchmarks (averaged over five runs),
speedup charts (with respect to their Java versions by Frumkin et al.), and
charts about cache misses. The lines have the same meaning as in the previous
charts for the NPB kernel benchmarks. Recall from Figure 5.12 that NPB-BT
and NPB-LU do not support more than 22 and 31 slaves in class W. Therefore,
I have no measurements beyond k = 16 in class W for those benchmarks.

Essentially, the same observations apply here as for the previous experi-
mental results of the NPB kernel benchmarks. Different from the FOCAML-to-
Java-compiled versions of the NPB kernel benchmarks, however, the FOCAML-
to-Java-compiled versions of the NPB application benchmarks have similar
performance as their Java versions—and in some cases even better. The pre-
vious point about increasing problem sizes applies here too, though. Finally,

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 168

NPB-BT, class W (performance) NPB-BT, class W (speedups)

NPB-BT, class A (performance) NPB-BT, class A (speedups)

Figure 5.23: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-BT, class W (L1-dcache misses) NPB-BT, class W (dTLB misses)

NPB-BT, class A (L1-dcache misses) NPB-BT, class A (dTLB misses)

Figure 5.24: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 169

NPB-SP, class W (performance) NPB-SP, class W (speedups)

NPB-SP, class A (performance) NPB-SP, class A (speedups)

Figure 5.25: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-SP, class W (L1-dcache misses) NPB-SP, class W (dTLB misses)

NPB-SP, class A (L1-dcache misses) NPB-SP, class A (dTLB misses)

Figure 5.26: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 170

NPB-LU, class W (performance) NPB-LU, class W (speedups)

NPB-LU, class A (performance) NPB-LU, class A (speedups)

Figure 5.27: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-LU, class W (L1-dcache misses) NPB-LU, class W (dTLB misses)

NPB-LU, class A (L1-dcache misses) NPB-LU, class A (dTLB misses)

Figure 5.28: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 5. IMPROVEMENT I: LOCAL MULTIPLICATION 171

one anomalous run among five runs, which inexplicably took over three times
longer to finish (i.e., half an hour versus 10 minutes), causes the spike for k = 16
in NPB-BT, class A, in Figure 5.24.

Their concrete results aside, this first round of experiments with the NPB
benchmarks teaches an important lesson: evaluating the performance of com-
piler-generated code in the context of full programs yields new insights and
requires more advanced analysis techniques (e.g., measuring and interpret-
ing cache misses) than evaluating compiler-generated code in isolation, with
empty producers and consumers. The experiments in this subsection, thus,
nicely complement the experiments in the previous subsection.

Chapter 6

Improved Compilation II:
Syntactic Subtraction

In Chapters 4 and 5, I presented a basic FOCAML compiler and reported on a
technique for solving scalability problems of the Centralized Approach. Es-
sentially, the Hybrid Approach presented in Chapter 5 tries to balance sequen-
tiality inside protocol units with parallelism among those units. However, every
individual protocol unit still executes purely sequential code and, as such, may
form a bottleneck, potentially slowing down the entire program-in-execution.

In this chapter and the next, I present improvements to one of the more
computationally costly aspects of protocol units’ execution: the data constraint
checks involved in determining whether a transition can fire and, in particular,
the expensive constraint solver calls made during such checks. More precisely,
in this chapter, I study a way of reducing the size of data constraints at compile-
time to reduce the overhead of constraint solving at run-time. In Section 6.1,
to motivate the need for this reduction, I first discuss a so far disregarded de-
ficiency of the current compilation approach, related to the size of data con-
straints. Subsequently, I introduce an auxiliary operation on constraint au-
tomata, namely normalization, primarily to simplify subsequent technicalities.
Finally, I introduce a new subtraction to carry out data constraint reduction
and formally compare it to the old subtraction in Definition 30. In Section 6.2,
I present an improved version of Lykos using this reduction technique for data
constraints, including new experimental results on performance.

Although the improvement presented in this chapter eventually results in
improved compiler-generated code, as in Chapter 5, I define this improvement
at the higher level of constraint automata instead of at the lower level of GPL
code. Not only does this facilitate more elegant formal reasoning about cor-
rectness (compared to reasoning directly about GPL code), but it also eases the
automatic application of this improvement by a FOCAML compiler. Moreover,
it makes this improvement independent of GPLs—Java in this thesis—so that
the same optimization automatically applies to, for instance, generated C code.

173

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 175

6.1 Theory

(I have not yet published the material in this section.)

64 Syncs

Recall the Sync family defined in Figure 3.4. An undergraduate student of
Computer Science may quite straightforwardly prove that members of Sync
behave as a kind of algebraic identity of multiplication and subtraction, in the
following sense. Let a range over the set of all constraint automata that have
an input port p2.

Behav((Sync(p1; p2)� a)� p2) ={
w′

w ∈ Behav(a)
and

[
w′(i) = w(i)|Dom(w(i))\{p2} ∪ {p1 7→ w(i)(p2)} for all i

]}
In words, (Sync(p1; p2)�a)�p2 and a have language equivalent behavior mod-
ulo substitution of p1 for p2. Generally, one can “prefix” (i.e., multiply on its
input ports) or “suffix” (i.e., multiply on its output ports) any number of Syncs
to a constraint automaton without affecting—in the sense just described—that
automaton’s behavior. Given this property, it seems not unreasonable to as-
sume that compiler-generated code for a single Sync has the same performance
as a sequence of 64 Syncs. Slightly more formally, if ∼ means “has the same
performance”, one may expect:

Sync(p1; p65) ∼ (Sync(p1; p2) � · · ·� Sync(p64; p65)) � p2 � · · ·� p64

Sensible as this supposition may seem, as the experimental results in Chap-
ter 4 show, code generated by Lykos violates this property: Sync1 completes 27
million rounds in four minutes, whereas Sync64 completes only nine million
rounds in the same amount of time (Figure 4.26). Indeed, although the per-
formance of Synck stays above the critical threshold of inverse-proportional-
ity, I can hardly claim that the compiler-generated code for Synck scales well
in k. Thus, as I already stated before, inverse-proportionality forms a necessary
condition for good scalability but not necessarily a sufficient one; I discuss in-
verse-proportionality for the other families of constraint automata with which
I experimented so far in Section 6.2.

To better understand the phenomenon at hand, take another look at Defini-
tion 30 of �. Whereas subtraction eliminates ports from synchronization con-
straints syntactically—effectively making those sets smaller—it removes ports
from data constraints only semantically. Indeed, � does not reduce the size of
data constraints (in terms of the number of data variables, data literals, and
existential quantifications) but, in fact and in contrast, makes data constraints
larger by enveloping them in existential quantifications: the transition of the
single Sync has just p1 = p65 as its data constraint, whereas the corresponding
transition in the product of 64 Syncs has ∃p64.· · ·∃p2.(p1 = p2 ∧ · · · ∧ p64 = p65).

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 176

instantiated family signature

a1, . . . ,an>0

B1, . . . , B1≤m≤n

b1, . . . , bm

b1 (.) · · · (.) bm

c1, . . . , cm

c1 (.) · · · (.) cm

interpret

partition

�,�

generateCodehybr

�,

generateCodehybr

Figure 6.1: Hybrid compilation approach with syntactic subtraction

Clearly, solving the latter data constraint requires more resources than the for-
mer.

In the rest of this section, I develop a syntactic subtraction that, when ap-
plied 63 times to the product of 64 Syncs, yields the same data constraint as the
one in the single Sync. Figure 6.1 shows the resulting compilation approach.
First, I need a normalization for bringing constraint automata into a syntacti-
cally more convenient shape.

Normalization

Normalization consumes a constraint automaton a and produces a constraint
automaton as output. Normalized constraint automata simplify proving cer-
tain properties. To normalize a constraint automaton, I manipulate only its
data constraints, possibly splitting them into parts and distributing those parts
over multiple transitions. Afterward, a normalized constraint automaton con-
tains only normal data constraints. Every normal data constraint occurs in prenex
normal form [Rau10a], in which zero or more existential quantifications envelop
a quantifier-free kernel. The kernel of a normal data constraint consists of a con-
junction of data literals.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 177

Definition 38 (normal data constraints). A normal data constraint is an object
generated by the following grammar:

` ::= any data literal from Definition 15
ϕ ::= ∃x.ϕ | `1 ∧ · · · ∧ `k≥1 (normal data constraints)

DC∃,∧ denotes the set of all normal data constraints.

Clearly, DC in Definition 15 subsumes DC∃,∧. Henceforth, let Liter(ϕ) denote
the set of data literals in ϕ’s kernel.

To normalize a constraint automaton a, I must compute a new transition
relation. For every transition (q, P, φ, q′) in a, I first compute a prenex nor-
mal form of φ, denoted by pnf(φ). The goodness that φ exhibits by Defini-
tion 19 of AUTOM guarantees that such a prenex normal form always exists
(i.e., the properties of goodness in Definition 17 guarantee that all inner exis-
tential quantifiers in φ can safely move outward). Next, I compute a disjunctive
normal form of the kernel χ of pnf(φ) [Rau10b], denoted by dnf(χ). For every
disjunct `1 ∧ · · · ∧ `k in dnf(χ), I subsequently construct a new transition from
state q to state q′ labeled by synchronization constraint P and the normal data
constraint built out of the existential quantifications in pnf(φ) and `1 ∧ · · · ∧ `k.
Constructing new transitions in this way preserves the semantics of the orig-
inal transition, because (i) prenex/disjunctive normal forms preserve the se-
mantics of φ, (ii) existential quantification distributes over disjunction, and (iii)
multiple transitions out of the same state represent a disjunction.

Definition 39 (normalization). |·| : AUTOM → AUTOM denotes the function
defined by the following equation:

|(Q, (P all, P in, P out),M,−→, (q0, µ0))| =
(Q, (P all, P in, P out),M, |−→|, (q0, µ0))

where |−→| denotes the smallest relation induced by the following rule:

q
P,φ−−→ q′ and pnf(φ) = ∃x1.· · ·∃xl.χ and dnf(χ) = φ1 ∨ · · · ∨ φk

q | P,∃x1.···∃xl.φ1≤i≤k−−−−−−−−−−−−−→| q′
(6.1)

The following theorem states the correctness of Definition 39 of |·|: normal-
ization of a constraint automaton yields a behaviorally congruent constraint
automaton. (Consequently, because ' implies ≈ by Theorem 1, a normalized
constraint automaton accepts the same language as its original.)

Theorem 12. a ' |a|

The following theorem states the effectiveness of Definition 39: a normalized
constraint automaton indeed contains only normal data constraints.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 178

Theorem 13. Dc(|a|) ⊆ DC∃,∧

Syntactic Subtraction

I now proceed by defining syntactic substitution. I consider only (constraint
automata with) normal data constraints, without loss of generality (because I
can normalize every constraint automaton to a behaviorally congruent one).

First, I need to introduce the concept of determinants of free data variables
in normal data constraints. For a normal data constraint ϕ and one of its free
data variables x ∈ Free(ϕ), the set of determinants of x consists of those terms
that precisely determine the datum σ(x) assigned to x in any data assignment σ
that satisfies ϕ (i.e., σ |= ϕ). “Precisely” here means that a determinant neither
overspecifies nor underspecifies σ(x). Thus, if a set of determinants contains
multiple data terms, each of those data terms evaluates to the same datum
under σ. Determinants furthermore determine σ(x) independent of x itself: no
determinant of x has x among its free data variables (i.e., determinants have no
recursion). In the following definition, recall that a stands for a negated data
atom in Definition 15.

Definition 40 (determinants). Determ : X× DC∃,∧ → 2TERM denotes the func-
tion defined by the following equations:

Determx(>),Determx(⊥) = ∅
Determx(K(M)) = ∅

Determx(t1 = t2) =

{t2} if
[
t1 = x and x /∈ Variabl(t2)

]
{t1} if

[
t2 = x and x /∈ Variabl(t1)

]
∅ otherwise

Determx(R(t1, . . . , tk)) = ∅
Determx(¬a) = ∅
Determx(`1 ∧ · · · ∧ `k) = Determx(`1) ∪ · · · ∪ Determx(`k)

Determx(∃x′.ϕ′) =

{
Determx(ϕ) if x 6= x′

∅ otherwise

For instance, let φeg denote the data constraint defined by the following equa-
tion (which occurs in the constraint automaton for the instantiated family sig-
nature OddFibonacciPart(A,C;F,H) in Figure 3.27):

φeg = •x = B ∧ C = D ∧ add(B,D) = E ∧ E = F ∧ E = G ∧ ¬Odd(G)

Because DC∃,∧ contains φeg, I can directly apply Determ to compute the deter-
minants of its free variables:

Determ•x(φeg) = {B}
DetermB(φeg) = {•x}
DetermC(φeg) = {D}
DetermD(φeg) = {C}

DetermE(φeg) = {add(B,D),D,D}
DetermF(φeg) = {E}
DetermG(φeg) = {E}

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 179

Let |a| denote a normalized constraint automaton, and let ϕ denote one of
its normal data constraints. Suppose that I subtract x from |a| with �. By Def-
inition 30 of �, the transition(s) of |a| previously labeled by ϕ now carry ∃x.ϕ.
However, if x has determinants, instead of enveloping ϕ in an existential quan-
tification as � does, I can alternatively perform a syntactic substitution of one
of those determinants for x. I formalize such a substitution with the following
function.

Definition 41 (syntactic existential quantification). exists : X × DC∃,∧ →
DC∃,∧ denotes the function defined by the following equations:

existsx(ϕ) =

{
ϕ[t/x] if

[
Determx(ϕ) 6= ∅ and t = min(Determx(ϕ))

]
∃x.ϕ otherwise

In this definition, function min(·) takes the least element in Determx(φ), under
the global order on data constraints <DC, to ensure that exists always produces
the same output under the same input. The following equations exemplify the
(nested) application of exists on φeg as defined above for all internal ports.

existsG(existsE(existsD(existsB(φeg))))

= existsG(existsE(existsD(existsB(
•x = B ∧ C = D ∧ add(B,D) = E ∧ E = F ∧ E = G ∧ ¬Odd(G)))))

= existsG(existsE(existsD(
•x = •x ∧ C = D ∧ add(•x,D) = E ∧ E = F ∧ E = G ∧ ¬Odd(G))))

= existsG(existsE(
•x = •x ∧ C = C ∧ add(•x,C) = E ∧ E = F ∧ E = G ∧ ¬Odd(G)))

= existsG(
•x = •x ∧ C = C ∧ add(•x,C) = F ∧ F = F ∧ F = G ∧ ¬Odd(G))

= •x = •x ∧ C = C ∧ add(•x,C) = F ∧ F = F ∧ F = F ∧ ¬Odd(F)

I define syntactic subtraction in terms of exists.

Definition 42 (syntactic subtraction).
 : AUTOM× P→ AUTOM denotes the
function defined by the following equation:

(Q, (P all, P in, P out),M,−→, (q0, µ0))
 p =
(Q, (P all \ {p}, P in \ {p}, P out \ {p}),M,−→
, (q

0, µ0))

where −→
 denotes the smallest relation induced by the following rules:

q
P,φ−−→ q′ and φ ∈ DC∃,∧

q
P\{p},existsp(φ)−−−−−−−−−−→
 q′

(6.2)
q
P,φ−−→ q′ and φ /∈ DC∃,∧

q
P\{p},∃p.φ−−−−−−−→
 q′

(6.3)

In the previous definition, I use exists to remove ports from data constraints.
Although Definition 41 of exists also allows for removing data variables for
memory cells, I do not pursue such syntactic subtraction in this thesis.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 180

Before I can actually adopt the compilation approach in Figure 6.1 in prac-
tice, I must establish the correctness and effectiveness of syntactic subtraction.
I consider syntactic subtraction correct if it yields a behaviorally congruent—
hence, behaviorally equivalent by Theorem 1—constraint automaton to the
constraint automaton that semantic subtraction would have yielded. Before
formulating this property as a theorem, the following lemma first states the
equivalence of existential quantification and exists.

Lemma 16. ∃x.ϕ ≡ existsx(ϕ)

From Lemma 16, I conclude the following correctness theorem.

Theorem 14. a � p ' a
 p

Note that this theorem works not only for normalized constraint automata but
also for arbitrary ones. Normalization plays a role only in the sequel, where
I show that syntactic subtraction has its intended effect when applied to nor-
malized constraint automata.

I consider syntactic subtraction effective if, after syntactically subtracting a
port p from a normalized constraint automaton |a|, that port no longer occurs
in any of that automaton’s data constraints. Generally, however, such uncon-
ditional effectiveness does not hold true. After all, if |a| has a data constraint ϕ
in which p occurs, but p has no determinants in ϕ, syntactic subtraction has
nothing to replace p with. In that case, existsp(ϕ) = ∃p.(ϕ), and consequently,
syntactic subtraction does not have its intended effect. Fortunately, syntactic
subtraction does satisfy a weaker—but still useful—form of effectiveness. To
formulate this as a theorem, I first define a function that computes ever-deter-
mined ports. Under a set of excluded data terms T , I consider a port p ever-
determined in a constraint automaton a iff both p occurs in a and every data
constraint in a has a determinant for p outside T .

Definition 43 (ever-determined ports). Edp : 2TERM × AUTOM → 2P denotes
the function defined by the following equation:

EdpT (a) = {p |
[[p ∈ Variabl(φ)

and φ ∈ Dc(a)

]
implies Determp(φ) \ T 6= ∅

]
for all φ}

For instance, p1, p2, and p3 all qualify as ever-determined (under ∅) in members
of Merger2 in Figure 3.4. To understand the ever-determinedness of p1, observe
that p1 occurs in the data constraint on the top transition in Merger2 and that p1
has a determinant outside ∅ in that data constraint (namely p3); because p1
does not occur in the data constraint on the bottom transition in Merger2, p1
indeed qualifies as ever-determined. A similar explanation applies to p2. To
understand the ever-determinedness of p3, observe that p3 occurs in the data
constraint on both transitions in Merger2 and that p3 has a determinant out-
side ∅ in both these data constraints (namely p1 and p2). Consequently, also p3
qualifies as ever-determined. In contrast, p2 in members of Filter in Figure 3.4

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 181

does not qualify as ever-determined (under any set of excluded data terms),
because p2 occurs in the data constraint on the top transition in Filter but does
not have a single determinant in that data constraint.

The following theorem states the effectiveness of syntactic subtraction, con-
ditional on ever-determinedness: after syntactically subtracting an ever-deter-
mined port from a normalized constraint automaton, that port no long occurs
in any of that automaton’s data constraints.

Theorem 15.

p ∈ EdpT (|a|) implies p /∈ {x | φ ∈ Dc(|a|
 p) and x ∈ Variabl(φ)}

A FOCAML compiler can check ports for ever-determinedness before apply-
ing syntactic subtraction. To reduce the number of such checks, however, I also
present a conjecture about preservation of ever-determinedness by operations
on constraint automata. First, note that for syntactic subtraction of port p′ in
constraint automaton a to preserve the ever-determinedness of a port p, ev-
ery data constraint in a should have a non-p′ determinant for p. For instance,
in E = F, port E has port F as its determinant but not so in existsF(E = F) = E = E.
Thus, syntactic subtraction of F in a constraint automaton with a transition la-
beled by E = F does not preserve the ever-determinedness of E. In contrast,
syntactic subtraction of F in a constraint automaton with a transition labeled
by E = F ∧ E = G does preserve the ever-determinedness of E, because E has a
non-F determinant in that data constraint, namely G. The following conjecture
makes this precise.

Conjecture 1.

• p ∈ EdpT (|a1|) implies p ∈ EdpT (||a1|� |a2||)

• p ∈ EdpT (|a|) implies p ∈ EdpT (|a|� p′)

• p ∈ EdpT∪{p′}(|a|) implies p ∈ EdpT (|a|
 p′)

The first item of this conjecture states that multiplication preserves ever-deter-
minedness; its second and its third item state that also subtraction preserves
ever-determinedness under a suitable set T .

For now, I leave these preservation properties as a conjecture, because its
truth or falsehood does not matter much in practice: although its (dis)proof
would yield more insight in the theory of syntactic subtraction, practical con-
sequences remain insignificant. After all, this conjecture helps only in predicting
when syntactic subtraction may have its intended effect; it does not affect syn-
tactic subtraction’s correctness whatsoever. Still, if this conjecture indeed holds
true as I strongly suspect, a FOCAML compiler can reduce its number of checks
for ever-determinedness as explained next.

All instances of the primitives in Figure 3.4 have only ever-determined out-
put ports and only ever-determined internal ports (vacuously, because none of
these constraint automata has any internal ports). Regardless of whether these

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 182

primitives have ever-determined input ports—some of them do, others do
not—the ever-determinedness of their output and internal ports already suf-
fices for syntactic subtraction to have its intended effect whenever a FOCAML
compiler subtracts only internal ports (as it always does). To see this, recall
from Definition 29 of � that new internal ports arise only through multiplica-
tion. In particular, the set of internal ports in a product contains (i) the internal
ports in its multiplicands and (ii) those multiplicands’ shared ports, where ev-
ery shared port must serve as an output port in exactly one multiplicand. Now,
if two multiplicands indeed have only ever-determined output ports and only
ever-determined internal ports (as all instances of the primitives in Figure 3.4
do), this means two things. First, by Conjecture 1, the product has only ever-
determined internal ports, namely the multiplicands’ shared output ports and
their internal ports. Consequently, syntactic subtraction has its intended effect
on all these ports. Second, as the multiplicands, also the product has only ev-
er-determined output ports, namely the multiplicands’ unshared output ports.
Consequently, this reasoning can recur. Thus, if a FOCAML compiler has estab-
lished that all primitives in a core set—not necessarily the same core set as in
Figure 3.4—have only ever-determined output ports and only ever-determined
internal ports, it does not need to check those ports for ever-determinedness
again in any of those primitives’ products. Symmetrically, this also works for
input ports instead of output ports.

Incidentally, if I apply syntactic subtraction to the sequence of 64 Syncs as in
the beginning of this chapter, and after removing x = x literals (each of which
trivially equates to >), I get exactly the same data constraint as the one in the
single Sync. Using syntactic subtraction, thus, the sequence of 64 Sync has the
same performance as the single Sync, as shown in more detail in Section 6.2.

6.2 Practice

(I have not yet submitted the material in this section for publication.)

Compiler

I extended Lykos with the ability to apply syntactic subtraction as in Figure 6.1,
controllable through flag SUBTRACT_SYNTACTICALLY. When raised, Lykos first
checks whether all primitives in the core set have either only ever-determined
output ports or, symmetrically, only ever-determined input ports. If so, by
Conjecture 1, Lykos does not need to check ports in products for ever-deter-
minedness during the compilation process. Note that even if Conjecture 1 turns
out not to hold true, Lykos does not generate faulty code: in the worst case,
Lykos unsuccessfully tries to syntactically subtract p without first checking p
for ever-determinedness, but once such subtraction fails (in which case it can-
not find a determinant for p), Lykos simply defaults to semantic subtraction, as
in Definition 41. If this happens, compilation just takes a little longer. In con-
trast to Lykos’ internals, the run-time library requires no modifications. Also,

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 183

code generated with syntactic subtraction looks very similar to code generated
without syntactic subtraction, differing only in the size of data constraints (but
the constraint solver in the run-time library solves them in exactly the same
way).

Experiments I: Protocols

I repeated the same experiments as in Chapter 5 (and Chapter 4), generating
code for members of families SyncK, FifoK, Merger, Router, LateAsyncMerger,
EarlyAsyncMerger, OddFibonacci, and Chess with the SUBTRACT_SYNTACTICALLY-
flag raised, but otherwise under the same conditions as in Chapter 5 (except
for OddFibonacci, whose members I compiled under the Centralized Approach
to manually avoid overparallelization). Figure 6.2 shows the per-family exper-
imental results, averaged over five runs. The solid lines represent the actual
measurements; the dotted lines represent inverse-proportional growth with re-
spect to k = 1. The yellow lines represent the new results; the blue and red lines
represent the results from Chapters 4 and 5. I compare the new results for Odd-
Fibonacci with its results in Chapter 4 instead of those in Chapter 5 because of
the overparallelization issue discussed at the end of Chapter 5.

Figure 6.3 shows per-family speedup charts corresponding to the measure-
ments in Figure 6.2; the dotted lines represent equal performance. For all con-
straint automata with which I experimented, syntactic subtraction indeed im-
proves performance, to a lesser or to a greater extent. For members of SyncK,
with syntactic subtraction, performance becomes constant in k (i.e., the num-
ber of Syncs that constitute a SyncK), exactly as one would expect of a neutral
element for multiplication. Speedups grow linearly in k, up to 200% for k = 64.
For members of FifoK, speedup stays roughly constant in k, at about 3%. Per-
formance itself, in contrast, does not stay constant in k but degrades more or
less linearly (from k = 3 onward). As for members of SyncK, inverse-propor-
tional growth does not imply good scalability for members of FifoK: in prin-
ciple, the size of a buffer (controlled by k) should not affect the speed with
which data can pass through this buffer. Thus, for compiler-generated code
for members of Fifo to scale well, its performance should stay constant in k in-
stead of degrading linearly. In perhaps the simplest approach to achieve such
constant performance, a compiler recognizes sequences of k consecutive Fifos
in multiplication expressions and subsequently gives such sequences a special
treatment, effectively generating special optimized code for k-capacity buffers.
Although not a general method, sequences of Fifos occur frequently enough to
justify an optimization as this. Nevertheless, I do not pursue this optimization
in this thesis—it may constitute an interesting BSc project though.

For members of of LateAsyncMerger and EarlyAsyncMerger (to greater ex-
tent) and of Merger (to lesser extent), performance seems to approach constant
in k (i.e., the number of producers). Members of those families do not require
the producers to synchronize with each other nor with the consumer. Conse-
quently, in principle, the performance of compiler-generated code for mem-
bers of those families should not depend on the number of producers: a per-

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 184

SyncK FifoK

Merger Router

LateAsyncMerger EarlyAsyncMerger

OddFibonacci Chess

Figure 6.2: Performance (in number of completed rounds per four minutes) as
a function of the number of Syncs/Fifos/producers/consumers/chess engines,
denoted by k. See the legend in Figure 9.1.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 185

SyncK FifoK

Merger Router

LateAsyncMerger EarlyAsyncMerger

OddFibonacci Chess

Figure 6.3: Speedup (relative to compiler-generated code in Chapter 5) as a
function of the number of Syncs/Fifos/producers/consumers/chess engines,
denoted by k. See the legend in Figure 9.1.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 186

fect compiler generates code with performance constant in k. As Sync and
Fifo, thus, Merger, LateAsyncMerger, and EarlyAsyncMerger exemplify that in-
verse-proportionality forms a necessary condition for good scalability but not
necessarily a sufficient one. In practice, however, the number of producers
does influence the performance of code generated for members of Merger, Late-
AsyncMerger, and EarlyAsyncMerger, because those producers contend for the
same “resource”—the consumer. Therefore, near-constant growth in k seems
fair enough. My extension of Lykos with syntactic subtraction makes a signifi-
cant step in achieving that goal, providing speedup of up to 125% for members
of Merger, 67% for members of LateAsyncMerger and up to 228% for members
of EarlyAsyncMerger. The improvements that I introduce in Chapters 7 and 8
push scalability even further toward a flat line.

In principle, a similar analysis as for members of Merger, LateAsyncMerger,
and EarlyAsyncMerger applies to members of Router. However, Routers achieve
truly spectacular speedup, of up to 2464%. This shows that without syntac-
tic subtraction, Routers have complex data constraints, with many free data
variables, whose constraint solving requires a very substantial amount of com-
putational resources. Moreover, with syntactic subtraction, code generated for
Mergers and Routers has similar performance (i.e., compare the yellow lines for
Merger and Router in Figure 6.2), whereas without syntactic subtraction, code
generated for Mergers outperforms code generated for Routers (i.e., compare
the blue lines for Merger and Router in Figure 6.2). As Routers form just the
inverse—in terms of port directions—of Mergers as explained in Chapter 3, it
makes sense for code generated for Routers to have similar performance as
code generated for Mergers. Their previously measured differences in perfor-
mance therefore actually indicated a significant deficiency of Lykos (similar to
its previous inability to properly handle the neutrality of Syncs). Syntactic sub-
traction solves this problem, providing similar performance for code generated
for Mergers and Routers, as one may expect.

In contrast to members of Merger, Router, LateAsyncMerger, and EarlyAsync-
Merger, members of OddFibonacci and Chess require workers to globally syn-
chronize with everybody (instead of pairwise synchronous or asynchronous
interaction). For those families, thus, one may reasonably expect the number
of workers to affect performance, as long as performance does not degrade be-
low inverse-proportionality. Although not clearly visible in Figure 6.2 (because
of the scale on the y-axis), Figure 6.3 shows that syntactic subtraction leads to
significant speedup also for members of OddFibonacci and Chess.

Experiments II: Programs

I repeated the same experiments as in Chapter 5 (and Chapter 4), generating
code for the NPB benchmarks with the SUBTRACT_SYNTACTICALLY-flag raised,
but otherwise under the same conditions as in Chapter 5. Using syntactic sub-
traction, in contrast to semantic subtraction as used in Chapter 5, Lykos suc-
ceeded in generating code for all values of k for all NPB benchmarks.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 187

NPB-FT, class W (performance) NPB-FT, class W (speedups)

NPB-FT, class A (performance) NPB-FT, class A (speedups)

NPB-FT, class B (performance) NPB-FT, class B (speedups)

NPB-FT, class C (performance) NPB-FT, class C (speedups)

Figure 6.4: Left, performance (in seconds of run-time) as a function of the num-
ber of slaves, denoted by k. Right, speedup as a function of k. See the legend
in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 188

NPB-FT, class W (L1-dcache misses) NPB-FT, class W (dTLB misses)

NPB-FT, class A (L1-dcache misses) NPB-FT, class A (dTLB misses)

NPB-FT, class B (L1-dcache misses) NPB-FT, class B (dTLB misses)

NPB-FT, class C (L1-dcache misses) NPB-FT, class C (dTLB misses)

Figure 6.5: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 189

NPB-MG, class W (performance) NPB-MG, class W (speedups)

NPB-MG, class A (performance) NPB-MG, class A (speedups)

NPB-MG, class B (performance) NPB-MG, class B (speedups)

NPB-MG, class C (performance) NPB-MG, class C (speedups)

Figure 6.6: Left, performance (in seconds of run-time) as a function of the num-
ber of slaves, denoted by k. Right, speedup as a function of k. See the legend
in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 190

NPB-MG, class W (L1-dcache misses) NPB-MG, class W (dTLB misses)

NPB-MG, class A (L1-dcache misses) NPB-MG, class A (dTLB misses)

NPB-MG, class B (L1-dcache misses) NPB-MG, class B (dTLB misses)

NPB-MG, class C (L1-dcache misses) NPB-MG, class C (dTLB misses)

Figure 6.7: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 191

NPB-CG, class W (performance) NPB-CG, class W (speedups)

NPB-CG, class A (performance) NPB-CG, class A (speedups)

NPB-CG, class B (performance) NPB-CG, class B (speedups)

NPB-CG, class C (performance) NPB-CG, class C (speedups)

Figure 6.8: Left, performance (in seconds of run-time) as a function of the num-
ber of slaves, denoted by k. Right, speedup as a function of k. See the legend
in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 192

NPB-CG, class W (L1-dcache misses) NPB-CG, class W (dTLB misses)

NPB-CG, class A (L1-dcache misses) NPB-CG, class A (dTLB misses)

NPB-CG, class B (L1-dcache misses) NPB-CG, class B (dTLB misses)

NPB-CG, class C (L1-dcache misses) NPB-CG, class C (dTLB misses)

Figure 6.9: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 193

NPB-IS, class W (performance) NPB-IS, class W (speedups)

NPB-IS, class A (performance) NPB-IS, class A (speedups)

NPB-IS, class B (performance) NPB-IS, class B (speedups)

NPB-IS, class C (performance) NPB-IS, class C (speedups)

Figure 6.10: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 194

NPB-IS, class W (L1-dcache misses) NPB-IS, class W (dTLB misses)

NPB-IS, class A (L1-dcache misses) NPB-IS, class A (dTLB misses)

NPB-IS, class B (L1-dcache misses) NPB-IS, class B (dTLB misses)

NPB-IS, class C (L1-dcache misses) NPB-IS, class C (dTLB misses)

Figure 6.11: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 195

Figures 6.4–6.11 show performance charts for the FOCAML-to-Java-com-
piled versions of the NPB kernel benchmarks (averaged over five runs), speed-
up charts (with respect to their Java versions by Frumkin et al.), and charts
about cache misses. The dotted yellow/red lines represent the MasterSlavesIn-
teractionPatternA-based FOCAML-to-Java-compiled versions of the NPB kernel
benchmarks with and without syntactic subtraction (i.e., the yellow lines rep-
resent the new results, while the red lines represent the results in Chapter 5);
the solid yellow/red lines represent the MasterSlavesInteractionPatternB-based
FOCAML-to-Java-compiled versions; the dotted black lines represent the Java
versions by Frumkin et al.

