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Abstract. A scheduler is an algorithm that assigns at any time a set of
processes to a set of processors. Processes usually interact with each
other, which introduces dependencies amongst them. Typically, such
dependencies induce extra delays that the scheduler needs to avoid. Spe-
cific types of applications, like streaming applications, synthesize a sched-
uler from a formal model that is aware of these interactions. However,
such interaction-specific information is not available for general types of
applications. In this paper, we propose an interaction aware scheduling
framework for generic concurrent applications. We formalize the amount
of work performed by an application as constraints. We use these con-
straints to generate a graph, and view scheduler synthesis as solving a
game on this graph that is played between the scheduler and the applica-
tion. We illustrate that our framework is expressive enough to subsume
an established scheduling framework for streaming programs.

Keywords: Scheduling · Game theory · Synthesis · Constraint
automata

1 Introduction

A scheduler of a concurrent application is an algorithm that assigns at any time
processes of the application to a set of processors to execute them. The processes
in a concurrent application interact with each other, which introduces depen-
dencies amongst them. For example, a consumer process cannot execute if it
requires data not yet provided by a producer process. Typically, such dependen-
cies induce extra delays that the scheduler needs to avoid. For specific types of
applications, like streaming applications [18], formal models exist that are aware
of the interactions among their processes. Such models are then used to syn-
thesize schedulers that optimize the execution of their applications with respect
to a scheduling goal, such as latency or power consumption [4,15]. For general
types of applications, like web servers [10], no a priori detailed information about
the interactions among their constituent processes is available to the scheduler.
In such cases, a general-purpose round-robin scheduler is typically used to exe-
cute the application on the available processors. However, we cannot expect such
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schedulers to optimize our scheduling goals, because they cannot anticipate the
dependencies among application processes.

In this paper, we propose an interaction-aware scheduling framework that
enables scheduler synthesis for generic concurrent applications, by explicitly
modelling interactions among processes. In particular, this framework consists
of two elements: a novel formal model of concurrent applications and a scheduler
synthesis approach built on top of this formal model.

We base our formal model of concurrent applications on constraint automata
[3], a general model of concurrency developed by Baier et al. (originally as a
formal semantics for the coordination language Reo [2]). Basically, the idea is to
model a concurrent application as a set of constraint automata, one for every
process in the application. In this approach, every constraint automaton mod-
els the behaviour of a process at the level of its interactions with its environ-
ment (i.e., other processes). Using a special composition operator, we obtain a
interaction-aware model for the entire concurrent application.

The existing theory of constraint automata focuses on processes and their
interactions; it does not yet facilitate modelling the amount of work that
processes need to carry out. However, such information is essential for schedul-
ing. In this paper, we therefore extend transition labels in constraint automata
with a declarative constraint that describes the work that needs to be done as
part of a transition. These job constraints essentially generalize simple weights
as in weighted automata [11], primarily to support true concurrency in composi-
tion. We call the resulting extension of constraint automata work automata, and
we extend the composition operator on constraint automata to work automata
accordingly. Work automata, then, constitute a formal model of concurrent appli-
cations in which both interaction among processes and work inside processes can
be expressed, in a compositional and general manner.

Next, we use work automata in our interaction-aware scheduler synthesis.
Given a formal model of a concurrent application as a set of work automata, our
interaction-aware scheduler synthesis approach consists of two steps. In the first
step, we use our composition operator on work automata to construct a work
automaton for the entire concurrent application. The resulting work automaton
models exactly the work of each process and the dependencies between the work.
In the second step, we model the scheduler synthesis problem as a token game on
a graph played between the scheduler and the application. The scheduler assigns
the processes of the application to a heterogeneous set of processors, and the
application non-deterministically selects a possible execution of the application.
We apply results about the existence and quality of optimal strategies in mean
payoff games [7,12] to find schedules that minimize the use of context-switches.
Finally, we illustrate that our framework is expressive enough to subsume an
established scheduling framework for streaming applications.

The structure of the paper is as follows: In Sect. 2, we introduce job con-
straints and define work automata. In Sect. 3, we define the graph on which
a scheduling game is played. In Sect. 4, we apply our scheduling framework to
streaming applications. In Sect. 5, we conclude and discuss future work.
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2 Concurrent Applications

As a starting point, we use a system of communicating automata to model
interaction among processes in a concurrent application. To define the schedul-
ing problem for this system of automata, we annotate each transition with an
expression that models the workload of that transition. In Sect. 2.1, we recall
the definition of constraint automata. In Sect. 2.2, we introduce job constraints,
which model the work of the processes in a concurrent application. In Sect. 2.3,
we define work automata by adding job constraints to constraint automata. In
Sect. 2.4, we informally discuss the semantics of work automata. In Sect. 2.5, we
extend constraint automata composition to work automata.

2.1 Preliminaries on Constraint Automata

Baier et al. proposed constraint automata to model interaction amongst
processes in a concurrent application [3]. A constraint automaton is a tuple
A = (Q,P,→), where Q is a set of states, P is a set of ports, called the inter-
face, and → ⊆ Q × 2P × Q is a transition relation. Informally, A is a labeled
transition system with labels, called synchronization constraints, consisting of
subsets N ⊆ P. A synchronization constraint N ⊆ P describes the interaction of
A with its environment: ports in N synchronize, while ports outside of N block.
Note that ∅ ⊆ P models an internal action of the automaton. Originally, in addi-
tion to a synchronization constraint, every transition in a constraint automaton
carries also a data constraint. Data constraints are logical assertions that spec-
ify which particular data items may be observed on the ports that participate
in a transition. Because data constraints do not matter in what follows—they
address an orthogonal concern—we omit them from the definition for simplicity
(technically, thus, we consider port automata [16]); the work presented in this
paper straightforwardly extends to constraint automata with data constraints.

