
JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.1 (1-37)

Science of Computer Programming ••• (••••) •••–•••
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Constraint automata with memory cells and their composition

S.-S.T.Q. Jongmans a,b,c,∗, T. Kappé c,d, F. Arbab c,d

a Open University of the Netherlands, Valkenburgerweg 177, 6419 AT Heerlen, The Netherlands
b Radboud University Nijmegen, Toernooiveld 212, 6525 EC Nijmegen, The Netherlands
c Centrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, The Netherlands
d Leiden University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 April 2016
Received in revised form 16 March 2017
Accepted 17 March 2017
Available online xxxx

Keywords:
Coordination
Constraint automata
Composition
Reo
Performance

Over the past decades, coordination languages emerged for modeling and implementing
concurrency protocols among components in component-based systems. Coordination
languages allow programmers to express concurrency protocols at a higher and more
appropriate level of abstraction than what traditional programming and scripting languages
offer.
In this paper, we extend a significant coordination model—constraint automata—with
a mechanism to finitely and compactly deal with infinite data domains, including
foundational notions as behavior and equivalence (based on languages), weak and
strong congruence (based on bisimulation), and composition. We also address the act of
composing a number of simple primitive constraint automata into a complex composite
one, by discussing two alternative composition approaches and by analyzing their
performance in a number of experiments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Context

Over the past decades, coordination languages have emerged as suitable tools for modeling and implementing concur-
rency protocols among components in component-based systems. Coordination languages allow programmers to express
concurrency protocols at a higher and more appropriate level of abstraction than what traditional programming and
scripting languages offer. Practical and efficient formal specification, analysis, and verification of coordination (i.e., higher-
level concurrency) protocols require compact representation of infinite behavior and compositional techniques (i.e., those
amenable to composition/decomposition). Compositional techniques employ various specific composition operators that
combine simpler constructs together to yield more complex constructs. On its own, every such simpler construct can often
potentially behave in ways not permitted in composition with its peers in a more complex construct. When applied itera-
tively to compute a final compound model in multiple composition steps, however, compositional techniques can carry and
combine the ultimately disallowed behavior alternatives of the constituents of a complex protocol, producing unnecessar-
ily bloated intermediate models. Recognizing and trimming ultimately disallowed alternatives before intermediate models
become bloated can significantly improve the efficiency and applicability of compositional techniques. We present such an
approach in this paper.

* Corresponding author.
E-mail addresses: ssj@ou.nl (S.-S.T.Q. Jongmans), kappe@cwi.nl (T. Kappé), farhad@cwi.nl (F. Arbab).
http://dx.doi.org/10.1016/j.scico.2017.03.006
0167-6423/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2017.03.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:ssj@ou.nl
mailto:kappe@cwi.nl
mailto:farhad@cwi.nl
http://dx.doi.org/10.1016/j.scico.2017.03.006

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.2 (1-37)

2 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
Fig. 1. Example connectors.

A premier example of a coordination language is Reo [1,2]. Reo facilitates compositional construction of connectors, which
embody concurrency protocols for coordinating the synchronization and communication among components. Metaphorically,
connectors constitute the “glue” that holds components together in component-based systems and mediates their commu-
nication. Fig. 1 shows a number of example connectors in their usual graphical syntax. Briefly, a connector consists of a
number of channels (edges), through which data flow, and a number of nodes (vertices), on which channel ends coincide.
The graphical appearance of a channel indicates its type; channels of different types have different data-flow behavior.
Fig. 1, for instance, includes standard synchronous channels (normal edges), asynchronous channels with a 1-capacity buffer
(rectangle-decorated edges), and two others; Fig. 2 informally describes the data-flow behavior of all channels in Fig. 1. In
Fig. 1, white circles represent boundary nodes (on which components can perform i/o operations), shaded circles represent
internal nodes (used only for internal data routing), and a black square inside a rectangle-decorated edge represents that a
1-capacity buffer is full.