I make the following main observations about these experimental results:

• Overall, the MasterSlavesInteractionPatternB-based FOCAML-to-Java-com-
piled versions of the NPB kernel benchmarks outperform their Master-
SlavesInteractionPatternA-based FOCAML-to-Java-compiled versions (sol-
id lines versus dotted lines), as in Chapter 5. Furthermore, overall, the
FOCAML-to-Java-compiled versions with syntactic subtraction perform
at least as well as the FOCAML-to-Java-compiled versions without syn-
tactic subtraction (yellow lines versus red lines), and often better.

• Although the Java versions of the NPB kernel benchmarks by Frumkin
et al. still slightly outperform many of their FOCAML-to-Java-compiled
versions, the margin has decreased substantially (compared to the results
in Chapter 5): syntactic subtraction really makes an impact in these NPB
kernel benchmarks.

• The same point about cache misses made in Chapter 5 applies here too:
numbers of cache misses seem a fair indicator of performance.

• The same point about increasing problem sizes made in Chapter 5 applies
here too: as the problem size increases, the speedup generally improves.

• As in Chapter 5, differences in numbers of cache misses explain why the
FOCAML-to-Java-compiled versions of NPB-IS without syntactic subtrac-
tion outperform their supposedly improved FOCAML-to-Java-compiled
versions with syntactic subtraction in class A, k = 64, class B, k ∈ {32, 64},
and class C, k = 64.

Figures 6.12–6.17 show performance charts for the FOCAML-to-Java-com-
piled versions of the NPB application benchmarks (averaged over five runs),
speedup charts (with respect to their Java versions by Frumkin et al.), and
charts about cache misses. The lines have the same meaning as in the figures
with experimental results for the NPB kernel benchmarks. Recall from Fig-
ure 5.12 that NPB-BT and NPB-LU do not support more than 22 and 31 slaves
in class W, for which reason I have no measurements beyond k = 16 in class
W for those benchmarks. In the same figure, note that NPB-BT, NPB-SP, and
NPB-LU support at most 62 workers in class A. For that reason, I compiled

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 196

NPB-BT, class W (performance) NPB-BT, class W (speedups)

NPB-BT, class A (performance) NPB-BT, class A (speedups)

Figure 6.12: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-BT, class W (L1-dcache misses) NPB-BT, class W (dTLB misses)

NPB-BT, class A (L1-dcache misses) NPB-BT, class A (dTLB misses)

Figure 6.13: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 197

NPB-SP, class W (performance) NPB-SP, class W (speedups)

NPB-SP, class A (performance) NPB-SP, class A (speedups)

Figure 6.14: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-SP, class W (L1-dcache misses) NPB-SP, class W (dTLB misses)

NPB-SP, class A (L1-dcache misses) NPB-SP, class A (dTLB misses)

Figure 6.15: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 198

NPB-LU, class W (performance) NPB-LU, class W (speedups)

NPB-LU, class A (performance) NPB-LU, class A (speedups)

Figure 6.16: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-LU, class W (L1-dcache misses) NPB-LU, class W (dTLB misses)

NPB-LU, class A (L1-dcache misses) NPB-LU, class A (dTLB misses)

Figure 6.17: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 6. IMPROVEMENT II: SYNTACTIC SUBTRACTION 199

the FOCAML versions of those benchmarks for k = 62 instead of k = 64. Es-
sentially, the same observations apply here as for the previous experimental
results of the NPB kernel benchmarks.

Chapter 7

Improved Compilation III:
Commandification

The experimental results in Chapter 6 show that syntactic subtraction already
significantly improves performance. In this chapter, I present a complementary
technique to further improve the data constraint checks involved in determin-
ing whether a transition can fire and, in particular, the expensive constraint
solver calls made during such checks. Essentially, this new technique com-
prises the generation of a little, dedicated constraint solver for every data con-
straint at compile-time. At run-time, then, instead of calling a general-purpose
constraint solver to check a data constraint, a protocol unit calls the more effi-
cient constraint solver generated specifically for that data constraint.

In Section 7.1, I first introduce a basic sequential language in which to for-
malize these dedicated constraint solvers, called data commands. Subsequently,
I present a translation of data constraints into data commands. Finally, I for-
mally show that I can replace data constraints with their corresponding data
commands in transition labels of constraint automata. In Section 7.2, I present
an improved version of Lykos using the translation of data constraints into
data commands, including new experimental results on performance.

Although the improvement presented in this chapter eventually results in
improved compiler-generated code, as in Chapters 5 and 6, I define this im-
provement at the higher level of constraint automata instead of at the lower
level of GPL code. Not only does this facilitate more elegant formal reason-
ing about correctness (compared to reasoning directly about GPL code), but it
also eases the automatic application of this improvement by a FOCAML com-
piler. Moreover, it makes this improvement independent of GPLs—Java in this
thesis—so that the same optimization automatically applies to, for instance,
generated C code.

201

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 203

instantiated family signature

a1, . . . ,an>0

B1, . . . , B1≤m≤n

b1, . . . , bm

b1 (.) · · · (.) bm

c1, . . . , cm

c1 (.) · · · (.) cm

d1, . . . ,dm

d1 (.) · · · (.) dm

interpret

partition

�,�

generateCodehybr

�,

generateCodehybr

L·M

generateCodehybr

Figure 7.1: Hybrid compilation approach with syntactic subtraction and com-
mandification

7.1 Theory

(With Arbab, I previously published fragments of the material in this section in a con-
ference paper [JA15b].)

Data Commands

At run-time, general-purpose techniques for constraint solving—an NP-com-
plete problem for finite domains—inflict not only overhead proportional to the
size of a data constraint but also a constant overhead for preparing, making,
and processing the result of the constraint solver call. Although one generally
cannot escape using such techniques for checking arbitrary data constraints, a
better alternative exists for many data constraints in practice. It starts with the
observation that the data constraints in all constraint automata that I know of in
the literature really constitute declarative specifications of a relatively straight-
forward imperative program. In this section, I therefore develop a technique
for statically translating such a data constraint φ, off-line at compile-time, into
a data command: a little imperative program that computes a data assignment σ

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 204

such that σ |= φ, without general-purpose constraint solving. I call this kind of
translation commandification. Essentially, I formalize and automate what pro-
grammers do when they write an imperative implementation of a declarative
specification expressed as a data constraint. Figure 7.1 shows the resulting
compilation approach, where L·M denotes commandification. By the end of this
section, I make the class of data constraints currently supported by comman-
dification precise.

I start by defining data commands, their semantics, and a proof system for
reasoning about their execution.

Definition 44 (data commands). A data command is an object generated by the
following grammar:

π ::= skip | x := t | φ -> π | π ; π | ε (data commands)

COMM denotes the set of all data commands.

In the previous definition, ε denotes the empty data command, x := t denotes
an assignment, and φ -> π denotes a failure statement. Henceforth, I often write
“value of x” instead of “the datum assigned to x”.

I define an operational semantics for data commands based on an opera-
tional semantics for a sequential language by Apt et al. [AdBO09]. True to the
idea that data commands solve data constraints, I model the data state that a
data command executes in with either a function from data variables to data—
a data assignment—or the distinguished object fail, which models abnormal
termination. A data configuration, then, consists of a data command and a data
state to execute that data command in.

Definition 45 (abnormal termination). fail is an unstructured object such
that fail /∈ ASSIGNM.

Definition 46 (data configurations). A data configuration is a pair (π, ς) where:

• π ∈ COMM (data command)

• ς ∈ ASSIGNM ∪ {fail} (data state)

CONF denotes the set of all data configurations.

A transition system on configurations formalizes their evolution in time.

Definition 47 (transition system on data configurations). =⇒ ⊆ CONF ×
CONF denotes the smallest relation induced by the rules in Figure 7.2.

Note that φ -> π indeed denotes a failure statement rather than a conditional
statement: if the current data state violates the guard φ, execution abnormally
terminates.

Through the transition system in Definition 47, I associate two different
semantics with data commands. The partial correctness semantics of a data com-
mand π under a set of initial data state Σ consists of all the final data states Σ′ to

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 205

(skip, σ) =⇒ (ε, σ)
(7.1)

(x := t, σ) =⇒ (ε, σ[x 7→ evalσ(t)])
(7.2)

σ |= φ

(φ -> π, σ) =⇒ (π, σ)
(7.3)

σ 6|= φ

(φ -> π, σ) =⇒ (ε, fail)
(7.4)

(π, σ) =⇒ (π′, σ′) and π′ 6= ε

(π ; π′′, σ) =⇒ (π′ ; π′′, σ′)
(7.5)

(π, σ) =⇒ (ε, σ′)
(π ; π′′, σ) =⇒ (π′′, σ′)

(7.6)

Figure 7.2: Addendum to Definition 47

which any of those initial states may evolve through execution of π. Notably,
this partial correctness semantics ignores abnormal termination. In contrast,
the total correctness semantics of π under Σ consists not only of Σ′ but, if at least
one execution abnormally terminates, also of fail.

Definition 48 (correctness semantics of data commands). Final,Finalfail :
COMM × 2ASSIGNM → 2ASSIGNM∪{fail} denote the functions defined by the follow-
ing equations:

Final(π,Σ) = {σ′ | σ ∈ Σ and (π, σ) =⇒∗ (ε, σ′)}
Finalfail(π,Σ) = Final(π,Σ) ∪ {fail | σ ∈ Σ and (π, σ) =⇒∗ (π′, fail)}

Apt et al. showed that all programs from a superset of the set of all data
commands execute deterministically [AdBO09]. Consequently, also data com-
mands execute deterministically.

Lemma 17 ([AdBO09]). |Final(π, {σ})| ≤ 1 and |Finalfail(π, {σ})| = 1

To prove the correctness of commandification, I use Hoare logic [Hoa69],
where triples {φ} π {φ′} play a central role. In such a triple, precondition φ char-
acterizes the set of initial data states, π denotes the data command to execute on
those states, and postcondition φ′ characterizes the set of final data states after
executing π.

Definition 49 (triples). TRIPL = DC×COMM×DC denotes the set of all triples,
typically denoted by {φ} π {φ′}.

Let JφK denote the set of data states that satisfy φ (i.e., the data assignments
characterized by φ). I interpret triples in two senses: that of partial correctness
and that of total correctness. In the former case, a triple {φ} π {φ′} holds true
iff every final data state to which an initial data state characterized by φ can

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 206

`part {φ} skip {φ}
(7.9) `tot {φ} skip {φ}

(7.10)

`part {φ[t/x]} x := t {φ} (7.11) `tot {φ[t/x]} x := t {φ} (7.12)

`part {φ1} π1 {φ}
and `part {φ} π2 {φ2}
`part {φ1} π1 ; π2 {φ2}

(7.13)

`tot {φ1} π1 {φ}
and `tot {φ} π2 {φ2}
`tot {φ1} π1 ; π2 {φ2}

(7.14)

`part {φ′1} π {φ′2}
and φ1 ⇒ φ′1
and φ′2 ⇒ φ2

`part {φ1} π {φ2}
(7.15)

`tot {φ′1} π {φ′2}
and φ1 ⇒ φ′1
and φ′2 ⇒ φ2

`tot {φ1} π {φ2}
(7.16)

`part {φ ∧ `} π {φ′}
`part {φ} ` -> P {φ′}

(7.17)

`tot {φ} π {φ′}
and φ⇒ `

`tot {φ} ` -> π {φ′}
(7.18)

`part {φ} π {φ1} and `tot {φ} π {φ2}
`tot {φ} π {φ1 ∧ φ2}

(7.19)

Figure 7.3: Addendum to Definition 51

evolve under π satisfies φ′; in the latter case, additionally, execution of π does
not abnormally terminate.

Definition 50 (interpretation of triples). |=part, |=tot ⊆ TRIPL denote the small-
est relations induced by the following rules:

Final(π, JφK) ⊆ Jφ′K
|=part {φ} π {φ′}

(7.7)
Finalfail(π, JφK) ⊆ Jφ′K
|=tot {φ} π {φ′}

(7.8)

To prove properties of data commands, I use the following sound proof sys-
tems for partial and total correctness, adopted from Apt et al. with some minor
cosmetic changes [AdBO09].

Definition 51 (proof systems of triples). `part ,`tot ⊆ TRIPL denote the small-
est relations induced by the rules in Figure 7.3.

Theorem 16 ([AdBO09]). `part {φ} π {φ′} implies |=part {φ} π {φ′}

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 207

Theorem 17 ([AdBO09]). `tot {φ} π {φ′} implies |=tot {φ} π {φ′}

Note that the first four rules for `part and the first four rules for `tot have the
same premise/consequence. I use `part to prove the soundness of commandifi-
cation; I use `tot to prove commandification’s completeness.

Commandification

At run-time, to check if a transition (q, P, φ, q′) can fire, a protocol unit first
checks every port in P for that port’s readiness. For instance, every input port
should have a pending put (where “input” qualifies that port from the proto-
col perspective). Subsequently, the protocol unit checks whether a data state σ
exists that (i) satisfies φ and (ii) subsumes an initial data state σinit (i.e., σinit ⊆ σ).
If so, I call σ a solution of φ under σinit. The domain of σinit contains all un-
controllable data variables in φ: the input ports in P (intersected with Free(φ))
and •m for every memory cell m in the constraint automaton (also intersected
with Free(φ)). More precisely, σinit maps every input port p in Free(φ) to the
particular datum forced to pass through p by the unit of parallelism on p’s other
side (e.g., the datum involved in p’s pending put, performed by a neighbor-
ing worker unit), while σinit maps every •m in Free(φ) to the datum that cur-
rently resides in m. Thus, before the protocol unit invokes a constraint solver
for φ, it already fixes values for all uncontrollable data variables in φ; when
subsequently invoked, a constraint solver may, in search of a solution for φ un-
der σinit, select values only for data variables outside σinit’s domain. Slightly
more formally:

σinit =

{
p 7→ d

[
the put pending on input port p involves datum d

]
and p ∈ Free(φ)

}
∪
{
•m 7→ d

[
memory cell m currently contains datum d

]
and •m ∈ Free(φ)

}
With commandification, instead of invoking a constraint solver, the protocol
unit executes a compiler-generated data command for φ on σinit, thereby grad-
ually extending σinit to a full solution. This compiler-generated data command
essentially works as an efficient, little, dedicated constraint solver for φ.

To commandify a data constraint of the form `1 ∧ · · · ∧ `k, I construct a data
command that (i) enforces as many data literals of the form t1 = t2 as pos-
sible with assignments and (ii) checks all remaining data literals with failure
statements. I call data literals of the form t1 = t2 data equalities. To exemplify
such commandification, recall data constraint φeg on page 178. In this data con-
straint, let C denote an input port and let x denote a memory cell. In that case,
the set of uncontrollable data variables in φeg consists of C and •x. Now, φeg

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 208

has six correct commandifications:

π1 = B := •x ;
D := C ;
E := add(B,D) ;
F := E ;
G := E
¬Odd(G) -> skip ;

π2 = B := •x ;
D := C ;
E := add(B,D) ;
G := E
F := E ;
¬Odd(G) -> skip ;

π3 = B := •x ;
D := C ;
E := add(B,D) ;
G := E
¬Odd(G) -> skip ;
F := E ;

π4 = D := C ;
B := •x ;
E := add(B,D) ;
F := E ;
G := E
¬Odd(G) -> skip ;

π5 = D := C ;
B := •x ;
E := add(B,D) ;
G := E
F := E ;
¬Odd(G) -> skip ;

π6 = D := C ;
B := •x ;
E := add(B,D) ;
G := E
¬Odd(G) -> skip ;
F := E ;

I stipulate the same precondition for each of these data commands, namely
that •x and C have a non-nil value (later formalized as data literals •x = •x
and C = C). This precondition models that the execution of these data com-
mands should always start on an initial data state over the uncontrollable data
variables •x and C. Under this precondition, if a protocol unit executes π1, it
first assigns the values of •x and C to B and D. Subsequently, it assigns the
evaluation of add(B,D) to E. Next, it assigns the value of E to F and G. Fi-
nally, it checks ¬Odd(G) with a failure statement. Data commands π2 and π3
differ from data command π1 only in the order of the last three steps; data
commands π4, π5 and π6 differ from π1, π2 and π3 only in the order of the first
two steps. If execution of πi on σinit successfully terminates, the resulting fi-
nal data state σ satisfies φeg. I call this soundness. Moreover, if a σ′ exists such
that σ′ |= φeg and σinit ⊆ σ′, execution of πi successfully terminates. I call this
completeness.

Generally, soundness and completeness crucially depend on the order in
which assignments and failure statements follow each other in π. For instance,
changing the order of G := E and ¬Odd(G) -> skip in the previous example
yields a data command whose execution always fails (because G does not have
a value yet on evaluating the guard of the failure statement). Such a trivially
sound but incomplete data constraint serves no use. As another complication,
not every data equality can become an assignment. In a first class of cases,
neither the left-hand side nor the right-hand side of a data equality matches
data variable x. For instance, I must translate add(B,D) = mult(B,D) into a fail-
ure statement, because I clearly cannot assign either of its two operands to the
other. In a second class of cases, multiple data equalities in a data constraint
have a left-hand side or a right-hand side that matches the same data vari-
able x. For instance, I can translate only one data equality in E = add(B,D)∧E =
mult(B,D) into an assignment, after which I must translate the other one into a
failure statement, to avoid conflicting assignments to E.

To deal with these complications, I define a precedence relation on the data
literals in a normal data constraint that formalizes their dependencies. Re-

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 209

x = t, ` ∈ Liter=(ϕ) and x ∈ Variabl(`)

x = t v ` (7.20)

x = t, ` ∈ Liter=(ϕ) and
[
` 6= x′ = t′ for all x′, t′

]
x = t v ` (7.21)

`1 v `2 and `2 v `3 and `2 /∈ {`1, `3}
`1 v `3

(7.22)

Figure 7.4: Addendum to Definition 53

call from Definition 38 that every normal data constraint consists of a conjunc-
tive kernel of data literals, enveloped with existential quantifications. First, for
technical convenience, I introduce a function that extends Liter(ϕ) (i.e., the data
literals in the kernel of ϕ) with its “symmetric data equalities”.

Definition 52 (=-symmetric closure). Liter= : DC∃,∧ → 2DC∃,∧ denotes the
function defined by the following equation:

Liter=(ϕ) = Liter(ϕ) ∪ {t2 = t1 | t1 = t2 ∈ Liter(ϕ)}

Obviously, because t1 = t2 ≡ t2 = t1, I have
∧

Liter(ϕ) ≡ ∧ Liter=(ϕ) for all ϕ.

Definition 53 (precedence I). v : DC∃,∧ → 2DC×DC denotes the function de-
fined by the following equation:

v(ϕ) = v

where v denotes the smallest relation induced by the rules in Figure 7.4.

I usually writevϕ instead ofv(ϕ) and usevϕ as an infix relation. In words, x =
t vϕ ` means that the assignment x := t precedes the commandification of `
(i.e., ` depends on x). Rule 7.20 deals with the previously discussed first class
of data-equalities-that-cannot-become-assignments, by imposing precedence
only on data literals of the form x = t; shortly, I comment on the second class of
data-equalities-that-cannot-become-assignments. Rule 7.21 conveniently en-
sures that every x = t precedes all differently shaped data literals. Strictly
speaking, I probably do not need this rule, but it simplifies some notation and
proofs later on.

For the sake of argument—generally, this does not hold true—suppose that
a precedence relation vϕ denotes a strict partial order on Liter=(ϕ). In that case,
I can linearize vϕ to a strict total order < (i.e., embedding vϕ into < such
that vϕ ⊆ <) with a topological sort on the digraph (Liter=(ϕ),vϕ) [Kah62,
Knu97]. Intuitively, such a linearization gives me an order in which I can trans-
late data literals in Liter=(ϕ) to data commands in a sound and complete way.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 210

• x =
B

C = D
add(B,D) = E

E = F

E
=

G

B
= •

x

D = C E = add(B,D)

F = E

G
=

E
¬O

dd
(G

)
Figure 7.5: Digraph for precedence relation vφeg (without loop arcs and with-
out arcs induced by Rule 7.21, to avoid further clutter). An arc (`, `′) corre-
sponds to ` vφeg `

′. Arcs between the same data vertices, but in different di-
rections, lie on top of each other. Bold arcs represent a fragment of the strict
partial order extracted from vφeg .

Shortly, I give an algorithm for doing so and indeed prove its correctness. Prob-
lematically, however,vϕ generally does not denote a strict partial order: gener-
ally, it violates asymmetry and irreflexivity (i.e., graph-theoretically, it contains
many cycles). For instance, Figure 7.5 shows the digraph (Liter=(φeg),vφeg),
which indeed contains cycles. For now, I defer this issue to the next subsection,
because it forms a concern orthogonal to the commandification algorithm and
its correctness. Until then, I simply assume the existence of a procedure for
extracting a strict partial order fromvϕ, represented by bold arcs in Figure 7.5.

Algorithm 2 translates a normal data constraint ϕ, a set of variables X , and
a binary relation on data literals < to a data command π. It requires the follow-
ing on its input. First, < should denote a strict total order on the =-symmetric
closure of ϕ’s data literals. Let n denote a—not necessarily the—number of
data equalities in Liter=(ϕ), and let m denote the number of remaining data lit-
erals in Liter=(ϕ). Then, `1, . . . , `n+m denote the data literals in Liter=(ϕ) such
that (i) their indices respect < and (ii) every `i denotes xi = ti for 1 ≤ i ≤ n.
Next, for every data variable in a data literal in Liter=(ϕ), but outside the set

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 211

Algorithm 2 Algorithm for translating a normal data constraint ϕ, a set of vari-
ables X , and a binary relation on data literals < to a data command π

Require: < denotes a strict total order on Liter=(ϕ)
and Liter=(ϕ) = {`1, . . . , `n+m}
and `1 < · · · < `n < `n+1 < · · · < `n+m
and `1 = x1 = t1 and · · · and `n = xn = tn
and Variabl(ϕ) \X ⊆ {x1, . . . , xn}

and


[[
x = t ∈ Liter=(ϕ) and x′ ∈ Variabl(t)

]
implies[

x′ ∈ X or
[
x′ = t′ < x = t for some t′

]]]
for all x, x′, t


function ALGORITHM2(ϕ,X,<)

π := skip
i := 1
while i ≤ n do

if xi ∈ X ∪ {x1, . . . , xi−1} then
π := (π ; xi = ti -> skip)

else
π := (π ; xi := ti)

i := i+ 1

while i ≤ n+m do
π := (π ; `i -> skip)
i := i+ 1

return π

Ensure: `part {
∧{x = x | x ∈ X}} π {`1 ∧ · · · ∧ `n+m}

and
[

σ |= `1 ∧ · · · ∧ `n+m implies

`tot {
∧{x = σ(x) | x ∈ X}}
π
{∧{x = σ(x) | x ∈ X ∪ {x1, . . . , xn}}}

 for all σ
]

of uncontrollable variables X , a data equality xi = ti should exist. Otherwise,
such a data variable can get a value only through search—exactly what com-
mandification tries to avoid—and not through assignment; underspecified data
constraints fundamentally lie outside the scope of commandification in general
and Algorithm 2 in particular. Finally, if term t in a data equality x = t depends
on a variable x′, a data equality x′ = t′ should precede x = t under <. The
rules in Definition 53 induce precedence relations for which all these require-
ments hold true, except that those precedence relations not necessarily denote
strict partial orders and, hence, may not admit linearization. Consequently,
the precedence relations in Definition 53 may not yield strict total orders as
required by Algorithm 2. I address this issue in the next subsection.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 212

Assuming satisfaction of its requirements, Algorithm 2 works as follows. It
first loops over the first n (according to <) xi = ti data literals. If an assignment
for xi already exists in the data command under construction π, Algorithm 2
translates xi = ti to a failure statement; otherwise, it translates xi = ti to an as-
signment. This approach resolves issues with the previously discussed second
class of equalities-that-cannot-become-assignments. After the first loop, the al-
gorithm uses a second loop to translate the remaining m data literals to failure
statements. The algorithm runs in time linear in n+m, and it terminates.

Algorithm 2 ensures the soundness and completeness of π. Note that I use
a different proof system for soundness (partial correctness, `part) than for com-
pleteness (total correctness, `tot).

Theorem 18. Algorithm 2 is correct.

Algorithm 2 has the minor issue that it may produce more failure state-
ments than strictly necessary. For instance, if I run Algorithm 2 on the total
order extracted from vφeg in Figure 7.5, I get both the assignment D := C and
the unnecessary failure statement C = D -> skip. After all, the digraph con-
tains both D = C and C = D, one of which I added while computing Liter=(φeg)
to account for the symmetry of =. Generally, such symmetric data literals result
either in one assignment and one failure statement or in two failure statements;
one can easily prove that symmetric data literals never result in two assign-
ments. In both cases, one can safely remove one of the failure statements, be-
cause successful termination of the remaining statement already accounts for
the removed failure statement.

Commandification with Cycles

Algorithm 2 requires that < denotes a strict total order. Precedence relations
in Definition 53 of v, however, do not yield such orders: graph-theoretically,
they may contain cycles. In this subsection, I present a solution for this prob-
lem. I start by extending the previous precedence relations with a unique least
element, denoted by F, and by making dependencies of data literals on un-
controllable variables explicit. In the following definition, let X denote such a
set of uncontrollable variables.

Definition 54 (precedence II). v : DC∃,∧ × 2X → 2(DC∪{F})×DC denotes the
function defined by the following equation:

v(ϕ,X) = v

where v denotes the smallest relation induced by the rules in Figure 7.6.

I usually write vXϕ instead of v(ϕ,X) and use vXϕ as an infix relation. The two
new rules state that data literals in which only uncontrollable variables occur
“depend” onF.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 213

`1 vφ `2
`1 v `2

(7.23)

` ∈ Liter=(ϕ)
and Variabl(`) ⊆ X

F v ` (7.24)

x = t ∈ Liter=

and Variabl(t) ⊆ X
F v x = t

(7.25)

Figure 7.6: Addendum to Definition 54

A precedence relation vXϕ denotes a strict partial order if its corresponding
digraph (Liter=(ϕ) ∪ {F},vXϕ) defines a F-arborescence: a digraph consisting
of n − 1 arcs such that a path exists from F to each of its n vertices [KV08].
Equivalently, in aF-arborescence,F has no incoming arcs, every other vertex
has exactly one incoming arc, and the arcs form no cycles [KV08]. The first for-
mulation seems more intuitive here: every path from F to some data literal `
represents an order in which Algorithm 2 should translate the data literals on
that path to ensure the correctness of the translation of `. The second formula-
tion simplifies observing that arborescences correspond to strict partial orders.

A naive approach to extract a strict partial order from vXϕ consists of com-
puting a F-arborescence of the digraph (Liter=(ϕ) ∪ {F},vXϕ). Even if such
a F-arborescence exists, however, this approach does not work as expected
if Liter=(ϕ) contains a data literal x = twhere t has more than one data variable.
For instance, by definition, every arborescence of the digraph in Figure 7.5 has
only one incoming arc for E = add(B,D), even though assignments to both B
and D must precede an assignment to E. Because these dependencies exist as
two separate arcs, no arborescence can capture them. To solve this, I should
somehow represent the dependencies of E = add(B,D) with a single incom-
ing arc. I can do so by allowing arcs to have multiple tails (i.e., one for ev-
ery data variable). In that case, I can replace the two separate incoming arcs
of E = add(B,D) with a single two-tailed incoming arc as in Figure 7.7. The two
tails make explicit that to evaluate add, I need values for both its arguments:
multiple tails represent a conjunction of dependencies of a data literal.

By combining single-tailed arcs into multiple-tailed arcs, I effectively trans-
form the digraphs considered so far into B-graphs, a special kind of hyper-
graph with only B-arcs (i.e., backward hyperarcs, i.e., hyperarcs with exactly
one head) [GLPN93]. Generally, I cannot derive such B-graphs from prece-
dence relations as in Definition 54: their richer structure makes B-graphs more
expressive—they convey strictly more information—than digraphs. In con-
trast, I can easily transform a B-graph into a precedence relation by splitting
B-arcs into single-tailed arcs in the obvious way. Deriving precedence relations
from more expressive B-graphs therefore constitutes a correct way of obtaining
strict total orders that satisfy the requirements of Algorithm 2; doing so just

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 214

F

• x
=

• x

• x =
B

C = D
add(B,D) = E

E = F

E
=

G

C
=

C

B
= •

x

D = C E = add(B,D)

F = E

G
=

E
¬O

dd
(G

)

Figure 7.7: B-graph corresponding to the digraph in Figure 7.5 (without loop
B-arcs and without three-tailed B-arcs, to avoid further clutter). An arc (`, `′)
corresponds to ` vφeg `

′. Bold arcs represent an arborescence.

eliminates information that this algorithm does not care about.
Thus, I propose the following. Instead of formalizing dependencies among

data literals in a set Liter=(ϕ)∪ {F} directly as a precedence relation, I first for-
malize those dependencies as a B-graph. If the resulting B-graph defines aF-
arborescence, I can directly extract a cycle-free precedence relation @. Other-
wise, I compute aF-arborescence of the resulting B-graph and extract a cycle-
free precedence relation @ afterward. Either way, @ denotes a strict partial
order whose linearization satisfies the requirements in Algorithm 2.

Definition 55 (B-precedence). J : DC∃,∧ × 2X → 2(2
DC∪{F})×DC denotes the

function defined by the following equation:

J(ϕ,X) = J

where J denotes the smallest relation induced by the rules in Figure 7.8.

I usually writeJXϕ instead ofJ(ϕ,X) and useJXϕ as an infix relation. Rule 7.26
generalizes Rule 7.20 in Definition 53, by joining sets of dependencies of a data
literal in a single B-arc. Rule 7.27 states that x = t does not necessarily depend

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 215

` ∈ Liter=(ϕ)
and Variabl(`) = {x1, . . . , xk}
and x1 = t1, . . . , xk = tk ∈ Liter=(ϕ) ∪ {x̂ = x̂ | x̂ ∈ X}

{x1 = t1, . . . , xk = tk} J `
(7.26)

x = t ∈ Liter=(ϕ)
and Variabl(t) = {x1, . . . , xk}
and x1 = t1, . . . , xk = tk ∈ Liter=(ϕ) ∪ {x̂ = x̂ | x̂ ∈ X}

{x1 = t1, . . . , xk = tk} J x = t
(7.27)

x ∈ X
F J x = x

(7.28)

Figure 7.8: Addendum to Definition 55

on x—as implied by Rule 7.26—but only on the free variables in t (i.e., I can
derive a value for x from values of the data variables in t). Note that through
Rules 7.26 and 7.27, I extend the previous domain Liter=(ϕ) ∪ {F} with seman-
tically insignificant data equalities of the form x = x, each of which I relate toF
with Rule 7.28. I do this only for the technical convenience of treating both
uncontrollable variables in X (which may have no data equalities in Liter=(ϕ))
and the other variables (which must have) in a uniform way. For instance,
Figure 7.7 shows the B-graph for data constraint φeg.

Generally, in a B-graph, data literals can have multiple incoming B-arcs.
Such multiple incoming B-arcs represent a disjunction of conjunctions of de-
pendencies. Importantly, as long as Algorithm 2 respects the dependencies
represented by one incoming B-arc, the other incoming B-arcs do not matter. An
arborescence, which contains one incoming B-arc for every data literal, there-
fore preserves enough dependencies. Theorem 19 makes this more precise.

