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HIGHLIGHTS

e We present a procedure for splitting algebraic processes with multiactions and data.
e We prove its correctness (strong bisimilarity between original and split processes).
e We apply it to the process algebraic semantics of the coordination language Reo.

e This application justifies an optimization technique for Reo implementations.
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cuts a process into two processes along a set of actions A: roughly, one of these processes
contains no actions from A, while the other process contains only actions from A. We
state and prove a theorem asserting that the parallel composition of these two processes

Keywords: is provably equal from a set of axioms (sound and complete with respect to strong
Process algebra bisimilarity) to the original process under some appropriate notion of synchronization.

Coordination We apply our splitting procedure to the process algebraic semantics of the coordination
mCRL2 language Reo: using this procedure and its related theorem, we formally establish the
Reo soundness of splitting Reo connectors along the boundaries of their (a)synchronous regions

in implementations of Reo. Such splitting can significantly improve the performance of
connectors as shown elsewhere.
© 2014 Elsevier B.V. All rights reserved.

1. Motivation

Context Over the past decades, coordination languages have emerged for the specification and implementation of interac-
tion protocols among entities running concurrently (components, services, threads, etc.). This class of languages includes
Reo [2,3], a graphical language for compositional construction of connectors: communication media through which entities
can interact with each other. Fig. 1 shows some example Reo connectors in their usual graphical syntax. Intuitively, connec-
tors consist of one or more channels (i.e., the edges of a connector graph), through which data items flow, and a number of
nodes (i.e., the vertices of a connector graph), on which channel ends (i.e., the endpoints of edges) meet. Through channel
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Fig. 1. Example connectors.

composition—the act of gluing channels together on nodes—engineers can construct complex connectors. Channels often
used include the reliable synchronous channel, called sync, and the reliable asynchronous channel fifon, which has a buffer
of capacity n. Importantly, while nodes have a fixed semantics, Reo features an open-ended set of channels. This allows
engineers to define their own channels with custom semantics.

To use connectors in real applications, one must derive executable code from graphical specifications of connectors (e.g.,
those in Fig. 1). Roughly two implementation approaches currently exist. In the distributed approach [15,45,43,44], one im-
plements the behavior of each of the k constituents of a connector and runs these k implementations concurrently as a
distributed system; in the centralized approach [26,25,30], one computes the behavior of a connector as a whole, implements
this behavior, and runs this implementation sequentially as a centralized system. Which of those two approaches to choose
may depend on the hardware architecture on which to deploy the application. For example, in the case of a service-oriented
choreography application, the distributed approach seems natural, because the services involved run on different machines
and the network between them may play a role in their coordination. However, if coordination involves computation threads
running on the same machine in some multithreading application, the centralized approach appears more appropriate, be-
cause it avoids communication among the constituents of a connector at run-time: in this approach, due to the computation
of the behavior of an entire connector at compile time, one abstracts from the individual, smaller, concurrent constituents
of a connector to obtain one big sequential program for the whole (which can run in its own dedicated thread at run-time,
among the computation threads it coordinates).

One optimization technique applicable to both the distributed and the centralized approaches involves the identification
of the synchronous and the asynchronous regions of a connector [44]. A synchronous region contains exactly those nodes and
channels of a connector that synchronize collectively to decide on their individual behavior; an asynchronous region con-
nects synchronous regions in an asynchronous way, typically involving a fifo1 channel. For instance, the connector consisting
of a sync channel, a fifo1 channel, and another sync channel (see Fig. 1d) has two synchronous regions, connected by an
asynchronous region.

Intuitively, two synchronous regions can run completely independently of each other. Otherwise, by definition, those two
subconnectors do not qualify as separate synchronous regions (instead, they constitute the same synchronous region). In the
distributed approach, this means that nodes and channels need to share information only with those nodes and channels
in the same synchronous region—not with every node or channel in the connector [44]. In the centralized approach, this
means that one does not need to compute the behavior of a connector as a whole, but rather on a per-region basis [25].
Supplementary, asynchronous regions connect synchronous regions to each other by transporting data and control informa-
tion between them. Based on how asynchronous regions do this, one can distinguish different versions of the region-based
optimization technique, with different guarantees and for different use cases. For example, an asynchronous region can
transport control information directly (in which case transportation starts at the same time as the coordination step that
triggered it and ends before the next), atomically (same as the previous case but transportation can start also after the
coordination step that triggered it), or interleaved (same as the previous case but transportation does not need to end be-
fore the next coordination step). Recent work shows that the region-based optimization technique for Reo can significantly
improve performance [15,30,43,44| (both at compile time and at run-time), to the extent that its use will become vital
for real-world applications: without it, automatically deploying (including code generation) and running connectors quickly
becomes infeasible as their size increases.

Problem The region-based optimization technique still has a serious problem: although we have reason to believe (based on
intuition and loose informal reasoning) that it preserves the semantics of a connector, we do not know this for sure by lack
of a formal proof. In fact, in [15], Clarke and Proenca identify one implementation of the region-based optimization tech-
nique that produces incorrect behavior for a certain class of connectors. An optimization as important as the region-based
optimization technique for Reo should have a formal proof of correctness. The problem addressed in this paper is that such
a proof currently does not exist.

Contributions of the paper In this paper, using the existing process algebraic semantics of Reo [35,32-34]|, we prove the
correctness of the region-based optimization technique for asynchronous regions with direct transportation.! In this seman-
tics, expressed using the specification language mCRL2 [20,22], one associates every connector with a process describing

1 In practice, an implementation of the direct transportation version requires some form of synchronization between the different sides of an asyn-
chronous region. On shared memory architectures, one can implement such synchronization relatively cheaply. On distributed memory architectures with
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its behavior. Roughly, our proof technique consists of the formulation of a number of theorems for the untimed subset
of mCRL2. We then apply these theorems to Reo’s process algebraic semantics to prove the region-based optimization
technique correct.

Importantly, however, the scope of this paper extends beyond Reo. Because we work on the semantics level—in terms
of process algebra—and because we formulate our proof technique for general processes (not just those used in Reo’s
semantics), our results apply not exclusively to Reo but, instead, to any process in untimed mCRL2. As a result, we can
divide the contributions of this paper into two categories: those concerning mCRL2 in general and those concerning Reo.
More concretely:

e mCRL2

— We define a splitting procedure for the untimed subset of mCRL2 and prove its correctness. Essentially, this procedure
syntactically splits a process into two new processes: one process contains only actions from some set A; the other
contains only actions from outside A.

— Our work shows the feasibility of using the language mCRL2 (not the associated toolset) for proving properties of a
whole language, Reo, rather than of individual concrete connectors. This subtly, yet significantly, differs from work of
Kokash et al. [35,32-34], who introduced a process algebraic semantics of Reo for verifying concrete connectors (e.g.,
“this connector never deadlocks”) but obtain no results about Reo as a language. As such, the work presented in this
paper also paves the way to proving other properties about Reo using process algebra, including the correctness of
others versions of the region-based optimization techniques (in terms of new different splitting procedures).

e Reo

— We formalize the notion of (a)synchronous regions in terms of the process algebraic semantics of Reo.

— We apply the splitting procedure to the process algebraic semantics of Reo, thereby justifying the region-based
optimization technique for Reo implementations. To illustrate this further, we discuss how to implement and use
the splitting procedure in the distributed approach, exploiting the local concurrency available on the computational
nodes.

Although motivated by Reo, to emphasize the generality of our splitting procedure and theorems, we have organized the
rest of this paper from a process algebra perspective; Reo serves as a ‘case study’ exemplifying their usefulness. In Section 2,
we give an overview of the untimed subset of mCRL2 we use. In Section 3, to show mCRL2 in action, we summarize the
process algebraic semantics of Reo. In Section 4, we introduce our splitting procedure, and in Section 5, we prove its
correctness. In Section 6, we apply our splitting procedure to Reo. Section 7 contains related work, and Section 8 ends this
paper with a conclusion and future work.

An earlier version of this work appeared in [27], where we considered the untimed data-free subset of mCRL2 and
adopted a limited form of recursion. In this paper, by contrast, we do have data and a more general treatment of recursion.
As a consequence, in addition to new proofs for new results, we necessarily revised, extended, and sometimes simplified
many of our old proofs. The main challenge in doing so was extending the mechanism for “tracking choices”—crucial for
our approach to work—to handle summation over data (with as few notational machinery as possible), which we did not
have to deal with in [27]. Thus, although the idea behind our approach remained the same, we extended it and worked
out the details under those new circumstances. Orthogonally, we realized that by using a transformation by Usenko that
collapses a number of recursive process definitions into a single one (using mCRL2’s data-dependent operators, including
summation) [47], we could generalize our treatment of recursion from single recursive process definitions to systems of
such definitions.

2. A process algebra with multiactions and data

The process algebra used in this paper is the untimed subset of mCRL2 [20,22], a specification language based on ACP [7]
and the basis of the process algebraic semantics of Reo. Among other useful constructs, mCRL2 has one feature that makes
it particularly well-suited as a semantic formalism for Reo, namely multiactions: collections of actions that occur at the same
time. We postpone an explanation of how to use multiactions for describing the behavior of connectors until Section 3. In
this section, we summarize the untimed subset of mCRL2.

2.1. Data

Before discussing the syntax and semantics of processes, we first give a terse overview of the data language of mCRL2,
used to parameterize actions in the algebra (details appear elsewhere [20]). This data language, based on higher-order

substantial network delays, in contrast, the overhead of such synchronization may be prohibitively large. Therefore, the main application area of the work
presented in this paper is shared memory implementations of Reo. Currently, all implementations of Reo can run on shared memory multithreading ma-
chines, including those following the distributed implementation approach. (“Distribution” in the distributed implementation approach refers to how the
execution of connector constituents is divided over different execution units, irrespective of the underlying memory layout.)
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sort B
cons true: B, false : B
map ~:B—->B, A:BxB—B, ...
var b
eqn —true = false, —false = true, =——b =»>b,
b Atrue=Db, b A false = false, true Ab=0>b, false ANb = false, ...

Fig. 2. Partial definition of sort B.

any action in Act pu=oa|Pd|p+plp-plc—pop| DgpP
ad) | T | aua lplplpllalplp
a s | Vv | 98(p) | pr(P) | Tc(p) | Ti(p)

(a) Multiactions and deadlock. (b) Processes.

Fig. 3. Syntax.

abstract data types, allows for the definition of sorts. Every sort consists of constructors and maps, which compose into
data expressions. Every data expression can be interpreted as a data element of a sort. Equations, possibly containing data
variables (over data expressions), enable one to derive equalities between data expressions (by giving meaning to maps).
For example, Fig. 2 shows a fragment of the definition of mCRL2’s built-in sort B [22], which represents the booleans.
Additionally, mCRL2’s collection of built-in sorts includes the natural numbers (N) and the real numbers (R). Users of
mCRL2 can also define their own sorts.

Every sort S has, among other standard maps, a map ~: S x S — B for equality of data expressions of sort S. For the
built-in sorts, this map behaves as expected. For user-defined sorts, the user must provide equations that give meaning
to ~.

Henceforth, let ¢ range over data expressions of sort B, let d, e, f range over arbitrary data expressions, and let D, E, F
range over such sets. Likewise, let d, e, f range over tuples of data expressions and data variables, and let D, E, F range over
tuples of such sets. Finally, let x, y, z range over data variables, let X, Y, Z range over such sets, and let X, y, z range over
such tuples. Furthermore:

Definition 1. Elem denotes a global set of data elements and Var denotes a global set of data variables such that Elem N
Var = (.

2.2. Syntax

Fig. 3a shows the syntax of multiactions and deadlock.> Let Act denote a global set of actions, ranged over by a, b, c
(henceforth, whether ¢ denotes an action or a data expression of sort B is always clear from the context). Actions can
involve data, specified using the data language from Section 2.1. Note that data variables can occur in the parameter of a(d).
The distinguished symbol T denotes the empty multiaction, which consists of no observable actions. Operator LI (associative
and commutative) composes multiactions into larger multiactions; let MlAct denote the global set of all multiactions, ranged
over by «, B, y. The distinguished symbol § denotes the deadlock process, which performs no multiactions; let ¢, g, y
range over the processes in the set MAct U {§}.

Fig. 3b shows the syntax of processes. Parameterized process references, ranged over by P(d), Q (e), R(f), refer to process
definitions of the form P(x:D) = p, where p denotes some process: the process reference P(d) behaves as the process
resulting from substituting the occurrences of the data variables x with the data expressions d in p, denoted by p[d/X].
Processes, ranged over by p, g, r, consist of multiactions and process references, composed with a variety of operators as
follows.

Basic operators Operator + and - denote alternative and sequential composition in the usual way. Ternary operator _ — _¢_
composes processes into a conditional choice: the process ¢ — q o r behaves as g if the data expression ¢ equals true
(in terms of ~) and as r otherwise. Operator > binds, for each data element in a finite set, a data variable in a process
to that particular element and places the resulting processes in an alternative composition: the process >, i 4,19
with x € Var and dq, ..., d; € Elem, behaves as q[dq/x] + --- 4+ q[d/X] (shortly, we shall state this more explicitly in a
proposition).>

Let Basic (defined in Fig. 5) denote the set of basic processes, which consist of only multiactions and the basic operators
such that nested occurrences of ) bind different data variables. The latter restriction, imposed for technical convenience,
does not really limit the expressiveness of the algebra, because one can always bring a process to the desired format by
applying alpha-conversion (i.e., we consider processes up to alpha-conversion for summation). Furthermore, we associate

2 The vertical bar “|” in the production rule of & is a separator symbol; it does not denote the synchronous composition operator of the process algebra.
3 In contrast to existing literature on mCRL2 [20], we define summation only for finite sets of data elements, because we prove all results in this paper
only for finite summation: proving our main results for summation over infinite domains is still an open problem.
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Bound(at) = ¢ o € Basic
Bound(q +r), Bound(q - ), Bound(c — q ¢ 1) = Bound(q) U Bound(r) q+r,q-r,c—qor € Basic iff q, r € Basic
Bound(}",cp q) = Bound(q) U {x} Y xep 4 € Basic iff [q € Basic and x ¢ Bound(q)]
Fig. 4. Definition of Bound. Fig. 5. Definition of Basic.

with every process p built from the operators discussed so far a set Bound(p) (defined in Fig. 4), which contains the data
variables bound by occurrences of 3 in p.

(Full mCRL2 contains also the at basic operator and the initialization basic operator for expressing timed behavior. We
skip those operators here, because we use only the untimed subset of mCRL2 in this paper.)

Parallel operators Operator || interleaves and synchronizes processes. Operator || behaves as ||, but the first computation
step must come from its left-hand argument. Similarly, operator | behaves as ||, but the first computation step is formed
by synchronizing the first multiaction of each of its arguments.

Additional operators Four additional operators constrain the behavior of processes composed in parallel. Operator V re-
stricts a process p to the multiactions in a set of nonempty multiactions V € MAct \ {r} (modulo commutativity and
associativity of LI). Operator d blocks those actions in a process p that occur also in a set of actions B C Act. Operator p
renames the actions in a process p according to a set of renaming rules R C Act x Act. Finally, operator I" applies the
communication rules in a set C € MAct x Act to a process p. We write communication rules as o — a and require that
T does not occur in «.