The constraint automaton of an entire application can be obtained by par-
allel composition of the constraint automata of its processes. For i ∈ {0, 1},
let Ai = (Qi,Pi,→i) be a constraint automaton. The composition A0 �� A1

is defined by (Q0 × Q1,P0 ∪ P1,→), where → is the smallest relation that
satisfies the following rule: if i ∈ {0, 1}, τi = (qi, Ni, q

′
i) ∈ →i, τ1−i =

(q1−i, N1−i, q
′
1−i) ∈ →1−i ∪ {(q, ∅, q) | q ∈ Q1−i} and N0 ∩ P1 = N1 ∩ P0,

then τ0 | τ1 = ((q0, q1), N0 ∪N1, (q′
0, q

′
1)) ∈ → (cf., Definition 3.2 in [3]). In other

words, a transition τ = ((q0, q1), N, (q′
0, q

′
1)) ∈ → of the composition is possible

if either (1) both restrictions τ |P0 = (q0, N ∩ P0, q
′
0) and τ |P1 = (q1, N ∩ P1, q

′
1)

are transitions in A0 and A1, or (2) for some i ∈ {0, 1}, the restriction τ |Pi
is a

transition in Ai that is independent of A1−i, i.e., N ∩ P1−i = ∅.

2.2 Job Constraints

A system of constraint automata describes only interaction, while the workload
of each process remains unspecified. Therefore, we extend transition labels in
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constraint automata with a work expression that models the amount of work
that needs to be done before a transitions fires.

In the simplest of cases, a transition in a constraint automaton models an
atomic piece of work, belonging to a single process. In that case, we can straight-
forwardly model this amount of work as a natural number n ∈ N0. However,
through (parallel) composition, a transition in a constraint automaton may also
model the synchronous firing of multiple transitions (originating from different
constraint automata for different processes). In that case, a single natural number
fails to express that the work involved by each of these multiple transitions may
actually be done in parallel. For instance, for i ∈ {0, 1}, let Ai = (Qi,Pi,→i) be
a work automaton and τi = (qi, Ni, q

′
i) ∈ →i a transition that requires ni ∈ N0

units of work. Suppose that τ0 and τ1 synchronize, i.e., N0 ∩ P1 = N1 ∩ P0.
Intuitively, τ0 | τ1 then requires n0 +n1 units of work, which may seem to define
the composition of work. However, this composition loses the information that
A0 and A1 may run in parallel and that the n0 and n1 units of work are indepen-
dent of each other. To avoid this loss, we keep the values n0 and n1 separate by
associating τi with a job xi that requires ni units of work. We represent the work
of τi as the job constraint xi = ni, and the work of τ0 | τ1 as x0 = n0 ∧ x1 = n1.

Although job constraints with equalities (as introduced above) enable us
to express parallelism of work between synchronizing transitions, they do not
enable us to express parallelism of work between independent transitions (i.e.,
transitions that do not share any ports). The issue here is that if a transition
τ0 in automaton A0 fires before an independent transition τ1 in automaton A1

fires, A1 is free to already perform (some) work while τ0 fires, in anticipation
of later firing τ1. To model this, we should associate τ0 with a job constraint
that specifies that the work associated with τ1 can be performed partially. We do
this by allowing inequalities in job constraints. For instance, if the job constraint
of τ0 is x0 = n0, while the job constraint of τ1 is x1 = n1, we define the job
constraint of τ0 | ε (i.e., the incarnation of τ0 in the composition of A0 and A1,
where ε denotes an internal action of A1) as x0 = n0 ∧ x1 ≤ n1.

We define the set of job constraints w over a set of jobs J by the grammar

w ::= 
 | x = n | x ≤ n | w0 ∧ w1, (1)

with x ∈ J and n ∈ N0. The need for inequalities in w, precludes using weights
on transitions in weighted automata [11] to represent work.

For notational convenience, we introduce the following terminology regarding
a job constraint w over a set of jobs J . Let F,G ⊆ J and nx,my ∈ N0, for all
x ∈ F and y ∈ G, such that w is equivalent to

∧
x∈F x = nx ∧∧

y∈G y ≤ my. We
call w saturated, whenever F ∪G = J . We call w satisfiable, whenever nx ≤ mx,
for all x ∈ F ∩G. If w is satisfiable and x ∈ J , then we define the available work
wx ∈ N0 ∪ {∞} for job x by wx = nx, if x ∈ F , wx = mx, if x ∈ G \ F , and
wx = ∞ otherwise. Finally, we define the set of required jobs ρw ⊆ J by ρw = F .
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2.3 Work Automata

We now extend the transition labels of constraint automata from Sect. 2.1 with
the job constraints from Sect. 2.2.

Definition 1. A work automaton is a tuple (Q,P,J ,→) that consists of a set
of states Q, a set of ports P, a set of jobs J , and a transition relation → ⊆
Q × 2P × ΩJ × Q, where ΩJ is the set of all satisfiable job constraints over J .