One can straightforwardly compute an arborescence of a B-graph

(Liter=(ϕ) ∪ {F} ∪ {x = x | x ∈ X},JXϕ)

with an exploration algorithm reminiscent of breadth-first search. First, letC ⊆
JXϕ denote the arborescence under computation, and let Ldone ⊆ Liter=(ϕ) ∪
{F} ∪ {x = x | x ∈ X} denote the set of vertices (i.e., data literals) already
explored; initially, C = ∅ and Ldone = {F}. Now, given some Ldone, compute a
set of vertices Lnext connected only to vertices in Ldone by a B-arc in JXϕ . Then,
for every vertex in Lnext, add an incoming B-arc to C.1 Afterward, add Lnext
to Ldone. Repeat this process until Lnext becomes empty. Once that happens,

1If a vertex ` in Lnext has multiple incoming B-arcs, the choice among them matters not: the
choice remains local, because every B-arc has only one head (i.e., adding an `-headed B-arc to C
cannot cause another vertex to get multiple incoming B-arcs, which would invalidate the arbores-

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 216

`1 ∈ Liter=(ϕ) ∩ L and L CXϕ `2

`1 @ `2
(7.29)

x = t, ` ∈ Liter=(ϕ) and
[
` 6= x′ = t′ for all x′, t′

]
x = t @ `

(7.30)

`1 @ `2 and `2 @ `3 and `2 /∈ {`1, `3}
`1 @ `3

(7.31)

Figure 7.9: Addendum to Definition 56

either C contains an arborescence (if Ldone = L) or no arborescence exists. This
computation runs in linear time, in the size of the B-graph. See also Footnote 1.
Henceforth, let CXϕ denote the final arborescence so computed; if no arbores-
cence exists, I stipulate CXϕ = ∅.

Definition 56 (precedence III). @ : DC∃,∧ × 2X → DC × DC denotes the
function defined by the following equation:

@(ϕ,X) = @

where @ denotes the smallest relation induced by the rules in Figure 7.9.

I usually write @Xϕ instead of @(ϕ,X). Rules 7.30 and 7.31 have the same
premise/consequence as Rules 7.21 and 7.22; Rule 7.29 straightforwardly splits
B-arcs into single-tailed arcs. For instance, the bold arcs in Figure 7.5 represent
a fragment of the precedence relation so derived from the arborescence in Fig-
ure 7.7.

For every @Xϕ induced from a nonempty F-arborescence (i.e., CXϕ 6= ∅),
let<Xϕ denote its linearization. The following theorem states that this lineariza-
tion satisfies the requirements of Algorithm 2.

Theorem 19. CXϕ 6= ∅ implies
[
(ϕ,X,<Xϕ) satisfies Algorithm 2

]
If the B-graph (Liter=(ϕ) ∪ {F} ∪ {x = x | x ∈ X},JXϕ) neither defines nor

contains a F-arborescence, no B-graph equivalent of a path [AFF01] exists
fromF to at least one vertex `. In that case, the other vertices fail to resolve at
least one of `’s dependencies. This occurs, for instance, when ` depends on x,
but the B-graph contains no x = t vertex. As another example, consider a recur-
sive data equality x = t with x ∈ Variabl(t): unless another data equality x = t′

cence). General hypergraphs, whose hyperarcs can have multiple heads, violate this property (i.e.,
the choice of which hyperarc to add becomes global instead of local). As a result, and in stark
contrast to B-graphs, one cannot compute arborescences of general hypergraphs—an NP-complete
problem [Woe92]—in polynomial time (if P 6= NP).

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 217

with t 6= t′ exists, all its incoming B-arcs contain loops to itself. Consequently,
no arborescence exists. In practice, such cases inherently require constraint
solving techniques with backtracking to find a value for x. Nonexistence of
aF-arborescence thus signals a fundamental limitation to the applicability of
Algorithm 2 (although mixed techniques of translating some parts of a data
constraint to a data command at compile-time and leaving other parts to a
constraint solver at run-time seem worthwhile to explore; I leave those for fu-
ture work). Thus, the set of data constraints to which I can apply Algorithm 2
contains those (i) whose B-graph has aF-arborescence, which guarantees lin-
earizability of the induced precedence relation, and (ii) that satisfy also the rest
of the requirements in Algorithm 2.

The constraint programming community has already observed that, for
constraint solving, “if domain specific methods are available they should be ap-
plied instead [sic] of the general methods” [Apt09a]. Commandification pushes
this piece of conventional wisdom to an extreme: essentially, every data com-
mand generated for a data constraint φ by Algorithm 2 constitutes a little, ded-
icated constraint solver capable of solving only φ. Nevertheless, execution of
data commands bears similarities with constraint propagation techniques, in par-
ticular with forward checking [BMFL02]. Generally, constraint propagation aims
to reduce the search space of a constraint satisfaction problem by transforming
it into an equivalent “simpler” one, where variables have smaller domains, or
where constraints refer to fewer variables. With forward checking, whenever a
variable x gets a value d, a constraint solver removes values from the domains
of all subsequent variables that, given d, violate a constraint. In the case of an
equality x = x′, for instance, forward checking reduces the domain of x′ to the
singleton {d} after an assignment of d to x. Commandification implicitly uses
that same property of equality, but instead of explicitly representing the do-
main of a variable and the reduction of this domain to a singleton at run-time,
commandification already turns the equality into an assignment at compile-
time. Commandification may also remind one of classical Gaussian elimination
for solving systems of linear equations over the reals [Apt09b]: there too, one
orders variables and substitutes values/expressions for variables in other ex-
pressions. Data constraints, however, have a significantly different structure
from real numbers, which makes solving data constraints directly via Gaus-
sian elimination at least not obvious.

Commandification in Constraint Automata

To formally introduce data commands in constraint automata, I introduce com-
mandification as a unary operation on constraint automata. First, because I
want to avoid ad-hoc modifications to Definitions 15 and 19 (of data constraints
and constraint automata), I present an encoding of data commands as data re-
lations. In the following definition, let ϕ denote a normal data constraint in a
normalized constraint automaton, let X denote the set of uncontrollable data
variables in ϕ, and let x1, . . . , xk denote the free data variables in ϕ, ordered
by <TERM. Then, the data relation R, which encodes the commandification π

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 218

of ϕ, holds true of a data tuple (d1, . . . , dk) iff execution of π on an initial data
state (over the variables in X) successfully terminates on a data state σ that
maps every xi to di.

Definition 57 (data commands as data relations). comm : DC∃,∧ × 2X →
DC∃,∧ denotes the function defined by the following equation:

comm(ϕ,X) =


R(x1, . . . , xk) if


Free(ϕ) = {x1, . . . , xk}
and x1 <TERM · · · <TERM xk
and CXϕ 6= ∅
and X ⊆ Free(ϕ)


ϕ otherwise

where R denotes the smallest relation induced by the following rule:

π = ALGORITHM2(ϕ,X,@Xϕ)
and σ ∈ Final(π, J∧{x = x | x ∈ X}K)
and σ(x1), . . . , σ(xk) ∈ D

(σ(x1), . . . , σ(xk)) ∈ R (7.32)

Note that σ in Rule 7.32 may map also data variables outside Free(ϕ). This
happens, for instance, with data constraints with existential quantifiers. The
data commands for such data constraints explicitly assign values to quanti-
fied data variables, even though those variables do not qualify as free. Be-
cause {x1 7→ d1, . . . , xk 7→ dk} contains the free data variables in ϕ, however,
the additional data variables mapped by σ cannot affect the truth of ϕ (i.e.,
generally, |= satisfies monotonicity of a data constraint φ in data states whose
domain contains at least the free data variables in φ).

I define commandification in constraint automata in terms of comm.

Definition 58 (commandification). L·M : AUTOM → AUTOM denotes the func-
tion defined by the following equation:

L(Q, (P all, P in, P out),M,−→, (q0, µ0))M =
(Q, (P all, P in, P out),M, L−→M, (q0, µ0))

where L−→M denotes the smallest relation induced by the following rules:

q
P,φ−−→ q′ and φ ∈ DC∃,∧

and X init = P in ∪ •M

q L P,comm(φ,Free(φ)∩X init)−−−−−−−−−−−−−−−→M q′
(7.33)

q
P,φ−−→ q′ and φ /∈ DC∃,∧

q L P,φ−−→M q′
(7.34)

Before I can actually adopt the compilation approach in Figure 7.1 in prac-
tice, I must establish the correctness and effectiveness of commandification.
I consider commandification correct if it yields a behaviorally congruent—
hence, behaviorally equivalent by Theorem 1—constraint automaton to the

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 219

original one. Before formulating this property as a theorem, the following
lemma states the equivalence of a data constraint and its commandification.

Lemma 18. ϕ ≡ comm(ϕ,X)

From Lemma 18, I conclude the following correctness theorem.

Theorem 20. a ' LaM

Note that this theorem works not only for normalized constraint automata but
also for arbitrary ones. Normalization plays a role only in the sequel, where I
show that commandification has its intended effect when applied to normal-
ized constraint automata.

I consider commandification effective if, after commandifying a normal-
ized constraint automaton |a|, every data constraint in this automaton either
encodes a data command as in Definition 57 or has no data variables in it
(in which case a compiler can statically check that data constraint). Gener-
ally, however, such unconditional effectiveness does not hold true. After all, if
the B-graph for a data constraint ϕ in |a| has has noF-arborescence, comman-
dification has no strict precedence relation to run Algorithm 2 with. In that
case, comm(ϕ,X) = ϕ, and consequently, commandification does not have its
intended effect. Fortunately, commandification does satisfy a weaker—but still
useful—form of effectiveness. To formulate this as a theorem, I first define a
relation that holds true of arborescent constraint automata. I consider a con-
straint automaton arborescent if the B-graph for each of its data constraints has
aF-arborescence.

Definition 59 (arborescentness). ♣ ⊆ AUTOM denotes the smallest relation
induced by the following rule:[

φ ∈ Dc(a) implies CXφ 6= ∅
]

for all φ

♣a
(7.35)

Note that by the previous definition, implicitly, an arborescent constraint au-
tomaton has only normal data constraints (otherwise, CXφ does not exist for at
least one φ ∈ Dc(a) in Rule 7.35). The following theorem states the effective-
ness of commandification, conditional on arborescentness: after commandi-
fying an arborescent—hence normalized—constraint automaton a, every data
constraint in this automaton encodes a data command as a data relation (as in
Definition 57). LetR range over the set of data relations defined in Definition 57
of comm.

Theorem 21. ♣a implies Dc(LaM) ⊆ {R(x1, . . . , xk) | true}

A FOCAML compiler can check constraint automata for arborescentness be-
fore applying commandification. To reduce the number of such checks, how-
ever, I also present a conjecture about preservation of arborescentness by op-
erations on constraint automata. Before stating this conjecture, I first show

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 220

that multiplication generally does not preserve arborescentness. For instance,
both BinOp〈add〉(A,B;C) and Sync(C;B) individually satisfy arborescentness,
but their product does not. To see this, observe that the single transition in this
product has add(A,B) = C ∧ C = B as its data constraint. One can easily verify
that the B-graph for this data constraint indeed contains no arborescence, as
one may have already expected: if a commandification of this data constraint
would exist (which satisfaction of arborescentness would imply), that data com-
mand effectively assigns add(A,B) to B itself. Commandification, however,
does not support such self-dependencies. This example instantiates a well-
known problem in the theory and practice of synchronous systems: causality
loops, “where the input is not known until the output is known, and the output
can’t be known until the input is known” [LNZ14]. In the previous exam-
ple, Sync closes a causality loop between ports C and D. My conjecture about
preservation of arborescentness by operations on constraint automata there-
fore states that multiplication preserves arborescentness only in the absence of
causality loops.

Conjecture 2.

•
[
♣a1,a2 and a1 � a2 has no causality loops

]
implies ♣a1 � a2

•
[
♣a and p /∈ Input(a)

]
implies ♣a � p

•
[
♣a and p /∈ Input(a)

]
implies ♣a
 p

For now, I leave these preservation properties as a conjecture, because its truth
or falsehood does not matter much in practice: although its (dis)proof would
yield more insight in the theory of commandification, practical consequences
remain insignificant. After all, this conjecture helps only in predicting when
commandification may have its intended effect; it does not affect commandifi-
cation’s correctness whatsoever. Still, if this conjecture indeed holds true as I
strongly suspect, a FOCAML compiler can accurately predict whether a product
of primitives satisfies arborescentness, based on the arborescentness of these
primitives, without again having to check this product for arborescentness (as-
suming that this product has no causality loops).

Before I did the work presented in this chapter, Clarke et al. already worked
on purely constraint-based implementations of protocols [CPLA11]. Essen-
tially, Clarke et al. specify not only the transition labels of an automaton as
boolean constraints but also its state space and transition relation. In recent
work, Proença and Clarke developed a variant of compile-time predicate ab-
straction to improve performance [PC13a]. They also used this technique to
allow a form of interaction between a constraint solver and its environment
during constraint solving [PC13b]. The work of Proença and Clarke resembles
my work in the sense that we all try to “simplify” constraints at compile-time. I
see also differences, though: (i) commandification fully avoids constraint solv-
ing and (ii) I adopted a richer language of data constraints in this thesis. For in-
stance, Proença and Clarke have only unary functions in their language, which

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 221

would have cleared my need for B-graphs.

7.2 Practice

(I have not yet submitted the material in this section for publication.)

Compiler

I extended Lykos with the ability to apply commandification as in Figure 7.1,
controllable through flag COMMANDIFY. When raised, Lykos first checks whether
all primitives in the core set satisfy arborescentness. If so, by Conjecture 2,
Lykos does not need to check products for arborescentness during the compi-
lation process (as long as it encounters no causality loops). Note that even if
Conjecture 2 turns out not to hold true, Lykos does not generate faulty code:
in the worst case, Lykos unsuccessfully tries to commandify a constraint au-
tomaton, but once such commandification fails, Lykos simply defaults to the
original data constraint. If this happens, compilation just takes a little longer.
In contrast to Lykos’s internals, the run-time library requires no modifications.
Generated code looks a bit different if commandification succeeds, though, be-
cause in that case, Lykos has injected little pieces of sequential Java code—
syntactically very similar to data commands—instead of calls to a constraint
solver.

Experiments I: Protocols

I repeated the same experiments as in Chapter 6 (and Chapters 4 and 5), gen-
erating code for members of families SyncK, FifoK, Merger, Router, LateAsync-
Merger, EarlyAsyncMerger, OddFibonacci, and Chess with the COMMANDIFY-flag
raised, but otherwise under the same conditions as in Chapter 6. Figure 7.10
shows the per-family experimental results, averaged over five runs. The solid
lines represent the actual measurements; the dotted lines represent inverse-
proportional growth with respect to k = 1. The green lines represent the new
results; the yellow lines represent the results from Chapter 6.

Figure 7.11 shows per-family speedup charts corresponding to the mea-
surements in Figure 7.10; the dotted lines represent equal performance. For
all constraint automata with which I experimented, except members of Merger
and Router, commandification indeed improves performance, to a lesser or
to a greater extent. The code generated for Mergers and Routers has, overall,
similar performance with and without commandification (because these con-
straint automata have very simple data constraints, which cost relatively few
computational resources compared to their nondeterministic choice among in-
creasingly many options). Because of the scale on the y-axis, the speedup for
members of OddFibonacci seems almost nonexistent in Figure 7.10, but in fact,
Figure 7.11 shows that speedup ranges from 28% (for k = 64) up to 275%

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 222

SyncK FifoK

Merger Router

LateAsyncMerger EarlyAsyncMerger

OddFibonacci Chess

Figure 7.10: Performance (in number of completed rounds per four minutes) as
a function of the number of Syncs/Fifos/producers/consumers/chess engines,
denoted by k. See the legend in Figure 9.1.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 223

SyncK FifoK

Merger Router

LateAsyncMerger EarlyAsyncMerger

OddFibonacci Chess

Figure 7.11: Speedup (relative to compiler-generated code in Chapter 6) as a
function of the number of Syncs/Fifos/producers/consumers/chess engines,
denoted by k. See the legend in Figure 9.1.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 224

(for k = 1). This makes commandification actually most effective for Odd-
Fibonacci (because members of OddFibonacci require relatively complex data
processing).

Experiments II: Programs

I repeated the same experiments as in Chapter 6 (and Chapters 4 and 5), gener-
ating code for the NPB benchmarks with the COMMANDIFY-flag raised, but oth-
erwise under the same conditions as in Chapter 6.

Figures 7.12–7.19 show performance charts for the FOCAML-to-Java-com-
piled versions of the NPB kernel benchmarks (averaged over five runs), speed-
up charts (with respect to their Java versions by Frumkin et al.), and charts
about cache misses. The dotted green/yellow lines represent the MasterSlaves-
InteractionPatternA-based FOCAML-to-Java-compiled versions of the NPB ker-
nel benchmarks with and without commandification (i.e., the green lines rep-
resent the new results, while the yellow lines represent the results in Chap-
ter 6); the solid green/yellow lines represent the MasterSlavesInteractionPat-
ternB-based FOCAML-to-Java-compiled versions; the dotted black lines repre-
sent the Java versions by Frumkin et al.

I make the following main observations about these experimental results:

• Overall, the MasterSlavesInteractionPatternB-based FOCAML-to-Java-com-
piled versions of the NPB kernel benchmarks outperform their Master-
SlavesInteractionPatternA-based FOCAML-to-Java-compiled versions (sol-
id lines versus dotted lines), as in Chapters 5 and 6. Furthermore, the
FOCAML-to-Java-compiled versions with commandification perform at
least as well as the FOCAML-to-Java-compiled versions without comman-
dification (green lines versus yellow lines), and often better by a small
margin.

• Although the Java versions of the NPB kernel benchmarks by Frumkin
et al. still slightly outperform many of their FOCAML-to-Java-compiled
versions, the margin has further decreased (compared to the results in
Chapter 6), albeit by only a little: after syntactic subtraction, commandi-
fication does not make as big an impact.

• The same point about cache misses made in Chapter 5 applies here too:
numbers of cache misses seem a fair indicator of performance.

• The same point about increasing problem sizes made in Chapter 5 applies
here too: as the problem size increases, the speedup generally improves.

• As in Chapters 5 and 6, differences in numbers of cache misses explain
why the FOCAML-to-Java-compiled versions of NPB-IS without comman-
dification outperform their supposedly improved FOCAML-to-Java-com-
piled versions with commandification for k = 64 in class W, class A, and
class B.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 225

NPB-FT, class W (performance) NPB-FT, class W (speedups)

NPB-FT, class A (performance) NPB-FT, class A (speedups)

NPB-FT, class B (performance) NPB-FT, class B (speedups)

NPB-FT, class C (performance) NPB-FT, class C (speedups)

Figure 7.12: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 226

NPB-FT, class W (L1-dcache misses) NPB-FT, class W (dTLB misses)

NPB-FT, class A (L1-dcache misses) NPB-FT, class A (dTLB misses)

NPB-FT, class B (L1-dcache misses) NPB-FT, class B (dTLB misses)

NPB-FT, class C (L1-dcache misses) NPB-FT, class C (dTLB misses)

Figure 7.13: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 227

NPB-MG, class W (performance) NPB-MG, class W (speedups)

NPB-MG, class A (performance) NPB-MG, class A (speedups)

NPB-MG, class B (performance) NPB-MG, class B (speedups)

NPB-MG, class C (performance) NPB-MG, class C (speedups)

Figure 7.14: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 228

NPB-MG, class W (L1-dcache misses) NPB-MG, class W (dTLB misses)

NPB-MG, class A (L1-dcache misses) NPB-MG, class A (dTLB misses)

NPB-MG, class B (L1-dcache misses) NPB-MG, class B (dTLB misses)

NPB-MG, class C (L1-dcache misses) NPB-MG, class C (dTLB misses)

Figure 7.15: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 229

NPB-CG, class W (performance) NPB-CG, class W (speedups)

NPB-CG, class A (performance) NPB-CG, class A (speedups)

NPB-CG, class B (performance) NPB-CG, class B (speedups)

NPB-CG, class C (performance) NPB-CG, class C (speedups)

Figure 7.16: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 230

NPB-CG, class W (L1-dcache misses) NPB-CG, class W (dTLB misses)

NPB-CG, class A (L1-dcache misses) NPB-CG, class A (dTLB misses)

NPB-CG, class B (L1-dcache misses) NPB-CG, class B (dTLB misses)

NPB-CG, class C (L1-dcache misses) NPB-CG, class C (dTLB misses)

Figure 7.17: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 231

NPB-IS, class W (performance) NPB-IS, class W (speedups)

NPB-IS, class A (performance) NPB-IS, class A (speedups)

NPB-IS, class B (performance) NPB-IS, class B (speedups)

NPB-IS, class C (performance) NPB-IS, class C (speedups)

Figure 7.18: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 232

NPB-IS, class W (L1-dcache misses) NPB-IS, class W (dTLB misses)

NPB-IS, class A (L1-dcache misses) NPB-IS, class A (dTLB misses)

NPB-IS, class B (L1-dcache misses) NPB-IS, class B (dTLB misses)

NPB-IS, class C (L1-dcache misses) NPB-IS, class C (dTLB misses)

Figure 7.19: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 233

NPB-BT, class W (performance) NPB-BT, class W (speedups)

NPB-BT, class A (performance) NPB-BT, class A (speedups)

Figure 7.20: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-BT, class W (L1-dcache misses) NPB-BT, class W (dTLB misses)

NPB-BT, class A (L1-dcache misses) NPB-BT, class A (dTLB misses)

Figure 7.21: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 234

NPB-SP, class W (performance) NPB-SP, class W (speedups)

NPB-SP, class A (performance) NPB-SP, class A (speedups)

Figure 7.22: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-SP, class W (L1-dcache misses) NPB-SP, class W (dTLB misses)

NPB-SP, class A (L1-dcache misses) NPB-SP, class A (dTLB misses)

Figure 7.23: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 235

NPB-LU, class W (performance) NPB-LU, class W (speedups)

NPB-LU, class A (performance) NPB-LU, class A (speedups)

Figure 7.24: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-LU, class W (L1-dcache misses) NPB-LU, class W (dTLB misses)

NPB-LU, class A (L1-dcache misses) NPB-LU, class A (dTLB misses)

Figure 7.25: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 7. IMPROVEMENT III: COMMANDIFICATION 236

Figures 7.20–7.25 show performance charts for the FOCAML-to-Java-com-
piled versions of the NPB application benchmarks (averaged over five runs),
speedup charts (with respect to their Java versions by Frumkin et al.), and
charts about cache misses. The lines have the same meaning as in the figures
with experimental results for the NPB kernel benchmarks. Recall from Fig-
ure 5.12 that NPB-BT and NPB-LU do not support more than 22 and 31 slaves,
for which reason I have no measurements beyond k = 16 in class W for those
benchmarks. In the same figure, note that NPB-BT, NPB-SP, and NPB-LU sup-
port at most 62 workers in class A. For that reason, as in Chapter 6, I compiled
the FOCAML versions of those benchmarks for k = 62 instead of k = 64. Es-
sentially, the same observations apply here as for the previous experimental
results of the NPB kernel benchmarks.

Chapter 8

Improved Compilation IV:
Queue-Inference

In Chapter 6, I argued that the performance of compiler-generated code for
Mergers, Routers, LateAsyncMergers, and EarlyAsyncMergers should stay (close
to) constant in the number of producers/consumers. The experimental results
in Chapter 7, however, show that code generated by Lykos does not achieve
such scalability, not even with commandification: compiler-generated code
for LateAsyncMergers and EarlyAsyncMergers benefits from commandification
by 10–20%, but without improving scalability, while compiler-generated code
for Mergers and Routers does not seem to benefit from commandification at all.

In this chapter, I present a technique, called queue-inference, that improves
the scalability of compiler-generated code for protocols with nondeterminis-
tic choices, such as Merger, Router, LateAsyncMerger, and EarlyAsyncMerger. In
Section 8.1, to develop an intuition for what queue-inference involves, I first
explain how to manually apply this optimization technique. Subsequently,
I formalize queue-inference in terms of constraint automata, thereby making
this technique amenable to automation. In Section 8.2, I present an improved
version of Lykos using queue-inference, including new experimental results on
performance.

Although the improvement presented in this chapter eventually results in
improved compiler-generated code, as in Chapters 5, 6 and 7, I define this im-
provement at the higher level of constraint automata instead of at the lower
level of GPL code. Not only does this facilitate more elegant formal reason-
ing about correctness (compared to reasoning directly about GPL code), but it
also eases the automatic application of this improvement by a FOCAML com-
piler. Moreover, it makes this improvement independent of GPLs—Java in this
thesis—so that the same optimization automatically applies to, for instance,
generated C code.

237

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 239

8.1 Theory

(With Arbab and Halle, I previously published fragments of material in this section in
a conference paper [JHA14a].)

Manual Optimization

To understand why the compiler-generated code for Mergers, Routers, Late-
AsyncMergers, and EarlyAsyncMergers in Chapter 7 scales suboptimally, recall
the following run-time behavior of worker and protocol units from Chapter 4:
whenever a worker unit performs an I/O operation on the data structure for
a port, it informs the protocol unit that shares access to this data structure
about this event, after which this protocol unit starts a new round of event-
handling. As shown in the simplified event-handler in Figure 4.6, this protocol
unit subsequently loops over all transitions out of the current state in search
of an enabled one and, once found, fires this enabled transition. For k outgo-
ing transitions, then, this loop requires O(k) time; clearly, as the number of
transitions increases, the average time taken by a protocol unit to complete
one round of event-handling also increases. Because the number of transi-
tions in Mergers, Routers, LateAsyncMergers, and EarlyAsyncMergers increases
linearly in the number of producers/consumers, exactly the linear complex-
ity of event-handling causes compiler-generated code for those constraint au-
tomata to scale suboptimally. This analysis, although formulated here for the
Centralized Approach, similarly applies to the Hybrid Approach.

To find a solution for this scalability problem, or at the very least some in-
spiration, suppose that I provide EarlyAsyncMerger—a representative instance
of this problem—as a specification to software engineers and ask them for a
manual implementation. I actually did this little exercise with Sean Halle, then
a colleague at CWI with many years of experience in parallel programming.
Sean made two implementations. In his first implementation, every producer
has its own variable for storing data-to-send. To receive, then, the consumer
needs to iterate over all these variables in search of a nonempty one (cf., loop-
ing over all outgoing transitions in a constraint automaton by event-handlers).
Of course, Sean also used locks (with condition variables) to synchronize the
producers/consumer and avoid race conditions, but I skip those here. In Sean’s
first implementation, thus, once the consumer receives a datum, it actually
knows which specific producer sent that datum (namely, the producer corre-
sponding to the nonempty variable in which the consumer found that datum).
This, however, overimplements my intention: the consumer does not really
care about which specific producer it receives from so long as it receives from
some producer. In other words, the producers may remain indistinguishable to
the consumer. Sean’s second implementation exploits this indistinguishabil-
ity. Instead of using per-producer variables, in this second implementation,
the producers offer their data-to-send into a queue. To receive, the consumer
can simply poll a datum from the queue in O(1) time (ignoring, for simplicity,
the overhead of synchronizing concurrent queue accesses). In this second im-

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 240

1 public interface Queue {
2 public boolean isEmpty();
3 public void offer(Port port);
4 public Port peek();
5 public Port poll();
6 }

7 public class QueueBasedOutputPortImpl extends OutputPortImpl {
8 public volatile Queue queue;
9

10 @Override
11 public void put(Object datum) throws InterruptedException {
12 buffer = datum;
13 status = IO.PENDING;
14 handler.register();
15 queue.offer(this);
16 resume();
17 } }

18 public class QueueBasedInputPortImpl extends InputPortImpl {
19 public volatile Queue queue;
20

21 @Override
22 public Object get() throws InterruptedException {
23 buffer = null;
24 status = IO.PENDING;
25 handler.register();
26 queue.offer(this);
27 return resume();
28 } }

Figure 8.1: Java run-time library extended with queues

plementation, thus, the consumer never knows from which specific producer
it receives.

Although not directly a solution, Sean’s second implementation formed a
key inspiration for the optimization technique presented in this chapter: to
improve scalability, compiler-generated code should leverage indistinguisha-
bility among workers by using queues. To clarify what exactly this means
in the context of compiler-generated code for constraint automata, in the rest
of this subsection, I explain—by example—how to perform this optimization
technique by manually introducing queues in previous unoptimized compiler-
generated code. In subsequent subsections, then, I formalize and automate this
transformation at the higher level of constraint automata.

I take the compiler-generated code in Chapter 4 as my starting point. Al-
though Lykos generated that code under the Centralized Approach, code gen-
erated under the Hybrid Approach requires similar modifications. First, Fig-
ure 8.1 shows my modifications to the run-time library. (This figure consti-
tutes one of the rare exceptions in this thesis, where I qualify ports as “input”
or “output” from the perspective of workers.) Implementations of interface
Queue comprise queue data structures for Ports. Whenever a thread peeks

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 241

1 public class QueueBasedProtocol extends Protocol {
2 public Protocol(Port A, Port B, Port C) {
3 super(A, B, C);
4 }
5

6 @Override
7 public void initialize() {
8 ((QueueBasedOutputPortImpl) A).queue = automaton7.queue;
9 ((QueueBasedOutputPortImpl) B).queue = automaton7.queue;

10 super.initialize();
11 } }

1 class QueueBasedAutomaton7 extends Automaton7 {
2 final Queue queue = new Queue();
3 }

Figure 8.2: Classes QueueBasedProtocol and QueueBasedAutomaton7, manu-
ally derived from the automatically generated classes Protocol and Automa-
ton7 in Figures 4.15 and 4.16

such a data structure, it reads its first element without removing it; whenever
a thread polls, it not only reads but also removes. Classes QueueBasedOut-
putPortImpl and QueueBasedInputPortImpl extend classes OutputPortImpl
and InputPortImpl in Figure 4.13 with Queue fields (set elsewhere, discussed
shortly) and, notably, with invocations of method offer on lines 15 and 26.
Thus, whenever a thread performs an I/O operation on a Port, after setting all
the fields of that Port, it offers this Port into the queue.

Figure 8.2 shows my manual modifications to the automatically generated
classes Protocol and Automaton7 in Figures 4.15 and 4.16. In method ini-
tialize of QueueBasedProtocol, the current thread sets the queues in Ports
A and B, in addition to everything it already had to do. The value assigned
to A.queue and B.queue comes from an instance of QueueBasedAutomaton7,
which differs from instances of Automaton7 only in the added Queue field.

Finally, I also manually modified the automatically generated classes Au-
tomaton7Transition1 and Automaton7Transition2 in Figures 4.18 and 4.19.
Figure 8.3 shows these modifications. Class QueueBasedAutomaton7Transi-
tion1 has a new Queue field, initialized to the queue of the Automaton7 in
the Protocol. In method checkSynchronizationConstraint, instead of us-
ing the Context of the Automaton7 as in method checkSynchronizationCon-
straint of the original Automaton7Transition1, the current thread checks if
the queue contains a Port. After all, by my previous modifications to the run-
time library, if a thread has performed an I/O operation on a Port, it must have
offered that Port into the queue. In method fire, the current thread actually
does the same as in method fire of the original Automaton7Transition1, ex-
cept that it first needs to poll the queue to get the actual Port to operate on.
To highlight their differences, I grayed out the similar parts in class Queue-
BasedAutomaton7Transition2 with respect to class QueueBasedAutomaton7-
Transition1. These classes differ only in their name, which has the following

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 242

1 class QueueBasedAutomaton7Transition1 extends Automaton7Transition1 {
2 Queue queue;
3

4 public initialize(Protocol protocol) {
5 this.queue = protocol.automaton7.queue;
6 super.initialize(protocol);
7 }
8

9 @Override
10 protected boolean checkSynchronizationConstraint() {
11 return true && !queue.isEmpty();
12 }
13

14 @Override
15 protected boolean fire() {
16 boolean canFire = checkSynchronizationConstraint() && checkDataConstraint();
17 if (canFire) {
18 Port port = queue.poll();
19 port.status = IO.COMPLETED;
20 port.semaphore.release();
21 target.reach();
22 }
23 return canFire;
24 } }

25 class QueueBasedAutomaton7Transition2 extends Automaton7Transition2 {
26 Queue queue;
27

28 public initialize(Protocol protocol) {
29 this.queue = protocol.automaton7.queue;
30 super.initialize(protocol);
31 }
32

33 @Override
34 protected boolean checkSynchronizationConstraint() {
35 return true && !queue.isEmpty();
36 }
37

38 @Override
39 protected boolean fire() {
40 boolean canFire = checkSynchronizationConstraint() && checkDataConstraint();
41 if (canFire) {
42 Port port = queue.poll();
43 port.status = IO.COMPLETED;
44 port.semaphore.release();
45 target.reach();
46 }
47 return canFire;
48 } }

Figure 8.3: Classes QueueBasedAutomaton7Transition1 and QueueBasedAu-
tomaton7Transition2, manually derived from the automatically generated
classes Automaton7Transition1 and Automaton7Transition2 in Figures 4.18
and 4.19

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 243

important consequence.
Reconsider class HandlerForABC in Figure 4.22 in the context of my pre-

vious modifications. Every instance of this Handler represents a comprehen-
sive event-handler for QueueBasedAutomaton7, which any thread can call at
any time in an attempt to fire any Transition (as described in more detail
in Chapter 4). In method call of HandlerForABC, the current thread loops
over an array of Transitions until it has successfully fired one. In the con-
text of my previous modifications, this array consists of a QueueBasedAutoma-
ton7Transition1 and a QueueBasedAutomaton7Transition2. However, as
highlighted in Figure 4.22, these classes consist of exactly the same code. There-
fore, storing an instance of each of those classes in the array effectively amounts
to letting the current thread try to fire the same Transition twice. To avoid
this, I may modify HandlerForABC by removing the loop and letting the cur-
rent thread invoke either method fire of QueueBasedAutomaton7Transition1
or method fire of QueueBasedAutomaton7Transition2—but never both. By
doing so, the current thread effectively tries to fire one of two Transitions at
the same time.