Abstraction operator Operator 7 hides those actions in a process p that occur also in a set of actions I C Act. The act of
hiding an action a, which means “replacing a by 7,” differs from the act of blocking a, which means “replacing a by §.”

We adopt the following usual operator precedence (in decreasing order): U, |, -, ||, ||, +. We write as few parentheses as
possible, omitting them also in the case of associative or commutative operators. For example, we write p-q-r+ o + 8
instead of (p - (q-1)) + (o + B). Furthermore, let symbol @ range over the binary operators +, -, ||, ||, and |. Similarly, let

symbol f range over unary operators V, 3, p, I, and 7.
2.3. Semantics

Every process has an associated transition system describing its semantics (sos rules appear in [20]). Let ~ denote prov-
able equality of processes. Fig. 6 shows a sound axiomatization for strong bisimulation of the operators shown in Fig. 3 [20].%
Let function Free, which occurs in axioms SUM1, SUM2, and SUM5, map processes to the free data variables occurring in
them. Note that Fig. 6 axiomatizes three additional operators on multiactions: operator \ subtracts the multiaction on its
right-hand side from the multiaction on its left-hand side; operator C checks if the multiaction on its right-hand side con-
tains the multiaction on its left-hand side; operator _ clears a multiaction from data parameters. These three additional
operators occur in the definition of the auxiliary function C, used in Axiom C1:

Cc,(Cc, (o)) if C=CiUCy;and CtNCy =¥ and C1, C2 #0
Cc(a)= b uCc(@\p) if C={f— b} and B=b1(e)U---Ubm(e) and BC
o otherwise

Informally, C applies the communication rules in a set C to a multiaction «. The left-hand sides of different communication
rules in C must be pairwise disjoint [20]. Moreover, an action may not occur both in a left-hand side and in a right-
hand side [22]. These constraints ensure that Cc, (Cc,(«)) = Cc,(Cc, (o)) holds, which guarantees that Cc,uc, has a unique
solution [20]. For instance, C={aub — b, auc — c} is forbidden, because a occurs in both left-hand sides.

Although we use only a subset of the axioms in Fig. 6 in proofs, we show all of them for completeness.

The proof of one of the theorems in Section 5 relies on the recursive specification principle (RSP) [8]. This principle states
that every guarded recursive definition has at most one solution.® One can formulate this principle in terms of a guarded
process operator @—a function from processes to processes—as follows [22, Section 9.6]:

P~@(P) and Q >~ ®(Q) implies P~ Q

Thus, if @ has both P and Q as fixed points, P must be provably equal to Q.

Finally, we introduce a “metalevel” operator |_| to abbreviate arbitrary finite sequences of multiactions composed to-
gether: let |_|?:1 «; abbreviate the multiaction o U -+ Loy (if n > 0) or T (if n = 0). Similarly, we introduce a metalevel
operator Y (same symbol as the summation operator but with a different, yet related, meaning) to abbreviate alternative

4 The axiomatization is also relatively complete for processes without process references. This means that completeness of the process language depends
on completeness of the data language [20].

5 We use the following axioms: MA2, MA3, A4, A6, A7, COND1, COND2, M, LM1, LM2, LM3, LM4, S3, S4, S5, S6, S7, SMA, B1, B2, B3, B4, C1, H1, H2, H3,
H4, F1, F2, F3, F4. Furthermore, we assume that summations have been alpha-converted to the desired format by SUM2.

6 In a guarded recursive definition P = p, every occurrence of P in p is preceded by a multiaction, where “precedence” is defined as follows [8]: if ¢’ is
a subprocess of ¢ (e.g., a multiaction) and r’ is a subprocess of r (e.g., a process reference), q' precedes r’ in q-r.
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MAl auB~BUa M plg=pllg+qllp+plg
MA2 (@up)uy~au(Buy)
MA3 aoUT>~« M1 a|p~a-p
IM2 §| p~3$
SMA «a|B~auf IM3 a-pllg~a-(plq

M4 (p+qlr=plr+alr
MD1 7\ax~T

MD2 o\T~«a S1 plgqx=qlp

MD3 a\(Buy)=(@\B)\Y 2 (pla)lr=pl@|n
MD4 (a(d)ua)\ad) >« S3 pltx~p

MD5 (a(d)ua) \ b(e) ~a(d) L (x \ b(e)) S4 «a|d~$

if [a#b or dse] S5 (@-p)|B~a|B-p
S6 (@-p)lB-p=alB-(plg

MS1 7 C o~ true S7 (p+qQ|r=pl|lr+ql|r
MS2 a(d) C t ~ false

MS3 aduaCaduf~aCB Vl Vy(@)~a if x e VU{T}
MS4 a(d)uaCThe)up~a(d)u(x\be)CS V2 Vy(a)~$ if a¢gVU{t}

if [a#b or d#e]
Bl op(t)x~T

MAN1 T>~7 B2 dp(a(d)) ~a(d) if a¢ B
MAN2 a(d) ~a B3 dp(a(d))~5 ifaeB
MAN3 aupf~aup B4 9p(a | B) ~dp(a) | 9B (B)

Al p+qx~q+p Rl pr(t) >t

A2 p+@+nN=(p+q@+r R2  pg(a(d)) ~b(d)

A3 p+px~p if a > b € R forsome b

Ad (p+q-r=p-r+q-r R3  pr(a(d)) ~a(d)

A5 (p-q)-r=p-(q-1) ifa—b¢R forall b

A6 p+38x~p R4 pr(e|B) =~ pr(@) | pr(B)

A7 8-p~$§

Cl TIc(a)~Cc(a)
COND1 true—-poq=>~p

COND2 false —-poq>~q H1 Ti(t)~t
H2 Tiad)~t ifael
SUM1 Y. .ppxp if x ¢ Free(p) H3 7Ti(a(d)) ~ad) if a¢l
SUM2 3 ycp P> yep PLY/X] H4 Ti(a|B)=Ti(a) | Ti(B)
if y ¢ Free(p)
SUM3 >, pP=YyepP+DP F1 f()~s
SUM4 > p(P+D =Dy cpP+ D xend 2 fla+p) =~ fl@)+ f(B)
SUM5 (3 yep P) 43 yep(P-@) B3 f(a-p)=f(): f(B)
if x ¢ Free(q) F4 f(QepP) =D e f(P)
Fig. 6. Axioms.

compositions consisting of a finite number of processes: let Y i p; abbreviate the process p; +--- + pn (if n > 0) or § (if
n=0). Operators |_| and > help us in formulating propositions and proofs more concisely. Although strictly different, the
latter has a tight connection with the summation operator. The following proposition makes this connection precise.

Proposition 1. (See [22, Section 4.6].) ZXE{d],“.,dg} q> Z{‘:l qld;/x].
3. An application of the algebra: semantics of Reo

Before continuing with our splitting procedure in Section 4, we briefly discuss Reo and its process algebraic semantics
by Kokash et al. [35,32-34] as an application of the algebra discussed in Section 2; this also helps us to relate the relatively
abstract discussion in Section 4 to a concrete case. Recall from Section 1 that connectors consist of channels and nodes.
Below, following Kokash et al., we outline how these channels and nodes, as well as the data they transport, behave and
how to describe such behavior as processes in untimed mCRL2.

Data To model the pieces of data transported by a connector in mCRL2, one can define a sort whose constructors corre-
spond to concrete data items. Additionally, one can define maps to allow channels to perform operations on data elements,
but we skip that here. Let Data C Elem denote a finite global set of data elements of said sort.

Channels Every channel has exactly two ends, each of which has one of two types: source ends accept data, while sink ends
dispense data. Besides this assumption on the number of ends, Reo makes no assumptions about channels. This means,
for example, that Reo allows channels with two source ends. Fig. 7 shows the graphical syntax of four common channels,
a textual syntax, and an informal description of their behavior.

In the process algebraic semantics of Reo, one associates every channel end with an action. For source ends, such an
action represents the acceptance of data; for sink ends, it represents the dispersal of data. By composing these actions into
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Graphical syntax Textual syntax ~ Semantics

a b
—>  sync(a; b) Atomically accepts an item on its source end a and dispenses it on its sink end b.
a b

———————— >  lossysync(a; b)  Atomically accepts an item on its source end a and, nondeterministically, either dispenses it on its sink
end b or loses it.

a b

>»———— <« syncdrain{a,b;) Atomically accepts (and loses) items on both of its source ends a and b.

a b

—D—) fifo1(a; b) Atomically accepts an item on its source end and stores it in its buffer, then atomically dispenses the

item d on its sink end and clears its buffer.

Fig. 7. Syntax and informal semantics of common channels.

multiactions, one can describe channels that atomically accept and dispense data on their ends. For example, the following
process definitions describe the behavior of the channels in Fig. 7.7

Sync(a; b) = veData @) LUb(X) - Sync(a; b)

LossySync(a; b) =) ycpan(@®) Ub(x) +a(x)) - LossySync(a; b)
SyncDrain(a,b;) =Y, cpata ZyeData a(x) Ub(y) - SyncDrain(a, b;)
Fifoi(a;b) =) vepaa(@®) -b(X)) - Fifoi(a; b)

The definition of Sync(a;b) models synchronous flow of a data item x through channel ends a and b, represented by the
multiaction a(x) U b(x). The definition of LossySync(a;b) models a (nondeterministic) choice between flow of a data
item x through ends a and b and flow of x through only a, represented by the process a(x) Lib(x) + a(x). The definition of
SyncDrain(a, b;) models synchronous flow of (unrelated) data items x and y through channel ends a and b, represented
by the multiaction a(x) Lib(y). The definition of Fifo1i(a;b) models flow of a data item x through channel end a followed
by flow of the same x through channel end b. The recursion present in each of the four process definitions above models
that the channels repeat their behavior indefinitely.

In this paper, we adopt the context-insensitive process algebraic semantics of Reo, originally based on constraint au-
tomata [5]. In context-insensitive semantic formalisms, one cannot directly describe channels and connectors whose behavior
depends not only on their internal state but also on the presence or absence of I/O operations—their context. In contrast,
one can describe such channels and connectors in semantic formalisms that do support context-sensitivity. For instance,
a context-sensitive version of lossysync should lose a data item only in the absence of 1/O operations on its sink end.
A context-sensitive process algebraic semantics of Reo exists [34,35], originally based on connector coloring with three col-
ors [14]. Alternatively, we could encode a context-sensitive process algebraic semantics along the lines of [29].° Although the
splitting procedure introduced in Section 4 supports both approaches, we do not pursue context sensitivity in this paper,
because it would only distract and unnecessarily complicate matters.

Nodes Entities communicating through a connector perform [/O operations—writes and takes—on its nodes. Reo features
three kinds of nodes: source nodes on which only source ends coincide, sink nodes on which only sink ends coincide, and
mixed nodes on which both kinds of channel end coincide. Nodes have the following semantics.

e A source node n has replicator semantics. Once an entity attempts to write a data item d on n, this node first suspends
this operation. Subsequently, n notifies the channels whose source ends coincide on n that it offers d. Once each of these
channels has notified n that it accepts d, n resolves the write: atomically, n dispenses d to each of its coincident source
ends.

e A sink node n has nondeterministic merger semantics. Once an entity attempts to take a data item from n, this node first
suspends this operation. Subsequently, n notifies the channels whose sink ends coincide on n that it accepts a data item.
Once at least one of these channels has notified n that it offers a data item, n resolves the take: atomically, n fetches this
data item from the appropriate channel end and dispenses it to the entity attempting to take. If multiple sink ends offer
a data item, n chooses one of them nondeterministically.

e A mixed node n has pumping station semantics, which is a combination of the replicator semantics and merger semantics
discussed above, where fetching and dispensing occur atomically.

In the process algebraic semantics of Reo, one associates each of the m source ends of a node with an action src;
(1 <i<m)and each of its n sink ends with an action snk; (1 <i < n). Then, one can describe nodes by combining the

N}

In process references, in contrast to the textual syntax in Fig. 7, angle brackets have no meaning and give no structure.
An extensive overview of context-(in)sensitive semantic formalisms for Reo appears in [24].

©
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Fig. 8. Labeled transition system(s) of the process(es) modeling the connector in Fig. 1a. On the left is a graphical representation of the decomposition of that
connector into channels and nodes with labeled ends. In the middle are the labeled transition systems of the processes modeling those channels and nodes
(without data for simplicity). On the right is the labeled transition system of the parallel composition of those processes (after applying communication
and blocking).

processes for a binary replicator R (one sink end to two source ends), a binary merger M (two sink ends to one source
end), a one-to-one pumping station PS, and a boundary node B:

R(snk; srcq, srcy) = ernata snk(x) Usrcq(x) Usrcy(x) - R{snk; srcq, srcy)

M(snki, snky; src) = erData(snh (x) Usrc(x) + snky(x) U src(x)) - M(snk1, snky; src)
(snk; src) = erData snk(x) Usrc(X) - (snk; src)

B(bnd) =) reData PRAX) - Bbnd)

Connectors To get the behavior of a connector as a process, one composes the processes of the constituents of that con-
nector in parallel and synchronizes their actions. Below, we give the processes of the connectors in Figs. 1a and 1c. Fig. 8
additionally shows the labeled transition system(s) of the process(es) modeling the connector in Fig. 1a. More examples
may be found in [32-35].

Flg la= 8{a1,51,x1,3‘{1,x2,§2,b1,51}(qa1Ua1%a,x1u§1uxzuiz%x,b1LIE]*)b} (q))
Fig. 1¢ = 0(q; d;|ae{a,b,c}rie(1,2,3)) ( {a; Ud; UayLid> LiasLids — alaefa,b,c}} (1)
For:

B(a1) || Fifoi(as;x1) | (X1; X2)

q= | Fifoi(xz;b1)
I B(b1)

B(a1) | R(d1;32,d3) | sync(as;ci) || M(C1,CT2;C3) || B(cs)
r= || SyncDrain(bsy,as) || Fifoi{bs;cy) ||

B(b1) | R(b1; bz, b3)

4. Splitting processes

Recall from Section 1 that we originally aimed at establishing the validity of optimizing implementations of Reo through
the identification of (a)synchronous regions. Essentially, we want to show that splitting connectors along the boundaries of
their (a)synchronous regions (and running the resulting subconnectors concurrently) neither loses behavior nor gives rise
to inadmissible behavior. In this section, we lay the foundation for this kind of splitting in terms of a splitting procedure
for processes. Later, in Section 6, we apply this procedure to the process algebraic semantics of Reo, thereby justifying the
splitting of connectors. Here, in Section 4.1, we start by explaining the intuition behind our splitting procedure; formal
definitions appear in Section 4.2. In Section 5, we investigate and prove properties of our splitting procedure, including a
proof of correctness. We note that our notion of “splitting processes” differs from “uniquely decomposing processes” [40]: in
our context, neither primality nor uniqueness of processes matters. We discuss the differences in more detail in Section 7.

4.1. Intuition

For simplicity, to convey the intuition behind our splitting procedure, we consider only data-free processes in this sub-
section (definitions in Section 4.2 do incorporate data).
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Act(a(d)) = {a}
Act(T), Act(8), P(d) =0
Act(BUY) = Act(8) UAct(y)

Act(q ), Act(c — qor) = Act(q) U Act(r)
Act(Yyep @) Act(f(@) = Act(@)

Fig. 9. Definition of Act.