Example 1. One of the simplest non-trivial examples of concurrent systems is
the producer-consumer system, shown in Fig. 1(a). The producer generates data
and puts them into its buffer. The consumer takes these data from the buffer
and processes them. We assume that the buffer has capacity 2. We split the
system into a buffered producer and a consumer. Figure 1(b) and (c) show their
respective work automata. States 0, 1 and 2 in Fig. 1(b) indicate the amount of
data in the buffer. In state 0 or 1, the producer can produce a new datum by
finishing 2 units of work of job x. In state 1 or 2, the consumer can take a datum
from the buffer by synchronizing on port a, which requires no work on job x. In
state 0 in Fig. 1(c), the consumer waits for a datum d at port a. When d arrives,
the consumer takes it from the buffer, requiring 1 unit of work on job y. In state
1, the consumer processes datum d, requiring 3 units on job z.

2.4 Job Execution

Let A = (Q,P,J ,→) be some fixed work automaton. In this section, we infor-
mally introduce the semantics of A. The jobs in a work automaton are executed
by a parallel machine M, which consists of a heterogeneous set of processors
and a map that represents the execution speed of jobs on processors.

Definition 2. A parallel machine is a tuple (M,J , v), where M is a set of
processors, J is a set of jobs and v : J × M → N0 is a map that models the
speeds of jobs on processors.

Producer

Consumer

a

��

(a)

0 1 2

∅, x = 2

{a}, x ≤ 2

∅, x = 2

{a}, x ≤ 2

(b) Buffered producer Aprd.

0 1

{a}, y = 1 ∧ z = 0

∅, y = 0 ∧ z = 3

(c) Consumer Acon.

Fig. 1. Producer-consumer application (a), and its corresponding system of work
automata (b) and (c) with {a} as their interface {x} and {y, z} as their respective
job sets.
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It is the task of a scheduler to assign jobs from a set J to processors in a
parallel machine (M,J , v) over J . We model this assignment of jobs to proces-
sors by an injective partial map s : M ⇀ J that represents the scheduled jobs,
i.e., s(i) = s(j) implies i = j, for all i, j ∈ M . We write S(M,J ) for the set of
all injective partial maps s : M ⇀ J .

We represent the speeds of jobs in J subject to the scheduled jobs s ∈
S(M,J ) by the map vs : J → N0, given by vs(x) = v(x, s−1(x)) if x ∈ im(s)
and vs(x) = 0 otherwise. Here, im(s) = {s(m) ∈ J | m ∈ M} is the image of s.

We represent the current progress of jobs by a map p : J → Q≥0, where Q≥0

is the set of non-negative rational numbers. After executing the scheduled jobs
s ∈ S(M,J ) for t ∈ Q≥0 time, the progress of jobs in J equals p′ = p + vs · t,
where + is pointwise addition and · is multiplication by a scalar, i.e., p′(x) =
p(x) + v(x, s−1(x)) · t if x ∈ im(s) and p′(x) = p(x) otherwise.

Example 2. Let k > 0 be a positive integer and J a set of jobs. Then, Mk =
({1, . . . , k},J , v), with v(x, i) = 1 for all x ∈ J and 1 ≤ i ≤ k, models a parallel
machine that consists of k identical processors. Any two processors are identical
and interchangeable. Therefore, the scheduled jobs s ∈ S(M,J ) depend solely
on the image im(s). If s, s′ ∈ S({1, . . . , k},J ) and im(s) = im(s′), then vs = vs′ .
Hence, we represent scheduled jobs as a subset J ⊆ J .

Let τ = (q,N,w, q′) be a transition in A and p : J → Q≥0 be the current
progress of jobs. Recall the notation regarding job constraints from Sect. 2.2. We
call a job x finished whenever its progress p(x) equals wx ∈ N0∪{∞}. We demand
that all required jobs x ∈ ρw finish their available work wx. The automaton A
may take a transition τ if the progress of jobs p satisfies the job constraint w
(notation: p |= w), i.e., p(x) ≤ wx for all jobs x ∈ J and p(x) = wx for required
jobs x ∈ ρw. Note that for ρw = ∅, transition τ requires no work, and τ then
represents for example the arrival of input data.

Suppose that p |= w and A takes transition τ . Then, the current state of A
becomes q′ and the progress of required jobs resets to zero. Formally, the progress
becomes p′ = ρw(p), where ρw : N

J
0 → N

J
0 is the reset operation associated with

ρw defined as ρw(p)(x) = p(x) if x /∈ ρw and ρw(p)(x) = 0 otherwise.

2.5 Composition

In Sect. 2.3, we extended constraint automata to work automata. We now extend
the composition of constraint automata from Sect. 2.1 to work automata.

Let A0 and A1 be two work automata. We want our composition of work
automata to conservatively extend the composition of constraint automata. This
means that the state space, interface and transition relation (up to job con-
straints) of the composition are already determined. Since a job x in Ai, for
i ∈ {0, 1}, is merely a name for a piece of work inside Ai, we may rename x to
(x, i). This allows us to define the set of jobs of the composition as the disjoint
union J0 + J1 = J0 × {0} ∪ J1 × {1}. For i ∈ {0, 1}, let τi = (qi, Ni, wi, q

′
i) be a

transition in Ai. If N0 ∩ P1 = N1 ∩ P0, then τ0 and τ1 synchronize and give rise
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to a transition τ0 | τ1 = ((q0, q1), N0 ∪N1, w0 ∧w1, (q′
0, q

′
1)). If τ0 and τ1 are inde-

pendent, i.e., N0 ∩ P1 = N1 ∩ P0 = ∅, then τ0 and the relaxation (q1, ∅, w≤
1 , q1)

of τ1, give rise to a transition τ0 | τ≤
1 = ((q0, q1), N0, w0 ∧ w≤

1 , (q′
0, q1)) in the

composition, where w≤
1 is the job constraint derived from w1 by substituting

every = with ≤. This substitution is well-defined, because, according to gram-
mar (1), jobs exclusively appear on the left hand side of an equality. Transition
τ0 | τ≤

1 represents that τ0 is taken, while jobs in τ1 makes arbitrary progress
bounded by w1. We define the a lift τ≤

0 | τ1 of τ1 analogously. Finally, if τ0
is independent of A1 (i.e., N0 ∩ P1 = ∅), then τ0 gives rise to a transition
((q0, q1), N0, w0 ∧ ∧

x∈J1
x = 0, (q′

0, q1)) in the composition, where τ0 executes
independently of A1 and all jobs in A1 block. This blocking means that A1 needs
to wait, unless a transition τ1 in A1 induces a synchronization τ0 | τ1 or τ0 | τ≤

1 .