With these modifications, essentially, I exploit the indistinguishability of
producers to the consumer by making the ports on which those producers per-
form their I/O operations indistinguishable: without extra information about
which producer has access to which specific port, afterward reconstructing
which producer offered a port into a queue becomes impossible, notably upon
polling that port from the queue—the ports have become indistinguishable.
From an automata-theoretic perspective, my modifications to previous compi-
ler-generated code essentially correspond to the notion of combining multiple
transitions into a single transition (which, at run-time, requires only one check
for enabledness in every round of event-handling by using queues). In the next
subsections, I present a formalization of this automata-theoretic perspective,
including a formalization of port indistinguishability.

Multiconstraint Automata

In this subsection and the next, I call constraint automata as defined in Chap-
ter 2, Definition 19, uniconstraint automata. This new piece of terminology al-
lows me to clearly distinguish uniconstraint automata from multiconstraint au-
tomata, which generalize uniconstraint automata and support combining mul-
tiple transitions into single transitions in a behavior-preserving way (which
uniconstraint automata do not support). Multiconstraint automata differ from
uniconstraint automata in only one aspect: while uniconstraint automata have
synchronization uniconstraints—sets of ports as in Definition 19—in their tran-
sition labels, multiconstraint automata have synchronization multiconstraints.
Henceforth, I call transitions in uniconstraint automata unitransitions and tran-
sitions in multiconstraint automata multitransitions. See the last paragraph of
this subsection for related work.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 244

Definition 60 (multiconstraint automata). A multiconstraint automaton is a
tuple:

(Q, (P all, P in, P out),M,−→, (q0, µ0))

where:

• Q ⊆ Q (states)

• (P all, P in, P out) ∈ 2P × 2P × 2P such that: (ports)

P in, P out ⊆ P all and P in ∩ P out = ∅

• M ⊆M (memory cells)

• −→ ⊆ Q× 22
2P

all

× Good(P all ∪ •M ∪M•)×Q (multitransitions)

• (q0, µ0) ∈ Q× (M → D) (initial configuration)

AUTOM+ denotes the set of all multiconstraint automata, ranged over by e.

Every synchronization multiconstraint consists of
[
a set G of

[
sets Ei of[

sets Vij of ports
]]]

and represents a nondeterministic choice among synchro-
nization uniconstraints. As a first few examples,

G = {{
V11︷︸︸︷
{A},

V12︷︸︸︷
{D}}︸ ︷︷ ︸

E1

} and G = {{
V11︷︸︸︷
{A},

V12︷︸︸︷
{C},

V13︷︸︸︷
{E}}︸ ︷︷ ︸

E1

}

represent the synchronization uniconstraints {A,D} and {A,C,E} (i.e., no non-
deterministic choice). As a second few examples,

G = {{
V11︷︸︸︷
{A},

V12︷︸︸︷
{D}}︸ ︷︷ ︸

E1

, {
V21︷︸︸︷
{B},

V22︷︸︸︷
{D}}︸ ︷︷ ︸

E2

, {
V31︷︸︸︷
{C},

V32︷︸︸︷
{D}}︸ ︷︷ ︸

E3

}

and

G = {{
V11︷︸︸︷
{A},

V12︷︸︸︷
{C},

V13︷︸︸︷
{E}}︸ ︷︷ ︸

E1

, {
V21︷︸︸︷
{A},

V22︷︸︸︷
{D},

V23︷︸︸︷
{E}}︸ ︷︷ ︸

E2

, {
V31︷︸︸︷
{B},

V32︷︸︸︷
{C},

V33︷︸︸︷
{E}}︸ ︷︷ ︸

E3

, {
V41︷︸︸︷
{B},

V42︷︸︸︷
{D},

V43︷︸︸︷
{E}}︸ ︷︷ ︸

E4

}

represent a nondeterministic choice among the three synchronization unicon-
straints {A,D}, {B,D}, {C,D} and a nondeterministic choice among the four
synchronization uniconstraints {A,C,E}, {A,D,E}, {B,C,E}, {B,D,E}. Thus,
in the previous examples—and also in every other synchronization multicon-
straint whose every Vij contains exactly one port—G represents a disjunction
(with disjuncts represented by Ei) of conjunctions (with conjuncts represented

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 245

by Vij). Finally, to explain the more difficult meaning of synchronization mul-
ticonstraints with nonsingleton Vij ’s, as a third few examples,

G = {{
V11︷ ︸︸ ︷

{A,B,C},
V12︷︸︸︷
{D}}︸ ︷︷ ︸

E1

} and G = {{
V11︷ ︸︸ ︷
{A,B},

V12︷ ︸︸ ︷
{C,D},

V13︷︸︸︷
{E}}︸ ︷︷ ︸

E1

}

represent exactly the same nondeterministic choices among synchronization
uniconstraints as the previous two synchronization multiconstraints. Thus,
while G represents a disjunction and while every Ei ∈ G represents a conjunc-
tion, every Vij ∈ Ei represents a uniqueness quantification: to compute the non-
deterministic choice among synchronization uniconstraints represented by G,
for every Ei, collect all synchronization uniconstraints (i.e., sets of ports) con-
structed by selecting exactly one port from every Vij .

Definition 61 (interpretation of synchronization multiconstraints).

‖·‖ : 22
2P ∪ 22

P → 2P denotes the function defined by the following equation:

‖E‖ =

{
{p1, . . . , pn} E = {V1, . . . , Vn}

and p1 ∈ V1 and · · · and pn ∈ Vn

}
‖G‖ =

⋃{‖E‖ | E ∈ G}
Subsequently, I straightforwardly map every multiconstraint automaton to

a uniconstraint automaton.

Definition 62 (interpretation of multiconstraint automata).
‖·‖ : AUTOM+ → AUTOM denotes the function defined by the following equation:

‖(Q, (P all, P in, P out),M,−→, (q0, µ0))‖ =
(Q, (P all, P in, P out),M, ‖−→‖, (q0, µ0))

where ‖−→‖ denotes the smallest relation induced by the following rule:

q
G,φ−−→ q′ and P ∈ ‖G‖

q ‖ P,φ−−→‖ q′
(8.1)

Replacing every synchronization uniconstraint {p1, . . . , pn} in a uniconstraint
automaton a with synchronization multiconstraint {{{p1}, . . . , {pn}}} straight-
forwardly yields a multiconstraint automaton e such that a = ‖e‖. Henceforth,
I tacitly apply this behavior-preserving transformation from uniconstraint au-
tomata into multiconstraint automata whenever necessary. If a synchroniza-
tion multiconstraint matches {{p1}, . . . , {pn}} (e.g., every Ei in every synchro-
nization multiconstraint resulting from the previous transformation from uni-
constraint automata into multiconstraint automata), I call that Ei simple.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 246

Definition 63 (simple choices). Simpl : 22
2P → 22

2P

denotes the function defined
by the following equation:

Simpl(G) = {{{p1}, . . . , {pn}} | {{p1}, . . . , {pn}} ∈ G}

If a synchronization multiconstraint has only simpleEi’s (i.e., if Simpl(G) = G),
I call also that synchronization multiconstraint “simple”.

To fire a multitransition in a multiconstraint automaton at run-time, its cor-
responding protocol unit needs to check that multitransition’s synchroniza-
tion multiconstraint G. To perform such a check, this protocol unit must find
some Ei ∈ G such that for every Vij ∈ Ei, some port p ∈ Vij exists such that
its corresponding data structure has a pending I/O operation (i.e., the context
of the protocol unit, constituted by its pending I/O operations, must satisfy at
least one synchronization uniconstraint in the interpretation of G). If so, the
protocol unit can effectuate an instance of interaction involving exactly one
port out of every Vij (i.e., corresponding to a synchronization uniconstraint in
the interpretation of G). Thus, whenever a protocol unit fires a multitransition
in a multiconstraint automaton, it effectively fires a unitransition in the cor-
responding uniconstraint automaton. Importantly, however, even if an exter-
nal observer knows that a multitransition fired, without any additional infor-
mation, this observer cannot possibly know to which particular unitransition
this firing corresponds. After all, even if the firing multitransition has only
one Ei, the observer cannot know which port out of every Vij the protocol
unit selected—the ports in every Vij appear indistinguishable to the observer.
Moreover, the protocol unit can efficiently select a port out of every Vij by us-
ing a queue for that Vij , as in my manually modified compiler-generated code
in the previous subsection. This paragraph, then, establishes the connection
between

[
queues and port indistinguishability in practice

]
and

[
in theory

]
.

From a propositional logic perspective, a synchronization multiconstraint

G = {E1, . . . , En} = {{V11, . . . , V1n1
}, . . . , {Vn1, . . . , Vnnn

}}

for a multiconstraint automaton with ports P all corresponds to the formula⊕
V11· · ·

⊕
V1n1

∏{p | p ∈ P all and p /∈ V11 ∪ · · · ∪ V1n1
}

+ · · ·+⊕
Vn1· · ·

⊕
Vnnn

∏{p | p ∈ P all and p /∈ Vn1 ∪ · · · ∪ Vnnn}

where + denotes disjunction, juxtaposition/
∏

denotes conjunction, · denotes
negation, and

⊕
denotes uniqueness quantification. With Halle and Arbab, I

presented (parts of) the material in this chapter entirely from this propositional
logic perspective [JHA14a].

When indeed considered as propositional formulas, synchronization mul-
ticonstraints may seem similar to propositional guards on transitions in guarded
automata [BCS09, BCS12], which consist of disjunction, conjunction and nega-
tion (but no uniqueness quantification). Bonsangue et al. use such guarded au-
tomata for modeling protocols, similar to constraint automata, but significantly

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 247

different in expressiveness: guarded automata support modeling context-sensi-
tive protocols but not data-sensitive protocols, whereas constraint automata
support modeling data-sensitive protocols but not context-sensitive protocols
(at least not directly; see my work with Krause and Arbab for an indirect encod-
ing [JKA11]). Although synchronization multiconstraints and guards formally
may seem similar, they have different applications: guards specify the context
in which a transition may—or may not—fire in the work of Bonsangue et al.,
whereas synchronization multiconstraints specify which ports may participate
in a transition, irrespective of context. From a propositional logic perspective,
synchronization multiconstraints bear similarities also with the various connec-
tor algebras of Bliudze and Sifakis [BS08, BS10] and Baranov and Bliudze [BB15],
whose propositional formulas over ports—with a richer structure than just dis-
junction/conjunction/negation—induce sets of sets of ports, to compactly rep-
resent sets of synchronization uniconstraints (“interactions” in their terminol-
ogy). The additional expressive power of these connector algebras, relative
to synchronization multiconstraints, makes them suitable for compactly rep-
resenting a wider range of synchronization patterns (their primary use case)
but unsuitable for the kind of manipulation shortly introduced in Definition 67
(the primary use case of synchronization multiconstraints). The idea of label-
ing transitions with atomic propositions plays a key role also in the translation
algorithm from LTL formulas to Büchi automata, in the context of model check-
ing, by Giannakopoulou and Lerda [GL02]. Although atomic propositions
significantly differ from propositional formulas in expressive power, interest-
ingly, Giannakopoulou and Lerda have a comparable goal (merging “similar”
states into single states to shrink automata) as I have (merging “similar” transi-
tions into single transitions to generalize individual ports into queues of ports).
The concept of merging states—but not transitions, to my knowledge—as a
means of generalizing models has applications also in (stochastic) automaton/
grammar inference [BO05, CO94, LPP98, SO93].

Operations on Multiconstraint Automata

Useful as multiconstraint automata in principle may seem for modeling port
indistinguishability and queues, the straightforward transformation from uni-
constraint automata into multiconstraint automata, just below Definition 62,
does not unleash this full potential quite yet. After all, in multiconstraint au-
tomata, port indistinguishability and queues manifest as nonsingleton Vij ’s in
synchronization multiconstraints, but the synchronization multiconstraints in
the multiconstraint automata resulting from that transformation contain only
singleton Vij ’s. Therefore, I introduce two behavior-preserving operations on
such multiconstraint automata. Each of these operations changes the structure
of its operand, ultimately to form nonsingleton Vij ’s, thereby revealing sets of
indistinguishable ports in synchronization multiconstraints.

Recall that my manual modifications to compiler-generated code in the pre-
vious subsection essentially correspond to the notion of combining multiple
transitions into a single transition. My first operation to change the structure

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 248

of multiconstraint automata, therefore, indeed combines multiple multitransi-
tions into a single multitransition. Note that the structure of synchronization
uniconstraints in uniconstraint automata does not support such an operation.

Definition 64 (combination). comb : AUTOM+ → AUTOM+ denotes the func-
tion defined by the following equation:

comb((Q, (P all, P in, P out),M,−→, (q0, µ0))) =
(Q, (P all, P in, P out),M,−→comb, (q

0, µ0))

where −→comb denotes the smallest relation induced by the following rule:

Gall =
⋃{Ĝ | q Ĝ,φ−−→ q′}

q
Gall,φ−−−→comb q′

(8.2)

As formalized in Definition 64, to combine multiple multitransitions into a sin-
gle multitransition, these multitransitions must satisfy three conditions: they
must have the same source state, the same target state, and the same data con-
straint. Especially the latter condition may restrict the extent to which I can
combine multitransitions in practice. For instance, in my manual modifica-
tions to compiler-generated code in the previous subsection, I effectively com-
bined multitransitions with different—but somehow similar—data constraints
(namely A = x• and B = x•). For now, I simply assume equality of data con-
straints whenever necessary; I come back to this point in more detail in the
next subsection, where I present a basic operation for making “similar” data
constraints equal, called homogenization.

Figure 8.4 shows uniconstraint automata for two protocols (with homog-
enized, yet equivalent, data constraints as explained shortly) and their cor-
responding multiconstraint automata before and after combining their multi-
transitions; for now, ignore the fourth row with “manipulated synchronization
multiconstraints”. I introduced the Merger family already in Chapter 3; I intro-
duce the RegulatedMergerRouter family here to demonstrate, shortly, that the
optimization technique presented in this chapter supports inference of multi-
ple queues. Figure 8.5 shows a circuit for the same member of the Regulated-
MergerRouter2,2 subfamily as in Figure 8.4; Figure 8.6 show a FOCAML defini-
tion for the entire RegulatedMergerRouter family and a main definition for the
same member as in the previous figure. Every member of RegulatedMerger-
Routerk,l infinitely often atomically

[
accepts a datum d on one of its k input

ports for producers, then offers d both on one of its l output ports for con-
sumers and on another output port for the regulator

]
(where “input” and “out-

put” qualify ports from the protocol perspective). This regulator forms a third
party between the group of producers and the group of consumers, regulating
(the pace of) flow between those two groups through its get operations.

The following theorem states the correctness of Definition 64: combining its
multitransitions preserves the interpretation of a multiconstraint automaton.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 249

{Bin,Dout},
Eq(A,B,C,D)

{Ain,Dout},
Eq(A,B,C,D)

{Cin,Dout},
Eq(A,B,C,D)

Merger3(A,B,C; D): uniconstraint
automaton with homogenized data
constraints

{Ain,Dout,Eout},
Eq(A,B,C,D,E)

{Ain,Cout,Eout},
Eq(A,B,C,D,E)

{Bin,Cout,Eout},
Eq(A,B,C,D,E)

{Bin,Dout,Eout},
Eq(A,B,C,D,E)

RegulatedMergerRouter2,2(A,B; C,D,E): unicon-
straint automaton with homogenized data con-
straints

{{{B}, {D}}},
Eq(A,B,C,D)

{{{A}, {D}}},
Eq(A,B,C,D)

{{{C}, {D}}},
Eq(A,B,C,D)

Merger3(A,B,C; D): multicon-
straint automaton before combining
multitransitions

{{{A}, {D}, {E}}},
Eq(A,B,C,D,E)

{{{A}, {C}, {E}}},
Eq(A,B,C,D,E)

{{{B}, {C}, {E}}},
Eq(A,B,C,D,E)

{{{B}, {D}, {E}}},
Eq(A,B,C,D,E)

RegulatedMergerRouter2,2(A,B; C,D,E): multi-
constraint automaton before combining multitran-
sitions





{{A}, {D}},
{{B}, {D}},
{{C}, {D}}



 ,

Eq(A,B,C,D)

Merger3(A,B,C; D): multicon-
straint automaton after combining
multitransitions

{
{{A}, {C}, {E}}, {{A}, {D}, {E}},
{{B}, {C}, {E}}, {{B}, {D}, {E}}

}
,

Eq(A,B,C,D)

RegulatedMergerRouter2,2(A,B; C,D,E): multi-
constraint automaton after combining multitransi-
tions

{{{A,B,C}, {D}}},
Eq(A,B,C,D)

Merger3(A,B,C; D): multicon-
straint automaton after combining
multitransitions and after manip-
ulating synchronization multicon-
straints

{{{A,B}, {C,D}, {E}}},
Eq(A,B,C,D)

RegulatedMergerRouter2,2(A,B; C,D,E): multi-
constraint automaton after combining multitransi-
tions and after manipulating synchronization mul-
ticonstraints

Figure 8.4: Merger3(A,B,C;D) and RegulatedMergerRouter2,2(A,B;C,D,E)

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 250

A

B

C

D

E

Figure 8.5: Circuit for a member of subfamily RegulatedMergerRouter2,2

1 RegulatedMergerRouter(in[];out[],out_regulator) = {
2 { prod i:1..#in { Sync(in[i];P1[i]) } }
3 mult Merger(P1[1..#in];P2)
4 mult Replicator2(P2;P3,P6)
5 mult Sync(P3;P4)
6 mult Router(P4,P5[1..#out])
7 mult { prod i:1..#out { Sync(P5[i];out[i]) } }
8 mult Sync(P6;out_regulator)
9 }

10 main = { RegulatedMergerRouter([A,B];[C,D],E) }

Figure 8.6: FOCAML definition for family RegulatedMergerRouter and a main
definition for a member of RegulatedMergerRouter2,2

Theorem 22. ‖e‖ = ‖comb(e)‖

Once multiconstraint automata have combined multitransitions (i.e., after
applying comb), for each of their synchronization multiconstraints, I can com-
pute maximal sets of indistinguishable ports. I consider ports indistinguish-
able if they occur in exactly the sameEi’s “modulo occurrences of those ports”.
To understand the latter phrase, consider the following example:

G = {{
V11︷︸︸︷
{A},

V12︷︸︸︷
{D}}︸ ︷︷ ︸

E1

, {
V21︷︸︸︷
{B},

V22︷︸︸︷
{D}}︸ ︷︷ ︸

E2

, {
V31︷︸︸︷
{C},

V32︷︸︸︷
{D}}︸ ︷︷ ︸

E3

}

Under this G, I can equate E1, E2, and E3 to each other modulo the occurrence
of ports A, B, and C, because by removing {A}, {B}, and {C} from E1, E2,
and E3, I get exactly the same remainder {{D}}. Intuitively, this notion of port
indistinguishability formalizes the idea that even if an external observer knows
that the ports in the remainder of Ei ∈ G participated in the firing of a G-
labeled multitransition (e.g., D), this observer cannot know which port addi-
tionally participated in that firing (e.g., A, B, or C)—the ports that additionally
may have participated remain indistinguishable to the observer. Let Port(G)
denote the ports that occur in a synchronization multiconstraint G.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 251

Definition 65 (remainders). Remaind : 22
2P × P → 22

2P

denotes the function
defined by the following equation:

RemaindG(p) = {E \ {V } | p ∈ V ∈ E ∈ G}

Definition 66 (indistinguishability). Indist : 22
2P → 22

P
denotes the function

defined by the following equation:

Indist(G) ={
P

[
P = {p | p ∈ Port(G) and RemaindG(p) = G′} for some G′

]
and P 6= ∅

}
Lemma 19. Indist(G) denotes a partition of Port(G)

For instance, let G = {{{A}, {D}}, {{B}, {D}}, {{C}, {D}}} (i.e., the synchro-
nization multiconstraint in Merger3(A,B,C;D) in Figure 8.4, third row). Then:

RemaindG(A) = {{{D}}}
RemaindG(B) = {{{D}}}
RemaindG(C) = {{{D}}}
RemaindG(D) = {{{A}}, {{B}}, {{C}}}
Indist(G) = {{A,B,C}, {D}}

As a more complex example, let

G = {{{A}, {C}, {E}}, {{A}, {D}, {E}}, {{B}, {C}, {E}}, {{B}, {D}, {E}}}

(i.e., the synchronization multiconstraint in RegulatedMergerRouter2,2(A,B;C,
D,E) in Figure 8.4, third row). Then:

RemaindG(A) = {{{C}, {E}}, {{D}, {E}}}
RemaindG(B) = {{{C}, {E}}, {{D}, {E}}}
RemaindG(C) = {{{A}, {E}}, {{B}, {E}}}
RemaindG(D) = {{{A}, {E}}, {{B}, {E}}}
RemaindG(E) = {{{A}, {C}}, {{A}, {D}}, {{B}, {C}}, {{B}, {D}}}
Indist(G) = {{A,B}, {C,D}, {E}}

In this more complex example, thus, I get two nonsingleton Vij ’s, each of which
corresponds to a different queue.

Using the previous formalization of port indistinguishability, I define an
operation for manipulating simple synchronization multiconstraints such that
afterward, every Vij corresponds to a set of indistinguishable ports. The restric-
tion to simple synchronization multiconstraint does not affect the applicability
of this manipulation (in the current context), because a FOCAML compiler ma-
nipulates only multiconstraint automata derived from uniconstraint automata
using the transformation below Definition 60; such multiconstraint automata
have only simple synchronization multiconstraints.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 252

Definition 67 (manipulation of synchronization multiconstraints). *·+ :

22
2P → 22

2P

denotes the function defined by the following equation:

*G+ =



{P1, . . . , Pn}
{p1, . . . , pn} ∈ ‖G‖
and p1 ∈ P1 ∈ Indist(G)
and · · ·
and pn ∈ Pn ∈ Indist(G)

 if G = Simpl(G)

G otherwise

The following lemma states the correctness of Definition 67: manipulating a
synchronization multiconstraint preserves the interpretation of that synchro-
nization multiconstraint.

Lemma 20. ‖G‖ = ‖*G+‖
Next, I straightforwardly extend manipulation of synchronization multicon-
straints to multiconstraint automata.

Definition 68 (manipulation of multiconstraint automata). *·+ :
AUTOM+ → AUTOM+ denotes the function defined by the following equa-
tion:

*(Q, (P all, P in, P out),M,−→, (q0, µ0))+ =
(Q, (P all, P in, P out),M, *−→+, (q0, µ0))

where *−→+ denotes the smallest relation induced by the following rule:

q
G,φ−−→ q′

q * *G+,φ−−−−→+ q′
(8.3)

By manipulating the multiconstraint automata on the third row in Figure 8.4
according to Definition 68, I get the multiconstraint automata on the fourth row
in the same figure. These resulting multiconstraint automata have synchro-
nization multiconstraints with nonsingleton Vij ’s—as desired—and thereby
make the indistinguishability of the ports in those Vij ’s structurally explicit.
Manipulation of synchronization multiconstraints in multiconstraint automata
thus enables a FOCAML compiler to automatically identify indistinguishable
ports to infer queues and generate queue-optimized code. Note that for Reg-
ulatedMergerRouter2,2(A,B;C,D,E) in Figure 8.4, doing so yields two queues
instead of just one.

The following theorem states the correctness of Definition 68: manipulating
its synchronization multiconstraints preserves the interpretation of a multicon-
straint automaton.

Theorem 23. ‖e‖ = ‖*e+‖
Figure 8.7 shows the compilation approach resulting from queue-inference

as just formalized (in which I leave the straightforward step to transform uni-
constraint automata d1, . . . ,dm into multiconstraint automata implicit).

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 253

in
st

an
ti

at
ed

fa
m

ily
si

gn
at

ur
e

a 1
,.
..
,a

n
>
0

B
1
,.
..
,B

1
≤
m

≤
n

b 1
,.
..
,b

m

b 1
(.

)
··
·(
.)

b m

c 1
,.
..
,c

m

c 1
(.

)
··
·(
.)

c m

d 1
,.
..
,d

m

d 1
(.

)
··
·(
.)

d m

e 1
,.
..
,e

m

e 1
(.

)
··
·(
.)

e m

in
te
rp
re
t

p
ar
ti
ti
on

�,
�

ge
n
er
at
eC

o
d
e h

yb
r

�,

ge
n
er
at
eC

o
d
e h

yb
r

L·M

ge
n
er
at
eC

o
d
e h

yb
r

*·+
◦c

om
b

ge
n
er
at
eC

o
d
e h

yb
r

Figure 8.7: Hybrid compilation approach with syntactic subtraction, comman-
dification, and queue-inference

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 254

[
p1, p2 ∈ P ∩Dom(σ) implies σ |= p1 = p2

]
for all p1, p2

σ |= Eq(P)
(8.4)

Figure 8.8: Addendum to Definition 69

Homogenization

To combine multiple multitransitions into a single multitransition, by Defini-
tion 64 of comb, these multitransitions must have exactly the same data con-
straint. So far, I simply assumed that this condition holds true, but in fact, all
practical cases where queue-inference may improve performance that I know
of violate this condition. For instance, Merger3 in Figure 8.4, first row, actu-
ally has A = D, B = D, and C = D as its data constraints. This makes their
corresponding multitransitions not amenable for combination. To solve this
problem, I must homogenize “similar” data constraints before trying to com-
bine their corresponding multitransitions, the result of which Figure 8.4 al-
ready exemplifies. In this subsection, I present one approach to such homoge-
nization. Because I apply homogenization only to uniconstraint automata (i.e.,
before translating them into multiconstraint automata), henceforth, I simply
write “constraint automaton”, “transition”, and “synchronization constraint”
(instead of “uniconstraint automaton”, “unitransition”, and “synchronization
uniconstraint”).

Essentially, my basic approach to homogenization presented in the rest of
this section replaces conjunctions of p1 = p2 data equalities with a new kind of
data atom, Eq(P). Informally, Eq(P) means that every port in P has either the
same value or no value. Let DCEq denote DC extended with Eq(P) data atoms,
and let DCEq

∃,∧ denote the corresponding set of normal data constraints. I define
a new entailment relation for DCEq.

Definition 69 (entailment with Eq). |= ⊆ ASSIGNM×DCEq denotes the smallest
relation induced by the rules in Definition 16 and Figure 8.8.

Thus, in the rest of this section, I overload |= from the previous Definition 16
with the current Definition 69. Similarly, let ⇒ and ≡ denote the implication
and the equivalence relation derived from |= in Definition 69 (instead of from |=
in Definition 16) in the usual way for first-order logic [Rau10a]. Finally, in
the rest of this section, let every data constraint in every constraint automaton
come from DCEq instead of from DC. Shortly, I explain the significant seman-
tic difference between Eq(P) and enumerations of data terms for equating the
ports in P in more detail.

To first more informally explain the process of homogenization, suppose
that I have a transition (q, P, φ, q′) in a constraint automaton with ports P all

(i.e., P ⊆ P all). Also, suppose that φ contains no data variables for memory
cells (i.e., Free(φ) ⊆ P). Finally, suppose that φ consist of sufficiently many

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 255

data equalities to equate—either directly or transitively—all ports in P to each
other (i.e., P ⊆ Free(φ)). Under these assumptions, clearly, I can safely re-
place φ with Eq(P). Less than clearly, however, I can also safely replace φ
with Eq(P all). After all, whenever transition (q, P, φ, q′) fires, its corresponding
data assignment σ has exactly the ports in P in its domain and no other ports
(i.e., Dom(σ) = P). Consequently, the condition p1, p2 ∈ P all ∩ Dom(σ) in the
premise of Rule 8.4 in Figure 8.8 (instantiated for P all) reduces to p1, p2 ∈ P all ∩
P , which in turn reduces to p1, p2 ∈ P . In other words, when I evaluate Eq(P all)
in the context of transition (q, P, φ, q′), its semantics causes Eq to ignore all
ports in P all \ P . In those cases, thus, Eq(P all) reduces to Eq(P). To homog-
enize data constraints in a constraint automaton, then, I substitute Eq(P all) for
every data constraint with similar properties as the previous φ. For instance,
in Merger3(A,B,C;D), with transitions (q, {A,D},A = D, q), (q, {B,D},B = D, q),
and (q, {C,D},C = D, q), every data constraint has the required properties, and
therefore, homogenization replaces each of them with Eq({A,B,C,D}). Subse-
quently, I can translate the resulting homogenized constraint automaton into a
multiconstraint automaton as explained in the previous subsection and exem-
plified in Figure 8.4.

To formalize homogenization, I restrict myself to normalized constraint au-
tomata (without loss of generality). To determine, then, whether a normal data
constraint ϕ has sufficiently many data equalities to equate all ports in a syn-
chronization constraint P to each other, let function EqTerm construct the edge
relation of a graph, whose every vertex corresponds to a data term in ϕ, and
whose every edge corresponds to a data equality in ϕ.

Definition 70 (equated data terms). EqTerm : DCEq
∃,∧ → 2TERM×TERM denotes

the function defined by the following equations:

EqTerm(a) =

{
{(t1, t2), (t2, t1)} if a = t1 = t2
∅ otherwise

EqTerm(¬a) = ∅
EqTerm(∃x.ϕ) = EqTerm(ϕ)
EqTerm(`1, . . . , `k) = EqTerm(`1) ∪ · · · ∪ EqTerm(`k)

For a normal data constraint ϕ to have sufficiently many data equalities to
equate all ports in P to each other, then, a path from every p1 ∈ P to ev-
ery other p2 ∈ P must exist in EqTerm(ϕ). Equivalently, the transitive clo-
sure of EqTerm(ϕ), denoted by EqTerm(ϕ)+, must contain the pair (p1, p2) for
all p1, p2 ∈ P . Furthermore, as previously explained, ϕ must not contain mem-
ory cell variables, and for simplicity, I also forbid the occurrence of data func-
tions and data relations. Let Term(ϕ) denote the set of data terms that occur
in ϕ, and let OnlyEq(ϕ) hold true iff ϕ contains only data equalities (and no
data relations).

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 256

Definition 71 (total data equalities over sets of ports). Eq : 2P → 2DC
Eq
∃,∧

denotes the function defined by the following equation:

Eq(P) =

ϕ {(p1, p2) | p1, p2 ∈ P} ⊆ EqTerm(ϕ)+

and Term(ϕ) = Free(ϕ) = P
and OnlyEq(ϕ)


I define homogenization in terms of Eq and Eq.

Definition 72 (homogenization). 〈·〉 : AUTOM → AUTOM denotes the function
defined by the following equation:

〈(Q, (P all, P in, P out),M,−→, (q0, µ0))〉 =
(Q, (P all, P in, P out),M, 〈−→〉, (q0, µ0))

where 〈−→〉 denotes the smallest relation induced by the following rules:

q
P,φ−−→ q′ and φ ∈ Eq(P)

q 〈 P,Eq(P
all)−−−−−−→〉 q′

(8.5)
q
P,φ−−→ q′ and φ /∈ Eq(P)

q 〈 P,φ−−→〉 q′
(8.6)

Problematically, if I substitute Eq(P all) for φ in a transition (q, P, φ, q′), I
do not preserve the semantics of φ in the sense of ≡ (i.e., the equivalence re-
lation on data constraints derived from |=): although satisfaction of Eq(P all)
implies satisfaction of φ (i.e., Eq(P all) ⇒ φ), satisfaction of φ does not imply
satisfaction of Eq(P all) (i.e., φ 6⇒ Eq(P all)). For instance, whereas data assign-
ment {A 7→ 0,B 7→ 0,C 7→ 0,D 7→ 0} satisfies both Eq({A,B,C,D}) and A = D,
data assignment {A 7→ 0,B 7→ 1,D 7→ 0} satisfies A = D but not Eq({A,B,C,D}).
To prove the correctness of Definition 72, therefore, I need to develop some
more technical machinery, based on a tighter notion of implication/equivalence
for data constraints and their corresponding notion of behavioral preorder/
congruence for constraint automata.