Let Act(p) (defined in Fig. 9) denote the set of actions syntactically occurring in a process p.° We introduce function
split, which splits a process p along a set of actions A C Act into two processes: one of these processes contains no actions
in Act(p) \ A, while the other process contains no actions in A. We call the former process the A-isolation of p and the latter
process the A-coisolation of p. We aim at constructing p’s isolation and its coisolation such that their parallel composition
behaves as p under some appropriate notion of synchronization (defined shortly).

Informally, to construct p’s A-isolation, replace every action in p as follows:

o If a € A, replace a with the multiaction a u £(a), where &(a) denotes a fresh auxiliary action with respect to Act(p).
Intuitively, &(a) represents the act of “disseminating that this process performs a.”

e If b ¢ A, replace b with the auxiliary action &(b), where &(b) denotes a fresh action with respect to Act(p). Intuitively,
£(b) represents the act of “discovering that another process performs b.”

Symmetrically, to construct the A-coisolation of a process p, replace in p every b € A with £(b) and every b ¢ A with
b u &(b). Note that because the foregoing affects only multiactions, p’s isolation and its coisolation have the same syntactic
structure as p. In other words: the process p, its isolation, and its coisolation have the same transition system modulo
transition labels.

To illustrate isolation and coisolation, consider an example process q = a - b. This process has q; = a u £(a) - £(b) as
its {a}-isolation and q; = £(a) - b U £(b) as its {a}-coisolation. The parallel composition of q; and g, however, does not
behave as q yet: to ensure that a process behaves as the parallel composition of its isolation and its coisolation, these two
processes should appropriately synchronize on &(a) and & (a) for each a. To this end, we apply the communication operator
I" to such compositions. In our example, this yields the process I'c(qi || g2) for C = {£(a) U &(a) — tau, £(b) U E(b) —
tau}. The special action tau serves as a placeholder action for 7, and we can hide it immediately using the abstraction
operator 7'%; henceforth, without loss of generality, we assume tau ¢ Act(p) for each p. In our example, this yields the
process T1(I'c(q1 | q2)) with I = {tau} and C as before.

But also this process does not behave as q yet: synchronization and abstraction alone do not suffice—we must also
block those auxiliary actions whose individual performance “makes no sense.” For instance, we consider every unpaired
occurrence of £(a) in a multiaction & nonsensical: intuitively, performing £(a) suggests that some process discovers that
another process performs a, even though this does not happen (otherwise, also &(a) would occur in «). By symmetry, we
consider also every unpaired occurrence of &(a) nonsensical. To block unpaired occurrences of £(a) and &(a), we apply the
blocking operator 3. In our example, this yields the process 3z (7;(I'c(q1 || q2))) with B ={£(a), E(a), £(b), £(b)} and I and
C as before. This process behaves as ¢, concluding our example.

We proceed with general formal definitions of the splitting procedure just outlined.

4.2. Formal definitions

Auxiliary actions and substitution environments We start with a formal account of the fresh auxiliary actions of the form &(a)
and & (a). As suggested by this notation, & and & denote functions that take an action a as input and produce another action
as output. We collect such pairs of functions in substitution environments as follows. Let C* denote the set of finite strings
over C.

Definition 2. 1 and 2 are global symbols such that 1 #2 and 1, 2 ¢ ElemU Var.

Definition 3. A substitution environment, typically denoted by Z, is a quadruple (A, tau, &, &) consisting of a set A C Act,
an action tau € Act\ A and injective functions &, £: {1, 2}* x A— Act\ (AU {tau}) such that img(§) Nimg(§) = 0.

Example. Suppose:

e Act={tau, foo}U{x_foo_w|we{l, 2}*}U{x_foo_w|we{l, 2}*}

9 We use the formal definition of Act only to formulate a technical requirement in premises of propositions, lemmas, and theorems in Section 5. This
requirement says something about the actions that syntactically occur in a process. Therefore, the definition of Act does not need to take the effect of V,
9, p, I', and T into account. See also the example at the end of Section 4.2.

10 We use this construction, because mCRL2 does not permit communications to map directly to 7.
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dom(&) ={al|(w,a)edom()N dom(£)}
img(&Z) = img(§) Uimg(§) ~
comm(&) = {éw (@ UEy(a) > tau | (w, a) e dom(§) Ndom(&)}

Fig. 10. Definitions of dom, img, and comm.

o A={foo}
o £={(w, foo)r>x_foo_w|we{l, 2}*}
o E={(w, foo) > x_foo_w|we{l, 2}

Then, (A, tau, £, £) is a substitution environment. m]

Henceforth, we write &,(a) and &, (a) instead of £(w, a) and £(w, a). Note that we dropped the w subscripts in the
example in Section 4.1: because we did not need such an extra string of information, we omitted it for simplicity. In the
general case, however, this information plays a vital role, as explained shortly.

Let “dom” and “img” map functions to their domain and image. Fig. 10 shows auxiliary functions for substitution envi-
ronment. Functions dom and img map substitution environments to their domain (projected on actions) and image. Function
comm maps substitution environments to communications derivable from them.

Example. Suppose & = (A, tau, &, &) is the substitution environment defined in the EXAMPLE on page 55. Then:

e dom(¢) =dom(é) = {(w, foo) |we (1, 2}¥}
e img(&) ={x_foo_w|we{l, 2}*}
e img(€) = {x_foo_w|wef{l, 2}*}

And:

e dom(&) ={foo}
o img(&) = Uyeqr o) (x_foo_w, x_foo_w}
e comm(&) = {x_foo_wuUx_foo_w— tau|we{l, 2}*} O

Henceforth, to avoid heavy notation, we quantify implicitly over all substitution environments in definitions, propositions,
lemmas, theorems, and proofs, without mentioning them explicitly. We do the same for sets A, which contain the actions
along which we split processes.

Isolation and coisolation To formalize the notions of A-isolation and A-coisolation, we introduce the functions isol and isol,
ranged over by isol. Fig. 11 shows their definitions. (Recall that we quantify implicitly over all execution environments =
and sets A without mentioning them explicitly.) Functions isol and isol take a string over {1, 2} UElem U Var and a basic
process as input.'!

Before we take a closer look at Fig. 11, we explain the purpose of the string over {1, 2} U Elem U Var. Essentially, such
strings encode information that isol and isol use to “keep track” of each other’s nondeterministic or data-dependent choices.
If they cannot do that, an isolated process and its coisolation run the risk of going “out of sync.” To clarify this, suppose that
we want to compose the {a}-isolation and {a}-coisolation of the process r =a-b+a-c in parallel. For the sake of argument,
suppose that isol and isol take only a basic process as input and no string. We now demonstrate that this can go wrong. We
have:

isol(r) = aug(@- E(b) +auk@ - i)

isol(n) =&(a)-buéb)+  &@ - cuU&()

This means that isol(r) can erroneously synchronize its left-most multiaction a LI £(a) with the right-most multiaction & (a)
of isol(r), causing deadlock afterwards (because &(b) cannot synchronize with &(c)). To solve this problem, we use strings
over {1, 2} U Elem U Var: essentially, we associate with every branch of the parse tree of a process a unique such string.
This string encodes information about the structure of that process and its data bindings. Moreover, we ensure (e.g., by
defining & and & as injective functions) that the isolation and the coisolation of a process synchronize auxiliary actions only
if they belong to the same branch (in which case they have matching strings). For example:

isol(e, ) =auéii@- E12(b)+au&i@- 2200
isol(e, )= &11(@)- bu&ia(b)+  &21(0) - cU&22(0)

11 Strictly speaking, isol and isol also take a substitution environment and a set of actions A as input.
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isol(w, a(d)) = a(d) u&,: (@ W) ifacA
isol(w, b(e)) =E (W) if bg A
isol(w, a(d)) =E, :(@(W”) ifacA
isol(w, b(e)) = b(e) U,z (b)(w") if bg A
i§3|(w, 7) =T

isol(w, Buy) =isol(w, B)uisol(w, y)

isol(w, 8) =45

isol(w, q+r)  =isol(wl, q) +isol(w2, r)

isol(w, q-1) =isol(wl, q) -isol(w2, 1)

iﬁl(w, c—>qor)=c— igc\)/l_gwl, q)<>i§5|(w2, r)

isol(W, Y yep@ = D yepisol(wx, q)

Fig. 11. Definitions of isol and isol. Let isol range over the set {isol, isol}.

1% =1 1?)’2b!€b:€
2t =2 d’ =d
d*, x*, el =€ X =x
(wv)f = wivt (wv)” = whv®
Fig. 12. Definition of f. Fig. 13. Definition of b.

split(w, p) = ?2(isol(e, p) || isol(e, p)) if p € Basic

split(w, P(d)) = Pf@)

split(w, g r) = split(w, q) & split(w, 1) if g @ r ¢ Basic

split(w, c = qor) = ¢ — split(w, q) o split(w, r) if c — qor ¢ Basic

splitw, Y ep @) = D _xep SPIit(W, q) if ) ,.pq ¢Basic

split(w, f(@)) = f(splittw, @)

Fig. 14. Definitions of split.

In this case, assuming some appropriate notion of synchronization that takes strings into account (we define this shortly),
a U &1 (a) can synchronize only with &11(a) (they share the same string) and not with £, (a) (different string). And so,
these two processes do not go out of sync.

Let us now have a closer look at Fig. 11. Applied to a string w and a single action a(d), depending on whether A
contains a, isol and isol either compose or replace a(d) with an auxiliary action using the substitution functions £ and &.
However, because & and & have {1, 2}* x A as domain (see Definition 3), isol and isol cannot directly use w in & or &:
because w € ({1, 2} UElem U Var)*, isol and isol should first filter out the data elements and data variables possibly oc-
curring in w. We introduce an operator denoted by f# for that purpose. Fig. 12 shows its definition. Similarly, we introduce
an operator denoted by b, which does the converse of f: it filters symbols 1 and 2 from a string over {1, 2} U Elem U Var.
Fig. 13 shows its definition. Functions isol and isol use b to parameterize auxiliary actions with data. This parameterization
ensures that the isolation and coisolation of a process of the form ), ;g do not go out of sync (similar to what we saw
in the example above). In Section 4.3, we exemplify this further.

Applied to a composite multiaction SLiy, isol and isol apply themselves recursively on 8 and y without changing w. This
differs for processes with a different main composition operator. For instance, for processes of the form p + g, isol and isol
apply themselves recursively on w1l and w2 instead of w. This ensures that in their parallel composition, if appropriately
synchronized, the process isol(w, p +q) can track which choice the process isol(w, p +¢q) makes and vice versa as outlined
above.

We make a final remark about the practical computability of isol and isol. Strictly speaking, because we defined & and
& as functions over {1, 2}*, those functions have infinite domains. This may seem problematic in practice, but fortunately,
one can easily fix this. Start by observing that process terms consist of only finitely many operators and actions. This
means that for isol(w, p) and isol(w, p) to be defined (for some w and p), functions £ and £ must be defined for only
finitely many strings (all of which have w as a prefix). One can compute this set of strings W in a preprocessing step
that analyzes the syntax of p (essentially a dry run of isol or isol). Then, before actually applying isol or isol, define a
finite substitution environment = such that the domains of £ and & contain only the strings in W. Thus, rather than one
general substitution environment for all processes, we have a tailored substitution environment for every individual process
(this generalizes straightforwardly to finite collections of processes). Henceforth, we always assume a finite yet sufficient
substitution environment = when we apply isol or isol to a (collection of) process(es).

Splitting We build the definition of function split—the actual splitting procedure, so to speak—on top of functions isol and
isol. Fig. 14 shows its definition.

We also introduce an auxiliary operator, denoted by ?, which represents and ensures “appropriate synchronization”
among auxiliary actions: it takes care of the communication, hiding, and blocking necessary to synchronize auxiliary actions
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such that split preserves semantics (as exemplified in Section 4.1). Recall that we implicitly quantify universally over all
substitution environments & in definitions to avoid heavy notation. Then'?:

Definition 4. ?(p) = aimg(E)(,ntau}(Fcomm(E)(p)))-

Example. Suppose 5 = (A, tau, &, &) is the substitution environment defined in the EXAMPLE on page 55 and A = {foo}.
Then:

e From the EXAMPLE on page 56:

— img(&) = Uyeqr 2+ (x_foo_w, x_foo_w}
— comm(Z) ={x_foo_wuUx_foo_w— tau|w e {1, 2}*}

L4 Wfoo) (split(foo)) = Infoo}(SpIit(foo)) _

= Tifoo}(?(isol(e , £00) || isol(e , £00)))

= Tifoo}(?(fooUx_foo_e || x_foo_¢))

= ﬂfOO] (ang(l , 2}*{X_fOO_W ,x_foo_w} (ﬂtau} (Iw{x_foo_wl_lx_foo_w—>taulWE{l s 2}*}(
foolx_foo_€ | x_foo_€))))

= ﬂfoo}(auwé(l o {x_foo_w,x_foo_w} (ﬁtau} (ﬂx_foo_wux_foo_w—>tau|w€{l s 2}*}(
fooux_foo_€ || x_foo_€ +
x_foo_e || fooux_foo_€ +
foolUx_foo_€|x_foo_€))))

= ﬂfoo}(auwe(l oy {x_foo_w, x_foo_w} (ﬁtau} (ﬂx_foo_wux_foo_w—>tau|w€{l s 2}*}(
foolUx foo_€-x_foo_ € +x _foo_€-foolx foo_€+ foolx_foo_e€ LUx_foo_€))))

= ﬂfoo}(auweu oy {x_foo_w, x_foo_w} (ﬁtau}(
foolx_foo_€-x_foo_€ +x_foo_€-foollx_foo_€ + foolltau)))

= Tieooh A, oy tx_too_w , x_Foow)

foolUx _foo_€-x_foo_€ +x foo_€-foolx foo_€ + foollT))
>~ Tifoo}(§ +8 4+ foo U T)
X~ Infoo}(foo)

(We ignore data in this simple example.) m]

The definition of split(w, p) for p = P may seem odd and requires more explanation, because we make a number of
tacit assumptions. First, we assume that if a process reference R occurs in some process g, there exists also a process
definition R =r (otherwise, ¢ has no meaning). Second, we adopt the notational convention that every process reference
with a superscript T refers to a process definition with a body to which we applied split (for the empty string). For example,
RT = split(e , ). Now, the definition of split(w, P) makes more sense: it means that we replace process references in a split
process with process references that refer to other split processes. In that way, the application of split propagates through
process definitions. In Section 5.4, we prove the correctness of this definition.

4.3. More examples

To illustrate the usage of split, we give three more examples in this subsection. For the sake of clarity, we use concrete
action names for both original actions and auxiliary actions as follows. Define:

x_foo_1l, x_bar_2, x_bar_21, x_foo_22, x_baz}

Act= wu {x_foo_l , X_bar_2,x bar_21, x_foo_22, x_baz

original actions
auxiliary actions

12 In (detailed versions of) proofs of propositions, lemmas, and theorems in Section 5, we use the following axioms for ? (except Q1, which we give for
the sake of a comprehensive presentation of the properties of ?):

Ql 2(v)=~t Q3 2(q+r1)=2(q) +?(r) N
Q2 288 Q4 g1 =2q) - 2r) QB 7(Lkep = Liven 7@

The validity of these axioms follows directly from axioms in Fig. 6: Axiom Q1 follows from C1, H1, and B1; Q2 follows from F1; Q3 follows from F2; Q4
follows from F3; and Q5 follows from F4.
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Furthermore, let A = {foo, baz} (i.e.,, we split along foo and baz), define & as follows:
£1(foo)=x_foo_1 & (bar) =x_bar_2 &y1(bar) =x_bar_21
&r5(foo) =x_foo_22 éc(baz) =x_baz

and define £ analogously.