In a long-term research project, we are developing Reo compilation technology—including a Reo-to-Java compiler—based
on one of Reo’s formal semantics [3], namely constraint automata [4]. Briefly, a constraint automaton models when during
execution of a connector which data may flow where (i.e., through which channel ends). For instance, Fig. 3 shows the
constraint automata for the channels in Fig. 2 under a data domain—the set of data that may be communicated through a
connector—consisting of just 0 and 1, for simplicity. Every transition models an execution step of a connector, characterized
by a two-element label: the first element models which channel ends participate in the execution step, while the second
element is a logical specification of which data may flow through those participating channel ends. We explain constraint
automata in much more detail in the Sections 3, 4, and 5.

On input of (an xml specification of) a connector, our Reo-to-Java compiler works as follows. First, the compiler looks
up for every node and for every channel in the input connector a “local” constraint automaton for that particular node or

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.3 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 3
Fig. 2. Graphical syntax and informal semantics of common channels.

Fig. 3. Constraint automata (without memory cells) for the channels in Fig. 2 under data domain {0,1}.

channel. Subsequently, the compiler composes these local constraint automata into a “global” constraint automaton for the
whole input connector. Finally, the compiler generates a piece of code for the resulting global constraint automaton, and
it automatically weaves this compiler-generated code with hand-written code for components, developed separately and
possibly independently of the input connector. The compiler-generated code simulates its corresponding global constraint
automaton by firing its transitions as often as possible. In doing so, this code effectively coordinates the system’s constituent
components at run-time.

The details [5] are substantially more complex, but they are not important for understanding the remainder of this paper.
What is important to realize, though, is that compiler-generated code has a size proportional to the size of its corresponding
global constraint automaton. For instance, if a global constraint automaton has a size exponential in the size of the input
connector, the resulting compiler-generated code consists of exponentially many lines of code. Experience suggests that
without compensatory measures (i.e., compiler optimization techniques [6,7]), in the worst case, such amounts of code
can cause the Java compiler to choke, even on moderately sized connectors (say, consisting of ten channels) [8,5]. For our
compilation scheme to be feasible, thus, global constraint automata for input connectors should remain as small as possible;
we come back to this point in Section 1.2.

1.2. Problem

As Fig. 3 may already have suggested, the underlying data domain significantly affects a constraint automaton’s size. For
instance, in the constraint automata in Figs. 3a and 3b, the number of transitions linearly depends on the size of the data
domain (i.e., for every particular datum that can flow through a synchronous channel, that channel’s constraint automaton
has a distinct transition). Even worse, in the constraint automaton in Fig. 3d, not only the number of transitions but also
the number of states linearly depends on the size of the data domain (i.e., for every particular datum that the buffer
of an asynchronous channel may contain, that channel’s constraint automaton has a distinct state). For our Reo-to-Java
compiler, whose generated code has a size proportional to the size of its corresponding global constraint automaton, large
data domains are thus problematic. And actually, the data domain that our Reo-to-Java compiler needs to support to be
practically useful—the set of all Java objects—is not just large but even infinite. This is a serious problem.

One solution is to enhance constraint automata by extending them with mechanisms to better cope with large and
infinite data domains. In fact, extending constraint automata with a mechanism to avoid the linear dependence between
data domain size and number of transitions (as in the constraint automata in Figs. 3a and 3b) is straightforward. In contrast,
however, extending constraint automata with a mechanism to avoid the linear dependence between data domain size and
number of states (as in the constraint automaton in Fig. 3d) has not been done before in a systematic way. What we require
of such a mechanism is, effectively, a means to explicitly model content of buffers instead of implicitly encoding this as
states. A few ad-hoc such extensions exist [9–11], but foundational notions as behavior (e.g., language), equivalence (e.g.,
language equality), congruence (e.g., bisimilarity), and composition are either still missing or underdeveloped. One practical

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.4 (1-37)

4 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
use case of these theoretical concepts is proving correctness of optimization techniques in our Reo-to-Java compiler. In
this use case, we need to show that the behavior of a constraint automaton before and after applying an optimization is
equivalent (i.e., behavior-preservation).