Definition 73 (tight implication). ⇒t ⊆ 2P×DCEq×DCEq denotes the smallest
relation induced by the following rule:

[[P = P ∩Dom(σ)
and σ |= φ1

]
implies σ |= φ2

]
for all σ

φ1 ⇒t
P φ2

(8.7)

Definition 74 (tight equivalence). ≡t ⊆ 2P×DCEq×DCEq denotes the smallest
relation induced by the following rule:

φ1 ⇒t
P φ2 and φ2 ⇒t

P φ1
φ1 ≡t

P φ2
(8.8)

Revisiting my previous example, Eq({A,B,C,D}) tightly implies A = D under
any set of ports (because implication subsumes tight implication), while A = D

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 257

tightly implies Eq({A,B,C,D}) under {A,D}. Thus, Eq({A,B,C,D}) and A = D
have tightly equivalent semantics under {A,D}. The following lemma general-
izes this example: it states that whenever a data constraint contains sufficiently
many data equalities to equate all ports in P to each other, this data constraint
and data constraint Eq(P all) have tightly equivalent semantics under P .

Lemma 21.
[
φ ∈ Eq(P) and P ⊆ P all

]
implies φ ≡t

P Eq(P all)

Using tight implication, I can formulate a tighter version of the behav-
ioral preorder and the behavioral congruence in Definitions 24 and 25. Un-
der these tighter versions—and as the only difference with respect to Defini-
tions 24 and 25—for one constraint automaton to “tightly simulate” a transition
of another constraint automaton, the data constraint of the simulated transition
must tightly imply the data constraint on the simulating transition under the
synchronization constraint of the simulated transition.

Definition 75 (tight behavioral preorder). �t ⊆ 2Q×Q × AUTOM × AUTOM
denotes the smallest relation induced by the following rule:

R ⊆ Q1 ×Q2 and q01 R q02

and


[[q1 P,φ1−−−→1 q

′
1

and q1 R q2

]
implies φ1 ⇒t

P

∨{
φ2

q2
P,φ2−−−→2 q

′
2

and q′1 R q′2

}]
for all q1, q

′
1, q2, P, φ1


(Q1, (P

all, P in, P out),M,−→1, (q
0
1 , µ

0))
�t
R (Q2, (P

all, P in, P out),M,−→2, (q
0
2 , µ

0))

(8.9)

Definition 76 (tight behavioral congruence). 't ⊆ AUTOM×AUTOM denotes
the smallest relation induced by the following rule:[

a1 �t
R a2 and a2 �t

R-1 a1

]
for some R

a1 't a2
(8.10)

Behavioral congruence subsumes tight behavioral congruence. Moreover, the
following theorems state that tight behavioral congruence implies behavioral
equivalence and that tight behavioral congruence constitutes a congruence un-
der the multiplications previously defined in this thesis.

Theorem 24. a1 't a2 implies a1 ≈ a2

Theorem 25.
[

a1 �∗ a3,a2 �∗ a4 ∈ AUTOM
and a1 't a2 and a3 't a4

]
implies a1 �∗ a3 't a2 �∗ a4

Theorem 26.
[

a1 � a3,a2 � a4 ∈ AUTOM
and a1 't a2 and a3 't a4

]
implies a1 � a3 't a2 � a4

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 258

Theorem 27.
[

a1 � a3,a2 � a4 ∈ AUTOM
and a1 't a2 and a3 't a4

]
implies a1 � a3 't a2 � a4

Using all this tight machinery, I can finally prove the correctness of Defini-
tion 72 of 〈·〉: homogenizing a constraint automaton preserves its behavior.

Theorem 28. a 't 〈a〉

The use of tight behavioral congruence instead of behavioral congruence in
the previous theorem remains inconsequential, because only behavioral equiv-
alence truly matters in the end (i.e., accepted interaction languages), which
Theorem 24 guarantees for tightly behaviorally congruent constraint automata.
Furthermore, because 't denotes a congruence under � by Theorem 27, I can
safely replace every constraint automaton with its homogenized version in an
l-multiplication expression (i.e., d1� · · ·�dm 't 〈d1〉� · · ·�〈dm〉 in Figure 8.7).

Homogenization as presented above has limitations, notably as it does not
support data functions and data relations. The development of a more gen-
eral approach to homogenization of data constraints seems an interesting—
and challenging—piece of future work. One possible approach to such gen-
eralized homogenization consists of the introduction of a “metaquantifier”
whose “metavariables” range over data variables (cf. ∃, whose data variables
range over data). Consider, for instance, transitions (q, {A,C}, incr(A) = C, q′)
and (q, {B,C}, incr(B) = C, q′). Homogenization as defined in Definition 72
leaves these transitions untouched, thereby inhibiting their combination later
on. The metaquantifier-based homogenization that I imagine, in contrast, re-
places the data constraints in these transitions withM[ξ : {A,B}].incr(ξ) = C,
where M denotes the metaquantifier, where ξ denotes a metavariable that
ranges over {A,B}, and where incr(ξ) = C denotes a template (i.e., a data
constraint with metavariables at places where normally data variables occur).
Metaquantification, then, has the following semantics:

σ |=M[ξ : X].θ iff
[[
x ∈ X and σ |= θ{x/ξ}

]
for some x

]
where θ denotes a template and where θ{x/ξ} denotes the syntactic substitu-
tion of data variable x for metavariable ξ. The main challenge with this ap-
proach lies in the inference of metaquantifications, for which I have not found
an elegant solution yet.

8.2 Practice

(I have not yet submitted material in this section for publication.)

Compiler

I extended Lykos with the ability to apply queue-inference as in Figure 8.7,
controllable through flag INFER_QUEUES. When raised, after having computed

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 259

product automata (and after subtraction of internal ports, either semantically
or syntactically depending on the status of the SUBTRACT_SYNTACTICALLY flag),
Lykos homogenizes data constraints, translates constraint automata into mul-
ticonstraint automata, merges transitions with homogenized data constraints,
and modifies the synchronization multiconstraints on the resulting multitran-
sitions to infer indistinguishable ports, all as described in Section 8.1.

To avoid unnecessary queue overhead, Lykos does not inject queues for
singleton sets of indistinguishable ports or for sets with ports of mixed po-
larity. Also, Lykos injects queues only for ports that occupy the same set of
indistinguishable ports in every multitransition. For instance, if one multitran-
sition has a synchronization multiconstraint with Vij = {A,B}, while another
multitransition has a synchronization multiconstraint with Vij = {A,C}, Lykos
injects a queue neither for A and B nor for A and C. Otherwise, whenever a
thread performs an I/O operation on the data structure for A, it has to offer
this data structure into both queues, which subsequently requires additional
machinery to keep the queues consistent (e.g., whenever another thread polls
the data structure for A from one of the queues, it must remove this data struc-
ture also from the other queue). Not injecting queues in these cases avoids
this kind of overhead. More advanced schemes for injecting queues may ex-
ist, though, that alleviate or completely eliminate such overhead. One possible
such scheme, for instance, comprises the organization of queues in conjunc-
tions, or more generally, in BDD-like structures, by combining unitransitions
into (more advanced than in this chapter) multitransitions to further reduce
the cost of checking their enabledness. Investigating such schemes seems an
interesting opportunity for future work.

In contrast to Lykos’s internals, the run-time library requires no significant
modifications, beside the addition of a queue data structure. I implemented
this data structure as a concurrent circular buffer, using a semaphore to con-
trol concurrent accesses. At run-time, every instance of this data structure has
a capacity n, where n equals the size of the set of indistinguishable ports to
which this instance corresponds. Code generated with queue-inference differs
somewhat from code generated without queue-inference, primarily to account
for queues, as already explained in Section 8.1.

Experiments I: Protocols

I repeated the same experiments as in Chapter 7 (and Chapters 4, 5, and 6), gen-
erating code for members of families SyncK, FifoK, Merger, Router, LateAsync-
Merger, EarlyAsyncMerger, OddFibonacci, and Chess with the INFER_QUEUES-flag
raised, but otherwise under the same conditions as in Chapter 7. Figure 8.9
shows the per-family experimental results, averaged over five runs. The solid
lines represent the actual measurements; the dotted lines represent inverse-
proportional growth with respect to k = 1. The purple lines represent the new
results; the green lines represent the results from Chapter 6. For SyncK, FifoK,
OddFibonacci, and Chess, Lykos generated exactly the same code as in Chap-
ter 7—members of these families have no indistinguishable ports to optimize.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 260

—same as in Figure 7.10—

SyncK

—same as in Figure 7.10—

FifoK

Merger Router

LateAsyncMerger EarlyAsyncMerger

—same as in Figure 7.10—

OddFibonacci

—same as in Figure 7.10—

Chess

Figure 8.9: Performance (in number of completed rounds per four minutes) as
a function of the number of Syncs/Fifos/producers/consumers/chess engines,
denoted by k. See the legend in Figure 9.1.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 261

In contrast, for all members of Merger, Router, LateAsyncMerger, and EarlyAsync-
Merger, queue-inference has the desirable effect that the performance or their
generated code becomes constant in the number of producers/consumers.

Figure 8.10 shows per-family speedup charts corresponding to the mea-
surements in Figure 8.9; the dotted lines represent equal performance. Only
for LateAsyncMergers and smaller values of k, code generated without queue-
inference outperforms code generated with queue-inference. In these cases, the
overhead of managing queues outweighs their benefits. In all other cases, code
generated with queue-inference outperforms code generated without queue-
inference, by an increasing margin in k, up to a speedup of 133% for Mergers,
of 120% for Routers, of 8% for LateAsyncMergers, and of 37% for EarlyAsync-
Mergers.

Experiments II: Programs

I repeated the same experiments as in Chapter 7 (and Chapters 4, 5 and 6),
generating code for the NPB benchmarks with the INFER_QUEUES-flag raised,
but otherwise under the same conditions as in Chapter 7.

Figures 8.11–8.18 show performance charts for the FOCAML-to-Java-com-
piled versions of the NPB kernel benchmarks (averaged over five runs), speed-
up charts (with respect to their Java versions by Frumkin et al.), and charts
about cache misses. In the absence of dotted purple lines, the dotted green lines
represent the MasterSlavesInteractionPatternA-based FOCAML-to-Java-compiled
versions of the NPB kernel benchmarks without queue-inference; the solid pur-
ple/green lines represent the MasterSlavesInteractionPatternB-based FOCAML-
to-Java-compiled versions; the dotted black lines represent the Java versions by
Frumkin et al. For the MasterSlavesInteractionPatternA-based FOCAML-to-Java-
compiled versions, Lykos generated exactly the same code as in Chapter 7—
members of these families have no indistinguishable ports to optimize—and
therefore, I have no new results for these versions (i.e., Figures 8.11–8.18 have
no dotted purple lines).

I make the following main observations about these experimental results:

• Overall, the FOCAML-to-Java-compiled versions of the NPB kernel bench-
marks with queue-inference outperform the FOCAML-to-Java-compiled
versions without queue-inference (purple lines versus green lines).

• Overall, the Java versions of the NPB kernel benchmarks by Frumkin
et al. and the FOCAML-to-Java-compiled versions with queue-inference
have roughly similar performance: in some cases the former outperform
the latter, while in other cases, the latter outperform the former (e.g., in
NPB-FT for smaller values of k; in NPB-MG and NPB-CG for larger values
of k).

• In cases such as for NPB-MG and NPB-CG, whose FOCAML-to-Java-com-
piled versions outperform their Java versions for larger values of k, those

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 262

—same as in Figure 7.11—

SyncK

—same as in Figure 7.11—

FifoK

Merger Router

LateAsyncMerger EarlyAsyncMerger

—same as in Figure 7.11—

OddFibonacci

—same as in Figure 7.11—

Chess

Figure 8.10: Speedup (relative to compiler-generated code in Chapter 6) as a
function of the number of Syncs/Fifos/producers/consumers/chess engines,
denoted by k. See the legend in Figure 9.1.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 263

NPB-FT, class W (performance) NPB-FT, class W (speedups)

NPB-FT, class A (performance) NPB-FT, class A (speedups)

NPB-FT, class B (performance) NPB-FT, class B (speedups)

NPB-FT, class C (performance) NPB-FT, class C (speedups)

Figure 8.11: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 264

NPB-FT, class W (L1-dcache misses) NPB-FT, class W (dTLB misses)

NPB-FT, class A (L1-dcache misses) NPB-FT, class A (dTLB misses)

NPB-FT, class B (L1-dcache misses) NPB-FT, class B (dTLB misses)

NPB-FT, class C (L1-dcache misses) NPB-FT, class C (dTLB misses)

Figure 8.12: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 265

NPB-MG, class W (performance) NPB-MG, class W (speedups)

NPB-MG, class A (performance) NPB-MG, class A (speedups)

NPB-MG, class B (performance) NPB-MG, class B (speedups)

NPB-MG, class C (performance) NPB-MG, class C (speedups)

Figure 8.13: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 266

NPB-MG, class W (L1-dcache misses) NPB-MG, class W (dTLB misses)

NPB-MG, class A (L1-dcache misses) NPB-MG, class A (dTLB misses)

NPB-MG, class B (L1-dcache misses) NPB-MG, class B (dTLB misses)

NPB-MG, class C (L1-dcache misses) NPB-MG, class C (dTLB misses)

Figure 8.14: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 267

NPB-CG, class W (performance) NPB-CG, class W (speedups)

NPB-CG, class A (performance) NPB-CG, class A (speedups)

NPB-CG, class B (performance) NPB-CG, class B (speedups)

NPB-CG, class C (performance) NPB-CG, class C (speedups)

Figure 8.15: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 268

NPB-CG, class W (L1-dcache misses) NPB-CG, class W (dTLB misses)

NPB-CG, class A (L1-dcache misses) NPB-CG, class A (dTLB misses)

NPB-CG, class B (L1-dcache misses) NPB-CG, class B (dTLB misses)

NPB-CG, class C (L1-dcache misses) NPB-CG, class C (dTLB misses)

Figure 8.16: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 269

NPB-IS, class W (performance) NPB-IS, class W (speedups)

NPB-IS, class A (performance) NPB-IS, class A (speedups)

NPB-IS, class B (performance) NPB-IS, class B (speedups)

NPB-IS, class C (performance) NPB-IS, class C (speedups)

Figure 8.17: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 270

NPB-IS, class W (L1-dcache misses) NPB-IS, class W (dTLB misses)

NPB-IS, class A (L1-dcache misses) NPB-IS, class A (dTLB misses)

NPB-IS, class B (L1-dcache misses) NPB-IS, class B (dTLB misses)

NPB-IS, class C (L1-dcache misses) NPB-IS, class C (dTLB misses)

Figure 8.18: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 271

former versions actually incur substantially more cache misses. Assum-
ing that these cache misses occur uniformly over the entire run time (re-
call from Chapter 5 that I had no choice but to measure cache misses
from start to end instead of only during the interval of my time measure-
ments, which make the numbers of cache misses reported here only an
approximation), this suggests that the Java virtual machine needs to exe-
cute substantially fewer instructions for those FOCAML-to-Java-compiled
versions than for those Java versions.

• An indication of improved performance and scalability, the FOCAML-to-
Java-compiled versions of NPB-MG and NPB-CG outperform their Java
versions not only in the larger problem size classes but also in the smaller
problem size class W (improved performance), for larger values of k (im-
proved scalability).

• As in Chapters 5, 6, and 7, differences in numbers of cache misses explain
the perhaps confusing results for NPB-IS.

Figures 8.19–8.24 show performance charts for the FOCAML-to-Java-com-
piled versions of the NPB application benchmarks (averaged over five runs),
speedup charts (with respect to their Java versions by Frumkin et al.), and
charts about cache misses. The lines have the same meaning as in the figures
with experimental results for the NPB kernel benchmarks. Recall from Fig-
ure 5.12 that NPB-BT and NPB-LU do not support more than 22 and 31 slaves,
for which reason I have no measurements beyond k = 16 in class W for those
benchmarks. In the same figure, note that NPB-BT, NPB-SP, and NPB-LU sup-
port at most 62 workers in class A. For that reason, as in Chapter 7, I compiled
the FOCAML versions of those benchmarks for k = 62 instead of k = 64. Es-
sentially, the same observations apply here as for the previous experimental
results of the NPB kernel benchmarks.

This concludes the NPB experiments that I report on in this thesis. To
summarize my main findings, the series of experiments in Chapters 5, 6, 7,
and 8 show that: (i) without any improvements, the FOCAML-to-Java-com-
piled versions perform substantially worse than the Java versions by Frumkin
et al., (ii) the performance of these FOCAML-to-Java-compiled versions im-
proves with every new improvement I introduce, (iii) with all these improve-
ments in place, FOCAML-to-Java-compiled versions perform roughly as well—
sometimes slightly worse, sometimes slightly better—than the Java versions
by Frumkin et al., and (iv) memory and cache usage comprises an important
future point of attention, as I state also in Chapter 9.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 272

NPB-BT, class W (performance) NPB-BT, class W (speedups)

NPB-BT, class A (performance) NPB-BT, class A (speedups)

Figure 8.19: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-BT, class W (L1-dcache misses) NPB-BT, class W (dTLB misses)

NPB-BT, class A (L1-dcache misses) NPB-BT, class A (dTLB misses)

Figure 8.20: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 273

NPB-SP, class W (performance) NPB-SP, class W (speedups)

NPB-SP, class A (performance) NPB-SP, class A (speedups)

Figure 8.21: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-SP, class W (L1-dcache misses) NPB-SP, class W (dTLB misses)

NPB-SP, class A (L1-dcache misses) NPB-SP, class A (dTLB misses)

Figure 8.22: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

CHAPTER 8. IMPROVEMENT IV: QUEUE-INFERENCE 274

NPB-LU, class W (performance) NPB-LU, class W (speedups)

NPB-LU, class A (performance) NPB-LU, class A (speedups)

Figure 8.23: Left, performance (in seconds of run-time) as a function of the
number of slaves, denoted by k. Right, speedup as a function of k. See the
legend in Figure 9.4.

NPB-LU, class W (L1-dcache misses) NPB-LU, class W (dTLB misses)

NPB-LU, class A (L1-dcache misses) NPB-LU, class A (dTLB misses)

Figure 8.24: Left, L1-dcache misses as a function of the number of slaves, de-
noted by k. Right, dTLB misses as a function of k. See the legend in Figure 9.4.

Chapter 9

Conclusion

9.1 Summary

In the early 2000s, hardware manufacturers ran into a number of obstacles that
prevented them from directing the still exponential increase in transistors to-
ward faster unicore processors [ABC+06]. In 2005, this trend led to the introduc-
tion of multicore processors, capable of processing multiple instruction streams
in parallel. As a consequence, software engineers needed to start writing paral-
lel programs. For optimal performance, regardless of how many cores a proces-
sor consists of—24 today or 1024 tomorrow—the same parallel program should
divide instructions as evenly as possible over all its available cores. Conceptu-
ally, every parallel program consists of workers, which perform the actual com-
putation, and protocols, which state the rules of interaction that workers must
abide by. To achieve good performance on multicore processors, by Amdahl’s
Law [Amd67], software engineers should minimize the inherently sequential
fraction of computation performed by workers. Additionally, and of increas-
ing importance as this sequential fraction decreases [YMG14], software engi-
neers should minimize the amount of resources spent on enforcing protocols.
[Section 1.1]

A decade after the advent of multicore processors, many software engineers
still use largely the same abstractions for parallel programming in general, and
implementing protocols in particular, as forty years ago: threads, shared mem-
ory, and concurrency constructs for mutual exclusion [Dij02, Hoa74]. Even
when programming with higher-level abstractions, such as thread pools [DM98,
GPB+06, LSB09, Rei07, Rob13] or actors [AVWW96, Hal12, HO09], the imple-
mentation of nontrivial protocols often requires software engineers to use these
relatively old techniques [TDJ13]. However, implementing protocols by manu-
ally managing shared memory with concurrency constructs for mutual exclu-
sion has three major issues: (i) it complicates correctly implementing protocols,
because it complicates reasoning about programs’ behavior, (ii) it complicates
implementing protocols with high performance, because it fails to preserve

275

CHAPTER 9. CONCLUSION 276

crucial intention information that compilers need for automatically optimizing
interaction code, and (iii) it complicates implementing protocols in a modu-
lar fashion, because it neither enforces nor encourages syntactic separation of
computation code from interaction code. One way to resolve these issues con-
sists of imposing another level of abstraction on top of shared memory, thereby
eliminating the need for concurrency constructs for mutual exclusion for im-
plementing protocols. Incarnations of this solution include transactional mem-
ory [HM93, Kni86, ST97] and algorithmic skeletons [Col88, GL10], but both these
solutions have their limitations. [Section 1.2]

In another incarnation of this solution, software engineers implement their
protocols at a new, high, intention-expressing level of abstraction, which provides
constructs for implementing protocols while preserving as much information
about software engineers’ intention behind those implementations as possi-
ble. Not only should this make correctly implementing protocols easier for
software engineers (thereby resolving the first issue, above), but it also makes
automatically optimizing their resulting protocol implementations easier for
compilers (thereby resolving the second issue). Domain-specific languages (DSL)
for interaction seem a particularly well-suited vehicle for providing software
engineers such intention-expressing levels of abstraction, through intuitive and
protocol-tailored syntax. DSLs for interaction also force software engineers to
syntactically separate protocol implementations from worker implementations
(thereby resolving the third issue), and they naturally complement existing
general-purpose languages (GPL): software engineers can continue implement-
ing their workers in a GPL, but their protocols in a DSL, after which a DSL
compiler translates those DSL-coded protocol implementations into GPL code.
Together, hand-written GPL-coded worker implementations and compiler-gen-
erated GPL-coded protocol implementations constitute full GPL-coded parallel
programs, whose grand integration can happen automatically, by the DSL com-
piler, completely transparent to software engineers. [Section 1.3]

In the programming model for one concrete instance of the previous ap-
proach, every worker has access to a number of conceptual ports. Through such
ports, workers can interact with their “environment”, by performing block-
ing I/O operations on those ports. Crucially, however, a worker never knows
which other workers constitute its environment—every worker sees only its
own ports and cannot directly address other workers or their ports. Instead,
whenever a worker performs an I/O operation, a separate entity responsible
for enforcing the protocols among workers determines whether this I/O oper-
ation may immediately complete—perhaps synchronously with already pend-
ing I/O operations performed by other workers—and if so, how data flow be-
tween ports; if not, the worker becomes suspended and remains suspended until
its I/O operation completes at some future time. A true intention-expressing
DSL for interaction, then, must provide constructs for expressing “a set of rules
that control the way data is [exchanged through ports]”, which, in fact, consti-
tutes a dictionary definition of “protocol” (i.e., a generally accepted interpre-
tation, and closest approximation of, the intention that people have when they
use the word “protocol”). [Section 1.3]

CHAPTER 9. CONCLUSION 277

Every set of atomic data-flows between ports yields one instance of interaction
among workers. A simple formal model of instances of interaction, then, con-
sists of functions from ports (involved in an instance of interaction) to data
(observable on those ports in that instance). An infinite sequence of such func-
tions subsequently models one chain of interaction admitted by a protocol; a set
of such infinite sequences models all that protocol’s admissible infinite chains.
Interpreting the latter kind of sets (and their elements) as automata-theoretic
languages (and infinite words), a concise formal model of protocols consists of
automata over such languages. Essentially, every transition of such an automa-
ton represents one rule “that control[s] the way data is [exchanged through
ports]”, and as such, this kind of automata truly captures the intention behind
the word “protocol”. [Section 2.1]

In one rather naive automaton model of protocols, transitions explicitly
carry functions from ports to data as their labels. Often, however, this gives
rise to infinitely many transitions. Therefore, in a more advanced automaton
model of protocols—constraint automata—transition labels symbolically repre-
sent (possibly infinite) sets of functions from ports to data as two constraints: a
synchronization constraint, which consists of a set of ports, and a data constraint,
which consists of a first-order logic formula. Conceptually, a synchronization
constraint specifies which ports synchronize in an admissible instance of inter-
action (i.e., through which ports data synchronously flow); a data constraint
specifies the particular data observable on those ports. By definition, behav-
iorally equivalent constraint automata accept the same language (i.e., their corre-
sponding protocols admit exactly the same chains of interaction). Analogously,
behaviorally congruent constraint automata also accept the same language, but
moreover, they also have coincident transition relations (in a bisimulation kind
of way [BSAR06, Mil89]). Although only behavioral equivalence matters in
the end, behavioral congruence often simplifies proofs and reasoning about
constraint automata. While individual constraint automata model individual
protocols, their multiplication and subtraction model protocol composition (i.e.,
superimposing different sets “of rules that control the way data is [exchanged
through ports]”) and abstraction (i.e., removing ports not of interest). [Sec-
tion 2.1]

A Java library for constraint automata allows software engineers to repre-
sent constraint automata, their multiplication, and their subtraction in Java, as
nonexecutable data structures. [Section 2.2]

Because constraint automata model (the intention behind) protocols, they con-
stitute a well-suited semantic domain for an intention-expressing DSL for in-
teraction. As in any kind of engineering, rather than providing software engi-
neers syntactic constructs for directly constructing constraint automata, a more
scalable approach consists of providing software engineers constructs for rep-
resenting multiplication expressions of constraint automata, thereby exploiting
their compositionality. In a graphical syntax for this approach, software engi-
neers draw multiplication expressions as data-flow diagrams. This graphical
syntax essentially yields Reo [Arb04, Arb11], an existing graphical language

CHAPTER 9. CONCLUSION 278

for compositional construction of protocols. In an alternative textual syntax,
called FOCAML, software engineers write multiplication expressions as declar-
ative pieces of code. Reo and FOCAML have complementary use cases: Reo
visualizes data-flows, which makes seeing—at a glance—which rules of inter-
action a protocol enforces easier, while FOCAML has more expressive power in
terms of parametrization. [Section 3.1]

The FOCAML editor/parser/interpreter plugin for Eclipse 4.x enables soft-
ware engineers to write FOCAML programs. This plugin can also translate Reo
diagrams, drawn using an existing collection of plugins for Reo development,
into FOCAML code. [Section 3.2]

To compile FOCAML code (and, using the Reo-to-FOCAML translator, also Reo
diagrams) into GPL code to get a full GPL-coded program, several approaches
exist. In the Distributed Approach, a FOCAML compiler translates every prim-
itive constraint automaton in a multiplication expression into its own thread.
These threads use an expensive consensus algorithm to compose their local
behavior into consistent global behavior, effectively computing their product
at run-time. In the Centralized Approach, in contrast, a FOCAML compiler first
computes the product of the primitive constraint automata in a multiplication
expression, then subtracts all the resulting internal ports (i.e., ports that serve as
an input port in one constraint automaton and as an output port in another one,
which nobody can access anymore in their product), and finally translates the
resulting composite constraint automaton into a single thread. [Section 4.1]

GPL code generated from FOCAML code under the Distributed Approach
exhibits maximal parallelism (with respect to the primitive constraint automata
in a multiplication expression) and, therefore, achieves relatively high through-
put. The expensive consensus algorithm required in the Distributed Approach,
however, inflicts serious overhead. Code generated under the Distributed Ap-
proach, therefore, suffers from relatively high latency. In contrast, code gen-
erated under the Centralized Approach exhibits maximal sequentiality and,
therefore, suffers from relatively low throughput. By avoiding the need for ex-
pensive consensus as in the Distributed Approach, however, the Centralized
Approach eliminates a source of serious overhead. Code generated under the
Centralized Approach, therefore, achieves relatively low latency. [Section 4.1]

Without additional compiler flags, the FOCAML-to-Java compiler plugin for
Eclipse 4.x compiles FOCAML code into Java code under the Centralized Ap-
proach. Built on top of the FOCAML editor/parser/interpreter plugin, it also
supports compiling Reo into Java. [Section 4.2]

The Centralized Approach has two scalability problems, one of which mani-
fests at compile-time, the other of which manifests at run-time. At compile-
time, computing the product of all primitive constraint automata in a multi-
plication expression may give rise to state space explosion; at run-time, the sin-
gle thread for a computed product may give rise to oversequentialization. In
oversequentialized compiler-generated code for a constraint automaton, two
independent transitions, originating from two independent primitive constraint

CHAPTER 9. CONCLUSION 279

automata in a multiplication expression (i.e., constraint automata that share no
ports), cannot fire simultaneously but only consecutively, thereby unjustifiably
reducing throughput. To solve these two problems, while avoiding the need
for expensive consensus as in the Distributed Approach, a FOCAML compiler
can apply the Hybrid Approach. This third approach sits somewhere between
the Distributed Approach and the Centralized Approach, by serializing useless
parallelism (i.e., the kind of parallelism that requires heavy synchronization) to
preserve only useful parallelism (i.e., the kind of parallelism that requires light
synchronization). [Section 5.1]

In the Hybrid Approach, a FOCAML compiler first distributes the primi-
tive constraint automata in a multiplication expression over disjoint subsets.
Subsequently, as in the Centralized Approach, the compiler computes per-sub-
set products by multiplying, for every subset, the constraint automata in that
subset (and by subsequently subtracting internal ports from those per-subset
products). Finally, as in the Distributed Approach, the compiler translates the
resulting per-subset composite constraint automata into as many threads. Con-
trasting the Distributed Approach, however, these threads require only a cheap
consensus algorithm for synchronizing their behavior. [Section 5.1]

Just as the expensive consensus algorithm required in the Distributed Ap-
proach, the cheap consensus algorithm required in the Hybrid Approach cor-
responds to run-time multiplication of constraint automata, but under a new
definition of multiplication. This new multiplication, always called l(ocal)-mul-
tiplication, generally does not coincide with the old multiplication, sometimes
called g(lobal)-multiplication. For instance, l-multiplication does not exhibit as-
sociativity, whereas g-multiplication does. Only g-multiplication matters in
the end: a FOCAML compiler always starts with a g-multiplication expression,
which forms an absolute reference point for compilation soundness. In the
worst case, then, the threads generated in the Hybrid Approach do not be-
have as their g-multiplication expression (because they use the cheap consen-
sus algorithm, which corresponds to l-multiplication), making their behavior
unsound. However, by carefully partitioning the primitive constraint automata
in a g-multiplication expression into subsets (i.e., the first step in the Hybrid
Approach), a FOCAML compiler can guarantee that the behavior of their corre-
sponding threads corresponds to g-multiplication, even though those threads
use the cheap consensus algorithm. In Reo terminology, such partitioning
corresponds to computing synchronous and asynchronous regions [CP12, JCP12,
JCP16, PCdVA11, PCdVA12, Pro11]. [Section 5.1]

With compiler flag PARTITION raised, the FOCAML-to-Java compiler plugin
for Eclipse 4.x compiles FOCAML code into Java code under the Hybrid Ap-
proach. [Section 5.2]

One problem that the Hybrid Approach, as the Centralized approach, still suf-
fers from concerns the size of data constraints, symptomized by the fact that
the neutral element for multiplication negatively affects performance of compi-
ler-generated code: multiplying this neutral element any number of times with
other constraint automata behaviorally makes no difference, but performance-

CHAPTER 9. CONCLUSION 280

wise, it does. This problem results from the definition of subtraction, which a
FOCAML compiler uses for removing internal ports (from per-subset products
in the Hybrid Approach or from the full product in the Centralized Approach).
In particular, the original definition of subtraction removes ports from data
constraints in constraint automata only semantically, by enveloping each of its
data constraints in an existential quantification for the port-to-remove. By do-
ing so, subtracting a port from a constraint automaton actually increases the
sizes of its data constraints. Larger data constraints generally require more
computational resources to handle at run-time, which requires constraint solv-
ing over a finite discrete domain. This, then, explains why the neutral element
for multiplication negatively affects performance: it yields equivalent, yet sub-
stantially larger, data constraints. [Section 6.1]

Syntactic subtraction, a new subtraction on constraint automata, avoids this
problem. Instead of enveloping data constraints in existential quantifications,
it tries to find a suitable—semantically neutral—substitute for the port-to-re-
move in every data constraint. If such substitutes exist, syntactic subtraction
subsequently replaces every occurrence of the port-to-remove in a data con-
straint with its substitute in that data constraint. By subsequently removing
obvious tautologies, syntactic subtraction actually decreases data constraint
sizes. The previous problem with the neutral element for multiplication then
also goes away. [Section 6.1]

Syntactic subtraction works effectively only when applied to normalized con-
straint automata. Normalization, applicable to every well-formed constraint au-
tomaton, therefore constitutes an important operation. [Section 6.1]

With compiler flag SUBTRACT_SYNTACTICALLY raised, the FOCAML-to-Java
compiler plugin for Eclipse 4.x compiles FOCAML code into Java code using
syntactic subtraction (instead of semantic subtraction). [Section 6.2]

Notwithstanding syntactic subtraction, handling data constraints with gener-
al-purpose constraint solving techniques inflicts a significant amount of over-
head at run-time—not only overhead proportional to the size of a data con-
straint but also a constant overhead for preparing, making, and processing the
result of every constraint solver invocation—especially for relatively simple
data constraints. Many such data constraints, however, essentially constitute
declarative specifications of data-flows between ports. When provided such
specifications, then, most—if not all–software engineers would probably just
write direct imperative implementations instead of indirect invocations to a
constraint solver. [Section 7.1]

Commandification, an operation on constraint automata, aims to automate
just that: it translates every data constraint in a constraint automaton into a
piece of imperative code, called a data command, in a behavior-preserving way
(proved by equipping data commands with a transition system semantics, no-
tions of partial/total correctness, and Hoare logic [AdBO09, Hoa69]). The con-
struction of data commands for data constraints uses hypergraph representa-
tions of the data-flows represented by those data constraints, paying special
attention to cycles in such hypergraphs. [Section 7.1]

CHAPTER 9. CONCLUSION 281

With compiler flag COMMANDIFY raised, the FOCAML-to-Java compiler plu-
gin for Eclipse 4.x compiles FOCAML code into Java code using commandifica-
tion. [Section 7.2]

To fire any transition in a constraint automaton at run-time, its corresponding
thread first needs to check all transitions out of the current state for enabled-
ness (regardless of whether this thread came about through the Distributed,
Centralized, or Hybrid Approach). This requires O(k) time, where k denotes
the number of transitions. Often, the number of transitions increases at least
linearly as the number of workers increases. Consequently, often, the time re-
quired to check transitions for enabledness also increases at least linearly as
the number of workers increases. This may cause the performance of compi-
ler-generated code to scale poorly. [Section 8.1]

Queue-inference aims to solve this problem in cases where the transitions to
check for enabledness differ from each other in a “well-behaved way”. For in-
stance, suppose that all k transitions involve only two ports: the same output
port but a different input port in each transition. Originally, to check these tran-
sitions for enabledness, a thread checks both of the two ports involved in each
of these transition for a pending I/O operation. But now, suppose that when-
ever a worker performs an I/O operation on a port, it also offers that port into
a special queue. To simultaneously check all k transitions for enabledness, then, a
thread needs to check only this queue for nonemptiness (in addition to check-
ing the output port for a pending I/O operation); if so, this thread knows that
at least one of the k transitions can fire. Consequently, k checks for enabledness
collapse into just one. Automata-theoretically, such collapsing corresponds to
combining multiple transitions into a single transition with a special transition
label, to express that this combined transition has an efficient queue-based im-
plementation. With queue-inference, then, a FOCAML compiler first analyzes
constraint automata for transitions amenable to combination, subsequently ac-
tually combines such transitions, and finally generates code with queues for
combined transitions. [Section 8.1]

With compiler flag INFER_QUEUES raised, the FOCAML-to-Java compiler plu-
gin for Eclipse 4.x compiles FOCAML code into Java code using queue-infer-
ence. [Section 8.2]

Figures 9.2 and 9.3 show experimental results (absolute performance and rel-
ative speedups) for eight families of constraint automata, each parametric in a
natural number k. Blue lines represent code generated under the Centralized
Approach without further improvements; red lines represent code generated
under the Hybrid Approach; yellow lines represent code generated under the
Hybrid Approach, plus syntactic subtraction; green lines represent code gener-
ated under the Hybrid Approach, plus syntactic subtraction, plus commandi-
fication; purple lines represent code generated under the Hybrid Approach,
plus syntactic subtraction, plus commandification, plus queue-inference. If
a chart excludes one of these lines, applying the improvement to which this
missing line corresponds does not actually change the generated code (i.e., the

CHAPTER 9. CONCLUSION 282

 Centralized Approach [Chapter 4]
 Hybrid Approach [Chapter 5]
 + syntactic subtraction [Chapter 6]
 + commandification [Chapter 7]
 + queue-inference [Chapter 8]

Legend

• In performance charts, every solid colored line represents the performance
of compiler-generated code, in millions of rounds (more = better).