Example 1 Let p1 = foo(1, 2) + bar(3). We derive split(e, p1) as follows.

split(e , p1)
= split(e, foo(1, 2) +bar(3))
= ?(isol(e, foo(1, 2) +bar(3)) || isoi(e, foo(1, 2) +bar(3)))
= ?2(isol(1, foo(1, 2)) +isol(2, bar(3)) | isol(1, foo(l, 2)) +isol(2, bar(3)))
= ?((foo(1, 2)ué1(foo) +&2(bar)) || (§1(£00) +bar(3) L&, (bar)))
= ?((foo(1, 2)ux_foo_1+x_bar_2)| (x_foo_1l+bar3)ux_bar_2))
= ?2((foo(1,2)uUx_foo_1+ x_bar_2) ||

( x_foo_l+bar(3)Ux bar_2) )

Note that the auxiliary actions x_foo_1, x_foo_1, x_bar_2, and x_bar_2 have no data parameters in this example,
because none of the strings to which we apply & and & contain symbols outside {1, 2}. (In those case, by the definition
of b, auxiliary actions have no parameters.) Next, we consider an example in which data do play a role.

Example 2 Let

p2 = Z x <28 — foo(true) ¢ Z bar(x, y) - foo(false)
xeDy yeDy
for D1 ={i|6 <i<496} and D; = {1, 2}. We derive split(e , p) as follows.

split(e , p2)
split(€ , D _yep, X < 28 — foo(true) ¢ ZyeDz bar(x, y) - foo(false))

= ?(isol(€, Y ycp, X < 28 — foo(true) o Zy€D2 bar(x, y) - foo(false)) ||
isol(€ , Y yep, X <28 — foo(true) o > yep, bar(x, y) - foo(false)))

= ?(erol isol(x, x < 28 — foo(true) ¢ ZyeDz bar(x, y) - foo(false)) ||
> xeD; isol(x, x < 28 — foo(true) ¢ > yep, Par(x, y) - foo(false)))

= ?(erD1 x<28 — is_ol(xl, foo(true)) ¢ is_ol(x2, ZyeDz bar(x, y) - foo(false)) ||
ZXEDl x <28 —isol(x1, foo(true)) ¢isol(x2 , ZyeDz bar(x, y) - foo(false)))

= ?(erol x<28 — is_ol(xl, foo(true)) ¢ ZyeDz is_ol(x2y, bar(x, y) - foo(false)) ||
ZXGDl x <28 —isol(x1, foo(true)) ¢ ZyeDz isol(x2y , bar(x, y) - foo(false)))

= 2P yep, X<28— isol(x1, foo(true)) o ZyeDz isol(x2y1, bar(x, y)) -isol(x2y2, fool(false)) |
> xep, X < 28 —isol(x1, foo(true)) o ZyeDz isol(x2y1, bar(x, y) -isol(x2y2, foo(false))))

= ?2(Qyep, X< 28

—> foo(true) LUx_foo_1(X) ¢ ZyeDz x_bar_21(x, y) - foo(false) ux_foo_22(x, y) |
erDl X< 28
— x_foo_1(x) ¢ Zy€D2 bar(x, y)Ux_bar_21(x, y) - x_foo_22(x, y))

This example demonstrates how the splitting procedure handles data-dependent processes. Furthermore, based on this
example, we can illustrate an important property guaranteed by the data parameters of auxiliary actions: the isolation of
p2 (left/above of ||) and the coisolation of p, (right/below of ||) terminate successfully only if they bind x (and later y)
to the same value. To see this, suppose that the isolation binds x to 4, while the coisolation binds x to 28 (such that
these processes take the same branch of the conditional choice). Then, because the communication operator I" embedded
in ? requires that communicating actions have the same data parameters (see Section 2.3), x_foo_1(4) and x_foo_1(28)
cannot synchronize with each other. This in turn causes deadlock (effected by the blocking operator in ?). In contrast, if
both the isolation and the coisolation bind x to 4, the auxiliary actions parameterized by x can synchronize, after which the
whole process terminates successfully.



60 S.-S.T.Q. Jongmans et al. / Science of Computer Programming 115-116 (2016) 47-78

Example 3 Let p3 = p; || baz - P4 for process definitions P4 =baz - P4 and P:rl = split(e , baz - P4). We derive split(e , p3)
as follows.

split(e , p3)

split(e , p1 || baz - Pg)

= split(e, p1) || split(e , baz - Pyg)

= split(e, p1) || (split(e , baz) - split(e, P4))
= split(e, p1) | (split(e , baz) - P})

= ?((foo(1, 2)ux_foo_ 1+ x_bar_2) |
( x_foo_1+bar(3)ux_bar_2) )| (split(e, baz) - PZ)

To further rewrite this process, we introduce the following process definitions: Pi = ?(P?1 I I_’ﬁ) and Pi =isol(e, baz) - Pi

13

and 1_’3 =isol(e, baz) - 1_33. Using RSP (see Section 2.3), one can show that PZ is provably equal to P;,"” which enables the

following rewrites:

~ ?((foo(1, 2)ux_foo_1+ x_bar_2) |
( ¥_foo_1+bar(3)Ux bar_2) ) | (split(e, baz)- PL)
~ ?((foo(1,2)Ux_foo_1+ x_bar_2) |
( %_foo_1+bar(3)Ux bar_2) ) | (split(e, baz) - 2(P || PS))

Using [28, Appendix D, Lemma 6, page 87], and by afterward expanding the definitions of isol, isol, and the substitution
functions, we further rewrite as follows:

~ ?((foo(1, 2)ux_foo_1+ x_bar_2) |

( X_foo_1+bar(3)Ux bar_2) ) | 2((isol(e, baz) - PS) | (isoi(e , baz) - P%))
= ?((foo(1, 2)ux_foo_1+ x_bar_2) |

( X foo_1+bar(3)Ux bar_2) )| 2((baz L& (baz) - Pd) || (Ec(baz)- PY)
= ?((foo(1, 2)ux_foo_1+ x_bar_2) |

( % foo_1+bar(3)Ux bar_2) )| 2((bazUx_baz-P) || (xbaz - P%))

This process has the less attractive feature that ? does not occur as a top-level operator. Intuitively, this means that we have
to ensure appropriate synchronization at multiple places. Fortunately, using mCRL2’s alphabet axioms [22, Section 5.6], we
can rewrite this process as follows:

~ ?2((foo(1, 2)ux_foo_1+ x_bar_2) |
( x_foo_1+bar(3)uUx_bar_2) ||
( baz Ux_baz - PJ) ||
( X baz-P3) )

Basically, the alphabet axioms state under what conditions unary operators such as I, 7, and 9 are preserved by ||, under
what conditions they commute with each other, and under what conditions one can safely omit or add them without
changing the semantics of a process. Exactly those properties allow us to push ?, which consists of I, 7, and 9, outward
to the top-level.!

13 First, one should show that Pi is provably equal to split(e , baz) - Pi as follows:

PE~ 2P | BY) ~ 2(Gisol(e , baz) - PY) || (Sol(e , baz) - P)) ~ split(e, baz) - 2(PS || PS) ~ split(e , baz) - P}

(To prove the third step, use [28, Appendix D, Lemma 6, page 87].) Now, one can straightforwardly use RSP with the following guarded process operator:
@ (X) =split(e , baz) - X. Generally, this property holds not only for single actions (such as baz) but for every basic process.

14 This works as follows. We have a process of the form ?(p) || ?(q). By expanding ?, we get 08img(&) (T{cau) (L comm(z) (P)) || dimg(=) (T{tau} (L comm(z) (@)))-
Using Axioms DL2 and TL2 in [22, Section 5.6], which state that d and 7 are preserved by || (i.e., @ and 7 are homomorphic with respect to ||), we
can rewrite this to dgimg(&)(T{cau) (T comm(z)(P) | Tcomm(z)(q))). To show that also I is preserved by || in this case (not generally!), we first observe that
Act(p) NAct(q) = #. Consequently, the auxiliary actions occurring in p do not occur in q and vice versa. Moreover, if an auxiliary action does occur in p (resp.
q), also its dual occurs in p (resp. q). By recalling that every communication rule in comm(&) has a pair of an auxiliary action and its dual as left-hand side
(see Fig. 10), we can now split comm(&) into three disjoint sets Cp, Cq, Cy such that: the communications rules in Cj contain auxiliary actions occurring
only in p, the communication rules in C; contain auxiliary actions occurring only in g, and the communication rules in Cyp =comm(&) \ (Cp U Cq) contain
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Fig. 15. Dependency graph of propositions, lemmas, and correctness theorems.
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5. Properties of the splitting procedure

In this section, we prove the correctness of the definitions presented in Section 4: we establish that processes p and
split(p) are provably equal from the axioms of mCRL2 (see Section 2.3). This implies that p and split(p) behave indistin-
guishably under any behavioral congruence satisfying those axioms (e.g., strong bisimilarity). Fig. 15 shows a graph of how
the propositions, lemmas, and theorems presented in this section depend on each other. First, the propositions in Section 5.1
state properties about when split multiactions cause deadlock. Second, the propositions in Section 5.2 generalize those pre-
vious propositions from multiactions to basic processes. Third, in Section 5.3, we present a lemma (Lemma 1) that states
that (co)isolated processes execute in lockstep when appropriately synchronized by ? and four lemmas that state preser-
vation properties of split. Finally, we use the lemmas in Section 5.3 in Section 5.4 to prove our correctness theorems for
multiactions (Theorem 1), basic processes (Theorem 2), and arbitrary process specifications (Theorem 3).

Notation In all propositions, we implicitly quantify universally over all elements over which symbols occurring in those
propositions range, unless stated otherwise. The same applies to lemmas and theorems. We use square brackets as mean-
ingless delimiters.

Although each of the premises and consequents in the propositions in this section serves a purpose, they sometimes
make these propositions heavy on notation and difficult to parse. Therefore, to highlight the essence of a proposition, we
sometimes gray out those parts that seem less important for conveying the key result. (The parts are essential for proving
the result in detail, though.) The same applies to lemmas and theorems.

auxiliary actions occurring neither in p nor in q. Using Axioms CL2, CL3, and CL4 in [22, Section 5.6], we can rewrite I'comm(z)(P) || Icomm(z)(q) as follows
(we implicitly apply commutativity of ||):

Teomm(2)(P) || Teomm(z) (@)
T'eyuc,ucy (D) I Teguc,uc, (@)

TeyI'ey Iy (P) | Tey I'ey Ty (@)
Iey(IeyIe, Ieg(0) | ey Ieg (@)
Iey(Ie, I'eg (0) 1 T, Ie (@)
Ty I'e, (I'cCple, (p) |l Ty (@)
I'ey I'e, (I'ey (P) || Ty (@)
IeyIc, Ie,(p |l ey (@)

IeyI'c, Ic,(p Il @)

I'cyuc,uc, (P 1)
Teommz) (P 1 @)

(@)
=
[\S}

14

e NelNaNNeNNalNa)
e 1 Reg Ry Rg R

(@)
=
[\S}

IR

Applying this to our previous result, we get dimg(z) (T{rau) (Lcomm(z) (P | 9))). Hence, we conclude ?(p) || 2(q) =~ ?(p || ).



62 S.-S.T.Q. Jongmans et al. / Science of Computer Programming 115-116 (2016) 47-78

a(d), § € TauFree
B Uy €TauFree iff B € TauFree and y € TauFree]
q@r, c—qor e TauFree iff [p € TauFree and q € TauFree]
> xep q- f(q) € TauFree iff q € TauFree

Fig. 16. Definition of TauFree.
5.1. Simple properties I: deadlock caused by split multiactions

In this subsection, we formulate three propositions that state properties about when split multiactions cause deadlock.
Essentially, these propositions formalize when the “appropriate synchronization” operator ? blocks auxiliary actions whose
individual execution “makes no sense” (see Section 4.1).

Proposition 2 states that every appropriately synchronized lone (co)isolated multiaction ?(isol(w, )) causes deadlock.
In the formulation of the premise, we write o € TauFree (defined in Fig. 16) to express that T does not occur syntactically
in «. Variants of this requirement appear in (nearly) all subsequent propositions, lemmas, and theorems. Fortunately, they
limit the applicability of our results only marginally, because t usually does not occur syntactically in processes (but instead
results from hiding). The premise of Proposition 2 also ensures that the domain of the substitution environment contains
the actions in «; otherwise, isol(w , &) has no meaning.

Proposition 2 (| isol-multiactions cause deadlock).

[« € TauFree and Act(ar) € dom(&)] implies 2(isol(w, @) ~§

To understand why this proposition holds for isol = isol (the isol case works similar), observe that every isolated multiaction
contains at least one auxiliary action E (this follows immediately from the definition of isol). Now, reasoning toward a
contradiction, suppose that also the dual of E occurs in ?(isol(w, «)). Then, the content of A must have changed between
the construction of E and its dual or vice versa (otherwise, isol produces either always E or always its dual). But the content
of A remains constant across applications of isol, so A cannot have changed. Hence, § has no dual in ?(isol(w, «)). This
means that I'tomm(z) in ? does not affect E (because the communications in comm(Z) involve only pairs of an auxiliary
action and its dual). Also 7{cay) in ? does not affect E (because auxiliary actions differ from tau by Definition 3). This leaves
us with 9img(z), which does affect § it blocks it. The resulting deadlock then propagates through the entire multiaction. See
[28, Appendix B, page 58], for a detailed proof.

Proposition 3 states that the synchronous composition of an isolated multiaction and a coisolated multiaction under
different strings over {1, 2} causes deadlock.

Proposition 3 (Composed isol- and isol-multiactions cause deadlock, I).

B, y € TauFree and
Act(B), Act(y) Cdom(Z) | implies ?(isol(v, B) |isol(u, y)) ~§
and v #uf

The validity of this proposition crucially depends on the injectivity of substitution functions (see Definition 3). Essentially,
this injectivity ensures that the auxiliary actions in isol(v, 8) and isol(u, y) come from different pools: isol(v, ) and
isol(u, ) have neither auxiliary actions nor their duals in ‘common. Moreover, by similar reasoning as for Proposition 2, we
can establish that isol(u, y) contains an auxiliary action 5 but not i its dual (the same holds for isol(v, 8) but we do not
need it). Thus, neither isol(v, 8) nor isol(u, y) contains the dual ofé Then, again by similar reasoning as for Proposition 2,
we can establish that Iomm(z) and T{cay) in ? do not affect 5 while 9img(z) does. See [28, Appendix B, page 59], for a
detailed proof.

Proposition 4 states that the synchronous composition of an isolated multiaction and a coisolated multiaction under
different data causes deadlock.

Proposition 4 (Composed isol- and isol-multiactions cause deadlock, II).