1.3. Contribution

With this paper, we make two main contributions. First, we present an extension of constraint automata with a mech-
anism to finitely and compactly deal with infinite data domains, including definitions of foundational notions as behavior,
equivalence, congruence, and composition. Our extension is based on memory cells; a rigorous and formal presentation of
constraint automata with memory cells (abbreviation: w/mc) as comprehensive as ours in this paper does not yet exist.
Second, we consider the issue of efficiently computing the global constraint automaton w/mc for a connector from the local
constraint automata w/mc for its nodes and channels: we identify a class of surprising cases where the standard approach
to such computation does not work well, propose an alternative algorithm (including a proof of its correctness in Hoare
logic), and empirically evaluate this algorithm in experiments. Briefly, what makes the “surprising cases” surprising is that
the time to compute the global constraint automaton in these cases is exponential in the size of the connector, whereas
the size of the global constraint automaton is only linear; in such cases, one might expect computation time to be linear,
too. The “standard approach” [5] to this computation consists of composing local constraint automata one-after-the-other,
thereby iteratively forming the global constraint automaton.

Although inspired by our work on Reo, from this point onward, this paper is primarily about constraint automata w/mc.
Nevertheless, for completeness, Section 2 starts with preliminaries on Reo, including a detailed description of the connectors
in Fig. 1. Readers already familiar with Reo, or readers interested mostly in constraint automata w/mc, can safely skip this
section. In Sections 3, 4, and 5, we define the structure of constraint automata w/mc, their behavior, and three operations for
their composition. Our first main contribution resides in these three sections. In Sections 6 and 7, we subsequently present
two approaches for computing the composition of constraint automata w/mc using the operations defined in Section 5. Our
second main contribution resides in these two sections. Section 8 concludes this paper. We discuss related work through-
out this paper wherever it is directly relevant to the topic, and mention additional related work in Section 7.3. Proofs of
theorems appear in Appendices A–C.

A preliminary version of this paper was previously presented at the 12th International Conference on Formal Aspects of
Component Software (Facs 2015) [12]. The new material in this paper consists of a comprehensive presentation of constraint
automata with memory cells.

2. Preliminaries on Reo

2.1. Overview

Reo is a graphical language for compositional construction of interaction protocols, manifested as connectors [1,2].
Connectors consist of channels and nodes, organized in a graph-like structure. Every channel consists of two ends and a
constraint that relates the timing and the contents of the data-flows at those ends. Channel ends have one of two types:
source ends accept data into their channels (i.e., a source end of a channel connects to that channel’s data source/producer),
while sink ends dispense data out of their channels (i.e., a sink end of a channel connects to that channel’s data sink/con-
sumer). Reo makes no other assumptions about channels and allows, for instance, channels with two source ends. Fig. 2
shows four common channels. Users of Reo may freely extend this set of common channels by defining their own channels
with custom semantics.

Channel ends coincide on nodes. Every node has at least one coincident channel end. A node with no coincident sink
channel end is called a source node. A node with no coincident source channel end is called a sink node. A node with both
source and sink coincident channel ends is called a mixed node (or internal node). The set of all source nodes and sink nodes
of a connector are collectively referred to as its boundary nodes. In Fig. 1, we distinguish connectors’ white boundary nodes
from their shaded mixed nodes.

Every sink channel end coincident on a node serves as a data source for that node. Analogously, every source channel
end coincident on a node serves as a data sink for that node. A source node of a connector connects to an output port
of a component, which will act as its data source. Similarly, a sink node of a connector connects to an input port of a
component, which will act as its data sink. Source nodes permit write operations (for components to send data), while
sink nodes permit take operations (for components to receive data); a connector uses its mixed nodes only for internally
routing data.

Contrasting channels, all nodes have the same, fixed data-flow behavior: repeatedly, a node nondeterministically selects
an available datum out of one of its data sources and replicates this datum into each of its data sinks. A node’s nonde-
terministic selection and its subsequent replication constitute one atomic execution step; nodes cannot store, generate, or
lose data. For a connector to make a global execution step—usually instigated by pending i/o-operations—its channels and
its nodes must reach consensus about their combined behavior, to guarantee mutual consistency of their local execution
steps (e.g., a node should not replicate a data item into a channel with an already full buffer). Subsequently, connector-wide
data-flow emerges.

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.5 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 5
2.2. Examples

Fig. 1 shows a number of example connectors, to further familiarize the reader with Reo. Also, we use these connectors
in our experiments in Sections 6 and 7.