• In performance charts, every dotted colored line represents inverse-pro-
portional growth relative to its solid colored line at k = 1.

• In speedup charts in Chapters 4–8, every solid black line represents the
speedup of compiler-generated code in the current chapter relative to
the dotted black line in the same chart.

• In every speedup chart in Chapters 4–8, every dotted black line represents
the speedup of compiler-generated code in the previous chapter relative
to itself (i.e., 0% speedup, i.e., a baseline).

• In speedup charts in Chapter 9, every solid colored line whose color corre-
sponds to Chapter i represents the speedup of compiler-generated code
in Chapter i relative to the dotted colored line in the same chart.

• In speedup charts in Chapter 9, every dotted colored line whose color
corresponds to Chapter i represents the speedup of compiler-generated
code in Chapter i relative to itself (i.e., 0% speedup, i.e., a baseline).

Description

Figure 9.1: Legend for charts about protocol experiments

improvement has no effect). [Sections 4.2, 5.2, 6.2, and 7.2]
Figures 9.2 and 9.3 show that starting from the Centralized Approach, over-

all, performance gets better with every successive improvement, while soft-
ware engineers no longer need to worry about manually applying these kinds
of optimizations to their protocol implementations. For instance, in the Hy-
brid Approach, only the compiler decides about how to parallelize protocol
implementations, completely transparent to software engineers. Orthogonally,
syntactic subtraction automatically simplifies data-flows, essentially by elimi-
nating intermediate vertices in a data-flow graph, while commandification lin-
earizes declarative specifications of data-flows into efficient imperative imple-
mentations, as carefully ordered sequences of instructions. Perhaps most ad-
vanced, with queue-inference, the compiler can—all by itself—identify cases

CHAPTER 9. CONCLUSION 283

SyncK FifoK

Merger Router

LateAsyncMerger EarlyAsyncMerger

OddFibonacci Chess

Figure 9.2: Performance (in number of completed rounds per four minutes) as
a function of the number of Syncs/Fifos/producers/consumers/chess engines,
denoted by k. See also Figure 9.1.

CHAPTER 9. CONCLUSION 284

SyncK FifoK

Merger Router

LateAsyncMerger EarlyAsyncMerger

OddFibonacci Chess

Figure 9.3: Speedup (relative to compiler-generated code in Chapter 4 and, for
FifoK and EarlyAsyncMerger, relative to compiler-generated code in Chapter 5)
as a function of the number of Syncs/Fifos/producers/consumers/chess en-
gines, denoted by k. See the legend in Figure 9.1.

CHAPTER 9. CONCLUSION 285

 Centralized Approach [Chapter 4]
 Hybrid Approach [Chapter 5]
 + syntactic subtraction [Chapter 6]
 + commandification [Chapter 7]
 + queue-inference [Chapter 8]

Legend

• In performance/L1-dcache misses/dTLB misses charts, every solid
or dotted colored line represents the performance/L1-dcache misses/
dTLB misses of MasterSlavesInteractionPatternB-based or MasterSlavesIn-
teractionPatternA-based FOCAML-to-Java-compiled versions of the NPB
benchmarks, in seconds/billions of misses/billions of misses (fewer =
better).

• In performance/L1-dcache misses/dTLB misses charts, every dotted black
line represents the performance/L1-dcache misses/dTLB misses of the
Java versions of the NPB benchmarks by Frumkin et al. [FSJY03], in sec-
onds/billions of misses/billions of misses (fewer = better).

• In speedup charts, every solid or dotted colored line represents the speedup
of MasterSlavesInteractionPatternB-based or MasterSlavesInteractionPat-
ternA-based FOCAML-to-Java-compiled versions of the NPB benchmarks
relative to the dotted black line in the same chart.

• In speedup charts, every dotted black line represents the speedup of the
Java versions of the NPB benchmarks by Frumkin et al. [FSJY03] relative
to itself (i.e., 0% speedup, i.e., a baseline).

Description

Figure 9.4: Legend for program experiment charts

where the use of queue data structures yields more scalable protocol imple-
mentations than individual variables would yield. Relieving software engi-
neers from the responsibility of carrying out such optimizations—which, one
way or the other, they themselves would have to carry out otherwise—sim-
plifies their development of not only correct but also efficient protocol sub-
programs. And in each of these optimizations, the intention information cap-
tured by constraint automata plays an essential role in their automation, both
at design-time (defining and modeling the optimization) and at compile-time
(testing the applicability of the optimization for a given input). [Section 1.3]

Figures 9.5–9.11 show experimental results for FOCAML-to-Java-compiled
versions of NASA’s well-established NAS Parallel Benchmarks (NPB) [BBB+91,
BBB+94], including experimental results for the Java versions of these bench-

CHAPTER 9. CONCLUSION 286

NPB-FT, class W (performance) NPB-FT, class W (speedups)

NPB-FT, class A (performance) NPB-FT, class A (speedups)

NPB-FT, class B (performance) NPB-FT, class B (speedups)

NPB-FT, class C (performance) NPB-FT, class C (speedups)

Figure 9.5: Left, performance (in seconds) as a function of the number of slaves,
denoted by k. Right, speedup as a function of k. See also Figure 9.4.

CHAPTER 9. CONCLUSION 287

NPB-MG, class W (performance) NPB-MG, class W (speedups)

NPB-MG, class A (performance) NPB-MG, class A (speedups)

NPB-MG, class B (performance) NPB-MG, class B (speedups)

NPB-MG, class C (performance) NPB-MG, class C (speedups)

Figure 9.6: Left, performance (in seconds) as a function of the number of slaves,
denoted by k. Right, speedup as a function of k. See also Figure 9.4.

CHAPTER 9. CONCLUSION 288

NPB-CG, class W (performance) NPB-CG, class W (speedups)

NPB-CG, class A (performance) NPB-CG, class A (speedups)

NPB-CG, class B (performance) NPB-CG, class B (speedups)

NPB-CG, class C (performance) NPB-CG, class C (speedups)

Figure 9.7: Left, performance (in seconds) as a function of the number of slaves,
denoted by k. Right, speedup as a function of k. See also Figure 9.4.

CHAPTER 9. CONCLUSION 289

NPB-IS, class W (performance) NPB-IS, class W (speedups)

NPB-IS, class A (performance) NPB-IS, class A (speedups)

NPB-IS, class B (performance) NPB-IS, class B (speedups)

NPB-IS, class C (performance) NPB-IS, class C (speedups)

Figure 9.8: Left, performance (in seconds) as a function of the number of slaves,
denoted by k. Right, speedup as a function of k. See also Figure 9.4.

CHAPTER 9. CONCLUSION 290

NPB-BT, class W (performance) NPB-BT, class W (speedups)

NPB-BT, class A (performance) NPB-BT, class A (speedups)

Figure 9.9: Left, performance (in seconds) as a function of the number of slaves,
denoted by k. Right, speedup as a function of k. See also Figure 9.4.

NPB-SP, class W (performance) NPB-SP, class W (speedups)

NPB-SP, class A (performance) NPB-SP, class A (speedups)

Figure 9.10: Left, performance (in seconds) as a function of the number of
slaves, denoted by k. Right, speedup as a function of k. See also Figure 9.4.

CHAPTER 9. CONCLUSION 291

NPB-LU, class W (performance) NPB-LU, class W (speedups)

NPB-LU, class A (performance) NPB-LU, class A (speedups)

Figure 9.11: Left, performance (in seconds) as a function of the number of
slaves, denoted by k. Right, speedup as a function of k. See also Figure 9.4.

marks by Frumkin et al. [FSJY02, FSJY03]. In this realistic and extensive case
study consisting of full Java programs instead of protocols in isolation, overall,
the FOCAML-to-Java-compiled versions perform better with every successive
improvement. Moreover, with all improvements in place, the FOCAML-to-Ja-
va-compiled versions perform roughly as well as the Java versions, sometimes
a bit slower, but sometimes also a bit faster. If anything, these promising results
indicate the practical feasibility of using a high, intention-expressing level of
abstraction for implementing protocols. [Sections 4.2, 5.2, 6.2, and 7.2]

Although the current FOCAML compiler targets Java, neither its compiler-
generated code nor the corresponding run-time library uses any Java-specific
features. Combined with the fact that neither the Hybrid Approach, nor syn-
tactic subtraction, nor commandification, nor queue-inference—all formalized
and proven correct at the higher level of constraint automata instead of at the
lower level of GPL code—depend in any way on Java, any GPL that supports
some form of threading and mutual exclusion may serve as a target language
for FOCAML compilation. For instance, for his MSc thesis [vdN15], Van de Nes
developed a compiler that generates C code. [Section 4.2]

CHAPTER 9. CONCLUSION 292

9.2 Future Work

This thesis covers only the bare essentials of FOCAML compilation, leaving
plenty of room for interesting and challenging future work. I mentioned some
of the minor opportunities (i.e., smaller projects, perhaps good for a single pub-
lication) throughout the text. In this final section, I want to discuss three major
opportunities (i.e., larger projects, probably good for multiple publications), in
no particular order.

• Further compilation

Explicit user-threading APIs (as defined in Chapter 1) expose just enough
details of the underlying hardware—but no more—for software engi-
neers to get reasonable performance with a reasonable amount of ef-
fort. Perhaps if such APIs would expose more details, expert software
engineers would squeeze even more performance out of the hardware;
average software engineers, however, would require a disproportionate
amount of effort to write programs even with just reasonable perfor-
mance. Consequently, explicit user-threading APIs became the minimal
abstraction that software engineers use to write programs, in general.

In my specific context of FOCAML compilation, however, it seems less
obvious that also compiler-generated code should invoke explicit user-
threading APIs. After all, as I need to build a compiler only once anyway,
it may very well pay off to put extra effort in generating code below ex-
plicit user-threading APIs, and perhaps even below the operating system’s
kernel threads, directly managing cores, to further improve performance.

In one extreme incarnation of this approach, a FOCAML compiler gener-
ates assembly code. This, however, requires a lot of effort and assembly
expertise from the designers of that compiler. Moreover, portability may
suffer. A better option, therefore, seems the use of portable frameworks
that give more control over cores than traditional explicit user-threading
APIs do but not at the cost of having to generate assembly code.

With Halle and Arbab, I did preliminary work in this direction [JHA14a,
JHA14b], based on the Proto Runtime Toolkit (PRT) [Hal11, HC13], devel-
oped by Halle for his PhD thesis. PRT consists, among other components,
of a run-time system for C code and APIs. On its start-up, the PRT run-
time system seizes control of the available cores from the operating sys-
tem, thereby gaining full responsibility for scheduling instructions onto
those cores. These cores remain hidden from software engineers, though,
through an API for managing PRT threads and a separate API for impos-
ing custom scheduling policies. PRT-aware C code invokes the former
API to instantiate units of parallelism, which the PRT run-time system
subsequently schedules onto cores, without interference by the operat-
ing system. Bypassing the operating system in this way (including its
rather heavy-weight scheduler), should result in better performance.

CHAPTER 9. CONCLUSION 293

Performance Speedup

Figure 9.12: Left, performance (in thousands of cycles per put/get pair) as a
function of the number of producers, denoted by k. Right, speedup relative
to the dotted line as a function of k. Solid lines represent the performance/
speedup of PRT-based compiler-generated code; dotted lines represent the
performance/speedup of carefully optimized C+Pthreads-based hand-written
code.

With Halle and Arbab, I performed preliminary experiments with a pre-
liminary Reo-to-PRT compiler, and the preliminary results look encour-
aging [JHA14a, JHA14b]. For instance, Figure 9.12 shows the perfor-
mance and speedup of two versions of a producers/consumer protocol
for an increasing number of producers. For now, it remains unclear ex-
actly which factors contribute to these promising results: perhaps PRT fa-
cilitates more efficient management of shared data structures (notably,
queues) and/or context-switching between threads. Future research in
this direction should target both the development of a more mature com-
piler and the conduction of more serious experiments to better under-
stand and quantify the benefits of this approach.

• Memory-centric compilation
In this thesis, I focused on the “algorithmic aspects” of FOCAML com-
pilation, attempting to minimize the number of hardware instructions
derived from compiler-generated code to reduce run time. As the ex-
perimental results for the NPB suite show, however, memory and caches
seriously affect the run time of programs as well. Optimizing memory
and cache usage constitutes a research field by itself, and for scientists
working on those and related topics, this observation will not come as a
surprise.

Having built a foundation for the algorithmic aspects of FOCAML com-
pilation, I firmly believe that future work should target improvements
for optimizing memory and cache usage. Of course, at least code gener-
ated by the FOCAML-to-Java compiler should benefit from such improve-
ments. However, I also foresee the need for a FOCAML-to-C compiler,
to gain full control over memory allocation and make analyzing cache
behavior easier, both of which the Java virtual machine obscures.

CHAPTER 9. CONCLUSION 294

• Type-aware compilation
In this thesis, I considered only untyped I/O operations: using the Java
API for ports in Figure 1.9, every put sends an Object, while every get
receives an Object. This untypedness makes worker code not only inel-
egant because of the many required instanceof checks and typecasts but
also fragile: software engineers must know the type(s) of the objects re-
turned by a get for every such invocation, and if they make a mistake,
this goes unnoticed until their program crashes at run-time.

Invented in the 1990s, session types seem a very suitable candidate for ex-
tending FOCAML with types [HVK98]. By annotating every port in a syn-
chronization constraint in a constraint automaton with a type, this con-
straint automaton effectively becomes a global session type, amenable to
projection on individual ports (as with multiparty session types [HYC08,
CHY12]). The compiler can subsequently check the resulting per-port
local session types against the actual usage of those ports in worker sub-
programs, to statically detect typing errors.

Incidentally, with Santini and Arbab, I briefly sketched a different ap-
plication of combining constraint automata with session types, namely
projection of unprojectable choreographies [JSA15].

Also incidentally, Ng et al. recently developed code generation technol-
ogy for parametrized multiparty session types [NCY15], not unlike the
work reported on in this thesis: using the work of Ng et al., software engi-
neers implement protocols as global session types, after which a compiler
generates MPI code and merges this code with existing computation code
for workers. Though similar, the kinds of protocols supported by the DSL
for interaction of Ng et al., called Pabble [NY14], seems limited compared
to what FOCAML supports. For instance, FOCAML allows mixing syn-
chronous and asynchronous interaction, which Pabble does not. Also,
FOCAML has richer support for (functions and relations on) data. In con-
trast, Pabble better supports run-time parametrization, which FOCAML
does not support whatsoever.

In any case, the similarities between constraint automata and session
types seem profound, and regardless of any practical motives, they re-
quire a better theoretical understanding. Future work in this direction
should therefore target the development of constraint automata as global
session types, both in theory and in practice.

The experimental results in this thesis show that compiler-generated code for
intention-expressing protocol implementations can have performance compa-
rable to hand-written code. I do not—and cannot—claim to achieve similar re-
sults in all possible scenarios, and much more experimentation and real-world
case studies need to follow this initial piece of work. Nevertheless, by demon-
strating promising first results, this thesis provides a justification for pursuing
such future work. And that, perhaps, comprises the most valuable contribu-
tion of this thesis.

Abstract

English

In the early 2000s, hardware manufacturers shifted their attention from manu-
facturing faster—yet purely sequential—unicore processors to manufacturing
slower—yet increasingly parallel—multicore processors. In the wake of this
shift, parallel programming became essential for writing scalable programs
on general hardware. Conceptually, every parallel program consists of work-
ers, which implement primary units of sequential computation, and proto-
cols, which implement the rules of interaction that workers must abide by.
As programmers have been writing sequential code for decades, programming
workers poses no new fundamental challenges. What is new—and notoriously
difficult—is programming of protocols.

In this thesis, I study an approach to protocol programming where pro-
grammers implement their workers in an existing general-purpose language
(GPL), while they implement their protocols in a complementary domain-spe-
cific language (DSL). DSLs for protocols enable programmers to express in-
teraction among workers at a higher level of abstraction than the level of ab-
straction supported by today’s GPLs, thereby addressing a number of protocol
programming issues with today’s GPLs. In particular, in this thesis, I develop
a DSL for protocols based on a theory of formal automata and their languages.
The specific automata that I consider, called constraint automata, have transi-
tion labels with a richer structure than alphabet symbols in classical automata
theory. Exactly these richer transition labels make constraint automata suitable
for modeling protocols.

Constraint automata constitute the (denotational) semantics of the DSL pre-
sented in this thesis. On top of this semantics, I use two complementary syn-
taxes: an existing graphical syntax (based on the coordination language Reo)
and a novel textual syntax. The main contribution of this thesis, then, con-
sists of a compiler and four of its optimizations, all formalized and proven
correct at the semantic level of constraint automata, using bisimulation. In ad-
dition to these theoretical contributions, I also present an implementation of
the compiler and its optimizations, which supports Java as the complementary
GPL, as plugins for Eclipse. Nothing in the theory developed in this thesis de-
pends on Java, though; any language that supports some form of threading

295

ABSTRACT 296

and mutual exclusion may serve as a target for compilation. To demonstrate
the practical feasibility of the GPL+DSL approach to protocol programming,
I study the performance of the implemented compiler and its optimizations
through a number of experiments, including the Java version of the NAS Paral-
lel Benchmarks. The experimental results in these benchmarks show that, with
all four optimizations in place, compiler-generated protocol code can compete
with hand-crafted protocol code.

A more extensive summary of this thesis appears in Chapter 9.

Nederlands

Sinds het begin van dit millennium hebben hardwarefabrikanten hun aan-
dacht verschoven van het produceren van snellere—doch puur sequentiële—
unicore processors (“éénkernige processoren”) naar het produceren van lang-
zamere—doch in toenemende mate parallelle—multicore processors (“meer-
kernige processoren”). Als een gevolg van deze verschuiving is parallel pro-
grammeren een essentieel onderdeel geworden van het schrijven van schaal-
bare programma’s voor algemene hardware. Conceptueel gezien bestaat elk
parallel programma uit arbeiders, die primair sequentiële berekeningen uitvo-
eren, en protocollen, die de interactieregels vastleggen waar arbeiders zich aan
moeten conformeren. Aangezien programmeurs al decennialang sequentiële
code schrijven zorgt het programmeren van arbeiders voor weinig nieuwe fun-
damentele uitdagingen. Wat wel nieuw is—en berucht in haar complexiteit—is
het programmeren van protocollen.

In dit proefschrift onderzoek ik een methode voor het programmeren van
protocollen waarin programmeurs arbeiders implementeren in een bestaande
general-purpose language (“algemeen-gebruik taal”), afgekort GPL, terwijl zij
protocollen implementeren in een domain-specific language (“domein-speci-
fieke taal”), afgekort DSL. DSLs voor protocollen stellen programmeurs in staat
interactie tussen arbeiders op een hoger abstractieniveau uit te drukken dan
het abstractieniveau dat vandaag de dag wordt ondersteund door GPLs. Hi-
erdoor word een aantal protocolprogrammeerproblemen van de huidige GPLs
aangepakt. Om precies te zijn ontwikkel ik in dit proefschrift een DSL voor
protocollen gebaseerd op een theorie van formele automaten en hun talen. De
specieke automaten waar ik naar kijk, genaamd constraint automata ("beperk-
ingsautomaten"), hebben transitielabels met een rijkere structuur dan alfabet-
symbolen in de klassieke automatentheorie. Precies deze rijkere transitielabels
maken constraint automata geschikt voor het modelleren van protocollen.

Constraint automata vormen de (denotationele) semantiek van de DSL die
ik presenteer in dit proefschrift. Bovenop deze semantiek gebruik ik twee
complementaire syntaxes: een bestaande grafische syntax (gebaseerd op de
coordinatietaal Reo) en een nieuwe tekstuele syntax. De hoofdbijdrage van dit
proefschrift bestaat uit een compiler en vier van haar optimalisaties, die ik alle-
maal formaliseer en correct bewijs op het semantische niveau van constraint
automata door gebruik te maken van bisimulatie. Naast deze theoretische bij-

ABSTRACT 297

dragen presenteer ik ook een implementatie van de compiler en haar optimal-
isaties, die bestaat uit plugins voor Eclipse. Hoewel deze implementatie enkel
Java ondersteunt als de complementaire GPL is niets aan de theorie in dit proef-
schrift Java-specifiek. Elke taal die threading en mutual exclusion (“wederzi-
jdse uitsluiting”) ondersteunt kan dienen als compilatiedoel. Om de praktische
haalbaarheid van de GPL+DSL-aanpak te demonstreren bestudeer ik ten slotte
de prestaties van de geïmplementeerde compiler en haar optimalisaties in een
aantal experimenten, waaronder de Java-versie van de NAS Parallel Bench-
marks. De resultaten van deze experimenten laten zien dat, wanneer alle vier
optimalisaties in stelling worden gebracht, door de compiler gegenereerde pro-
tocolcode zich kan meten met handgeschreven protocolcode.

Hoofdstuk 9 geeft een uitgebreidere samenvatting van dit proefschrift.

Curriculum Vitae

Born in 1987 in Seoul, Republic of Korea

Education

• 1999–2005: Gymnasium, Gertrudiscollege Roosendaal

• 2005–2006: Propedeuse, Technische Universiteit Eindhoven

• 2006–2008: BSc (cum laude), Technische Universiteit Delft

• 2008–2010: MSc (cum laude), Technische Universiteit Delft

Positions

• 2010–2015: Doctoral candidate, Centrum Wiskunde & Informatica

• 2010–2015: Doctoral candidate, Universiteit Leiden

• 2015–...: Lecturer, Open Universiteit

• 2015–...: Guest researcher, Radboud Universiteit Nijmegen

299

Bibliography

[ABC+06] Krste Asanovic, Ras Bodik, Bryan Catanzaro, Joseph Gebis, Parry
Husbands, Kurt Keutzer, David Patterson, William Plishker, John
Shalf, Samuel Williams, and Katherine Yelick. The Landscape
of Parallel Computing: A View from Berkeley. Technical Report
UCB/EECS-2006-183, University of California, Berkeley, 2006.

(Pages 1 and 275.)

[ABD+09] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny,
Kurt Keutzer, John Kubiatowicz, Nelson Morgan, David Patter-
son, Koushik Sen, John Wawrzynek, David Wessel, and Katherine
Yelick. A View of the Parallel Computing Landscape. Communica-
tions of the ACM, 52(10):56–67, 2009.

doi:10.1145/1562764.1562783.

(Page 17.)

[ABdB+05] Farhad Arbab, Christel Baier, Frank de Boer, Jan Rutten, and
Marjan Sirjani. Synthesis of Reo Circuits for Implementation of
Component-Connector Automata Specifications. In COORDINA-
TION 2005, volume 3454 of LNCS, pages 236–251. Springer, 2005.

doi:10.1007/11417019_16.

(Page 140.)

[ABdBR07] Farhad Arbab, Christel Baier, Frank de Boer, and Jan Rutten. Mod-
els and temporal logical specifications for timed component con-
nectors. Software & Systems Modeling, 6(1):59–82, 2007.

doi:10.1007/s10270-006-0009-9.

(Page 31.)

[ACH05] Siva Anantharaman, Jing Chen, and Gaétan Hains. A Syn-
chronous Process Calculus for Service Costs. In SEFM 2005, pages
435–444. IEEE, 2005.

doi:10.1109/SEFM.2005.6.

(Page 147.)

301

http://dx.doi.org/10.1145/1562764.1562783
http://dx.doi.org/10.1007/11417019_16
http://dx.doi.org/10.1007/s10270-006-0009-9
http://dx.doi.org/10.1109/SEFM.2005.6

BIBLIOGRAPHY 302

[AdBO09] Krzysztof Apt, Frank de Boer, and Ernst-Rüdiger Olderog. While
Programs. In Verification of Sequential and Concurrent Programs,
Texts in Computer Science, chapter 3, pages 55–126. Springer, 3rd
edition, 2009.

doi:10.1007/978-1-84882-745-5_3.

(Pages 204, 205, 206, 207, and 280.)

[AFF01] Giorgio Ausiello, Paolo Franciosa, and Daniele Frigioni. Directed
Hypergraphs: Problems, Algorithmic Results, and a Novel Decre-
mental Approach. In ICTCS 2001, volume 2202 of LNCS, pages
312–328. Springer, 2001.

doi:10.1007/3-540-45446-2_20.

(Page 216.)

[AHS93] Farhad Arbab, Ivan Herman, and Per Spilling. An overview of
Manifold and its implementation. Concurrency: Practice and Expe-
rience, 5(1):23–70, 1993.

doi:10.1002/cpe.4330050103.

(Page 14.)

[AKM08] Farhad Arbab, Natallia Kokash, and Sun Meng. Towards Us-
ing Reo for Compliance-Aware Business Process Modeling. In
Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA 2008), volume 17 of CCIS, pages 108–123. Springer, 2008.

doi:10.1007/978-3-540-88479-8_9.

(Page 60.)

[AM08] Farhad Arbab and Sun Meng. Synthesis of Connectors from
Scenario-Based Interaction Specifications. In CBSE 2008, volume
5282 of LNCS, pages 114–129. Springer, 2008.

doi:10.1007/978-3-540-87891-9_8.

(Page 60.)

[Amd67] Gene Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilities. In AFIPS SJCC 1967, pages
483–485. ACM, 1967.

doi:10.1145/1465482.1465560.

(Pages 3 and 275.)

[Apt09a] Krzysztof Apt. Introduction. In Principles of Constraint Program-
ming, chapter 1, pages 1–7. Cambridge University Press, 2nd edi-
tion, 2009.

(Pages 115 and 217.)

http://dx.doi.org/10.1007/978-1-84882-745-5_3
http://dx.doi.org/10.1007/3-540-45446-2_20
http://dx.doi.org/10.1002/cpe.4330050103
http://dx.doi.org/10.1007/978-3-540-88479-8_9
http://dx.doi.org/10.1007/978-3-540-87891-9_8
http://dx.doi.org/10.1145/1465482.1465560

BIBLIOGRAPHY 303

[Apt09b] Krzysztof Apt. Some Complete Constraint Solvers. In Principles of
Constraint Programming, chapter 4, pages 82–134. Cambridge Uni-
versity Press, 2nd edition, 2009.

(Page 217.)

[AR03] Farhad Arbab and Jan Rutten. A Coinductive Calculus of Com-
ponent Connectors. In WADT 2002, volume 2755 of LNCS, pages
34–55. Springer, 2003.

doi:10.1007/978-3-540-40020-2_2.

(Page 31.)

[Arb96] Farhad Arbab. The IWIM Model for Coordination of Concurrent
Activities. In COORDINATION 1996, volume 1061 of LNCS, pages
34–56. Springer, 1996.

doi:10.1007/3-540-61052-9_38.

(Page 14.)

[Arb98] Farhad Arbab. What Do You Mean, Coordination? Nieuwsbrief van
de Nederlandse Vereniging voor Theoretische Informatica, pages 10–21,
1998.

(Page 14.)

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for com-
ponent composition. Mathematical Structures in Computer Science,
14(3):329–366, 2004.

doi:10.1017/S0960129504004153.

(Pages 18, 22, 51, 58, 60, and 277.)

[Arb05] Farhad Arbab. Abstract Behavior Types: a foundation model for
components and their composition. Science of Computer Program-
ming, 55(1–3):3–52, 2005.

doi:10.1016/j.scico.2004.05.010.

(Page 31.)

[Arb11] Farhad Arbab. Puff, The Magic Protocol. In Talcott Festschrift, vol-
ume 7000 of LNCS, pages 169–206. Springer, 2011.

doi:10.1007/978-3-642-24933-4_9.

(Pages 10, 13, 58, 60, and 277.)

[Atk10] Alistair Atkinson. A Dynamic, Decentralised Search Algorithm
for Efficient Data Retrieval in a Distributed Tuple Space. In Aus-
PDC 2010, pages 21–30. ACM, 2010.

(Page 141.)

http://dx.doi.org/10.1007/978-3-540-40020-2_2
http://dx.doi.org/10.1007/3-540-61052-9_38
http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1016/j.scico.2004.05.010
http://dx.doi.org/10.1007/978-3-642-24933-4_9

BIBLIOGRAPHY 304

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Wil-
liams. Concurrent Programming. In Concurrent Programming in
ERLANG, chapter 5, pages 67–84. Prentice Hall, 2nd edition, 1996.

(Pages 5 and 275.)

[BB15] Eduard Baranov and Simon Bliudze. Offer semantics: Achieving
compositionality, flattening and full expressiveness for the glue
operators in BIP. Science of Computer Programming, 109:2–35, 2015.

doi:10.1016/j.scico.2015.05.011.