B, y € TauFree and
Act(B), Act(y) Cdom(Z) | implies ?(isol(wev, B) |isol(wfu, y)) ~é
and e # f

Although similar to Proposition 3, we prove the validity of this proposition rather differently. In Proposition 3 (and also
in Proposition 2), deadlock occurred due to lone auxiliary actions. But in this case, it can happen that all auxiliary actions
occur with their dual (e.g., if 8 =y and v =u). Thus, we need a different strategy. To that end, observe that the premise
of Proposition 4 ensures that the data parameters of an auxiliary action and its dual differ (because e # f). For instance,
if b € A, we have isol(e, b) = b L & (b)(e) and isol(f, b) = E(b)(f). Now, even though & (b)(e) and &.(b)(f) are duals,
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I'comm(z) in ? does not affect their composition, because e and f differ (see Axiom C1 and the definition of C in Section 2.3).
Because also Tjtay in ? does not affect these auxiliary actions by the same reasoning as before, again, we end up with
dimg(z),» Which blocks & (b)(e) and £.(b)(f). We can generalize this argument to arbitrary multiactions. See [28, Appendix B,
page 62], for a detailed proof.

5.2. Simple properties II: deadlock caused by split basic processes

Next, we generalize the propositions in the previous subsection from multiactions to basic processes. Each of the proofs
of these generalizations exploits the observation that for every (co)isolated basic process isol(w, p), there exists a provably
equal process with the following structure: Y I ; isol(ww;j , ;) + Z?;l(i&;l(ww;, o)) - p}). Essentially, to establish that such
processes cause deadlock, it suffices to show that isol(ww; , &;) and igal(wwg , &f) cause deadlock for all relevant i (because
of Axioms A6 and A7 in Fig. 6). One can show this by applying (some of) the propositions from Section 5.1 for each such i.

The premise of each of the following propositions contains a variant of the requirement Bound(p) @ w = (). The M
operator denotes the intersection between the elements in a set (e.g., Bound(p)) and the individual symbols of a string
(e.g., w)."> Thus, Bound(p) m w = means that the data variables that will become bound in p may not intersect with
any of the data variables occurring in w. We forbid this, because if a data variable x occurs in w, this intuitively means
that x already has been bound (due to how isol and isol build strings). In other words, if Bound(p) and the elements in
w intersect, p rebinds a data variable, which it should not. The requirement Bound(p) m w = ¢ has little consequences
in practice: typically, w = €, in which case it holds vacuously. (Moreover, if necessary, one can avoid rebinding with an
o-conversion preprocessing step.)

Proposition 5 (| igal—processes cause deadlock).

[ p € Basic and p € TauFree and

Act(p) € dom(&) and Bound(p) A w = Q)} implies ?(isol(w, p)) > 8

See [28, Appendix C, page 76], for a detailed proof.

Proposition 6 (Composed isol- and isol-processes cause deadlock, I).

q, r€Basic and q, r € TauFree and Act(q), Act(r) C dom(Z) imolies ?(isol(v, q) |isol(u, r)) ~ 8 and
and Bound(q) mv =% and Bound(r) Mu =¢ and v¥ £ u’ P ?((isol(v, q) - q)) | (isol(u, r) - ")) ~§

See [28, Appendix C, page 76], for a detailed proof.

Propesition 7 (Composed isol- and isol-processes cause deadlock, II).
q, r€Basic and q, r € TauFree and Act(q), Act(r) C dom(Z) imolies ?(isol(we, q) |isol(wf , 1)) ~ 8 and
and Bound(q) mwe =¢ and Bound(r) A wf =0 and e # f P ?((isol(we, q) - q') | (isol(wf , 1) - 1)) ~ 8

See [28, Appendix C, page 79], for a detailed proof.

Although its proof follows the same structure as the proofs of the previous three propositions, we mention Proposition 8
separately for two reasons. First, this proposition does not really generalize a proposition from the previous subsection;
second, this proposition plays a crucial role in the proof of an important lemma, Lemma 1, in Section 5.3. Proposition 8
states that if we compose a (co)isolated process isol(w , p) using |l with any other process, deadlock occurs.

Proposition 8 ( i§3l—processes cause deadlock in || -ed (left-merged) terms).

p € Basic and p € TauFree and imolies ?(igil(w, p)|lq) ~¢8 and
Act(p) € dom(&) and Bound(p) A w =@ P ?((isol(w, p)-p) | @) =4
See [28, Appendix C, page 81|, for a detailed proof.

5.3. Synchronization and preservation

We proceed with a series of more significant properties that concern synchronization and preservation, starting with the
former.

15 Alternatively, we could define a function toSet for converting strings to sets and require Bound(p) N toSet(w) = 1. We favor the m-notation, because it
requires a bit less space, especially in proofs.
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Synchronization Lemma 1 states that the parallel composition operator, when operating on the isolation and the coisolation
of the same process, behaves as the synchronous composition operator. Intuitively, this lemma captures the phenomenon
that (co)isolated processes execute in lockstep when appropriately synchronized by ?: when composed in parallel, an iso-
lated processes and its coisolated sibling always wait for each other until they can perform an auxiliary action and its dual
together.

Lemma 1 (Synchronization lemma).
[p €Basic and p € TauFree and Act(p) € dom(Z) and Bound(p) @ w = {/]
implies [ ?(isol(w , p)Mﬁ(w, p)) ~ ?2(isol(w, p) | isol(w, p)) and :|
?((isol(w, p) - p") |l (isol(w, p) - p")) >~ ?((isol(w, p) - p) | (isol(w, p) - p"))

Proof (sketch). By Axiom M, the parallel composition of isol(w, p) and isol(w, p) is provably equal to a nondeterministic
choice among three options. The first two options have the shape isol(w, p) || ¢ and isol(w, p) || q. Distribute ? over + by
Axiom Q3, and apply Proposition 8 to conclude that those first two options are provably equal to § (derive the premise of
Proposition 8 from the premise of this lemma). After eliminating these §-s by Axiom A6, only the third option of the choice
remains, which completes the proof.

See [28, Appendix D, page 82], for a detailed proof. m]

Preservation The remaining four lemmas in this subsection concern properties stating that the basic operators of the algebra
used are preserved by split (i.e., split is homomorphic with respect to the basic operators). These properties make the proof of
correctness in Section 5.4 relatively straightforward, but in some sense move the main proof obligations (and complexities)
to the lemmas in this subsection.

We start with Lemma 2, which states that + is preserved by split (i.e., split is homomorphic!® with respect to +).

Lemma 2 (Preservation lemma for +).

q+r € Basic and q +r € TauFree and
Act(q + 1) Cdom(Z) and Bound(@+r)mw =0

} implies split(w, g +r) ~split(wl, q) + split(w2, r)

Proof (sketch). By the definition of split and by Lemma 1 (derive the premise of Lemma 1 from the premise of this lemma),
conclude that split(w, q +r) is provably equal to ?(isol(w, q + 1) | isol(w, q +r)). Apply the definitions of isol and isol to
obtain ?((q; + 1) | (q2 + 12)) for q1 =isol(wl, q), ri =isol(w2, 1), gz =isol(wl, q), r =isol(w2, r). Distribute | over +
by Axiom S7, and afterwards, distribute ? over + by Axiom Q3. This yields the process ?(q1 | q2) + ?(qq1 | 2) +?(r1 | q2) +
?(r1 | r2). The alternative composition of the first and the last option give the required result (after applying Lemma 1 to
each). To get rid of the middle two options, conclude that both of them are provably equal to § by Proposition 6 (derive the
premise of Proposition 6 for both of them from the premise of this lemma), and eliminate them by Axiom A6.

See [28, Appendix D, page 83], for a detailed proof. O

We continue with Lemma 3, which states that —, < is preserved by split (i.e., split is homomorphic'® with respect to
—, ©).

Lemma 3 (Preservation lemma for —, ©).

split(w, c —+qor) ~c— splittwl, q) ¢ split(w2, r)

Proof (sketch). Distinguish two cases: ¢ & true and c ~ false. In the former case, by the definition of split, isol and isol, and c,
conclude that split(w, ¢ — q o 1) is provably equal to ?((true — isol(w1, q) o 1’) | (true — isol(w1, q) ¢ 1")). Reduce these
processes by Axiom COND1 (from left to right) and apply split to obtain split(w1, q). Use Axiom COND1 once more (from
right to left this time) to get the required result. The other case follows analogously.

See [28, Appendix D, page 85], for a detailed proof. O

16 With abuse of terminology, ignoring that w becomes w1 and w2.
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The following lemma, Lemma 4, states that 3" is preserved by split (i.e., split is homomorphic'® with respect to 3°), if
the domain of quantification has only finitely many elements. We require finiteness, because otherwise we cannot apply
Proposition 1 in the proof, which we do.!”

Lemma 4 (Preservation lemma for y_).

er{d] ____ d,) 9 € Basic and er[dl ‘‘‘‘ d,) 9 € TauFree and
ACt(er{dl _____ d,)9) S dom(&) and Bound(er{dl_wd” QQRAW=0

implies split(w, Y yciq, a9 = 2 xedy....d,) SPIL(WX, @)

Proof (sketch). By the definition of split and by Lemma 1 (derive the premise of Lemma 1 from the premise of this lemma),
conclude that split(w, er{dh...,dn‘n is provably equal to ?(isol(w, er{m an D | isol(w , er{d]“_”d“q)). Then apply
Proposition 1, from left to right, to obtain the same process but with an ordinary alternative composition: ?(Zf:] isol(wd; ,
qldi/x]) | Zf:1 isol(wd; , q[d;/x])).'® Distribute | over + by Axiom S7, and afterwards, distribute ? over + by Axiom Q3. This
yields the process Zle Z?:l ?(isol(wd; , q[d;/x]) | @(wdj, qldj/x])). The alternative composition of the processes on the
“diagonal” yields the desired result (after applying Q3 and Proposition 1, from right to left). To get rid of the processes not
on the diagonal, conclude that each of them is provably equal to § by Proposition 7 (derive the premise of Proposition 7 for
each of them from the premise of this lemma), and eliminate them by Axiom A6.

See [28, Appendix D, page 85], for a detailed proof. ]

The final lemma of this subsection states that - is preserved by split (i.e., split is homomorphic'® with respect to -). The
proof of Lemma 5 requires the application of the other preservation lemmas and, in contrast to those lemmas, involves
structural induction. This makes Lemma 5 the most complex among the lemmas in this subsection.

Lemma 5 (Preservation lemma for -).

[ q-r € Basic and q -r € TauFree and

Act(q -1) C dom(Z) and Bound(q-1) A w = m} implies split(w, q-r) = split(w1, q) - split(w2, 1)

Proof (sketch). By the definition of split and by Lemma 1 (derive the premise of Lemma 1 from the premise of this lemma),
conclude that split(w, g -r) is provably equal to ?(isol(w, q-r) | isol(w, q-1)). Apply the definitions of isol and isol to obtain
2((q1 -11) | (q2 - 7)) for g1 =isol(wl, q), ri =isol(w2, 1), g2 =isol(wl, q), r =isol(w2, r). Then, proceed by induction on
the structure of q to show that ?((qq - r1) | (g2 - r2)) is provably equal to split(w1, q) - ?(r1 || r2) (afterwards, the required
result follows straightforwardly by identifying split(w2, r) with ?(r1 || 12)).

Establish the base of the induction (q is a multiaction or §) by applying Axiom S6, Axiom Q4, and Lemma 1. To prove
the inductive step, set up a case distinction for the main operator of q. Cases 4+, —, ¢, and ) follow by similar reasoning
as in Lemmas 2, 3, and 4. The key difference between those lemmas and the corresponding cases in the inductive step lies
in the presence of r1 and r; in the latter. Using the induction hypothesis and the grayed out consequents of Propositions 6
(for +) and 7 (for }_), one can “neutralize” their effect and, basically, follow the same structure as the proofs of the other
preservation lemmas. For proving the - case, the induction hypothesis and Lemma 1 suffice.

See [28, Appendix D, page 93], for a detailed proof. ]

17 We speculate that generalizing Lemma 4 to processes involving infinite summation is possible. Instead of using Proposition 1, the idea is to more
directly prove that for any possibly infinite D, split(w, >, q) is equal to:

Yxed Lyep\g XX Y —> 2(isol(wx, q) |isol(wy , qly/x])) o8
+ D ke Dyepy XY —> 2(isol(wx, q) lisol(wy, qly/x])) o8

(Roughly: expand the definition of split, apply Axiom SUM2 to rename x to y in the coisolated process, work the summation operators to the left, divide
the inner summation over two outer summations as above, and finally, show that unless x and y are equal, the appropriately synchronized composition of
isol(wx, q) and isol(wy, q[y/x]) deadlocks.) Once in this form, the rest of the proof is similar to the last part of our current proof for finite summations.
However, even after generalizing Lemma 4 in this way, we still cannot claim that our splitting procedure works for processes involving infinite sum-
mation, because we use the assumed finiteness of summation also in our current proofs of Propositions 2, 3, and 4. Although we strongly believe those
propositions to hold also for infinite summation, we have yet to find a suitable proof technique for formally establishing this: what we tried so far became
notationally so extremely complex that we decided to resort to the finiteness assumption. We leave this and the details of generalizing Lemma 4 for future
work.
18 Actually, the application of Proposition 1 yields ?(Zf:1 isol(wx, q)[di/x] | Zle isol(wx, q)[d;/x]). However, one can show that this is provably equal to

?(Zf:1 isol(wd; , q[d;/x]) | Zle isol(wd; , q[d;/x])) by induction on the structure of q.



66 S.-S.T.Q. Jongmans et al. / Science of Computer Programming 115-116 (2016) 47-78

5.4. Correctness

Next, we state three theorems which, in increasing level of generality, establish the correctness of our splitting procedure.
The first theorem, Theorem 1, states that a split multiaction has the same behavior as the original, unsplit multiaction.

Theorem 1 (Correctness theorem for multiactions).

[ € TauFree and Act(a) € dom(&)] implies split(w , o) ~ o

Proof (sketch). By the definition of split, Lemma 1 (derive the premise of Lemma 1 from the premise of this lemma), and
Axiom SMA, conclude that split(w , «) is provably equal to ?(isol(w, &) Liisol(w , «)). Then, by straightforward induction on
the structure of «, establish:

e « is provably equal to |_|{_; a;(dy) u|_|{Z, a}(d})
e isol(w, ) is provably equal to |_[{_;(a;i(d;) W&z (a) (W) U] &, (@) (w")
e isol(w, a) is provably equal to | [, (a}(d}) L&, (@)(W”) U | &,z (@) (W)

Insert the latter two results in ?(isol(w, o) Uisol(w, o)), and by Axiom MA2, rearrange the actions in the resulting multi-
action to obtain:

?<|_|(a,-(d,») U £ (@) (W) L& e (@) (W) U | (@) L £ (@) (W) LE (a;)<wb>)>

i=1 i=1

Then, because ? effectively filters out all pairs of an auxiliary action and its dual (e.g., &, (a;)(w®) and &t (a;)(w?)), without
affecting the original actions (because the sets of auxiliary and original actions do not overlap by Definition 3), obtain
LIy ai(dy) u|_IiZ, d(d}), which is provably equal to « (by the first item in the above itemization).