Definition 3. For i ∈ {0, 1}, let Ai = (Qi,Pi,Ji,→i) be a work automaton. We
define the composition A0 �� A1 of A0 and A1 as the work automaton (Q0 ×
Q1,P0∪P1,J0+J1,→), where → is the smallest relation satisfying the following
rule: if i ∈ {0, 1}, τi = (qi, Ni, wi, q

′
i) ∈ →i, τ1−i = (q1−i, N1−i, w1−i, q

′
1−i) ∈

→1−i ∪ {(q, ∅,
∧

x∈J1−i
x = 0, q) | q ∈ Q1−i} and I := N0 ∩ P1 = N1 ∩ P0, then

1. τ0 | τ1 = ((q0, q1), N0 ∪ N1, w0 ∧ w1, (q′
0, q

′
1)) ∈ →; and

2. I = ∅ implies τ0 | τ≤
1 ∈ → and τ≤

0 | τ1 ∈ →, where τ≤
i = (qi, ∅, w≤

i , qi).

Example 3. Fig. 2 shows the composition of the work automata from Fig. 1(b)
and (c). A state ij indicates that the buffered producer is in state i and the
consumer is in state j. In state 00, the consumer cannot retrieve a datum from
the buffer. Hence, the consumer is not allowed to work on job y. The transition

00 10 20

01 11 21

∅, x = 2 ∧ y = 0 ∧ z = 0 ∅, x = 2 ∧ y = 0 ∧ z = 0

∅, x = 2 ∧ y = 0 ∧ z ≤ 3

∅, x = 2 ∧ y = 0 ∧ z = 0

∅, x = 2 ∧ y = 0 ∧ z ≤ 3

∅, x = 2 ∧ y = 0 ∧ z = 0

∅,
x

≤
2

∧
y

=
0

∧
z

=
3

∅,
x

=
0

∧
y

=
0

∧
z

=
3

∅,
x

≤
2

∧
y

=
0

∧
z

=
3

∅,
x

=
0

∧
y

=
0

∧
z

=
3

∅,
x

=
0

∧
y

=
0

∧
z

=
3

{a}
, y

=
1 ∧ z

=
0

{a}
, y

=
1 ∧ z

=
0

∅, x
=

2 ∧ y
=

0 ∧ z
=

3

∅, x
=

2 ∧ y
=

0 ∧ z
=

3

Fig. 2. Composition Aprd �� Acon of the work automata in Fig. 1(b) and (c).
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from 01 to 11 with job constraint x = 2∧y = 0∧z = 3 is redundant, because the
other transition from 01 to 11 has a weaker job constraint x = 2∧ y = 0∧ z ≤ 3.

3 Scheduling Games

A work automaton can make non-deterministic internal choices, beyond the con-
trol of the scheduler. Therefore, we can view the scheduler synthesis problem over
a work automaton and a parallel machine as a game that is played between the
scheduler and the application modelled by a work automaton. The scheduler
assigns jobs to processors and the application executes the running jobs and,
whenever possible, makes a perhaps non-deterministically selected transition.
We represent this game as a token game played on a graph that we derive from
a work automaton and a parallel machine. Every play of this game (i.e., a path
in this graph) corresponds to a run of the work automaton. Hence, a strategy in
this game corresponds to a schedule of the corresponding concurrent application.
In Sect. 3.1, we recall some basic terminology and known results for games played
on graphs. In Sect. 3.2, we interpret the execution of jobs in a work automaton
as a game played on a graph. In Sect. 3.3, we assign an execution time to every
move in a scheduling game. In Sect. 3.4, we introduce a class of scheduling objec-
tives for both terminating and non-terminating applications. In Sect. 3.5, we find
schedules that minimize the number of context-switches.

3.1 Preliminaries on Games on Graphs

We view scheduler synthesis as a problem of finding optimal strategies in a game
played on a graph. Therefore, we recall the basic definitions about these games.

A game arena is a finite directed bipartite leafless graph A. More formally,
A is a triple (V,E, ϕ) that consists of a finite set of vertices V , a set of edges
→ ⊆ V × V such that for all a ∈ V there exists a b ∈ V with (a, b) ∈ E, and a
2-colouring ϕ : V → {0, 1}, i.e., (a, b) ∈ E implies ϕ(a) �= ϕ(b), for all a, b ∈ V .
Vertices and edges in this graph are called positions and moves. For every a0 ∈ V ,
consider the following token game on A between Player 0 and Player 1. Let a0

be the initial position of the token. Construct an infinite sequence π = (ai)∞
i=0