First, we explain the behavior of the multiple-producers-single-consumer connectors in Fig. 1. With LateAsyncMergerk
(Fig. 1g), whenever producer i writes a data item on its accessible source node Ini , the connector stores this data item
in its only buffer (unless this buffer is already filled by another producer, in which case the write suspends until the
buffer becomes empty). The relieved producer can immediately continue, possibly before the consumer has completed a
take for its data item (i.e., communication between a producer and the consumer transpires asynchronously). Whenever
the consumer takes a data item from its accessible sink node Out, the connector empties the hitherto full buffer. The
consumer takes data items in the order in which producers write them (i.e., communication between a producer and
the consumer transpires undisrupted by other producers). Every round consists of a write by a producer and a take by
the consumer; in every round, two transitions fire.

With EarlyAsyncMergerk (Fig. 1d), whenever producer i writes a data item on its accessible source node Ini , the con-
nector stores this data item in its corresponding buffer. The relieved producer can immediately continue, possibly before the
consumer has completed a take for its data item (i.e., communication between a producer and the consumer transpires
asynchronously). Whenever the consumer takes a data item from its accessible sink node Out, the connector empties one
of the hitherto full buffers, selected nondeterministically. The consumer does not necessarily take data items in the order
in which producers write them (i.e., communication between a producer and the consumer may be interleaved with com-
munication between another producer and the consumer). Every round consists of a write by a producer and a take by
the consumer; in every round, two transitions fire.

Connectors in the EarlyAsyncBarrierMerger family work in largely the same way as those in the EarlyAsyncMerger family,
except that the former enforce a barrier on the producers: no producer can write its n-th data item until every other
producer has completed the write of its (n−1)-th data item. The consumer may still take data items in an order different
from the order in which the producers write them. Every round consists of a write by every producer and k takes by
the consumer, one for every producer; in every round, 2k transitions fire.

With Alternatork (Figs. 1a and 1b), whenever producer i attempts to write a data item on its accessible source node Ini ,
this operation suspends until both (1) the consumer attempts to take a data item from its accessible sink node Out, and (2)
every other producer j attempts to write a data item on its accessible source node In j (i.e., the producers can write only
synchronously). Once each of the producers and the consumer attempt to write/take, the consumer takes the data item
sent by the top producer (i.e., communication between the top producer and the consumer transpires synchronously), while
the connector stores the data items of the other producers in their corresponding buffers (i.e., communication between the
other producers and the consumer transpires asynchronously). Subsequently, the consumer takes the remaining buffered
data items in the spatial top-to-bottom order of the producers. Every round consists of a write by every producer and k
takes by the consumer, one for every producer; in every round, k transitions fire.

Next, we explain the behavior of the single-producer-multiple-consumers connectors in Fig. 1. With EarlyAsyncReplicatork
(Fig. 1f), whenever the producer writes a data item on its accessible source node In, the connector stores this data item in
its only buffer. The relieved producer can immediately continue, possibly before the consumers have completed takes for
its data item (i.e., communication between the producers and a consumer transpires asynchronously). Whenever consumer i
attempts to take a data item from its accessible sink node Outi , this operation suspends until both (1) the buffer has
become full, and (2) every other consumer attempts to take a data item (i.e., the consumers can take only synchronously).
Once the buffer has become full and each of the consumers attempts to take, every consumer takes a copy of the data
item in the buffer, after which the connector empties that buffer. Every round consists of a write by the producer and a
take by every consumer; in every round, two transitions fire.

With LateAsyncReplicatork (Fig. 1h), whenever the producer writes a data item on its accessible source node In, the
connector stores a copy of this data item in each of its buffers. The relieved producer can immediately continue, possibly
before the consumers have completed takes for copies of its data item (i.e., communication between the producers and
a consumer transpires asynchronously). Whenever consumer i takes a data item from its accessible sink node Outi , the
connector empties its corresponding hitherto full buffer. Every round consists of a write by the producer and a take by
every consumer; in every round, k+1 transitions fire.