See [28, Appendix E, page 94], for a detailed proof. m]

The following theorem states that a split basic process has the same behavior as the original, unsplit process.

Theorem 2 (Correctness theorem for basic processes).

[ p € Basic and p € TauFree and

Act(p) € dom(Z&) and Bound(p) A w = (/)] implies split(w, p) > p

Proof (sketch). Prove this theorem by a relatively straightforward induction on the structure of p. The base case (p is a
multiaction or §) follows immediately from Theorem 1 (derive the premise of Theorem 1 from the premise of this theorem)
or the definition of split (for §). To prove the inductive step, set up a case distinction for the main operator of p, and prove
those cases quickly using the preservation lemmas (derive the premises of Lemmas 2, 3, 4, and 5 from the premise of this
theorem). For example (p =q +r):

. . Lemma 2 . . H
split(w, p) =splittw, g+1r) =~ split(wl, q) +splittw2,r)~q+r=p

See [28, Appendix E, page 96], for a detailed proof. m]

The last theorem of this paper states that split process definitions (potentially mutually recursive) have the same behavior
as the original, unsplit process definitions. To prove this theorem, we find it helpful to work with single recursive process
definitions instead of collections of mutually recursive ones (because the former allows for a straightforward application of
RSP as explained in Section 2.3). To do this without resorting to weaker results, we first present a proposition about the
untimed subset of mCRL2, adapted from [47]: Proposition 9 states that one can collapse k, potentially mutually recursive,
process definitions (referenced by Pq, ..., Py) into a single process definition (referenced by IN’).
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Ref(a) =0

Ref(P(d)) = {P}

Ref(q @ 1), Ref(c — g or) = Ref(q) URef(r)
Ref(X_vep @), Ref(f(q)) = Ref(q)

Fig. 17. Definition of Ref.

Proposition 9. (See [47, Section 4.3].)

[P1(x1:Dq) =p1,

Py (X : Dy) = Dk - -
P(y,x:NxD)=y~1—pi[P1(d):=P(1, h(d))]---[Pr(d) := P(k, h(d))] ©

y~k— pe[P1(d) := P(1, h(d))]---[Pr(d) := P(k, h(d))] © 6
and h = harmonizer(D{ U ---UDy, D)

implies [P; ~ P(i) forall 1<i< k]

Proposition 9 may look complex, but conceptually, it states a rather simple property. Essentially, it corresponds to the
“collapsing into one equation” step of the mCRL2 linearization process [47], as follows. Reference P has a parameter y
which represents the indices of the k processes. The body of P contains a conditional choice dependent on the value of y:
if y equals some index i, the body of P behaves as the body of P;. Thus: P(i) >~ P;. To ensure also that P contains only
references to itself, one should substitute occurrences of P1, ..., Py with P in pi. To this end, we write p;[P;(d) := P(j,
h(d))] for the process resulting from replacing Pj(d) by P(j, h(d)) in p; (for any d), for some harmonization function h.
Such a function maps data tuples in D1 U---UDjy to data tuples in D. Intuitively, h transforms the parameters of each of the
process references P1, ..., P to a single tuple of parameters for P. Neither the precise meaning of harmonization nor the
definition of harmonizer matter in the remainder, so we skip them (details appear elsewhere [47]).
We proceed with our final theorem. Let Ref(p) (defined in Fig. 17) denote the set of references occurring in p.

Theorem 3 (Correctness theorem for process specifications).

[P1(X1 :Dy) = pi, Pl (%) : D) = split(e, p1), ]

’ . ~pf
Pp(X¢ : D) = pi s Pz(Xk : D) = split(e, pi) implies [Pi ~ P; for all]

1<i<k
and pq, ..., py € TauFree S
and Act(p1), ..., Act(px) C dom(Z) and
L [Ref(pi) S{P1, ..., P} forall 1<i<k] |
Proof (sketch). Apply Proposition 9 to collapse the definitions referenced by P, ..., Py into one definition P= p. Similarly,
apply Proposition 9 to collapse the definitions referenced by P;r, e PZ into one definition PT = p'. To obtain the desired

result, show that P is provably equal to pt by demonstrating that some process operator ¢ has both P and P as fixed
points (and apply RSP). Define @(Z) = p[ﬁ := Z], and immediately conclude @(T’) ~ P. To show that also @(T’T) ~ pf,
essentially, it suffices to show that p; >~ split(e, p;). This follows from Theorem 2 (derive the premise of Theorem 2 from
the premise of this theorem).

See |28, Appendix E, page 101], for a detailed proof. We establish the <D(T5T) ~ pf step with a separate auxiliary theorem
[28, Appendix E, Theorem 4, page 99]. ]

6. An application of the splitting procedure: splitting connectors

Up to now, we have defined a splitting procedure for untimed mCRL2 and proved its correctness, all independent of Reo.
Now, as one of its applications, we use this splitting procedure to justify the region-based optimization technique for Reo
implementations (i.e., the version with direct transportation of data and control information in asynchronous regions—see
Section 1). First, we formalize (a)synchronous regions in terms of process algebra. Afterwards, we split (process algebraic
semantic specifications of) connectors.
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Fig. 18. Example transition system for p=aub-c+d. The v -state represents successful termination.

6.1. Formalization of (a)synchronous regions

We provide a formal definition of the synchronous regions of a connector, based on the mCRL2 semantics of Reo. Let
p denote a process describing the behavior of a Reo connector, and let — denote its transition relation (labeled with
multiactions).'” Recall that every action in p represents a channel end or a node end. Let a € Act(p) denote one such end.
We define the a-synchronous region of p as the smallest set X; C Act(p) such that:

e ae X,
e be X,= [Act(8) € X, forall g suchthat [g LN ¢’ and b e Act(B)11%°
o be Xo= [Act(8) C X, forall B, ' such that [q £ ¢ and ¢ q”}]

and b € Act(B)
The second rule states that all the ends that occur in the same multiaction belong to the same synchronous region. The
third rule states that all the ends that can have flow in some state q, but possibly in different transitions leaving g, belong
to the same synchronous region. In that case, channel ends may exclude each other from flow, which requires them to
synchronize and communicate about their behavior.

To exemplify the previous definition, consider the connector modeled by the process p =aub-c+d (we abstract
away from data in this example, because data do not influence the regions of the connector). Fig. 18 shows its transition
system. Informally, either this connector has flow through a and b followed by flow through c, or it has flow through d. We
construct its a-synchronous region starting from the singleton set X, = {a} (first rule). Subsequently, due to the presence
of multiaction a U b, we add b to this set (second rule). The transition system of p contains a state with two outgoing
transitions: one labeled by a u b, the other labeled by d. Hence, because a € X,, we add d to X, (third rule). This concludes
the construction: X, = X, = X4 ={a, b, d} and X, = {c}.

We define the set of the synchronous regions of the connector modeled by p as

X ={Xq|aeAct(p)}
and the set containing its asynchronous regions as
Y ={{a, b) | connected(a, b) and ae X and be X' and X # X' and X, X' € &}

where connected(a, b) holds iff ends a and b belong to the same channel.
6.2. Splitting connectors

As motivated in Section 1, we set out to establish the soundness of splitting connectors along the boundaries of their
(a)synchronous regions. However, we can split any (syntactically 7-free) process along any set of actions A by Theorem 3.
This suggests that regardless of its (a)synchronous regions, one can split a connector in any possible way and preserve its
original semantics. While true in theory, there is a catch for implementations of split connectors in practice: the parallel
composition of the isolation and the coisolation of a connector process must synchronize appropriately, as represented by
the ? operator (see Definition 4). Depending on the particular implementation approach, which in turn may depend on the
underlying hardware architecture (see Section 1), performing ? at run-time may cost an unreasonable amount of resources, if
possible at all. Next, we explain through examples that arbitrarily splitting—despite its theoretical validity—therefore makes
no sense in practice (because, as we shall see, the overhead due to communication required for appropriately synchronizing
split processes can make running an original, unsplit connector more attractive), whereas splitting based on (a)synchronous
regions does make sense.

19 We have not given the definition of the transition relation (although examples appear in Figs. 8, 18, and 20), because the precise definition does not
matter in this paper. See Groote et al. [20].
20 square brackets for readability.
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Region-based splitting We start with an example of splitting based on (a)synchronous regions. Suppose that we split
fifo1(a, b) into two parts: one part contains only a, while the other part contains only b. Recall from Section 3 that the
semantics of this channel is given by the process definition Fifo1i(a;b) =), paa(@X) -b(x)) - Fifo1(a;b). Splitting along
A = {a} (or equivalently, along A = {b}) yields:

Fifoi(a;b)'

Split(€ , 3 epaa(@() - (X)) - Fifoi(a; b))

= splitte, Y cpata (@) - b(%))) - split(e , Fifo1i(a; b))

?2(isol(€ , Y yepata (@) - b(x))) [ is0l(€ , Y, cpaa(@(X) - b(X)))) - Fifoi(a; b)f
23" epata iSOI(X, a(X) - B(X)) | ¥ yepata 1S0I(X, a(x) - b(x))) - Fifoi(a; b)f

= 2(Xxepan(is0l(x1, a(x)) -isol(x2, b(x))) ||
> veData (18011, a(x)) - is0l(x2 , b(x)))) - Fifo1(a; b)

?(2_xepata (@) LU &1 (@) () - E2(0)) |l
2 _xeData( E1(@)(X) - b(x) W& (b)(x))) - Fifo1(a; b)T

Here, ? in fact represents the asynchronous region of fifo1(a; b), because it synchronizes the two synchronous regions {a}
and {b}. The fact that auxiliary actions happen at the same time as the corresponding original actions represents direct
transportation of data and control information in asynchronous regions (see Section 1).

Suppose that we want to implement p =3, .. (@) UE1(@)(%) - £2(b)(x) and g =", paaE1 (@ X) - b(x) L £2(b) (%))
such that, when run in parallel, they behave as )", .. (a(x) - b(x)). Crucially, these implementations should perform the
synchronization implied by ?. Recall from Section 4 that intuitively, &1 (a) represents the act of “disseminating the perfor-
mance of a,” while £, (a) represents the act of “discovering the performance of a.” Thus, the implementation of p should: (1)
accept data x on a and disseminate this acceptance, and (2) discover the dispersal of x on b. Meanwhile, the implementation
of g should: (1) discover the acceptance of data x on a, and (2) dispense x on b and disseminate this dispersal. Thus, in
each step, the implementations of p and g require only unidirectional communication about their behavior to synchronize:
first, the implementation of p performs & (a)(x) and the implementation of g takes notice of this (by performing &1 (a)(x));
afterwards, p and q switch roles to perform &, (b)(x) and &, (b)(x). This shows that different synchronous regions can decide
on their behavior independently of each other: region {a} does not need to know that region {b} will dispense data before
it can accept data—it can decide to do so without communication.

We argue that this can yield performance improvements in practice: although the isolation and the coisolation of a
process p have the same transition system modulo transition labels (i.e., they have the same syntactic structure), benefits
can arise when we compose them in parallel with another split process q. In that case, there may exist a transition t of the
isolation of p that can proceed independently—without communication among the ends involved—of a transition t’ of the
coisolation of gq. Without splitting, in contrast, communication among the ends involved in t and t’ must always take place
to decide on whether to behave according to t, t’, or both. But in the split case, the ends can act independently. For instance,
if we put two split fifo1 instances in sequence (as in Fig. 1a), the source end a of the first fifo1 can proceed independently
of the sink end b of the second fifo1. This means that, if empty, the first fifo1 can accept a data item on a (and place it in its
buffer) without communicating with b. Similarly, if full, the second fifo1 can dispense a data item on b (and remove it from
its buffer) without communicating with a. In contrast, if we put two unsplit fifo1 instances in sequence, the source end a
and the sink end b communicate with each other to decide on their joint behavior, even though the behavior of those ends
does not depend on each other. By splitting, one avoids this unnecessary communication.

Arbitrary splitting To demonstrate that splitting arbitrarily makes no sense, suppose that we split sync{a, b) into two parts:
one part contains only a, while the other part contains only b. Recall from Section 3 that the semantics of this channel is
given by the process definition Sync(a;b) =), paa @(X) Ub(X) - Sync(a; b). Splitting along A = {a} (or equivalently, along
A = {b}) yields:

Sync(a; b)Jr

split(€, Y yepata (X)) Ub(X) - Sync(a; b))

= split(€, D yepata AX) LD (X)) - split(e , Sync(a; b))

23S01(€ , Y yepata @X) UD(X)) | 1801(€ , Yy cpara 4% U (X)) - Sync(a; b)f
2(3_yepata iSOI(X, a(x) Lb(X)) | Y ycpata iSOI(x, a(x) Lb(x))) - Sync(a; b)f

= 7(2,(&]])31303_0'(?(, a(x)) uisol(x, b)) |
> xepata(iS0I(X, a(x)) Lisol(x, b(x)))) - Sync(a; byf

7Y venan (@) U e (@) U Ecb)) |
Yvepaa(  Ec@® UbX) UE (b)) - Sync(a; b)f
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Fig. 19. Sequencerz.

Now, as in the previous example, suppose that we want to implement

p= Y (aus@®UEDGE) and g= Y (E1@E UbX) L& b)X)

xeData xeData

such that, when run in parallel, they behave as Y, paa(a() - b(x)). As before, these implementations should perform
the synchronization implied by ?. Thus, the implementation of p should accept data x on a, disseminate this acceptance,
and discover the dispersal of x on b. Meanwhile, the implementation of g should discover the acceptance of data x on a,
dispense x on b, and disseminate this dispersal. All of these actions must occur at the same time. This means that, in contrast to
our previous example, the implementations of p and g must engage in bidirectional communication with each other about
the acceptance of data on a and the dispersal of data on b. This suggests that the two ends of sync(a, b) must synchronize
with each other—they belong to the same synchronous region and cannot decide on their behavior independently—making it
unreasonable to split them in the first place: the communication necessary to realize the necessary synchronization inflicts
overhead, making it more attractive to run the original sync(a, b) without splitting.

Implementation sketch We sketch an implementation of the split fifo1{(a,b) on a shared memory machine with mul-
tithreading. First, we instantiate two threads, A and B, for the processes p = Y, paa (@) U &1 (@) (%) - £,(b)(x)) and
q= erData(él(a)(x) -b(x) U & (b)(x)). Every multiaction o translates to the atomic execution of a block of code repre-
senting the actions occurring in «. We implement the action & (a)(x) as “write x to a shared memory location” and the
action £ (a)(x) as “wait until the next read of the memory location returns x” (not the read itself). There exist several ways
to implement thread B’s waiting: B could use busy-waiting (in which case it repeatedly checks the memory location; in
this case, B performs &1 (a)(x) between two successive reads) or A and B could agree on using a monitor (in which case B
waits on a condition variable and A notifies B immediately after its write; in this case, B performs £, (a)(x) on awakening).
Once B has performed &1 (a)(x) (after which it knows that A has accepted data on a and put data in the memory location),
it can perform the actual read on the memory location, dispense the data on b, and set another shared location for &, (b)
and £, (b) (implemented symmetrically).