as follows: for all i ≥ 0, Player ϕ(ai) selects a successor position ai+1 ∈ V , with
(ai, ai+1) ∈ E, and moves the token from ai to ai+1. The sequence π is called a
play of this game, and plays(A) ⊆ V ω is the set of all such plays in A. A game G
is a triple (A, a0, f), where A = (V,E, ϕ) is a game arena, a0 ∈ V is the initial
position, and f : plays(A) → D is a payoff function, where D is some partially
ordered set. The goal of Player 0 is to maximize the value f(π), while Player 1
tries to minimize f(π). A strategy σk for Player k ∈ {0, 1} in a game G is a map
σk : V ∗ × Vk → V1−k, such that (v, σk(u, a)) ∈ E for all u ∈ V ∗ and a ∈ Vk.
Intuitively, a strategy σk determines the successor position σk(u, a) ∈ V1−k of
Player k, based on the history u and the current position a. A strategy σ is
called memoryless if and only if σ(u, a) = σ(u′, a), for all u, u′ ∈ V ∗ and a ∈ V .
A play π = a0a1 · · · is consistent with a strategy σk for Player k if and only if
for all i ≥ 0 we have that ϕ(ai) = k implies ai+1 = σk(a0 · · · ai−1, ai).
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Example 4 (Mean payoff games [12]). Let A = (V,E, ϕ) be an arena, and let
c : E → Z be a weight function. In Sect. 3.3, we use these weights to represent
the execution time of moves. A mean payoff game over A and c is a triple
G = (A, a0,Mc), where a0 ∈ V is the starting position, and

Mc(a0a1a2 · · · ) = lim inf
n→∞

1
n

n−1∑

i=0

c(ai, ai+1).

Intuitively, Mc computes the ‘smallest’ average value of the play a0a1a2 · · · .

3.2 Scheduling Arena

We now formulate the problem of scheduling a concurrent application, repre-
sented as a work automaton A = (Q,P,J ,→), onto a set of heterogeneous
processors, represented as a parallel machine M = (M,J , v). The scheduling
problem consists of finding an optimal strategy in a game on a graph played by
the scheduler (Player 0) and the application (Player 1). Intuitively, the game is
played by alternating moves by the scheduler and the application. A scheduler
move selects a schedule s ∈ S(M,J ). Recall the notation for job constraints from
Sect. 2.2. An application move selects a transition τ = (q,N,w, q′) that allows
scheduled jobs to progress, and then updates the progress p : J → Q≥0 of the
jobs by executing the scheduled jobs s until one of the jobs x ∈ J finishes wx

units of work. If after the execution the job constraint w is satisfied, the applica-
tion makes transition τ . Otherwise, the application makes the ‘fictitious’ idling
transition εq := (q, ∅,
, q), where q ∈ Q is the current state of the automaton.

We now explain the construction of the game arena in more detail. We
want every play of this game to correspond to an run of the associated work
automaton. Therefore, we record, in every position of the game, the progress
of the jobs and the state of the automaton. We define the positions of the
scheduler as pairs (p, τ), where p : J → Q≥0 is the progress of jobs and
τ = (q,N,w, q′) ∈ → ∪ {εq | q ∈ Q} is the transition that is previously taken by
the application (i.e., q′ is the current state of the work automaton). We define the
positions of the application as triples [p, q, s], where p : J → Q≥0 is the progress
of jobs, q ∈ Q is the current state of the work automaton and s ∈ S(M,J ) is
the set of the scheduled jobs that are selected by the scheduler.

In a position (p, τ), the scheduler may select any assignment s ∈ S(M,J ) of
jobs to processors, which corresponds to selecting a successor position [p, q′, s].
For the definition of application moves, we first define enabled transitions. Intu-
itively, a transition is enabled in position [pb, qb, s] if its source state is qb, its
job constraint is potentially satisfiable (i.e., pb(x) ≤ wx, for all x ∈ J ) and all
scheduled jobs s can execute (i.e., vs(x) > 0 implies pb(x) < wx, for all x ∈ J ).

Definition 4. We call a transition τ = (q,N,w, q′) enabled at a position b =
[pb, qb, s] of the application if and only if for all x ∈ J , we have that q = qb,
pb(x) ≤ wx, and vs(x) > 0 implies pb(x) < wx. We write Eb ⊆ → for the set of
all transitions that are enabled at b.
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If there is no enabled transition, then the application selects the successor
position (p, εq). Otherwise, the application selects any enabled transition λ =
(q,N,w, q′) ∈ Eb and executes its scheduled jobs, until one of them finishes.

Definition 5. The time to first completion tb(λ) of an enabled transition λ ∈ Eb

at a position b = [p, q, s] is

tb(λ) =

{
min Tb(λ) if Tb(λ) �= ∅
0 otherwise

,

where Tb(λ) = {t ∈ Q≥0 | ∃x ∈ J : vs(x) > 0 and p(x) + vs(x) · t = wx}.
After executing the jobs for tb(λ) units of time, the progress of the jobs

becomes p+vs · tb(λ), which is defined as (p+vs · tb(λ))(x) = p(x)+vs(x) · tb(λ),
for all x ∈ J . If the job constraint of λ is satisfied (p + vs · tb(λ) |= w), the
application makes transition λ by selecting position (ρw(p+ vs · tb(λ)), λ), where
ρw resets the progress of all finished jobs ρw to zero. If the job constraint of λ is
not satisfied (p+vs ·tb(λ) � |= w), the application selects position (p+vs ·tb(λ), εq).