With LateAsyncRouterk (Fig. 1i), whenever the producer writes a data item on its accessible source node In, the con-
nector stores this data item in exactly one of its buffers (instead of a copy in each of its buffers as LateAsyncReplicatork
does), selected nondeterministically. The relieved producer can immediately continue, possibly before the consumer of the
selected buffer has completed a take for its data item (i.e., communication between the producer and a consumer tran-
spires asynchronously). Whenever consumer i takes a data item from its accessible sink node Outi , the connector empties
its corresponding full buffer. The consumers do not necessarily take data items in the order in which the connector stored
those data items in its buffers. Every round consists of a write by the producer and a take by a consumer; in every
round, two transitions fire.

With EarlyAsyncOutSequencerk (Fig. 1e), whenever the producer writes a data item on its accessible source node In,
the connector stores this data item in its leftmost buffer. The relieved producer can immediately continue, possibly before
a consumer has completed a take for its data item (i.e., communication between a producer and the consumers transpires

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.6 (1-37)

6 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
asynchronously). The connector ensures that the consumers can take only in their spatial top-to-bottom order. Whenever
consumer i takes a data item from its accessible sink node Outi , the connector empties its corresponding full buffer. Every
round consists of k writes by the producer and a take by every consumer; in every round, 2k transitions fire.

Finally, Lockk represents a classical lock (Fig. 1j). To acquire the lock, process i writes an arbitrary data item (i.e., a
signal) on its accessible source node Acqi ; to release the lock, this process writes an arbitrary data item on its accessible
source node Reli . A write on Acqi suspends until every process j that previously performed a write on Acq j has per-
formed its complementary write on Rel j (i.e., the connector guarantees mutual exclusion). Every round consists of two
writes by one of the k processes; in every round, two transitions fire.

3. Constraint automata w/MC: structure

3.1. Overview

Although originally developed as a formal semantics of Reo [4], constraint automata constitute a general operational
formalism for modeling the behavior of component-based systems. From this perspective, every constraint automaton w/mc

models a component with a number of ports through which it interacts with its environment and a number of memory
cells to store data. Every port has a direction of data-flow: input ports allow a component to receive data, output ports allow
a component to send data, while internal ports allow a component to internally route data between its other ports. If a
component has internal ports, we call it a composite; otherwise, we call it a primitive. To formalize Reo’s semantics in terms
of constraint automata w/mc, we view a Reo channel with k internal buffers as a component with two ports (one for each of
its two ends) and k memory cells, while we view a Reo node with n coincident channel ends as a component with n ports.
Subsequently, we can compositionally compute the constraint automaton for a connector by computing the composition of
the constraint automata for its nodes and channels.

Instead of first presenting constraint automata as originally defined by Baier et al. [4], we incrementally present our
extended version and explain the differences along the way. As our extension is strict, every constraint automaton (without
memory cells) is a constraint automaton w/mc (but not vice versa).

Every constraint automaton w/mc consists of a finite set of states, a finite set of transitions, three sets of directed ports,
and a set of memory cells. States model the internal configurations of a component; transitions model its atomic execution
steps. We use the same composite/primitive terminology for constraint automata w/mc as for components. Different from
classical finite automata, every transition has a label that consists of two elements: (i) a set, typically denoted by P , con-
taining the names of the ports that have synchronous data-flow in that transition,1 called a synchronization constraint, and
(ii) a logical formula, typically denoted by φ, that specifies which particular data may flow through which of the ports in P ,
called a data constraint. We explain data constraints in detail in Section 3.2

Remark. The presence of memory cells in constraint automata w/mc allows one to explicitly model the content of buffers,
whereas the absence of memory cells in constraint automata (without memory cells) forces one to implicitly encode the
content of buffers as states (e.g., the constraint automaton in Fig. 3d). The seemingly simple addition of memory cells
permeates the entire formalism, however, as we see in the rest of this section and Sections 4 and 5.

3.2. Data constraints

We start by defining some elementary notions.

Definition 1 (data). D denotes the set of all data, ranged over by d.

Definition 2 (ports). P denotes the set of all ports, ranged over by p or e. We use p to range over P whenever we talk
about arbitrary ports, irrespective of what those ports model; we use e to range over P whenever we talk about ports that
specifically model channel ends (i.e., whenever we use constraint automata w/mc specifically to model Reo connectors).