(Page 247.)

[BBB+91] David Bailey, Eric Barszcz, John Barton, David Browning, Rus-
sell Carter, Leonardo Dagum, Rod Fatoohi, Paul Frederick-
son, Thomas Lasinski, Robert Schreiber, Horst Simon, Venkat
Venkatakrishnan, and Sisira Weeratunga. The Nas Parallel Bench-
marks. International Journal of High Performance Computing Applica-
tions, 5(3):63–73, 1991.

doi:10.1177/109434209100500306.

(Pages 23, 80, and 285.)

[BBB+94] David Bailey, Eric Barszcz, John Barton, David Browning, Rus-
sell Carter, Leonardo Dagum, Rod Fatoohi, Paul Frederick-
son, Thomas Lasinski, Robert Schreiber, Horst Simon, Venkat
Venkatakrishnan, and Sisira Weeratunga. The Nas Parallel Bench-
marks. Technical Report RNR-94-007, NASA, 1994.

(Pages 23, 79, 80, 81, and 285.)

[BBJ+12] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quil-
beuf, and Joseph Sifakis. A framework for automated distributed
implementation of component-based models. Distributed Comput-
ing, 25(5):383–409, 2012.

doi:10.1007/s00446-012-0168-6.

(Page 141.)

[BBK+10] Christel Baier, Tobias Blechmann, Joachim Klein, Sascha Klüppel-
holz, and Wolfgang Leister. Design and Verification of Systems
with Exogenous Coordination Using Vereofy. In ISoLA 2010, vol-
ume 6416 of LNCS, pages 97–111. Springer, 2010.

doi:10.1007/978-3-642-16561-0_15.

(Pages 31, 38, and 69.)

[BBKK09a] Christel Baier, Tobias Blechmann, Joachim Klein, and Sascha
Klüppelholz. A Uniform Framework for Modeling and Verifying
Components and Connectors. In COORDINATION 2009, volume
5521 of LNCS, pages 247–267. Springer, 2009.

http://dx.doi.org/10.1016/j.scico.2015.05.011
http://dx.doi.org/10.1177/109434209100500306
http://dx.doi.org/10.1007/s00446-012-0168-6
http://dx.doi.org/10.1007/978-3-642-16561-0_15

BIBLIOGRAPHY 305

doi:10.1007/978-3-642-02053-7_13.
(Pages 31, 38, and 69.)

[BBKK09b] Christel Baier, Tobias Blechmann, Joachim Klein, and Sascha
Klüppelholz. Formal Verification for Components and Connec-
tors. In FMCO 2008, volume 5751 of LNCS, pages 82–101. Springer,
2009.
doi:10.1007/978-3-642-04167-9_5.
(Pages 31 and 69.)

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Het-
erogeneous Real-time Components in BIP. In SEFM 2006, pages
3–12. IEEE, 2006.
doi:10.1109/SEFM.2006.27.
(Pages 14 and 141.)

[BCS09] Marcello Bonsangue, Dave Clarke, and Alexandra Silva. Au-
tomata for Context-Dependent Connectors. In COORDINATION
2009, volume 5521 of LNCS, pages 184–203. Springer, 2009.
doi:10.1007/978-3-642-02053-7_10.
(Page 246.)

[BCS12] Marcello Bonsangue, Dave Clarke, and Alexandra Silva. A model
of context-dependent component connectors. Science of Computer
Programming, 77(66):685–706, 2012.
doi:10.1016/j.scico.2011.01.006.
(Page 246.)

[Ben06] Mordechai Ben-Ari. Semaphores. In Principles of Concurrent
and Distributed Programming, chapter 6, pages 107–144. Addison-
Wesley, 2nd edition, 2006.
(Page 15.)

[Bjo93] Robert Bjornson. Linda on Distributed Memory Multiprocessors. PhD
thesis, Yale University, 1993.
(Page 141.)

[BKK10] Tobias Blechmann, Joachim Klein, and Sascha Klüppelholz. Vere-
ofy V1.1 - User Manual. Technische Universität Dresden, 2010.
(Pages 72 and 73.)

[BKK11] Christel Baier, Joachim Klein, and Sascha Klüppelholz. Modeling
and Verification of Components and Connectors. In SFM 2011,
volume 6659 of LNCS, pages 114–147. Springer, 2011.
doi:10.1007/978-3-642-21455-4_4.
(Pages 31 and 69.)

http://dx.doi.org/10.1007/978-3-642-02053-7_13
http://dx.doi.org/10.1007/978-3-642-04167-9_5
http://dx.doi.org/10.1109/SEFM.2006.27
http://dx.doi.org/10.1007/978-3-642-02053-7_10
http://dx.doi.org/10.1016/j.scico.2011.01.006
http://dx.doi.org/10.1007/978-3-642-21455-4_4

BIBLIOGRAPHY 306

[BKK14] Christel Baier, Joachim Klein, and Sascha Klüppelholz. Synthe-
sis of Reo Connectors for Strategies and Controllers. Fundamenta
Informatica, 130(1):1–20, 2014.

doi:10.3233/FI-2014-980.

(Page 140.)

[BMFL02] Christian Bessière, Pedro Meseguer, Eugene Freuder, and Javier
Larrosa. On forward checking for non-binary constraint satisfac-
tion. Artificial Intelligence, 141(1–2):205–224, 2002.

doi:10.1016/S0004-3702(02)00263-1.

(Pages 115 and 217.)

[BO05] Miguel Bugalho and Arlindo Oliveira. Inference of regular lan-
guages using state merging algorithms with search. Pattern Recog-
nition, 38(9):1457–1467, 2005.

doi:10.1016/j.patcog.2004.03.027.

(Page 247.)

[BS08] Simon Bliudze and Joseph Sifakis. The Algebra of Connectors—
Structuring Interaction in BIP. IEEE Transactions on Computers,
57(10):1315–1330, 2008.

doi:10.1109/TC.2008.26.

(Pages 38, 61, and 247.)

[BS10] Simon Bliudze and Joseph Sifakis. Causal semantics for the alge-
bra of connectors. Formal Methods in System Design, 36(2):167–194,
2010.

doi:10.1007/s10703-010-0091-z.

(Pages 38, 61, and 247.)

[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Mod-
eling component connectors in Reo by constraint automata. Sci-
ence of Computer Programming, 61(2):75–113, 2006.

doi:10.1016/j.scico.2005.10.008.

(Pages 22, 38, 41, 48, 60, and 277.)

[BST89] Henri Bal, Jennifer Steiner, and Andrew Tanenbaum. Program-
ming Languages for Distributed Computing Systems. ACM Com-
puting Surveys, 21(3):261–322, 1989.

doi:10.1145/72551.72552.

(Page 95.)

http://dx.doi.org/10.3233/FI-2014-980
http://dx.doi.org/10.1016/S0004-3702(02)00263-1
http://dx.doi.org/10.1016/j.patcog.2004.03.027
http://dx.doi.org/10.1109/TC.2008.26
http://dx.doi.org/10.1007/s10703-010-0091-z
http://dx.doi.org/10.1016/j.scico.2005.10.008
http://dx.doi.org/10.1145/72551.72552

BIBLIOGRAPHY 307

[BV08] Jasper Berendsen and Frits Vaandrager. Compositional Abstrac-
tion in Real-Time Model Checking. In FORMATS 2008, volume
5215 of LNCS, pages 233–249. Springer, 2008.

doi:10.1007/978-3-540-85778-5_17.

(Page 147.)

[BvG87] Jos Baeten and Rob van Glabbeek. Merge and Termination in Pro-
cess Algebra. In FST&TCS 1987, volume 287 of LNCS, pages 153–
172. Springer, 1987.

doi:10.1007/3-540-18625-5_49.

(Page 147.)

[CBM+08] Călin Caşcaval, Colin Blundell, Maged Michael, Harold Cain,
Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software
Transactional Memory: Why is it Only a Research Toy? Communi-
cations of the ACM, 51(11):40–46, 2008.

doi:10.1145/1400214.1400228.

(Page 16.)

[CCA07] Dave Clarke, David Costa, and Farhad Arbab. Connector colour-
ing I: Synchronisation and context dependency. Science of Com-
puter Programming, 66(3):205–225, 2007.

doi:10.1016/j.scico.2007.01.009.

(Pages 99 and 137.)

[CHY12] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
Communication-Centered Programming for Web Services. ACM
Transactions on Programming Languages and Systems, 34(2):8·1–8·78,
2012.

doi:10.1145/2220365.2220367.

(Page 294.)

[CKA10] Behnaz Changizi, Natallia Kokash, and Farhad Arbab. A Unified
Toolset for Business Process Model Formalization. In Preproceed-
ings of FESCA 2010, pages 147–156, 2010.

(Page 60.)

[CL00] Sung-Eun Choi and Christopher Lewis. A Study of Common Pit-
falls in Simple Multi-Threaded Programs. ACM SIGCSE Bulletin
(SIGCSE 2000), 32(3):325–329, 2000.

doi:10.1145/330908.331879.

(Page 10.)

http://dx.doi.org/10.1007/978-3-540-85778-5_17
http://dx.doi.org/10.1007/3-540-18625-5_49
http://dx.doi.org/10.1145/1400214.1400228
http://dx.doi.org/10.1016/j.scico.2007.01.009
http://dx.doi.org/10.1145/2220365.2220367
http://dx.doi.org/10.1145/330908.331879

BIBLIOGRAPHY 308

[CO94] Rafael Carrasco and Jose Oncina. Learning stochastic regular
grammars by means of a state merging method. In ICGI 1994,
volume 862 of LNCS, pages 139–152. Springer, 1994.

doi:10.1007/3-540-58473-0_144.

(Page 247.)

[Col88] Murray Cole. Algorithmic Skeletons: a Structured Approach to the
Management of Parallel Computation. PhD thesis, University of Ed-
inburgh, 1988.

(Pages 16 and 276.)

[CP12] Dave Clarke and José Proença. Partial Connector Colouring.
In COORDINATION 2012, volume 7274 of LNCS, pages 59–73.
Springer, 2012.

doi:10.1007/978-3-642-30829-1_5.

(Pages 99, 137, and 279.)

[CPLA11] Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab.
Channel-based coordination via constraint satisfaction. Science of
Computer Programming, 76(8):681–710, 2011.

doi:10.1016/j.scico.2010.05.004.

(Pages 38, 99, and 220.)

[Dij82] Edsger Dijkstra. On the Role of Scientific Thought. In Selected Writ-
ings on Computing: A Personal Perspective, Texts and Monographs
in Computer Science, chapter EWD447, pages 60–66. Springer,
1982.

doi:10.1007/978-1-4612-5695-3_12.

(Page 14.)

[Dij02] Edsger Dijkstra. Cooperating Sequential Processes. In The Ori-
gin of Concurrent Programming, chapter 1, pages 65–138. Springer,
2002.

doi:10.1007/978-1-4757-3472-0_2.

(Pages 6 and 275.)

[DJAB15] Kasper Dokter, Sung-Shik Jongmans, Farhad Arbab, and Simon
Bliudze. Relating BIP and Reo. In ICE 2015, volume 189 of EPTCS,
pages 3–20. CoRR, 2015.

doi:10.4204/EPTCS.189.3.

(Page 61.)

http://dx.doi.org/10.1007/3-540-58473-0_144
http://dx.doi.org/10.1007/978-3-642-30829-1_5
http://dx.doi.org/10.1016/j.scico.2010.05.004
http://dx.doi.org/10.1007/978-1-4612-5695-3_12
http://dx.doi.org/10.1007/978-1-4757-3472-0_2
http://dx.doi.org/10.4204/EPTCS.189.3

BIBLIOGRAPHY 309

[DM98] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry
Standard API for Shared-Memory Programming. IEEE Computa-
tional Science & Engineering, 5(1):46–55, 1998.

doi:10.1109/99.660313.

(Pages 5 and 275.)

[FGY94] Ming-Dong Feng, Yao-Qing Gao, and Chung-Kwong Yuen:. Dis-
tributed Linda Tuplespace Algorithms and Implementations. In
Parallel Processing: CONPAR 94 – VAPP VI, volume 854 of LNCS,
pages 581–592. Springer, 1994.

doi:10.1007/3-540-58430-7_51.

(Pages 140 and 141.)

[FSJY02] Michael Frumkin, Matthew Schultz, Haoqiang Jin, and Jerry Yan.
Implementation of the NAS Parallel Benchmarks in Java. Techni-
cal Report NAS-02-009, NASA, 2002.

(Pages 80, 82, 83, and 291.)

[FSJY03] Michael Frumkin, Matthew Schultz, Haoqiang Jin, and Jerry Yan.
Performance and Scalability of the NAS Parallel Benchmarks in
Java. In IPDPS 2003, pages 139–44. IEEE, 2003.

doi:10.1109/IPDPS.2003.1213267.

(Pages 80, 285, and 291.)

[FWY96] Ming-Dong Feng, Weng-Fai Wong, and Chung-Kwong Yuen.
BaLinda Lisp: Design and implementation. Computer Languages,
22(4):205–214, 1996.

doi:10.1016/S0096-0551(96)00016-1.

(Page 140.)

[Gel85] David Gelernter. Generative Communication in Linda. Transac-
tions on Programming Languages and Systems, 7(1):80–112, 1985.

doi:10.1145/2363.2433.

(Page 140.)

[GL02] Dimitra Giannakopoulou and Flavio Lerda. From States to Transi-
tions: Improving Translation of LTL Formulae to Büchi Automata.
In FORTE 2002, volume 2529 of LNCS, pages 308–326. Springer,
2002.

doi:10.1007/3-540-36135-9_20.

(Page 247.)

http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1007/3-540-58430-7_51
http://dx.doi.org/10.1109/IPDPS.2003.1213267
http://dx.doi.org/10.1016/S0096-0551(96)00016-1
http://dx.doi.org/10.1145/2363.2433
http://dx.doi.org/10.1007/3-540-36135-9_20

BIBLIOGRAPHY 310

[GL10] Horacio González-Vélez and Mario Leyton. A survey of algorith-
mic skeleton frameworks: high-level structured parallel program-
ming enablers. Software: Practice and Experience, 40(12):1135–1160,
2010.

doi:10.1002/spe.1026.

(Pages 17 and 276.)

[GLPN93] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang
Nguyen. Directed hypergraphs and applications. Discrete Applied
Mathematics, 42(2–3):177–201, 1993.

doi:10.1016/0166-218X(93)90045-P.

(Page 213.)

[GPB+06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David
Holmes, and Doug Lea. Task Execution. In Java Concurrency in
Practice, chapter 6, pages 113–134. Addison-Wesley, 2006.

(Pages 5 and 275.)

[Hal11] Sean Halle. A Study of Frameworks for Collectively Meeting the Pro-
ductivity, Portability, and Adoptability Goals for Parallel Software. PhD
thesis, University of California, Santa Cruz, 2011.

(Page 292.)

[Hal12] Philipp Haller. On the Integration of the Actor Model in Main-
stream Technologies. In AGERE! 2012, pages 1–6. ACM, 2012.

doi:10.1145/2414639.2414641.

(Pages 5 and 275.)

[HC13] Sean Halle and Albert Cohen. A Mutable Hardware Abstraction
to Replace Threads. In LCPC 2011, volume 7146 of LNCS, pages
185–202. Springer, 2013.

doi:10.1007/978-3-642-36036-7_13.

(Page 292.)

[Her14] Maurice Herlihy. The Multicore Transformation. Ubiquity,
2014(9):1–9, 2014.

doi:10.1145/2618405.

(Page 16.)

[HM93] Maurice Herlihy and Eliot Moss. Transactional Memory: Archi-
tectural Support for Lock-Free Data Structures. ACM SIGARCH
Computer Architecture News (ISCA 1993), 21(2):289–300, 1993.

doi:10.1145/173682.165164.

(Pages 16 and 276.)

http://dx.doi.org/10.1002/spe.1026
http://dx.doi.org/10.1016/0166-218X(93)90045-P
http://dx.doi.org/10.1145/2414639.2414641
http://dx.doi.org/10.1007/978-3-642-36036-7_13
http://dx.doi.org/10.1145/2618405
http://dx.doi.org/10.1145/173682.165164

BIBLIOGRAPHY 311

[HMU06] John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Pushdown
Automata. In Introduction to Automata Theory, Languages and Com-
putation, chapter 6, pages 225–260. Addison-Wesley, 3rd edition,
2006.

(Page 39.)

[HO09] Philipp Haller and Martin Odersky. Scala Actors: Unifying
thread-based and event-based programming. Theoretical Computer
Science, 410(2–3):202–220, 2009.

doi:10.1016/j.tcs.2008.09.019.

(Pages 5 and 275.)

[Hoa69] Tony Hoare. An Axiomatic Basis for Computer Programming.
Communications of the ACM, 12(10):576–580, 1969.

doi:10.1145/363235.363259.

(Pages 205 and 280.)

[Hoa74] Tony Hoare. Monitors: An Operating System Structuring Con-
cept. Communications of the ACM, 17(10):549–557, 1974.

doi:10.1145/355620.361161.

(Pages 6 and 275.)

[HP11a] John Hennessy and David Patterson. Instruction-Level Paral-
lelism and Its Exploitation. In Computer Architecture: A Quantita-
tive Approach, chapter 3, pages 145–259. Elsevier, 5th edition, 2011.

(Page 1.)

[HP11b] John Hennessy and David Patterson. Memory Hierarchy Design.
In Computer Architecture: A Quantitative Approach, chapter 2, pages
69–144. Elsevier, 5th edition, 2011.

(Page 165.)

[HP11c] John Hennessy and David Patterson. Vector Processors. In Com-
puter Architecture: A Quantitative Approach, chapter G, pages G·1–
G·34. Elsevier, 5th edition, 2011.

(Page 80.)

[HVK98] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language
Primitives and Type Discipline for Structured Communication-
Based Programming. In ESOP 1998, volume 1381 of LNCS, pages
122–138. Springer, 1998.

doi:10.1007/BFb0053567.

(Page 294.)

http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/355620.361161
http://dx.doi.org/10.1007/BFb0053567

BIBLIOGRAPHY 312

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multi-
party Asynchronous Session Types. ACM SIGPLAN Notices (POPL
2008), 43(1):273–284, 2008.

doi:10.1145/1328897.1328472.

(Page 294.)

[IBC11] Mohammad Izadi, Marcello Bonsangue, and Dave Clarke. Büchi
automata for modeling component connectors. Software & Systems
Modeling, 10(2):183–200, 2011.

doi:10.1007/s10270-010-0152-1.

(Page 31.)

[Iza11] Mohammad Izadi. Model Checking of Component Connectors. PhD
thesis, Universiteit Leiden, 2011.

hdl:1887/18189.

(Page 31.)

[JA11] Sung-Shik Jongmans and Farhad Arbab. Correlating Semantic
Models of Reo Connectors: Connector Coloring and Constraint
Automata. In ICE 2011, volume 59 of EPTCS, pages 84–103. CoRR,
2011.

doi:10.4204/EPTCS.59.8.

(Page 25.)

[JA12] Sung-Shik Jongmans and Farhad Arbab. Overview of Thirty Se-
mantic Formalisms for Reo. Scientific Annals of Computer Science,
22(1):201–251, 2012.

doi:10.7561/SACS.2012.1.201.

(Pages 25 and 60.)

[JA13a] Sung-Shik Jongmans and Farhad Arbab. Global Consensus
through Local Synchronization. In Advances in Service-Oriented
and Cloud Computing (FOCLASA 2013), volume 393 of CCIS, pages
174–188. Springer, 2013.

doi:10.1007/978-3-642-45364-9_15.

(Pages 25 and 127.)

[JA13b] Sung-Shik Jongmans and Farhad Arbab. Modularizing and Spec-
ifying Protocols among Threads. In PLACES 2012, volume 109 of
EPTCS, pages 34–45. CoRR, 2013.

doi:10.4204/EPTCS.109.6.

(Pages 25 and 95.)

http://dx.doi.org/10.1145/1328897.1328472
http://dx.doi.org/10.1007/s10270-010-0152-1
http://hdl.handle.net/1887/18189
http://dx.doi.org/10.4204/EPTCS.59.8
http://dx.doi.org/10.7561/SACS.2012.1.201
http://dx.doi.org/10.1007/978-3-642-45364-9_15
http://dx.doi.org/10.4204/EPTCS.109.6

BIBLIOGRAPHY 313

[JA14] Sung-Shik Jongmans and Farhad Arbab. Toward Sequentializ-
ing Overparallelized Protocol Code. In ICE 2014, volume 166 of
EPTCS, pages 38–44. CoRR, 2014.

(Pages 25, 95, and 127.)

[JA15a] Sung-Shik Jongmans and Farhad Arbab. Can High Throughput
Atone for High Latency in Compiler-Generated Protocol Code? In
FSEN 2015, volume 9392 of LNCS, pages 238–258. Springer, 2015.

doi:10.1007/978-3-319-24644-4_17.

(Page 25.)

[JA15b] Sung-Shik Jongmans and Farhad Arbab. Take Command of Your
Constraints! In COORDINATION 2015, volume 9037 of LNCS,
pages 117–132. Springer, 2015.

doi:10.1007/978-3-319-19282-6_8.

(Pages 25 and 203.)

[JA16] Sung-Shik Jongmans and Farhad Arbab. Global consensus
through local synchronization: A formal basis for partially-
distributed coordination. Science of Computer Programming, 115–
116:199–224, 2016.

doi:10.1016/j.scico.2015.09.001.

(Pages 25, 95, and 127.)

[JCP12] Sung-Shik Jongmans, Dave Clarke, and Jose Proença. A Proce-
dure for Splitting Processes and its Application to Coordination.
In FOCLASA 2012, volume 91 of EPTCS, pages 79–96. CoRR, 2012.

doi:10.4204/EPTCS.91.6.

(Pages 25, 138, and 279.)

[JCP16] Sung-Shik Jongmans, Dave Clarke, and Jose Proença. A proce-
dure for splitting data-aware processes and its application to co-
ordination. Science of Computer Programming, 115–116:47–78, 2016.

doi:10.1016/j.scico.2014.02.017.

(Pages 25, 138, and 279.)

[JFY99] Haoqiang Jin, Michael Frumkin, and Jerry Yan. The OpenMP Im-
plementation of NAS Parallel Benchmarks and Its Performance.
Technical Report NAS-99-011, NASA, 1999.

(Page 80.)

[JHA14a] Sung-Shik Jongmans, Sean Halle, and Farhad Arbab. Automata-
based Optimization of Interaction Protocols for Scalable Multicore
Platforms. In COORDINATION 2014, volume 8459 of LNCS, pages
65–82. Springer, 2014.

http://dx.doi.org/10.1007/978-3-319-24644-4_17
http://dx.doi.org/10.1007/978-3-319-19282-6_8
http://dx.doi.org/10.1016/j.scico.2015.09.001
http://dx.doi.org/10.4204/EPTCS.91.6
http://dx.doi.org/10.1016/j.scico.2014.02.017

BIBLIOGRAPHY 314

doi:10.1007/978-3-662-43376-8_5.

(Pages 25, 239, 246, 292, and 293.)

[JHA14b] Sung-Shik Jongmans, Sean Halle, and Farhad Arbab. Reo: A
Dataflow Inspired Language for Multicore. In DFM 2013, pages
42–50. IEEE, 2014.

doi:10.1109/DFM.2013.14 .

(Pages 25, 292, and 293.)

[JKA11] Sung-Shik Jongmans, Christian Krause, and Farhad Arbab. En-
coding Context-Sensitivity in Reo into Non-Context-Sensitive Se-
mantic Models. In COORDINATION 2011, volume 6721 of LNCS,
pages 31–48. Springer, 2011.

doi:10.1007/978-3-642-21464-6_3.

(Pages 25 and 247.)

[JKA16] Sung-Shik Jongmans, Tobias Kappé, and Farhad Arbab. Com-
posing Constraint Automata, State-by-State. In FACS 2015, vol-
ume 9539 of LNCS, chapter 12. Springer, 2016.

doi:10.1007/978-3-319-28934-2_12.

(Page 25.)

[Jon16] Sung-Shik Jongmans. Automata-Theoretic Protocol Program-
ming (With Proofs). Technical Report FM-1601, Centrum
Wiskunde & Informatica, 2016.

urn:nbn:nl:ui:18-24063.

(Pages 25, 61, 62, and 67.)

[JSA14] Sung-Shik Jongmans, Francesco Santini, and Farhad Arbab. Par-
tially-Distributed Coordination with Reo. In PDP 2014, pages 697–
706. IEEE, 2014.

doi:10.1109/PDP.2014.19.

(Pages 25 and 127.)

[JSA15] Sung-Shik Jongmans, Francesco Santini, and Farhad Arbab.
Partially-Distributed Coordination with Reo and Constraint Au-
tomata. Service Oriented Computing and Applications, 9(3):311–339,
2015.

doi:10.1007/s11761-015-0177-y.

(Pages 25, 127, and 294.)

[JSS+12] Sung-Shik Jongmans, Francesco Santini, Mahdi Sargolzaei,
Farhad Arbab, and Hamideh Afsarmanesh. Automatic Code Gen-
eration for the Orchestration of Web Services with Reo. In ESOCC
2012, volume 7592 of LNCS, pages 1–16. Springer, 2012.

http://dx.doi.org/10.1007/978-3-662-43376-8_5
http://dx.doi.org/10.1109/DFM.2013.14
http://dx.doi.org/10.1007/978-3-642-21464-6_3
http://dx.doi.org/10.1007/978-3-319-28934-2_12
http://nbn-resolving.org/urn:nbn:nl:ui:18-24063
http://dx.doi.org/10.1109/PDP.2014.19
http://dx.doi.org/10.1007/s11761-015-0177-y

BIBLIOGRAPHY 315

doi:10.1007/978-3-642-33427-6_1.

(Page 25.)

[JSS+14] Sung-Shik Jongmans, Francesco Santini, Mahdi Sargolzaei,
Farhad Arbab, and Hamideh Afsarmanesh. Orchestrating Web
Services using Reo: From Circuits and Behaviors to Automati-
cally Generated Code. Service Oriented Computing and Applications,
8(4):277–297, 2014.

doi:10.1007/s11761-013-0147-1.

(Page 25.)

[Kah62] Arthur Kahn. Topological Sorting in Large Networks. Communi-
cations of the ACM, 5(11):558–562, 1962.

doi:10.1145/368996.369025.

(Page 209.)

[KB09] Sascha Klüppelholz and Christel Baier. Symbolic model checking
for channel-based component connectors. Science of Computer Pro-
gramming, 74(9):688–701, 2009.

doi:10.1016/j.scico.2008.09.020.

(Pages 31, 38, and 69.)

[KB10] Sascha Klüppelholz and Christel Baier. Alternating-time stream
logic for multi-agent systems. Science of Computer Programming,
75(6):398–425, 2010.

doi:10.1016/j.scico.2009.07.007.

(Page 31.)

[KC09] Christian Koehler and Dave Clarke. Decomposing Port Automata.
In SAC 2009, pages 1369–1373. ACM, 2009.

doi:10.1145/1529282.1529587.

(Pages 38 and 140.)

[KGdV13] Christian Krause, Holger Giese, and Erik de Vink. Compositional
and behavior-preserving reconfiguration of component connec-
tors in Reo. Journal of Visual Languages & Computing, 24(3):153–168,
2013.

doi:10.1016/j.jvlc.2012.09.002.

(Pages 38 and 48.)

[KKSB11] Joachim Klein, Sascha Klüppelholz, Andries Stam, and Christel
Baier. Hierarchical Modeling and Formal Verification. An Indus-
trial Case Study Using Reo and Vereofy. In FMICS 2011, volume
6959 of LNCS, pages 228–243. Springer, 2011.

http://dx.doi.org/10.1007/978-3-642-33427-6_1
http://dx.doi.org/10.1007/s11761-013-0147-1
http://dx.doi.org/10.1145/368996.369025
http://dx.doi.org/10.1016/j.scico.2008.09.020
http://dx.doi.org/10.1016/j.scico.2009.07.007
http://dx.doi.org/10.1145/1529282.1529587
http://dx.doi.org/10.1016/j.jvlc.2012.09.002

BIBLIOGRAPHY 316

doi:10.1007/978-3-642-24431-5_17.

(Page 69.)

[Kla10] Martin Klazar. Some general results in combinatorial enumera-
tion. In Permutation Patterns, volume 376 of London Mathemati-
cal Society Lecture Note Series, pages 3–40. Cambridge University
Press, 2010.

(Page 130.)

[Kle12] Joachim Klein. Compositional Synthesis and Most General Controllers.
PhD thesis, Technische Universität Dresden, 2012.

urn:nbn:de:bsz:14-qucosa-130654.

(Page 31.)

[Klü12] Sascha Klüppelholz. Verification of Branching-Time and Alternating-
Time Properties for Exogenous Coordination Models. PhD thesis, Tech-
nische Universität Dresden, 2012.

urn:nbn:de:bsz:14-qucosa-86211.

(Pages 31, 38, 48, and 69.)

[KM03] Dietrich Kuske and Ingmar Meinecke. Branching Automata with
Costs — A Way of Reflecting Parallelism in Costs. In CIAA 2003,
volume 2759 of LNCS, pages 150–162. Springer, 2003.

doi:10.1007/3-540-45089-0_15.

(Page 149.)

[Kni86] Tom Knight. An Architecture for Mostly Functional Languages.
In LFP 1986, pages 105–112. ACM, 1986.

doi:10.1145/319838.319854.

(Pages 16 and 276.)

[Knu97] Donald Knuth. Information Structures. In Fundamental Algorithms,
volume 1 of The Art of Computer Programming, chapter 2, pages
232–465. Addison-Wesley, 3rd edition, 1997.

(Page 209.)

[KQCM09] David Kitchin, Adrian Quark, William Cook, and Jayadev Misra.
The Orc Programming Language. In FMOODS/FORTE 2009, vol-
ume 5522 of LNCS, pages 1–25. Springer, 2009.

doi:10.1007/978-3-642-02138-1_1.

(Page 149.)

http://dx.doi.org/10.1007/978-3-642-24431-5_17
http://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-130654
http://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-86211
http://dx.doi.org/10.1007/3-540-45089-0_15
http://dx.doi.org/10.1145/319838.319854
http://dx.doi.org/10.1007/978-3-642-02138-1_1

BIBLIOGRAPHY 317

[KS08] Bartek Klin and Vladimiro Sassone. Structural Operational Se-
mantics for Stochastic Process Calculi. In FOSSACS 2008, volume
4962 of LNCS, pages 428–442. Springer, 2008.

doi:10.1007/978-3-540-78499-9_30.

(Page 148.)

[KV08] Bernhard Korte and Jens Vygen. Spanning Trees and Arbores-
cences. In Combinatorial Optimization: Theory and Algorithms, vol-
ume 21 of Algorithms and Combinatorics, chapter 6, pages 127–150.
Springer, 4th edition, 2008.

doi:10.1007/978-3-540-71844-4.

(Page 213.)

[Lam86] Leslie Lamport. The Mutual Exclusion Problem: Part I—A Theory
of Interprocess Communication. Journal of the ACM, 33(2):313–326,
1986.

doi:10.1145/5383.5384.

(Page 6.)

[Lea11] Diana Lea. The Dictionary. In Oxford Advanced American Dictio-
nary, pages 1–1736. Oxford University Press, 2011.

(Page 27.)

[Lee06] Edward Lee. The Problem with Threads. Computer, 39(5):33–42,
2006.

doi:10.1109/MC.2006.180.

(Pages 6 and 10.)

[LNZ14] Edward Lee, Stephen Neuendorffer, and Gang Zhou.
Synchronous-Reactive Models. In System Design, Modeling, and
Simulation using Ptolemy II, chapter 5, pages 158–185. Ptolemy.org,
1st edition, 2014.

(Page 220.)

[LPP98] Kevin Lang, Barak Pearlmutter, and Rodney Price. Results of the
Abbadingo One DFA Learning Competition and a New Evidence-
Driven State Merging Algorithm. In Grammatical Inference, volume
1433 of LNCS, pages 1–12. Springer, 1998.

doi:10.1007/BFb0054059.

(Page 247.)

[LSB09] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The De-
sign of a Task Parallel Library. ACM SIGPLAN Notices (OOPSLA
2009), 44(10):227–242, 2009.

http://dx.doi.org/10.1007/978-3-540-78499-9_30
http://dx.doi.org/10.1007/978-3-540-71844-4
http://dx.doi.org/10.1145/5383.5384
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1007/BFb0054059

BIBLIOGRAPHY 318

doi:10.1145/1639949.1640106.
(Pages 5 and 275.)