Definition 6. A scheduling arena A over a work automaton (Q,P,J ,→) and
a parallel machine (M,J , v) is a tuple A = (V,E, ϕ), where V = V0 ∪ V1,

V0 = {(p, τ) | p : J → Q≥0 and τ ∈ → ∪ {εq | q ∈ Q}},

V1 = {[p, q, s] | p : J → Q≥0, q ∈ Q and s ∈ S(M,J )}
are the sets of positions of the scheduler and the application, ϕ(a) = 0 if and
only if a ∈ V0, and E ⊆ V × V is the largest relation that satisfies the following
rule: for all a = (p, τ) ∈ V0 and b = [p, q, s] ∈ V1 we have

1. if τ = (−,−,−, q′
τ ), then (a, [p, q′

τ , s]) ∈ E; and
2. if Eb = ∅, then (b, (p, εq)) ∈ E; and
3. if λ = (q,N,w, q′) ∈ Eb, then

(a) p + vs · ta(λ) |= w implies (b, (ρw(p + vs · ta(λ)), λ)) ∈ E; and
(b) p + vs · ta(λ) � |= w implies (b, (p + vs · ta(λ), εq)) ∈ E.

As a scheduling arena A is infinite, it is not an arena as in Sect. 3.1. The
following lemma provides a sufficient condition ensuring that A is locally finite,
i.e., only finitely many positions in the A are reachable from any given position.

Lemma 1. Let A be a scheduling arena over a work automaton A and a parallel
machine (M,J , v). If A has finitely many transitions, all job constraints in A
are saturated and all speeds v(x, i) are either zero or u, for some u ∈ N0, then
only finitely many positions in A are reachable from any given position a ∈ A.

Proof. For every job x ∈ J , define mx = max {wx | w is a job constraint in A}.
Since all job constraints are saturated, we have that |J | < ∞ and mx < ∞, for
all x ∈ J . Hence, we find α ∈ N0 such that for every job x ∈ J the progress
pa(x) of x at a satisfies αpa(x) ∈ N0. Using Definitions 4, 5 and 6, it follows that
for every job x ∈ J the progress pb(x) of x at a position b ∈ A reachable from
a satisfies pb(x) ∈ {pa(x), 0, 1

α , . . . , αmx−1
α ,mx}, for all x ∈ J . We conclude that

only finitely many positions in A are reachable from any given position a ∈ A.
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Fig. 3. Scheduling arena over a work automaton A from Example 5. Circular positions
belong to the scheduler position and square positions belong to the application.

Example 5. Consider the work automaton A = ({0}, ∅, {x, y}, {λ, τ, μ}) and par-
allel machine M2, where λ = (0, ∅, x = 1 ∧ y ≤ 1, 0), τ = (0, ∅, x = 5 ∧ y = 0, 0)
and μ = (0, ∅, x = 0 ∧ y = 1, 0). Figure 3 shows the scheduling arena over A
and M2 from Example 2 according to Definition 6. A circular position labelled
by kα, with k ∈ {0, 1} and α ∈ {ε0, λ, τ, μ}, corresponds to (p, α) ∈ V0, with
p(x) = 0 and p(y) = k. For k ∈ {0, 1}, a square position labeled by k, kx, ky
or kxy corresponds to a position (p, 0, s) ∈ V1 with p(x) = 0, p(y) = k and
im(s) = ∅, im(s) = {x}, im(s) = {y} or im(s) = {x, y}, respectively.

3.3 Strategies and Classical Schedules

From a given work automaton A and parallel machine M, we constructed in
Sect. 3.2 a scheduling arena A. Suppose that the non-deterministic behaviour
of A is fully controlled by the scheduler, i.e., there is only one move possible
at every position a ∈ V1 of the application. We now argue that strategies in A
naturally correspond to classical schedules of concurrent applications.

Since the application has a unique strategy, every strategy σ0 of the scheduler
induces a play π in A. The following definition assigns an execution time to every
move in π, which allows us to represent π as a Gantt chart [13].

Definition 7. The execution time t(a, b) of a move (a, b) ∈ E in a scheduling
arena A = (V,E, ϕ) is

t(a, b) =

⎧
⎪⎨

⎪⎩

ta(λ) if (a, b) ∈ V1 × V0 comes from λ ∈ Ea

1 if a = [p, q, s] ∈ V1 and E[p,q,s′] �= ∅ = Ea for some s′

0 otherwise
.

The case for t(a, b) = 1 can be seen as a time penalty for selecting s ∈
S(M,J ) that unnecessarily blocks the execution (E[p,q,s] = ∅).
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1 x y y

2 x y

(a) Play π from Example 6

1 x y y

2 x y

(b) Non-semi-anchored schedule

Fig. 4. Play π from Example 6 (a), and a schedule that is not semi-anchored (b).

Example 6. In the scheduling arena in Fig. 3, consider the play π that is given
by 0ε0, 0x, 0τ, 0xy, 1λ, 1, 0μ, 0y, 1μ, 1, 0μ, 0y, 1μ, 1y, 1ε0, 1y, . . .. All zeros on the
move labels are omitted in this arena. Figure 4(a) shows a Gantt chart represen-
tation of π. Note that, since x and y are executed on identical processors M2,
it is not important on which processor x and y are scheduled.

We conclude that every strategy in A naturally induces a classical schedule of
the concurrent application. Conversely, not every classical schedule comes from
a strategy in such an arena A. According to Definition 6, scheduling strategies
induce only semi-anchored schedules, i.e., a job can start at time t + n, with
t ∈ Q≥0 and 1 ≤ n ∈ N, only if t = 0 or t is a time that some job finishes, and
all processors are idle between t and t + n. Figure 4(b) shows a schedule that
cannot be represented by a strategy in A. However, shifting the executions of all
jobs y to the left transforms Fig. 4(b) into an anchored schedule.