Definition 3 (memory cells). M denotes the set of all memory cells, ranged over by m or b. We use m to range over M

whenever we talk about arbitrary memory cells, irrespective of what those memory cells model; we use b to range over M

whenever we talk about memory cells that specifically model channel buffers.

The exact content of D depends on the use case. If our goal is compilation to Java, for instance, D is infinite and contains
all Java objects. For verification, in contrast, we usually define D as a small, finite set of values (e.g., {0,1}). In this paper,
because we do not concern ourselves with (exhaustive) analysis procedures, the size of D does not matter: all definitions in
this paper work with both finite and infinite, countably or otherwise, D. Henceforth, we write elements of P in capitalized

1 With “synchronous data-flow”, we mean a set of data exchanges that happen atomically (in the same execution step).

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.7 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 7
lower case sans-serif (e.g., A, B, C, In1, Out2), while we write elements of D in lower case monospace (e.g., 1, 3.14, true,
"foo"). Although data flow through ports always in a certain direction, we do not yet distinguish input ports from output
ports; this comes later.

Out of ports and memory cells, we construct data variables. Every data variable models a container for data. For instance,
ports can hold data, so every port serves as a data variable. Similarly, memory cells can hold data, but the meaning of “to
hold” differs in this case. Ports hold data only during an execution step (i.e., transiently, in passing). In contrast, memory
cells hold data also before and after an execution step. Consequently, in the context of data variables, a memory cell before
an execution step and the same memory cell after that step have a different identity. After all, the content of the memory
cell may have changed in between. Therefore—inspired by notation from Petri nets [13]—for every memory cell m, both •m
and m• serve as data variables: •m refers to the datum in m before an execution step, while m• refers to the datum in m
after that execution step. We abbreviate sets {•m | m ∈ M} and {m• | m ∈ M} as •M and M• , where M ranges over sets of
memory cells.

Definition 4 (data variables). A data variable is an object x generated by the following grammar:

x ::= p | •m | m• (data variables)

where p and m range over ports and memory cells. X denotes the set of all data variables.

We subsequently assign meaning to data variables with data assignments.

Definition 5 (data assignments). A data assignment is a partial function from data variables to data. Assignm = X ⇀ D

denotes the set of all data assignments, ranged over by σ .

Essentially, a data assignment σ models an execution step involving the ports and memory cells in Dom(σ) and
the data in Img(σ). For instance, {p1 �→ 0, p2 �→ 0} can model an execution step where datum 0 flows from port
p1 to port p2, {p1 �→ 0,m• �→ 0} can model an execution step where 0 flows from p1 into memory cell m, while
{p2 �→ 0, •m �→ 0} can model an execution step where 0 flows out of m to p2. As shown in these examples, data assign-
ments do not capture the direction of data-flow: each data-flow is modeled by a data assignment, but every data assignment
may model multiple data-flows, depending on directions. As such, data assignments correspond to behavioral observations
by a “declarative observer”, oblivious to directions, who merely observes “what” happens (data passing through ports) and
not “how” this happens (data flowing from input ports to output ports). Later, in our definition of constraint automata w/mc,
we take a more “imperative” perspective by tagging ports as input or output (mainly because this distinction is useful when
composing constraint automata w/mc).

Out of data variables, we subsequently construct data constraints. Let M range over subsets of M.

Definition 6 (data constraints). A data constraint is an object φ generated by the following grammar:

a ::= ⊥ | � | x = x | Keep(M) (data atoms)
� ::= a | ¬a (data literals)
φ ::= � | ∃x.φ | φ1 ∨ φ2 | φ1 ∧ φ2 (data constraints)

DC denotes the set of all data constraints.

Henceforth, let
∧

� denote the conjunction of the data constraints in �, and let
∨

� similarly denote their disjunction.
(This notation is well-defined modulo associativity and commutativity of conjunction and disjunction.)

Every data constraint characterizes a set of data assignments—its se mantics—through an entailment relation. Let φ[d/x]
denote data constraint φ with datum d substituted for every occurrence of data variable x, and let Free(φ) denote its set of
free data variables.