Generally, every connector split based on its (a)synchronous regions can be implemented as sketched above. Whether
such an implementation realizes unidirectional communication reasonably efficiently depends on the underlying architec-
ture. On the shared memory machine in our fifo1(a, b) example, the sketched implementation is relatively efficient, because
a thread performing an action &, (a) by writing to a memory location knows immediately after completing everything in-
volved in that write (this may include signaling the other thread) that the other thread has performed &, (a): from that
point onward, the next read of the memory location is guaranteed to see the result of the write, regardless of what threads
do until that read.?! This is a sufficient condition for considering £, (a) to be performed (given the interpretation of £, (a)
in our implementation sketch). In other words, communication is truly unidirectional (i.e., the writing thread requires no
acknowledgment of the other thread). In contrast, if the isolation and the coisolation of a split process run on different
machines, the machine that performs &, (a) by sending a value to another machine must block until the other machine
has acknowledged the receipt of the value. Otherwise, the sending machine has no guarantee that the receiving machine
has actually received the value. This is important, because as long as the receiving machine has not received the value, it
has not performed £,,(a). Consequently, if the sending machine does not wait for an acknowledgment before it proceeds,
the next action of the sending machine may precede £, (a), which violates the process semantics. Waiting for an acknowl-
edgment, however, can be expensive and negatively affects performance. Note also that the acknowledgment is a form of
“metacommunication”, which makes the implementation of &, (a) and &, (a) essentially bidirectional. This is exactly what
we try to avoid by splitting based on (a)synchronous regions.

Summarizing, if every auxiliary action and its dual are performed on the same shared memory machine, one can imple-
ment the processes containing those actions along the same lines as the implementation sketched above and get reasonable
performance. If, in contrast, an auxiliary action and its dual are executed on different machines, the sketched implementa-
tion seems unsatisfactory. (Perhaps we need a different splitting procedure for such architectures—see the future work in
Section 8.)

6.3. Example: Sequencerz

In this section, we further illustrate connector splitting based on their (a)synchronous regions with an example. Fig. 19
shows the Sequencer2 connector, introduced by Arbab [2]. Informally, this connector dispenses data value d first on a, then

21 Assuming that threads do not overwrite the memory location before the next read.
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b(d)lx(d)|z(d)

a(d)ly(d)

Fig. 20. Transition system of Sequencer2(;a,b),.

on b, then on a, then on b, et cetera. One can easily extend this connector to more than two output nodes [2]. Formally, the
following process definition, composed from process definitions of channels and nodes, defines the semantics of Sequencerz:

BE) | BB |
Sync(yz;a1) |l Sync(zz; b1) ||

s ca,b) =05 | Ic | .. neyza) Dotz b
equencer2(a.b) =35 | It | £y £01 eyrva) | RG1: 52, 53) | Fiforlys: za) | R(Z1: %2, 33) |
(x1; X2) I Sync(zs; x1)

The exact definition of B and C do not matter in the rest of this section. (They are defined along the same lines as in the
examples at the end of Section 3.) The process reference Fifoi4(xz;y1) refers to the process y1(d) - x2(d) - Fifo14(x2;v1)
(i.e., it represents an initially full fifo1 channel that accepts and dispenses only d). There are two approaches to splitting
Sequencer2(; a,b) based on its (a)synchronous regions, both of which yield a split process that is provably equal to the
original. We explain these approaches below.

Global approach In the global approach, the aim is to split the whole process into two parallel processes—the “global”
isolation and the “global” coisolation—while simplifying all other parallel behavior to sequential behavior (in a semantics-
preserving way). Afterward, we can implement those two processes and run them in parallel under appropriate synchro-
nization. This global splitting approach corresponds to the centralized implementation approach to Reo (see Section 1).
First, we compute the (a)synchronous regions based on the labeled transition system of the whole process. To get that
transition system, we simplify Sequencer2(;a,b) to a sequential process: using the axioms in Section 2.3, we expand
the parallel composition operators, apply the communication rules in C, and block the remaining actions in B to show that
Sequencer2(; a, b) is provably equal to a(d) Uy(d) -b(d) Ux(d) U z(d) - Sequencer2(; a, b). Next, we can straightforwardly
compute the desired labeled transition system (shown in Fig. 20) and apply the definitions in Section 6.1 to find the
following synchronous regions: {a, y} and {b, x, z}. For future reference, we introduce the following process definition:

Sequencerz(; a,b), =a(d) Uy(d) - b(d) ux(d) L z(d) - Sequencerz(; a,b)

Using RSP, one can straightforwardly show Sequencerz(; a, b) > Sequencerz(; a,b),.

Given the computed synchronous regions, we proceed by splitting along {a, y} (or equivalently, along {b, x, z}). In
fact, we can do so in two different ways: we can split Sequencer2(;a,b), or we can split Sequencerz(; a,b),. Be-
cause the processes they refer to are provably equal (and because a split process is provably equal to its original by
Theorem 3), whether we split Sequencerz2(;a,b) or Sequencerz(; a,b); does not matter as far as provable equality
is concerned. However, splitting Sequencer2(; a,b) and afterward simplifying the resulting isolation and coisolation to
sequential processes (by parallel expansion, application of communication, and blocking) requires more effort than splitting
Sequencer2(; a, b), as shown below.

We start by splitting and simplifying Sequencer2(; a, b). First, we modify the set of actions {a, y} with respect to
which we split by “inverting” the communication rules that produced a and y (note that those actions do not occur in the
process referred to by Sequencer2(; a,b) but were introduced as part of applying communication rules in C). This gives
us the following set A ={a1, 31, v1, Y2, ¥3, Y1, ¥2. v3}. Splitting with respect to that set yields the following:

Sequencer2(; a, b)T
split(e , dp(I'c(--- | R(V1: ¥2,¥3) | Fifo1(ys; z1) || ---))
e RF1: V2. 93) [ Fifor(ysiz)T | --))

~ Q(--- | split(e , D yepaa Y1 () UY2(0) UV3(X) - R(Y1;V2,¥3))
| split(e , > yepaa(¥3(X) - 21(X)) - Fifoi(ys; z1))
-2

AT~ || (split(e , Y yepata Y1 (X) L T2(%) UT3(%) - R(F1; T2, ¥3)1)
Il (split(€ , 3 yepata(¥3(X) - 21(X))) - Fifo1(ys; z1)T)

12

[
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For simplicity, we consider only a representative fragment of the whole process in these equations, namely --- ||
R(V1;V2,V3) || Fifoi{ys; z1) || ---. For the same reason, we write dI(---) instead of dg(Ic(---)). For the next step, as
in Example 3 in Section 4.3, we introduce the following process definitions:

Fifoi(ys; z1)f = 2(Fifoilys; z1)¥ | Fifoi(ys; z1)?)
Fifoi{ys; z1)® =isol(€, ¥yepan(y3(®) - 21(X)) - Fifoifys: z1)®
Fifoi(ys; z1)3 =is0(€, Y yepata(¥3(X) - 21(x))) - Fifol(ys; z1)}

Using RSP, one can prove Fifoi(ys; z1)' ~ Fifoi{ys:z1)¥ (see Footnote 13). Similarly, we introduce process definitions
RT1: Y2, V)8 R§1: 52,9508, and R(F1; V2, ¥5)8. Applying those definitions yields the following:

> A0 | (SPIt(€ , D yepata Y10 UF2(0) UF3(X)) - ?2(R(T1; V2, 73)8 | REF1: T2, ¥3)8)
Il (split(€ , > yepata(¥3(X) - 21(X))) - 2(Fifo1(ys; z1)¥ | Fifo1(ys; z1)¥))
)

Again as in Example 3 in Section 4.3, we use [28, Appendix D, Lemma 6, page 87], to justify the following steps:

~ ALC 1120 (80l(€, Y yepaa V100 UT2(0) UF3(0)) - R(¥1: T2, ¥3)Y)
Il (iS01(€ , 3 yepata ¥1(¥) LUT2(x) UF3(X) - R(F15 V2, 73)%)

12C (isOl(€ , Y yepaa(Y3(0) - 21(X))) - Fi fo1(y3; 21)9)

Il (s0l(€ , Y yepata(¥3(X) - 21(X))) - FLEo1(y3; 21)})

= 00(C [1?70 (Lyepaa Y1) UY2(0) UY3(X) L& (V1) (X) U e (V2) (X) U e (V3) (%) - R(Y1: Va2, 73)%)
I O xeData EcTN®UET)X UETX RET1:T2.73)%)

17C Qxepata (V3 L1 (¥3)(X) - E2(z1)(x) - Fifoi(ys; z1)%)

I (Crepata(  E1(v3)(®) - 21 LE2(21) (X)) - Fifoilys; z1)?))

Next, we push the ? operators to the top in two steps. The first step is valid by the same argument as used in justifying the
last step in Example 3 in Section 4.3 (where we used alphabet axioms—see Footnote 14). The second step follows by the
observation that sets B and C (implicit in the notation oI" as defined above) are disjoint with the sets of actions occurring
in the subscripts of the 3, 7, and I" operators obtained by expanding ?.> We thus have the following:

1

AT | (Cyepata Y10 UF2(%) UF3(X) U e (F1)(X) U e (F2)(X) U e (F3)(X) - R(F1: ¥2,¥3)8)
I Cxebata E DM UEED O UET)®) - RT1: V2, ¥3)Y
I xepata Y3 UEL(3)®) - E2(21)(X)) - Fifoilys; z1)8)
I (erma E1(v3)(®) - z1 UE(z) (X)) - Fifollys; z1)%)
-

200 | (erData§1 ) UT200 UT3(0) U EF1)(X) U e F2) (%) U & (F3)(X) - R(¥13 V2, ¥3)8)

12

I (X xebata ETDOUEF) 0 UETX) - RT1: T2, 73)8)
I yepaa(Y3 UE1(v3)®) - E2(21)(0) - Fifoilys; z1)8)

I gepaal E1(¥3)(X) - 21 UE2(21) (%)) - Fifoi(ys; z1)¥)

I --)

By the commutativity and associativity of ||, we group all the isolation processes and the coisolation processes together as
follows:

=~ 200G | (Cyepata V100 UF2(0 U F3(X) U e (F1)(X) U e (F2)(X) U € (F3)(X) - R(T13 V2, ¥3)8)
I X yepata (Y3 UEL (¥3)(X) - E2(21) (%)) - Fifoi(ys; z1)?)
I (X repata e TN X UE(T2) (0 UEe(T3)(X) - R(T15 V2, ¥3)9)
I (X xebataE1(¥3)(®) - 21 UE2(21) (X)) - FLEo1(ys; z1)3)
I --)

Now, just as when we computed the labeled transition system for the whole original process, we simplify the parallel
composition of the isolation processes and the coisolation processes (by parallel expansion, application of communication,
and blocking). This yields the following:

22 For this step, we also need four alphabet axioms from [22, Section 5.6]: CD1, CT1, CL2, DT1.
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~ ?2( (aduy@dUua- B-Or (- R(V1;¥2,¥3) | Fifoilys; z)¥ | )
Il @-bd)uxuzd)up-or(--|RF1;¥2,¥3)8 I Fifoi(ys; z0)¥ | --))

For:

o = &e(an)(d) U (B (d) L& (v1) (@) U & (v2) () U £1 (v3)(d) L e G1)(d) U e (F2)(d) L e (F3) (@)
G =Ec(an)(d) UGN (@) LEL(v1)(d) UEc(y2) ) U E: (v3) (@) LETD @) UEF2) () U F3)(@)
B =& (b1)(d) L& (B1)(d) U &2 (21)(d) U & (22) () U &1 (23)(d) L e (Z1)(d) U e (Z2)(d) Lde (Z3) ()
UG (@) U () (d) L Ee () (d) U e (o) (d)
B =& (b1)(d) L e (b1)(d) L &2 (21)(d) U & (22) () U £1(23)(d) LU e (21)(d) L e (Z2)(d) Lée (Z3)(d)

L £ (1) (d) L & (x2) (d) U e (R1)(d) U e () ()

Thus, the whole isolation of this split process performs a and y, while its whole coisolation performs b, %, and z. Both
the isolation and the coisolation perform also a plethora of auxiliary actions, represented by «, 8, @, and B, used to
appropriately synchronize those processes. It requires only a few extra steps to show that this split process is provably equal
to Sequencerz(; a,b), which in turn is provably equal to Sequencerz(; a,b), but as this is a result that Theorem 3
already gave us, we skip those steps here.

To implement the two parallel processes above, we must implement all auxiliary actions in «, 8, &, and 8. Not only is
this inconvenient, it is actually unnecessary (in the sense that ? can already bring about appropriate synchronization with
fewer of those actions). To show this, we proceed with the second way in which we can split along {a, y}, namely by
splitting Sequencer2(; a,b), (instead of splitting Sequencer2(; a,b) as done above) with respect to A = {a, y}. This
yields the following:

Sequencer2(; a, b>1
~ split(e, a(d) Uy(d) - b(d) Ux(d) U z(d) - Sequencer2(; a, b))
= split(e, a(d) uy(d) - b(d) ux(d) U z(d)) - Sequencer2(; a, b)]l
As before, we introduce the following process definitions:
Sequencer2(; a, b)ji = ?(Sequencer2(; a, b)i || Sequencer2(; a, b)i)
Sequencerz2(; a, b)i =isol(e, a(d) uy(d) - b(d) Ux(d) U z(d)) - Sequencerz2(; a, b)i
Sequencer2(; a, b)i =isol(e, a(d) Uy(d) - b(d) Ux(d) U z(d)) - Sequencerz(; a, b)i

Using RSP, one can prove Sequencer2(; a, b)i ~ Sequencer2(; a, b)ii (see Footnote 13). Applying that definition yields
the following:

~ split(e, a(d) uy(d) -b(d) ux(d) u z(d)) - ?(Sequencer2(; a, b)i || Sequencer2(; a, b)i)

Again as before, we use [28, Appendix D, Lemma 6, page 87], to justify the following steps:

1

?( (isol(e, a(d) Uy(d) - b(d) ux(d) U z(d)) - Sequencer2(; a, b)i)
|| Gisol(e , a(d) Ly(d) - b(d) Ux(d) U z(d)) - Sequencerz(; a, b)i))

?2( @duy@ua- B - Sequencer2(; a, b)i)

Il ( o-bd)ux(d)Uz(dup-Sequencerz(;a, b)i))
For:

o =§1(a)d) ué(y)(d) B=82(0)(d) L)) LEx(2)(d)
a=§1@Auswd  p=5&0)d)UsEE) (D UE(2)(d)

As with splitting Sequencer2(; a, b), the whole isolation of this split process performs a and y, while its whole coisolation
performs b, x, and z (this is not surprising because Sequencer2(; a,b) >~ Sequencer2(; a,b); and split is semantics-
preserving). However, splitting Sequencer2(; a,b), introduces fewer auxiliary actions (because the number of actions in
Sequencer2(; a,b) is less than the number of actions in Sequencer2(; a,b)). From an implementation point of view,
we therefore prefer splitting Sequencer2(; a,b),. Generally, when applying the global approach, one should first simplify
a parallel process to a sequential process and afterward split that sequential process.