We now show that this shifting always produces a valid schedule for A. Let
S be a (non-semi-anchored) classical schedule, and T ⊆ Q≥0 be the set of all
finish times of jobs in S including zero. Let ts be the start time of a job x with
ts /∈ T , and tf = max {t ∈ T | t ≤ ts} the last time a job in S finishes before
ts. Every transition taken by A after tf was already enabled at time tf . Thus,
shifting the execution of job x from ts to tf produces a valid schedule.

We call a scheduling objective regular, whenever this shifting operation pro-
duces a schedule that is at least as good as the initial schedule. For example,
minimizing total execution time is a regular scheduling objective, while schedul-
ing objectives that penalize for jobs that finish ‘too early’ are not regular.

3.4 Scheduling Games

In this section, we define payoff functions for games played on scheduling graphs
that naturally correspond to regular scheduling objectives.

Let π = a0a1 · · · be a play in a scheduling arena A = (V,E, ϕ). Using Defini-
tion 7, we associate with every initial prefix πn = a0 · · · an, n ≥ 0, the total exe-
cution time tn =

∑n−1
i=0 t(ai, ai+1). If our application terminates, then for every

play π = a0a1 · · · , the sequence t0, t1, . . . eventually stabilizes, i.e., tn = tm, for
some n and all m ≥ n. Then, tn represents the total execution time of π. If our
application does not always terminate, then we cannot associate with every play
π its total execution time. An example of such an application is a streaming
application (cf., Sect. 4). A natural scheduling objective in a streaming applica-
tion is latency minimization at some output port o ∈ P. We define the latency
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at a port o as the average time between two successive I/O operations on o. To
keep track of these I/O operations, we use a map θo : E → {0, 1}, such that
θo(a, b) = 1 if and only if b = (p, τ) ∈ V0, where τ = (q,N,w, q′) and o ∈ N . For
a prefix πn = a0 · · · an, n ≥ 0, of π, we define the latency as the ratio between the
total execution time tn and the number of I/O operations 1+

∑n−1
i=0 θo(ai, ai+1).

By varying θ : E → {0, 1}, we define the following class of scheduling games,
called latency games, wherein Player k maximizes the ‘smallest limiting ratio’.
Recall the definition of locally finite scheduling arena’s from Sect. 3.2.

Definition 8. Let A = (V,E, ϕ) be a locally finite scheduling arena, θ : E →
{0, 1} a map, and k ∈ {0, 1}. A latency game G for Player k over A and θ is a
tuple G = (A, a0, T

k
θ ), where a0 is an initial position and

T k
θ (a0a1 · · · ) = lim inf

n→∞
(−1)k

1 +
∑n−1

i=0 θ(ai, ai+1)

n−1∑

i=0

t(ai, ai+1), (2)

where t : E → N0 is the execution time from Definition 7.

Example 7 (Makespan games: T 1
0 ). Let θ be the map 0 : E → {0, 1}, given by

0(a, b) = 0, for all (a, b) ∈ E, and k = 1. The scheduling objective in the latency
game over θ and k is given by T 1

0 = lim infn→∞ −∑n−1
i=0 t(ai, ai+1). Recall from

Sect. 3.1 that Player 0 wants to maximize T 1
0 , which corresponds to minimizing

the total execution time −T 1
0 = lim supn→∞

∑n−1
i=0 t(ai, ai+1).

Example 8 (Context-switches: T 0
1 ). Due to changes in the assignment of jobs to

processors, context-switches may occur. Typically, context-switches inflict sub-
stantial overhead and their occurrences should be avoided. This scheduling objec-
tive can be seen as a latency game, where k = 0 and θ is the map 1 : E → {0, 1},
given by 1(a, b) = 1, for all (a, b) ∈ E. Then, the scheduling objective becomes
T 0
1 = lim infn→∞ 1

n+1

∑n−1
i=0 t(ai, ai+1), which can be interpreted as maximizing

the average time between two consecutive context-switches. Indeed, every move
by the application executes all scheduled jobs until at least one of them finishes.
The job that finishes should subsequently be descheduled (context-switch), to
avoid suboptimal use of compute resources (i.e., idling).

Note that limn→∞ n+1
n = 1 implies that the scheduling objective T 0

1 coincides
with the payoff function of the mean payoff games in Example 4.

Example 9 (Latency at o: T 1
θo

). Let A be a work automaton with a port o ∈ P,
and let A = (V,E, ϕ) be a scheduling arena over A and some parallel machine.
Using Definition 6, we can identify the moves in the scheduling arena that
come from a transition that requires an I/O operation on port o. Thus, let
θo : E → {0, 1} be given by θo(a, b) = 1 if and only if b = (p, τ) ∈ V0, where
τ = (q,N,w, q′) and o ∈ N . The scheduling objective T 1

θo
corresponds to maxi-

mizing the production rate at port o.
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3.5 Optimal Strategies

In Sect. 3.4, we viewed the scheduling problem as a game played on a graph. We
now take advantage of the fact that these games have been extensively studied in
the literature. To do this, we need some terminology about games on graphs. Let
G be a game over an arena A, with initial position a0 ∈ A, and payoff function
f : plays(A) → D, for some partially ordered set D of values. A strategy σk for
Player k ∈ {0, 1} secures a value v ∈ D whenever (−1)kf(π) ≥ (−1)kv, for every
play π ∈ plays(A) consistent with σk. Intuitively, this means that if Player k
uses strategy σk then the value f(π) of any resulting play is not worse than v.
Now, there exists an optimal strategy for Player k, whenever the maximum value
vk(G) = max{(−1)kv | some σk secures v} exists. The game G is determined,
whenever v0(G) and v1(G) exist and are equal.