Definition 7 (entailment). |= ⊆Assignm ×DC denotes the smallest relation induced by the rules in Fig. 4.

Contradiction, tautology, and conjunction have standard semantics [14]. Negation ¬a means that, despite all free variables
in a having a value, a does not hold true; the extra condition on the free variables in a ensures the monotonicity of
entailment. Data atom x1 = x2 means that x1 and x2 have the same value. Typical examples include p1 = p2 (possible
meaning: a datum flows from port p1 to port p2), p1 =m• (possible meaning: a datum flows from p1 into memory cell m),
and •m = p2 (possible meaning: a datum flows out of m to p2); the example data assignments below Definition 5 satisfy
the previous three example data atoms. Tautology � means that it does not matter which data flow through which ports.
Predicate Keep(M) means that the memory cells in M keep their value during an execution step. Henceforth, let ⇒ and ≡
denote the implication relation and the equivalence relation on data constraints, derived from |= in the usual way [14].

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.8 (1-37)

8 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
Fig. 4. Addendum to Definition 7.

Remark. Data constraints in constraint automata (without memory cells) are generated from the following syntax [4]:

φ ::= � | p = d | φ ∨ φ | ¬φ

Notably, in this grammar, equality is asymmetric and existential quantification is missing. Baier et al. subsequently en-
code p1 = p2 as

∨{p1 = d ∧ p2 = d | d ∈D} and, similarly, ∃p.φ as
∨{φ[d/p] | d ∈D}. These encodings work only for finite

data domains D, though, whereas a symmetric equality as in Definition 6 works also for infinite data domains. Moreover,
a symmetric equality enables structural reasoning about data constraints that the asymmetric equality in constraint au-
tomata (without memory cells) does not easily support [5]. Finally, p1 = p2 is easier to automatically check/solve by tools
or generated code than

∨{p1 = d ∧ p2 = d | d ∈D}.
It is straightforward to extend the grammar of data constraints in Definition 6 to a first-order calculus with functions

and relations [5]. Such an extension enables modeling a wider range of data-dependent behavior in a compact way. In this
paper, because we do not need such behavior, we intentionally keep our grammar simple.

3.3. Constraint automata w/mc

We proceed by formally defining a constraint automaton w/mc as a tuple consisting of a set of states Q , a triple of
three sets of ports (P all, P in, P out), a set of memory cells M , a transition relation −→, and a set of initial states Q 0. Set P all

contains all ports of the component modeled by α, while P in and P out contain only its input ports and its output ports.
Although P all contains the union of P in and P out, the converse does not necessarily hold true: as explained in Section 3.1,
beside input and output ports, P all may contain also internal ports. Alternatively, one can use an explicit set of internal
ports P int instead of P all. However, the definition of our composition operation, shortly, is simpler with P all (i.e., P all

1 ∪ P all
2)

than with P int (i.e., P int
1 ∪ P int

2 ∪ (P in
1 ∩ P out

2) ∪ (P out
1 ∩ P in

2)).

Definition 8 (states). Q denotes the set of all states, ranged over by q.

We stipulate that Q is closed under pairing (i.e., if q1 and q2 are states, then (q1, q2) is also a state).
Let 2X denote the power set of some set X .

Definition 9 (constraint automata w/mc). A constraint automaton w/mc is a tuple:

(Q , (P all, P in, P out), M,−→, Q 0)

where:

• Q ⊆Q (states)
• (P all, P in, P out) ∈ 2P×2P×2P such that

[
P in ∪ P out ⊆ P all and P in ∩ P out = ∅] (ports)

• M ⊆M (memory cells)
• −→ ⊆ Q ×2P all ×DC× Q such that: (transitions)[

q
P ,φ−−→ q′ implies Free(φ) ⊆ P ∪ •M ∪ M•] for all q,q′, P , φ

• Q 0 ⊆ Q (initial states)

Autom denotes the set of all constraint automata w/mc, ranged over by α.