[MAB11] Sun Meng, Farhad Arbab, and Christel Baier. Synthesis of Reo
circuits from scenario-based interaction specifications. Science of
Computer Programming, 76(8):651–680, 2011.
doi:10.1016/j.scico.2010.03.002.
(Page 60.)

[Mil89] Robin Milner. Strong Bisimulation and Strong Equivalence. In
Communication and Concurrency, chapter 4, pages 84–105. Prentice
Hall, 1989.
(Pages 40 and 277.)

[Moo98] Gordon Moore. Cramming More Components onto Integrated
Circuits. the IEEE, 86(1):114–117, 1998.
doi:10.1109/JPROC.1998.658762.
(Page 1.)

[MRR12] Michael McCool, Arch Robinson, and James Reinders. Introduc-
tion. In Structured Parallel Programming, chapter 1, pages 1–38. El-
sevier, 2012.
(Page 17.)

[MSM05] Timothy Mattson, Beverly Sanders, and Berna Massingill. A Pat-
tern Language for Parallel Programming. In Patterns for Parallel
Programming, SPS, chapter 1, pages 1–6. Addison-Wesley, 2005.
(Page 17.)

[MT03] Ronaldo Menezes and Robert Tolksdorf. A New Approach to Scal-
able Linda-systems Based on Swarms. In SAC 2003, pages 375–
379. ACM, 2003.
doi:10.1145/952532.952607.
(Page 141.)

[NCY15] Nicholas Ng, Jose Coutinho, and Nobuko Yoshida. Protocols by
Default: Safe MPI Code Generation based on Session Types. In CC
2015, volume 9031 of LNCS, pages 212–232. Springer, 2015.
doi:10.1007/978-3-662-46663-6_11.
(Page 294.)

[NY14] Nicholas Ng and Nobuko Yoshida. Pabble: Parameterised Scrib-
ble for Parallel Programming. In PDP 2014, pages 707–714. IEEE,
2014.
doi:10.1109/PDP.2014.20.
(Page 294.)

http://dx.doi.org/10.1145/1639949.1640106
http://dx.doi.org/10.1016/j.scico.2010.03.002
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1145/952532.952607
http://dx.doi.org/10.1007/978-3-662-46663-6_11
http://dx.doi.org/10.1109/PDP.2014.20

BIBLIOGRAPHY 319

[PA98] George Papadopoulos and Farhad Arbab. Coordination Models
and Languages. Advances in Computers, 46:329–400, 1998.

doi:10.1016/S0065-2458(08)60208-9.

(Page 141.)

[Par72] David Parnas. On the Criteria To Be Used in Decomposing Sys-
tems into Modules. Communications of the ACM, 15(12):1053–1058,
1972.

doi:10.1145/361598.361623.

(Page 14.)

[PC13a] José Proença and Dave Clarke. Data Abstraction in Coordination
Constraints. In Advances in Service-Oriented and Cloud Computing
(FOCLASA 2013), volume 393 of CCIS, pages 159–173. Springer,
2013.

doi:10.1007/978-3-642-45364-9_14.

(Pages 38, 99, and 220.)

[PC13b] José Proença and Dave Clarke. Interactive Interaction Constraints.
In COORDINATION 2013, volume 7890 of LNCS, pages 211–225.
Springer, 2013.

doi:10.1007/978-3-642-38493-6_15.

(Pages 38, 99, and 220.)

[PCdVA11] José Proença, Dave Clarke, Erik de Vink, and Farhad Arbab. De-
coupled execution of synchronous coordination models via be-
havioural automata. In FOCLASA 2011, volume 58 of EPTCS,
pages 65–79. CoRR, 2011.

doi:10.4204/EPTCS.58.5.

(Pages 99, 137, and 279.)

[PCdVA12] José Proença, Dave Clarke, Erik de Vink, and Farhad Arbab.
Dreams: a framework for distributed synchronous coordination.
In SAC 2012, pages 1510–1515. ACM, 2012.

doi:10.1145/2245276.2232017.

(Pages 99, 137, and 279.)

[Pos14] Raphael Poss. Multicore architectures and their software land-
scape. In Computer Handbook, chapter 24, pages 24·1–24·17. CRC
Press, 3rd edition, 2014.

(Pages 1 and 8.)

http://dx.doi.org/10.1016/S0065-2458(08)60208-9
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1007/978-3-642-45364-9_14
http://dx.doi.org/10.1007/978-3-642-38493-6_15
http://dx.doi.org/10.4204/EPTCS.58.5
http://dx.doi.org/10.1145/2245276.2232017

BIBLIOGRAPHY 320

[Pro11] José Proença. Synchronous Coordination of Distributed Components.
PhD thesis, Universiteit Leiden, 2011.

hdl:1887/17624.

(Pages 38, 99, 137, and 279.)

[PSAB12] Bahman Pourvatan, Marjan Sirjani, Farhad Arbab, and Marcello
Bonsangue. Decomposition of Constraint Automata. In FACS
2010, volume 6921 of LNCS, pages 237–258. Springer, 2012.

doi:10.1007/978-3-642-27269-1_14.

(Pages 38, 48, and 140.)

[PSHA12] Bahman Pourvatan, Marjan Sirjani, Hossein Hojjat, and Farhad
Arbab. Symbolic execution of Reo circuits using constraint au-
tomata. Science of Computer Programming, 77(7–8):848–869, 2012.

doi:10.1016/j.scico.2011.04.001.

(Pages 38 and 48.)

[Rau10a] Wolfgang Rautenberg. First-Order Logic. In A Concise Introduc-
tion to Mathematical Logic, Universitext, chapter 2, pages 41–90.
Springer, 3rd edition, 2010.

doi:10.1007/978-1-4419-1221-3_2.

(Pages 32, 33, 36, 176, and 254.)

[Rau10b] Wolfgang Rautenberg. Propositional Logic. In A Concise Intro-
duction to Mathematical Logic, Universitext, chapter 1, pages 1–40.
Springer, 3rd edition, 2010.

doi:10.1007/978-1-4419-1221-3_1.

(Page 177.)

[Rei85] Wolfgang Reisig. Introductory Examples and Basic Definitions.
In Petri Nets: An Introduction, volume 4 of EATCS Monographs on
Theoretical Computer Science, chapter 1, pages 3–16. Springer, 1985.

(Page 33.)

[Rei07] James Reinders. Why Threading Building Blocks? In Intel Thread-
ing Building Blocks, chapter 1, pages 1–6. O’Reilly, 2007.

(Pages 5 and 275.)

[Rob13] Arch Robison. Composable Parallel Patterns with Intel Cilk Plus.
Computing in Science and Engineering, 15(2):66–71, 2013.

doi:10.1109/MCSE.2013.21.

(Pages 5 and 275.)

http://hdl.handle.net/1887/17624
http://dx.doi.org/10.1007/978-3-642-27269-1_14
http://dx.doi.org/10.1016/j.scico.2011.04.001
http://dx.doi.org/10.1007/978-1-4419-1221-3_2
http://dx.doi.org/10.1007/978-1-4419-1221-3_1
http://dx.doi.org/10.1109/MCSE.2013.21

BIBLIOGRAPHY 321

[RW96] Antony Rowstron and Alan Wood. An Efficient Distributed Tuple
Space Implementation for Networks of Workstations. In Euro-Par
1996, volume 1123 of LNCS, pages 510–513. Springer, 1996.

doi:10.1007/3-540-61626-8_69.

(Page 141.)

[Seg95] Roberto Segala. Modeling and Verification of Randomized Distributed
Real-Time Systems. PhD thesis, Massachusetts Institute of Technol-
ogy, 1995.

(Page 147.)

[SGG13] Abraham Silberschatz, Peter Galvin, and Greg Gagne. Threads.
In Operating System Concepts, chapter 4, pages 163–201. Wiley, 9th
edition, 2013.

(Page 8.)

[SJBA06] Marjan Sirjani, Mohammad-Mahdi Jaghoori, Christel Baier, and
Farhad Arbab. Compositional Semantics of an Actor-Based Lan-
guage Using Constraint Automata. In COORDINATION 2006,
volume 4038 of LNCS, pages 281–297. Springer, 2006.

doi:10.1007/11767954_18.

(Page 65.)

[SO93] Andreas Stolcke and Stephen Omohundro. Hidden Markov
Model Induction by Bayesian Model Merging. In NIPS 1992, pages
11–18. Morgan-Kaufmann, 1993.

(Page 247.)

[ST97] Nir Shavit and Dan Touitou. Software transactional memory. Dis-
tributed Computing, 10(2):99–116, 1997.

doi:10.1007/s004460050028.

(Pages 16 and 276.)

[Sut05] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobbs Journal, 30(3), 2005.

(Page 1.)

[TDJ13] Samira Tasharofi, Peter Dinges, and Ralph Johnson. Why Do Scala
Developers Mix the Actor Model with other Concurrency Models?
In ECOOP 2013, volume 7920 of LNCS, pages 302–326. Springer,
2013.

doi:10.1007/978-3-642-39038-8_13.

(Pages 9 and 275.)

http://dx.doi.org/10.1007/3-540-61626-8_69
http://dx.doi.org/10.1007/11767954_18
http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.1007/978-3-642-39038-8_13

BIBLIOGRAPHY 322

[TVMS08] Samira Tasharofi, Mohsen Vakilian, Roshanak Zilouchian
Moghaddam, and Marjan Sirjani. Modeling Web Service Inter-
actions Using the Coordination Language Reo. In WS-FM 2007,
volume 4937 of LNCS, pages 108–123. Springer, 2008.

doi:10.1007/978-3-540-79230-7_8.

(Page 60.)

[Vaj11] András Vajda. Practical Many-Core Programming. In Program-
ming Many-Core Chips, chapter 9, pages 175–211. Springer, 2011.

doi:10.1007/978-1-4419-9739-5_9.

(Page 8.)

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific
Languages: An Annotated Bibliography. ACM SIGPLAN Notices,
35(6):26–36, 2000.

doi:10.1145/352029.352035.

(Page 17.)

[vdN15] Mathijs van de Nes. In preparation. Master’s thesis, Universiteit
Leiden, 2015.

(Pages 20, 83, and 291.)

[Vra97] Jos Vrancken. The algebra of communicating processes with
empty process. Theoretical Computer Science, 177(2):287–328, 1997.

doi:10.1016/S0304-3975(96)00250-2.

(Page 147.)

[WM95] William Wulf and Sally McKee. Hitting the Memory Wall: Im-
plications of the Obvious. ACM SIGARCH Computer Architecture
News, 23(1):20–24, 1995.

doi:10.1145/216585.216588.

(Page 1.)

[WMLF98] Peter Wyckoff, Stephen McLaughry, Tobin Lehman, and Daniel
Ford. T Spaces. IBM Systems Journal, 37(3):454–474, 1998.

doi:10.1147/sj.373.0454.

(Page 140.)

[Woe92] Gerhard Woeginger. The complexity of finding arborescences in
hypergraphs. Information Processing Letters, 44(3):161–164, 1992.

doi:10.1016/0020-0190(92)90057-3.

(Page 216.)

http://dx.doi.org/10.1007/978-3-540-79230-7_8
http://dx.doi.org/10.1007/978-1-4419-9739-5_9
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1016/S0304-3975(96)00250-2
http://dx.doi.org/10.1145/216585.216588
http://dx.doi.org/10.1147/sj.373.0454
http://dx.doi.org/10.1016/0020-0190(92)90057-3

BIBLIOGRAPHY 323

[Yeh93] Wei-Jen Yeh. Controlling State Explosion in Reachability Analysis.
PhD thesis, Purdue University, 1993.

(Page 148.)

[YMG14] Leonid Yavits, Amir Morad, and Ran Ginosar. The effect of com-
munication and synchronization on AmdahlâĂŹs law in multi-
core systems. Parallel Computing, 40(1):1–16, 2014.

doi:10.1016/j.parco.2013.11.001.

(Pages 3 and 275.)

http://dx.doi.org/10.1016/j.parco.2013.11.001

Index

<DC, 35
<TERM, 34
·[·/·], 35
·+, 255
♣ , 219
JX , 214
CX , 216
', 42
't, 257
�7→, 136
♦�, 133∧

, 35∨
, 35

J·K, 205
≡, 36, 254
≡t, 256
⇒, 36, 254
⇒t, 256
|=, 254
|=, 36
≈, 40
〈·〉, 256
�, 135
*·+, 252
`, 39
�, 44
�, 44
�, 131
|·|, 177
1−→ , 138
·•, 33
•·, 33
v, 209
@X , 216
<X , 216
vX , 212

�, 41
�t, 257
7→, 135
�, 131
�, 46

, 179
=⇒, 204
`part , 206
`tot , 206
‖·‖, 245
♦, 44

abstraction, 42, 277
actor, 5, 275
AGREEM, 43
agreement, 43

conditionally strong, 133
strong, 43, 131
weak, 43, 44, 131

algorithmic skeleton, 16, 276
AliceBobCarolDave, 143

graphical syntax, 103
textual syntax, 102

Amdahl’s Law, 3, 275
API, 5
arborescence, 213
ASSIGNM, 33
AsyncDrain, 57

constraint automaton, 58
graphical syntax, 58, 59
textual syntax, 62

AUTOM, 37
AUTOM+, 244

B-arc, 213
B-graph, 213
Behav, 40

325

INDEX 326

BinOp, 56
constraint automaton, 55
graphical syntax, 57

BinRel, 56
constraint automaton, 55
graphical syntax, 57

BIP, 14, 141
Blocker, 57

constraint automaton, 58
graphical syntax, 58, 59
textual syntax, 62

Bound, 36

cache miss, 165
causality loop, 220
Centralized Approach, 95, 101, 278

event-handling, 102
latency/throughput, 103

characterization
�7→-based, 136
♦�-based, 134
1−→ -based, 138

Chess, 76
constraint automaton, 78
experimental setup, 122
graphical syntax, 78
performance, 123, 152, 184, 222,

260, 283
speedup, 154, 185, 223, 262, 284
textual syntax, 79

comb, 248
comm, 218
COMM, 204
communication, 2
composition, 42, 277
computation, 2
computation code, 3
Concatenator

textual syntax, 79
concurrency construct, 6
concurrent I/O operation, 31, 38
CONF, 204
configuration, 37
connector algebra, 38, 60, 247
consensus, 99, 278

cheap algorithm, 129

expensive algorithm, 129
constraint automaton, 22, 32, 37, 277

acceptance, 32, 39
arborescentness, 219
behavior, 40
behavioral congruence, 42, 277
behavioral equivalence, 40, 277
behavioral preorder, 41
bisimulation, 41, 277
combination, 281
commandification, 204, 218, 280
composite, 37
compositionality, 53
conditional slavery, 136
core set, 53
decomposition, 140
ever-determined port, 180
family, 54

extralogical parameter, 54
member, 54
natural number parameter, 54
observable parameter, 54
signature, 55
unobservable parameter, 54

homogenization, 248, 254, 256
hugeification, 145
independence, 135
Java library, 48
multiplication, 42, 44, 277

agreement-parametric, 44
g(lobal)-, 131, 279
l(ocal)-, 130, 131, 279
new, 130, 279
old, 130, 279

no-synchronization, 138
normalization, 173, 177, 280
original, 38, 48, 60, 140
parametric, 54
primitive, 37
queue-inference, 237, 281
simulation, 41
slavery, 135
state memory, 38, 48, 140
subtraction, 42, 46, 277

aggregating, 48
semantic, 175, 280

INDEX 327

structure-preserving, 48
syntactic, 175, 179, 280

constraint solver, 115, 207, 280
consumer, 7
context-sensitivity, 247

D, 29
data assignment, 33
data atom, 35
data command, 201, 203, 204, 280

abnormal termination, 204
assignment, 204
completeness, 207, 208, 212
data relation, 218
determinism, 205
empty, 204
failure statement, 204

guard, 204
Hoare logic, 205

postcondition, 205
precondition, 205
proof system, 206
triple, 205

semantics
partial correctness, 204, 205
total correctness, 205

soundness, 207, 208, 212
data configuration, 204

transition system, 204
data constraint, 32, 35, 277

disjunctive normal form, 177
entailment, 36
existential quantification

syntactic, 179
goodness, 36
monotonicity, 36
normal, 176, 177
=-symmetric closure, 209
commandification, 211

prenex normal form, 36, 176
solution, 207

data constraints with Eq, 254
Eq, 254
entailment, 254
tight behavioral congruence, 257
tight behavioral preorder, 257

tight equivalence, 256
tight implication, 256

data equality, 207
data formula, 35
data function, 33
data literal, 35

precedence, 208, 209, 212, 214, 216
linearization, 209
strict partial order, 209

data race, 6
data relation, 33, 34
data state, 204

final, 204
initial, 204, 207

data stream
scheduled, 31
timed, 31

data term, 34
determinant, 178
equated, 255
evaluation, 34

data variable, 33
bound, 36
free, 36
uncontrollable, 207

datum, 29
empty, 29

Dc, 37
DC, 35
DCEq, 254
DCEq
∃,∧, 254

DC∃,∧, 177
deadlock, 10
DESCR, 39
Determ, 178
Distributed Approach, 95, 98, 278

event-handling, 100
latency/throughput, 103

distributed coordination, 140
dnf, 177
domain-specific language, 17, 276
DSL, 17, 276

EarlyAsyncMerger
experimental setup, 122

INDEX 328

performance, 123, 152, 184, 222,
260, 283

speedup, 154, 185, 223, 262, 284
textual syntax, 63

EarlyAsyncMerger2, 53
constraint automaton, 53
graphical syntax, 54, 59
textual syntax, 54

Edp, 180
Eq, 256
EqTerm, 255
eval, 34
event, 97

boundary, 99
internal, 99

event-handling, 97
exists, 179
exogenous coordination, 14
experimental setup

programs, 124
protocols, 122

F, 33
fail, 204
FAM, 55
Fifo, 56

constraint automaton, 55
graphical syntax, 57

FifoK
experimental setup, 122
performance, 123, 152, 184, 222,

260, 283
speedup, 154, 185, 223, 262, 284
textual syntax, 63

Filter, 56
constraint automaton, 55
graphical syntax, 57

Final, 205
Finalfail, 205
flow, 18
FOCAML, 22, 51, 61, 278
FOCAML compiler, 104, 150, 182, 221,

258, 278–281
FOCAML editor, 72, 278
FOCAML interpreter, 72, 278
FOCAML parser, 72, 278

FOCAML program, 61
abstract syntax, 67
concrete syntax, 61
denotational semantics, 64, 67
family body, 61
family definition, 61
family signature, 61
foreign signature, 64
main definition, 61

Free, 36

general-purpose language, 17, 276
Good, 36
GPL, 17, 276
guarded automaton, 246

Hybrid Approach, 128, 129, 279
event-handling, 148, 149

independence, 278
Indist, 251
indistinguishability, 239, 246, 251
init, 37
Input, 37
instantaneous description, 39
intention, 12, 276
intention-expressing, 17, 276
intention-expressing DSL, 22, 27, 276
interaction, 2

chain of, 30, 277
instance of, 29, 277

interaction code, 3
interaction language, 31
interaction letter, 29, 30, 39

explicit representation, 32
symbolic representation, 32

interaction pattern
master–slaves, 81, 85
relay-race, 81, 90

interaction word, 30, 39
inverse-proportionality, 122, 175, 183
I/O constraint, 38
I/O operation, 18

completed, 19, 98
pending, 19, 97

I/O stream, 31

INDEX 329

LANG, 31
LateAsyncMerger, 61

experimental setup, 122
performance, 123, 152, 184, 222,

260, 283
speedup, 154, 185, 223, 262, 284
textual syntax, 63

LateAsyncMerger2, 7
generated code, 110
graphical syntax, 54, 59
textual syntax, 54, 64

LateAsyncMerger2
constraint automaton, 38

multiplication, 45
subtraction, 47

latency, 103, 278
LETT, 30
Liter, 177
Liter=, 209
LossyFifo

textual syntax, 96
LossySync, 56

constraint automaton, 55
graphical syntax, 57

Lykos, 93, 104, 150, 182, 221, 258

M, 32
main body, 64
main subprogram, 17, 61, 105
main unit, 95
MasterSlavesInteractionPatternA

textual syntax, 87
MasterSlavesInteractionPatternB

textual syntax, 89
MasterToSlavesA

constraint automaton, 86
graphical syntax, 87
textual syntax, 87

MasterToSlavesB
constraint automaton, 88
graphical syntax, 88
textual syntax, 89

Memor, 37
memory cell, 32
memory snapshot, 32, 33
Merger

constraint automaton, 249
experimental setup, 122
performance, 123, 152, 184, 222,

260, 283
speedup, 154, 185, 223, 262, 284
textual syntax, 63

Merger2, 56
constraint automaton, 55
graphical syntax, 57

min(·), 179
modularization, 14

Parnas’ advantages of, 14
Moore’s Law, 1
move, 39
multiconstraint automaton, 243, 244

combination, 248
interpretation, 245
manipulation, 252

multitransition, 243
mutual exclusion, 6

NAS Parallel Benchmarks, 79, 80, 285
applications, 80
classes, 156
experimental setup, 124
kernels, 80

nil, 29
nonassociativity, 132, 141, 279
NPB, 80, 285
NPB-BT

performance, 168, 196, 233, 272,
290

speedup, 168, 196, 233, 272, 290
NPB-BT, 81
NPB-CG

performance, 161, 191, 229, 267,
288

speedup, 161, 191, 229, 267, 288
NPB-CG, 80
NPB-FT

performance, 157, 187, 225, 263,
286

speedup, 157, 187, 225, 263, 286
NPB-FT, 80
NPB-IS

INDEX 330

performance, 163, 193, 231, 269,
289

speedup, 163, 193, 231, 269, 289
NPB-IS, 81
NPB-LU

performance, 170, 198, 235, 274,
291

speedup, 170, 198, 235, 274, 291
NPB-LU, 81
NPB-MG

performance, 159, 189, 227, 265,
287

speedup, 159, 189, 227, 265, 287
NPB-MG, 80
NPB-SP

performance, 169, 197, 234, 273,
290

speedup, 169, 197, 234, 273, 290
NPB-SP, 81

OddFibonacci, 74
constraint automaton, 74
experimental setup, 122
graphical syntax, 75
performance, 123, 152, 184, 222,

260, 283
speedup, 154, 185, 223, 262, 284
textual syntax, 75

OddFibonacciPart
textual syntax, 75

Output, 37
overparallelization, 153
oversequentialization, 127, 278

P, 29
parallel design pattern, 17
parallelism

useful, 128, 129, 279
useless, 128, 279

partition, 129, 139, 279
reasonable, 129, 138

pnf, 177
port, 18, 29, 276

input, 18, 278
internal, 37, 278
Java API, 20, 110, 117

local, 64
output, 18, 278
readiness, 207
total data equalities, 256

Port, 37
port automaton, 38, 140
processor

multicore, 1, 275
unicore, 1, 275

producer, 7
program, 3

parallel, 2
sequential, 2

protocol, 2, 22, 27, 275
protocol optimization, 11
protocol subprogram, 3, 61, 64, 105
protocol unit, 95, 105

independence, 134
loose perspective, 142
strict perspective, 142

Q, 37

R, 34
record, 31

language, 31
stream, 31

reference-passing, 20
RegulatedMergerRouter, 248

constraint automaton, 249
graphical syntax, 250
textual syntax, 250

regulator, 248
RelayRaceInteractionPatternA

textual syntax, 91
RelayRaceInteractionPatternB

textual syntax, 91
Remaind, 251
remainder, 250, 251
Reo, 51, 56, 58, 277

channel, 58
channel end, 58

sink, 58
source, 58

circuit, 58
coloring semantics, 137

INDEX 331

node, 58
boundary, 59
mixed, 59
router, 60
sink, 59
source, 59

region, 137, 279
asynchronous, 137, 279
synchronous, 137, 279

Reo Scripting Language, 69
Reo-to-FOCAML translation, 74, 278
Replicator

textual syntax, 75
Replicator2, 56

constraint automaton, 55
graphical syntax, 57

Router
experimental setup, 122
performance, 123, 152, 184, 222,

260, 283
speedup, 154, 185, 223, 262, 284
textual syntax, 63

Router2, 60
constraint automaton, 60
graphical syntax, 60
textual syntax, 62

run-time library, 105

scalability, 2, 11, 122
Semaphore

constraint automaton, 90
graphical syntax, 90
textual syntax, 91

separation of concerns, 14
Sequencer, 72

constraint automaton, 73
graphical syntax, 73
textual syntax, 73

shared memory, 5
Simpl, 246
SlavesToMasterA

constraint automaton, 86
graphical syntax, 87
textual syntax, 87

SlavesToMasterB
textual syntax, 89

SNAPSH, 33
Stat, 37
state, 32, 37
state space explosion, 127, 278
Sync, 56

constraint automaton, 55
graphical syntax, 57

SyncDrain, 57
constraint automaton, 58
graphical syntax, 58
textual syntax, 62

synchronization, 3
indirect, 46
multiparty, 46

synchronization constraint, 32, 277
synchronization multiconstraint, 243

conjunction, 245
disjunction, 245
interpretation, 245
manipulation, 252
propositional logic, 246
simplicity, 245, 246
uniqueness quantification, 245

synchronization uniconstraint, 243
SyncK

experimental setup, 122
performance, 123, 152, 184, 222,

260, 283
speedup, 154, 185, 223, 262, 284
textual syntax, 63

Team
textual syntax, 79

TERM, 34
thread, 5

kernel-, 5
user-, 5

thread pool, 5, 275
throughput, 103, 278
Trans, 37
transactional memory, 16, 276
Transformer, 56

constraint automaton, 55
graphical syntax, 57

transition, 32
unobservable, 39

INDEX 332

TRIPL, 205
tuple space, 140

uniconstraint automaton, 243
unit (of parallelism), 95, 105

mapping, 95, 105
unitransition, 243

value-passing, 20
Variabl, 36
Vereofy, 69

WORD, 30
worker, 2, 275

resumed, 19
suspended, 19

worker subprogram, 3, 64, 105
worker unit, 95, 105

X, 33

Titles in the IPA Dissertation Series since 2013

H. Beohar. Refinement of Communica-
tion and States in Models of Embedded
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Au-
tomata. Faculty of Science, Math-
ematics and Computer Science,
RU. 2013-02

E. Zambon. Abstract Graph Transfor-
mation – Theory and Practice. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Comprehen-
sion for Modular and Dynamic Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-06

L.E. Mamane. Interactive mathemat-
ical documents: creation and presenta-
tion. Faculty of Science, Mathematics
and Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compo-
sition and synchronization of real-time
components upon one processor. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-
ins. Faculty of Mathematics and
Computer Science, TU/e. 2013-09

S. van der Burg. A Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction
Techniques for Model Checking. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped
robots, and dynamic labelings for
moving points. Faculty of Math-
ematics and Computer Science,
TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Au-
tomata. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data
Structures in the Black-Box Model. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2013-14

L. Lensink. Applying Formal Methods
in Software Development. Faculty of
Science, Mathematics and Computer
Science, RU. 2013-15

C. Tankink. Documentation and For-
mal Mathematics — Web Technology
meets Proof Assistants. Faculty of
Science, Mathematics and Computer
Science, RU. 2013-16

C. de Gouw. Combining Monitor-
ing with Run-time Assertion Checking.
Faculty of Mathematics and Natural
Sciences, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in
Automated Digital Forensics. Faculty
of Science, UvA. 2014-01

D. Hadziosmanovic. The Process
Matters: Cyber Security in Industrial
Control Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender
Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2014-03

C.-P. Bezemer. Performance Opti-
mization of Multi-Tenant Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2014-04

T.M. Ngo. Qualitative and Quan-
titative Information Flow Analysis for
Multi-threaded Programs. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2014-06

J. Winter. Coalgebraic Characteri-
zations of Automata-Theoretic Classes.
Faculty of Science, Mathematics and
Computer Science, RU. 2014-07

W. Meulemans. Similarity Mea-
sures and Algorithms for Cartographic
Schematization. Faculty of Math-
ematics and Computer Science,
TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2014-09

A.P. van der Meer. Domain Specific
Languages and their Type Systems. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Col-
laboration in Online Software Commu-
nities. Faculty of Mathematics and
Computer Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the
Gap between Active Learning and Real-
World Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2014-13

M. Helvensteijn. Abstract Delta Mod-
eling: Software Product Lines and Be-
yond. Faculty of Mathematics and
Natural Sciences, UL. 2014-14

P. Vullers. Efficient Implementa-
tions of Attribute-based Credentials on
Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2014-16

M.P. Schraagen. Aspects of Record
Linkage. Faculty of Mathematics and
Natural Sciences, UL. 2014-17

G. Alpár. Attribute-Based Iden-
tity Management: Bridging the Cryp-
tographic Design of ABCs with the
Real World. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-01

A.J. van der Ploeg. Efficient Abstrac-
tions for Visualization and Interaction.
Faculty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Con-
trol in Health Care Systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibil-
ity and Trustworthiness. Faculty of
Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Develop-
ers’ Teamwork from within the IDE.
Faculty of Electrical Engineering,
Mathematics, and Computer Sci-
ence, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and
Their Clients. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2015-07

E. Costante. Privacy throughout
the Data Cycle. Faculty of Math-
ematics and Computer Science,
TU/e. 2015-08

S. Cranen. Getting the point — Ob-
taining and understanding fixpoints
in model checking. Faculty of Math-
ematics and Computer Science,
TU/e. 2015-09

R. Verdult. The (in)security of propri-
etary cryptography. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-10

J.E.J. de Ruiter. Lessons learned in
the analysis of the EMV and TLS se-
curity protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Eval-
uation for Automotive Software Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2015-12

J. Bransen. On the Incremental Evalu-
ation of Higher-Order Attribute Gram-
mars. Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of
Science, Mathematics and Computer
Science, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-15

S. te Brinke. Developing Energy-
Aware Software. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2015-16

R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Sys-
tems. Faculty of Science, Math-
ematics and Computer Science,
RU. 2015-17

J.C. Rot. Enhanced coinduction. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2015-18

M. Stolikj. Building Blocks for
the Internet of Things. Faculty of
Mathematics and Computer Science,
TU/e. 2015-19

D. Gebler. Robust SOS Specifications
of Probabilistic Processes. Faculty of
Sciences, Department of Computer
Science, VUA. 2015-20

M. Zaharieva-Stojanovski. Closer
to Reliable Software: Verifying func-
tional behaviour of concurrent pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2015-21

R.J. Krebbers. The C standard for-
malized in Coq. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-22

R. van Vliet. DNA Expressions – A
Formal Notation for DNA. Faculty of
Mathematics and Natural Sciences,
UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2016-01

	Introduction
	Context
	The Protocol Concern
	Today's Abstractions

	Problem
	Three Major Issues
	Partial Solutions

	Contribution & Organization
	Abstract Proposal
	Concrete Instantiation

	DSL for Interaction I: Semantics
	Theory
	Interaction Languages
	Constraint Automata
	Behavior, Equivalence, and Congruence
	Multiplication and Subtraction

	Practice

	DSL for Interaction II: Syntax
	Theory
	Compositional Construction of Constraint Automata
	Graphical Representation: Reo
	Textual Representation: FOCAML

	Practice
	Editor
	Example I: OddFibonacci
	Example II: Chess
	Example III: NAS Parallel Benchmarks

	Basic Compilation
	Theory
	Basics
	Distributed Approach
	Centralized Approach
	Distribution versus Centralization

	Practice
	Compiler
	Run-Time Library
	Compiler-Generated Code
	API for Ports
	Experiments I: Protocols
	Experiments II: Programs

	Improved Compilation I: Local Multiplication
	Theory
	Hybrid Approach
	L-Multiplication
	First Characterization
	Cheaper Characterization
	Practical Characterization
	Related Work on Distributed Coordination
	Nonassociativity

	Practice
	Compiler
	Experiments I: Protocols
	Experiments II: Programs

	Improved Compilation II: Syntactic Subtraction
	Theory
	64 Syncs
	Normalization
	Syntactic Subtraction

	Practice
	Compiler
	Experiments I: Protocols
	Experiments II: Programs

	Improved Compilation III: Commandification
	Theory
	Data Commands
	Commandification
	Commandification with Cycles
	Commandification in Constraint Automata

	Practice
	Compiler
	Experiments I: Protocols
	Experiments II: Programs

	Improved Compilation IV: Queue-Inference
	Theory
	Manual Optimization
	Multiconstraint Automata
	Operations on Multiconstraint Automata
	Homogenization

	Practice
	Compiler
	Experiments I: Protocols
	Experiments II: Programs

	Conclusion
	Summary
	Future Work

	Abstract
	Curriculum Vitae
	Bibliography
	Index