Theorem 1. The latency game for θ = 1 is memorylessly determined, and a
memoryless optimal strategy can be found for it in O(|V |2 · |E| · log(|V | · T ) · T )
time, with T = max(a,b)∈E u · t(a, b) and u the speed of the processors.

Proof. For θ = 1, a latency game coincides with a mean payoff game (cf., Exam-
ple 8). Ehrenfeucht and Mycielski show that mean payoff games are memory-
lessly determined [12]. Brim et al. provide a pseudopolynomial time algorithm
for finding an optimal memoryless strategy [7].

In view of Example 8, the result of Theorem 1 shows that there exists an
optimal strategy (determinacy) of good quality (memoryless) for maximizing
the average time between two consecutive context-switches. For optimal play,
the scheduler need not remember earlier scheduling decisions. Moreover, such an
optimal strategy can be efficiently computed from the scheduling arena.

4 Cyclo-Static Dataflow

In a streaming application, a network of filters transforms an input stream of
data into an output stream. Examples of such applications range from video
decoding to sorting algorithms. A streaming application can be formally repre-
sented by a cyclo-static dataflow (CSDF) graph. Bamakhrama and Stefanov pro-
posed a framework for scheduling CSDF graphs that are annotated with worst-
case execution times [4]. In this section, we argue that our proposed scheduling
framework of Sect. 3 subsumes this scheduling framework for CSDF graphs.

Consider the CSDF graph in Fig. 5(a), wherein four filter processes A1, A2,
A3 and A4, called actors, are connected by FIFO buffers. The behaviour of
an actor consists of a periodic sequence of execution steps, whose worst-case
execution time is represented the value (μi) at Ai, for i ∈ {1, 2, 3, 4}. In each
step, an actor atomically consumes tokens from its input buffers and produces
tokens for its output buffers. The production and consumption rates of an actor
Ai with period n are determined by vectors [x1, . . . , xn] (Sect. 3.1 in [4]).

Bamakhrama and Stefanov generate from a CSDF graph with worst-case
execution times a strictly periodic task set (Example 3 in [4]), by determining
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(a) CSFD (Figure 1 in [4])
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(b) Stricly periodic task set (Figure 6 in [4])

Fig. 5. Cyclo-static dataflow model (a) and strictly periodic task set (b).

for every filter Ai, a starting time Si ∈ N0 and a period Ti ∈ N0 such that all
required input tokens are available for all execution steps of all actors and all
buffers need only a finite capacity throughout the execution. Figure 5(b) shows
the strictly periodic task-set of the CSDF graph in Fig. 5(a). Bamakhrama and
Stefanov then use standard scheduling algorithms for strictly periodic task set
to compute a schedule S for this CSDF graph (cf., Sect. 3.2.2 in [4]).

Every actor Ai, with i ∈ {1, 2, 3, 4}, can be represented as a work automaton
over a single job xi, and every buffer can be represented as a work automaton
without jobs. Using the composition operator from Sect. 2.5, we find a work
automaton A that describes the behaviour of the CSFD graph in Fig. 5(a). The
behaviour of A is fully under the control of the scheduler. Hence, Sect. 3.3 shows
that, for regular scheduling objectives, the schedule S obtained in [4] induces a
strategy in the scheduling arena A over A and M4.

We conclude that, for regular scheduling objectives, a schedule induced by an
optimal scheduling strategy in a scheduling game is not worse than any schedule
found by the scheduling framework proposed by Bamakhrama and Stefanov.

5 Discussion

We extended constraint automata with job constraints to model the work of
processes in a concurrent application. We recognize that scheduling decisions do
not completely determine the execution of a concurrent application, and there-
fore view scheduler synthesis as playing a game on a graph between a scheduler
and the application. We introduced a class of natural scheduling objectives, and
applied game-theoretic results for mean payoff games to find a scheduling strat-
egy that maximizes the time between subsequent context-switches.

Work automata are similar to timed automata [1]. Clock constraints and
clock valuations correspond to job constraints and progress of jobs. Still, there
are two main differences between them. First, we reset only required jobs in work
automata, while in timed automata clocks can reset at any time. Second, we
allow jobs to make progress at different speeds, while clocks in timed automata
increment uniformly. Using this clock-speed relaxation, the scheduler controls the
execution rate of each job by selecting which jobs to schedule. Using our notion
of jobs, it seems possible to represent the execution of a concurrent application
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on a set of processors by means of hybrid automata [14] or hybrid constraint
automata [9]. However, since such a representation convolutes the specification of
the application with the specification of the parallel machine, hybrid (constraint)
automata are unsuitable for our purpose.

Scheduler synthesis for concurrent applications is similar to controller syn-
thesis for real-time systems [5,6,8,17], because the non-deterministic behaviour
of a real-time system, modeled as a timed automaton [1], is not fully determined
by its controller. Therefore, the controller synthesis problem is formulated as
a game on the automaton that is played between the controller and an adver-
sary. However, our problem differs from controller synthesis in that scheduler
synthesis requires a strong relation between processes and processors.

The size of a composed work automaton for a whole application very quickly
becomes too large. Moreover, the size of a scheduling arena is again much larger
than that of the work automaton. Nevertheless, an optimal strategy in such an
immense game may indeed have a very simple form (like balancing production
and consumption rates in buffers). One direction for our future work is to inves-
tigate under what conditions it is possible to bypass these exponential blow-ups.
The existence of efficient solutions for more restricted scheduling problems (e.g.,
CSDF programs [4]) leads us to believe that it is possible to find such conditions.
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