Local approach In the local approach, the aim is to keep as much parallel processes as possible and split only some of
those based on their local (a)synchronous regions. Afterward, we can implement and run each of those parallel processes,
including the “local” isolations and the “local” coisolations, in parallel. This local splitting approach corresponds to the
distributed implementation approach to Reo (see Section 1).
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First, we determine for which of the parallel components of the process referred to by Sequencerz(; a,b) splitting
makes sense (i.e., which of those parallel components consists of two synchronous regions connected by an asynchronous re-
gion), namely for Fifo14(xs;vy1) and Fifo1(ys; z1). Splitting those processes yields Fifo14(x2; v1)T and Fifoi(ys; z1)h.
As before, we introduce the following process definitions:

Fifolg(xa; y1)F = 2(Fifore(xz;v1)¥ | Fifol(xz;yi)?Y)
Fifol4(xz;v1)d =isol(e, v1(d) - x2(d)) - Fifo1a(xz;v1)8
Fifolg(xz;yi1)® =isol(e, y1(d) - x2(d)) - Fifolg(xz; v1)®

Fifoi(ys; z1)t =?2(Fifoi(ys;z1)¥ | Fifoi(ys;z1)Y)
Fifoi{ys; z1)® =isol(€, Yyepan(y3(®) - 21(X)) - Fifoifys; z1)®
Fifol(ys; z1)d =isol(€, Y yepaa(Y3(®) - 21(X))) - Fifo1(ys; z1)8

Using RSP, one can prove Fifoly(xg;vi)l & Fifoly(xs:yz)t and Fifoi(ys; z1)l ~ Fifoi(ys; z1)F (see Footnote 13).
Replacing Fifo14(x3;vy1) and Fifoi(ys; z1) with Fifois(xz;v1)F and Fifoi(ys; z1)¥ in the process referenced by
Sequencer2(; a,b) then yields the following provably equal process:

B(E1) | B(b1) |
5 Sync({yz;a1) |l 5 Sync(zz; b1) ||
or Fifo1g(xz;v1)® | ~ o~ o~ Fifoi(yz;z1)3 | ~ o~ o~
? R(V1; ? R(z1;
(Fif01d(xz;y1)§ I R(Y1:¥2,¥3) |l Fifollys: )8 I R(z1:2Z2,23) |
(%15 X2) I Sync(zs; x1)

By the same reasoning as before, we can push ? to the top, yielding the following provably equal process:

B(a1) I B(b1) I
P Sync(yz;a1) |l Sync(zz; b1) |l
Fifols(xz;v1)d || Fifolg(x2; v1)d | R(¥1;¥2,¥3) || Fifoi(ys; z1)¥ | Fifoi(ys; z1)8 || R(Z1; 22, Z3) |l

(X1; %) I Sync(zs; X1)

We can now implement each of those processes and run them in parallel while ensuring two kinds of synchronization:
the kind of synchronization represented by /1" (imposed by the semantics of Reo for synchronizing channel/node ends) and
the kind of synchronization represented by ? (imposed by our splitting procedure for synchronizing auxiliary actions). To
avoid the former kind of synchronization at run-time, one can optionally compute it “off-line” at compile-time (to some
extent shifting from the distributed to the centralized approach) and implement the following parallel composition of only
two processes:

?2( (aduy@ué (v uéi(ys)d) - E2(z)(d) LE2(x2)(d) - AT (p))
Il C E1(v1)@)UE1(y3)(@) - b(d) Ux(d) U z(d) L& (z1)(d) U (x2)(d) - 91(q)))
For:
B(31) | B(b1) |
_ ) Sync(yz; a1) |l ~ Sync(zz;br) |l
P=1Fifo (21 v)Y || Fifolg(xa; vi)d Il R(¥1: V2. 53) Il Fiforlys; za)¥ || Fifor(ys:z)¥ | R(Z1:Z5.25) |
(X1;X2) I Sync{zs; x1)
And:
B@E1) | Bos) |
q ~ Sync(yz;al) | _ Sync(zz; b1) ||
Fifole(xa;v1)d Il Fifolg(e:v)? | R V2. ¥3) | Fifoilys: z1)? || Fifoi(ys; z1)8 | R(Z1; 22, Z3) |l
(x1;%2) Il Sync(zs; x1)

7. Related work

Process decomposition Closest to the process algebraic work presented in this paper seems the work on processes decompo-
sition, first investigated by Milner and Moller in the late 1980s-early 1990s [40]. In that work, Milner and Moller define the
notion of a prime process, and they explore what kind of processes p have a unique decomposition into primes p1, ..., Pk
such that the parallel composition of those primes is strongly bisimilar to p.>> A process p qualifies as a prime process if,
for all g and r, it holds that p >~ q || r implies that either q or r—not both—is equivalent to the neutral element for || (the

23 The parallel composition operator differs slightly from the one in this paper: the operator used by Milner and Moller satisfies q || r~q || r +1 || g, while
in this paper, we have q |r~q| r+r| q+q|r (by Axiom M in Fig. 6).
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algebra used in this paper does not have such an element). In other words, one cannot decompose p further into nonneutral
processes. Among other results, Milner and Moller show that finite processes in the algebra they consider have a unique
prime decomposition under strong bisimulation. In his PhD thesis, Moller additionally gives a unique decomposition result
with respect to (weak) observational congruence [41, Section 4.4].

After Milner and Moller, also other researchers investigated process decomposition for various process calculi. This led
to some interesting applications. For instance, Lanese et al. proved a prime decomposition theorem for a higher-order
process calculus and used it to prove the completeness of the axiomatization of that calculus [37]. Aceto et al. [1] and
Christensen [12] used prime decomposition theorems for a similar purpose, among other contributions. Alternatively, Groote
and Moller used process decomposition for verification [21]: they showed that instead of checking p >~ q directly, in some
cases, one can more efficiently check whether the primes of p and q are equivalent (while preserving soundness and
completeness). The projection operator introduced by Groote and Moller for decomposing processes seems somewhat related
to our functions isol and isol, albeit rather distantly. Applied to a process p, similar to isol and isol, this projection operator
throws some actions from p away and keeps others for communicating with other processes. However, those preserved
communication actions must already occur in both the original p and the original other processes; the projection operator
does not add auxiliary actions the same way isol and isol do (more significant differences between process decomposition
and process splitting follow shortly).

Other contributions to the theory of process decomposition include the work of Kucera [36] (decidability results and
constructions of decompositions), Luttik and van Oostrom [39] (generalization of decomposition to partial commutative
monoids), Luttik [38] (unique parallel decomposition modulo branching and weak bisimilarity), and Dreier et al. [17] (de-
composition in the applied m-calculus).

Although related, the work on process decomposition differs significantly from our work on process splitting. For one
thing, even though both approaches derive smaller processes from an existing one (such that their parallel composition
is equivalent to the original process), the notion of “smaller” in our work does not involve primality. In fact, one could
argue that the processes resulting from our splitting procedure are not really smaller than the original process due to
the introduction of auxiliary actions. Another difference concerns uniqueness, which plays no explicit role in our splitting
procedure. Note, however, that only one isolation and only one coisolation exists for every process under some fixed A and
E (due to the deterministic definition of split). So technically, we have uniqueness. Finally, in process decomposition, one
usually requires no additional synchronization on top of the parallel composition of the primes. We, in contrast, needed to
introduce the ? operator to achieve appropriate synchronization between the isolation and the coisolation of a process.

Connector decomposition In this paper, we developed a process algebraic splitting procedure, which we then applied to
Reo’s process algebraic semantics, thereby effectively splitting connectors. Interestingly, different notions of splitting and
decomposition of Reo connectors—or their semantics—already exist in the literature. Although inapplicable for our purpose,
we discuss them below.

Koehler and Clarke investigated the decomposition of port automata [31], an operational model of connector behavior. The
states of a port automaton represent the internal configurations of a connector; its transitions, labeled with sets of firing
node names, describe atomic execution steps. Through special product and hiding operators on port automata, one can
compositionally construct a connector model from a set of smaller automata for the primitive Reo connectors. Koehler and
Clarke showed that they can decompose every port automaton into instances of only two primitive automata. Essentially,
this means that one can construct every Reo connector expressible by a port automaton from instances of only two different
primitive connectors.

Pourvatan et al. explored the decomposition of complete constraint automata [42], a more expressive operational model
of connector behavior than port automata and an extension of ordinary constraint automata [5]. Their approach differs
significantly from the work of Koehler and Clarke: Pourvatan et al. develop a notion of inverse for their automata, which
allows them to factor out certain parts of a complete constraint automaton based on another such automaton. A typical
application of this decomposition technique is connector synthesis. Suppose that we have a specification (as an automaton)
of the whole system that we want to build and specifications (also as automata) of the components that this system consists
of, but no specification of the connector that should connect those components. We can then factor out the component
automata from the system automaton to get the automaton specifying the behavior of the connector. Pourvatan et al.
exemplify this with a service-oriented application.

Although not often considered (exceptions exist though—see, e.g., [13]), we remark that Arbab mentioned a split opera-
tion already in his introductory paper on Reo [2]. However, this split operation splits nodes instead of connectors (i.e., sets
of nodes). Because our interest lies in splitting connectors, we could not use Arbab’s notion of splitting.

Proenca pioneered the work on (a)synchronous regions, region-based optimization techniques for Reo implementa-
tions, and connector splitting in this PhD thesis and associated publications [43-45]. He developed the first working
Reo implementation based on these ideas, demonstrated its merits through benchmarks, and invented a new automaton
model—behavioral automata [45]—to reason about split connectors. Also, Proenca formulated a number of soundness and
completeness criteria for when a split behavioral automaton preserves the semantics of the original (but without proofs).
Recently, Clarke and Proenca explored connector splitting in the context of the connector coloring semantics [15]. They
discovered that the standard version of that semantics has undesirable properties in the context of splitting: some split
connectors that intuitively should be equivalent to the original connector are not equivalent under the standard model. To
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address this problem, Clarke and Proenca propose a new variant called partial connector coloring, which allows one to better
model locality and independences between different parts of a connector.

8. Conclusion and future work

We presented a procedure for splitting processes in a process algebra with multiactions and data (the untimed subset
of the specification language mCRL2). This splitting procedure cuts a process into two processes along a set of actions A:
roughly, one of these processes contains no actions from A, while the other process contains only actions from A. We
stated and proved a theorem asserting that the parallel composition of these two processes is provably equal from a set of
axioms (sound and complete with respect to strong bisimilarity) to the original process under some appropriate notion of
synchronization.

We applied our splitting procedure to the process algebraic semantics of the coordination language Reo: using this
procedure and its related theorem, we formally established the soundness of splitting Reo connectors along the boundaries
of their (a)synchronous regions in implementations of Reo. Such splitting can significantly improve the performance of
connectors as shown elsewhere [15,43,44].

Our work shows the feasibility of using the language mCRL2 (not the associated toolset) for proving properties of a
whole language, Reo, rather than of concrete connectors. This subtly, yet significantly, differs from the work presented in [35,
32-34]. In those paper, Kokash et al. introduce the process algebraic semantics of Reo for verifying concrete connectors (e.g.,
“this connector never deadlocks”) but obtain no results about Reo as a language.

Although inspired by Reo, our splitting procedure may be useful also in other contexts. For instance, a possible applica-
tion beside Reo is projection in choreography languages [9,10,18,19,11,23]. A projection maps a global protocol specification
among k parties, called choreography, to k local specifications of per-party observable behavior, called contracts [9,10] (or
peers [18,19] or end-point processes [11,23]). The challenge is to project such that the collective behavior of the resulting
contracts conforms with the projected choreography. Interestingly, for some choreographies, without adding extra commu-
nication actions to their original specification, no projection to contracts exists that satisfies the conformance requirement.
The theory presented in this paper may constitute a step in a projection method that alleviates this problem by automat-
ically inferring which communication actions need be added to otherwise unprojectable choreographies. Roughly, the idea
is to represent a choreography as an mCRL2 process (in fact, many choreography models are based on process algebra).
However, rather than directly projecting this choreography process as customary, we propose to first decompose it into small,
parallel components using an adapted version (to mCRL2) of the algorithm in [4]. The purpose of this decomposition is
revealing the previously “hidden” communication actions necessary to make the original choreography projectable. We sub-
sequently compute a contract process for each of the k parties in the choreography by (i) splitting some of the small, parallel
components using our splitting procedure and (ii) afterward simplifying the parallel components—including the split ones—
back to k sequential processes, separated from each other by split processes. By the correctness of our splitting procedure,
the appropriately synchronized parallel composition of the k resulting contract processes is provably equal to the original
choreography process (i.e., the conformance requirement holds). More generally, our splitting procedure may play a role in
proving the correctness of parallelization techniques for sequential processes.

We identify several directions for future work.

e Implementing the splitting procedure to facilitate automatic splitting of processes, as well as a tool for the automatic
detection of (a)synchronous regions of Reo connectors. Combined, they allow us to mechanically split connectors along
their (a)synchronous regions. We can then integrate this in one of the code generation frameworks currently under
development for Reo.

e Mechanizing our proofs using a theorem prover. We proved all propositions, lemmas, and theorems presented in this
paper by hand, which was a laborious task, even though many of the equational derivations required limited creativity.
As such, these proofs lend themselves to automation. Doing so has several advantages: it can confirm that our proofs
are indeed correct and it may make extending those proofs to different process algebras (see next item) and/or splitting
procedures (see last item) easier.

e Extending our splitting procedure to full mCRL2, including time. Time is modeled using data values from the sort R=>°
(i.e., the nonnegative reals). This sort contains infinitely many elements over which summation can be defined. In fact,
one of the basic time axioms of full mCRL2—Axiom T3—involves this kind of infinite summation [20]:

P cr>0 P if x ¢ Free(p)

Informally, this axiom states that every (untimed) process p is provably equal to the same (but timed) process whose
first multiaction or deadlock can occur at any time point (the © operator is the at operator: pcx means that the first
multiaction or deadlock of p happens at time x). Thus, the first problem we need to solve is extending our current theory
from finite to infinite summation. Of course, we can avoid this problem by considering only processes that terminate in
finite time. Although that may be a useful first exercise (actually, we do not anticipate major issues there: we expect
our main technique of adding auxiliary actions for tracking choices to work without fundamental changes), our goal is
to support infinite executions (as in this paper). Extending summation from finite to infinite domains, however, seems
nontrivial (see Footnote 17).
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e Investigating other ways of splitting processes, corresponding to other versions of the region-based optimization tech-
nique (see Section 1). The procedure we introduced in this paper splits processes in a synchronous manner such that
&(a) occurs at the same time as the action a itself. We imagine at least two other ways of splitting processes. In one
approach, £(a) occurs after a but before the next action. Then, the process g =a-b has a-&(a) - £(b) as its {a}-isolation
(instead of a L &(a) - £(b)). In another approach, £(a) occurs after a but possibly concurrently with the next action. Then,
q has a- (£(a) || (b)) as its isolation. We speculate that these splitting approaches are sound only under equivalences
weaker than strong bisimulation.

This particular line of future work seems related to existing work on delay-insensitive circuits (e.g., [46]) and desyn-
chronization (e.g., [6,16]), the derivation of an asynchronous system from a synchronous system: for the class of desyn-
chronizable systems, the original synchronous system and the newly constructed asynchronous system are equivalent. If we
use the splitting procedure presented in this paper to obtain such an original synchronous system, we may use—perhaps
with modifications—results from desynchronization for more asynchronous splitting.

Appendix A. Supplementary material
Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.scico.2014.02.017.
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