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.9 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 9
Fig. 5. Constraint automata w/mc for the channels in Fig. 2 (Figs. 5a, 5b, 5c, and 5d), for a mixed node with two incoming and one outgoing channels
(Fig. 5e), for a mixed node with one incoming and two outgoing channels (Fig. 5f), and for two boundary nodes, each with either one incoming or one
outgoing channel (Fig. 5g). The latter is defined not only over the names of its coincident channel ends but also over its own name.

Fig. 6. Constraint automaton w/mc for Alternator3 in Fig. 1b.

The requirement Free(ϕ) ⊆ P ∪ •M ∪ M• means that the effect of a transition remains local to its own scope: a transi-
tion cannot affect, or be affected by, ports outside its synchronization constraint and memory cells. Alternatively, one can
parametrize DC by ports and memory cells so that −→ ⊆ Q × 2P all × DC(P ∪ •M ∪ M•) × Q . Baier et al. do this in the
original paper on constraint automata [4]. We sacrifice some notational perfection in this respect to avoid notational clutter.

Henceforth, to easily access the individual components of a constraint automaton w/mc α, let Stat(α) denote α’s state
space, Port(α) its set of all ports, Input(α) its set of input ports, Outp(α) its set of output ports, Memor(α) its set of memory
cells, Trans(α) its transition relation, and Init(α) its set of initial states.

Fig. 5 shows examples of constraint automata w/mc. In this and subsequent figures, we separate input ports, internal
ports, and output ports in synchronization constraints with semicolons (in that order). It is instructive to compare the con-
straint automaton w/mc in Fig. 5d to the constraint automaton (without memory cells) in Fig. 3d: by modeling the content
of the buffer of the asynchronous channel with a memory cell, b, we no longer need to encode every possible such con-
tent with a distinct state. In other words, whereas the constraint automaton (without memory cells) for this asynchronous
channel has as many states (and twice as many transitions) as the size of the data domain plus one, its constraint automa-
ton w/mc has only two states (and two transitions) regardless of the data domain. As another example, Fig. 6 shows the
constraint automaton w/mc for Alternator3 in Fig. 1b. Informally, in the first execution step of Alternator3, synchronously, a
datum flows from node In1 to node Out, a datum flows from node In2 into buffer b1, and a datum flows from node In3 into
buffer b2. Subsequently, in the second execution step, the datum previously stored in b1 flows out of that buffer to Out.
Finally, in the third execution step, the datum previously stored in b2 flows out of that buffer to Out. This sequence of three
steps repeats itself indefinitely. In Section 5, we demonstrate how to compositionally compute Fig. 6.

In all examples considered so far, and in all those considered in the rest of this paper, unless explicitly stated otherwise,
we stipulate that every state q has an idling transition (q, ∅, Keep(Memor(α)), q), without drawing those transitions in fig-
ures. An idling transition explicitly models an “execution step” of a component, where no data flow through any of its ports,
and where the content of its memory cells does not change. As such, its idling transitions make explicit that a component
executes at its own pace and may delay at will, independent of other components. If a constraint automaton w/mc α has
an idling transition in each of its states, we call it idling-enabled, denoted as IdlingEnabled(α). Strictly speaking, we do not
require idling-enabledness for our definitions to be well-defined (which is why we do not hard-code it in our definitions),2

but idling-enabledness is a natural assumption at least in the context of Reo (which is why we tacitly assume this property
to hold in our examples). Beside more fine-grained models (i.e., increased expressiveness), explicit modeling of idling also
simplifies our definition of composition, shortly.

Remark. Already in the original paper on constraint automata (without memory cells) [4], Baier et al. recognize the useful-
ness of a mechanism similar to memory cells and propose “parametrized constraint automata” as an alternative to “ordinary
constraint automata” (without memory cells). Essentially, a parametrized constraint automaton is an ordinary constraint au-
tomaton where every state is parametrized with a set of locations that may hold a datum in that state (cf. memory cells).
Parametrized constraint automata are, however, merely syntactic sugar for ordinary constraint automata—“a symbolic repre-

2 We do need to assume idling-enabledness to prove Theorems 12 and 17, though.

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.10 (1-37)

10 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
sentation of (non-parameterized) constraint automata” [4]—and can be used only with finite data domains: a parametrized
constraint automaton with an infinite data domain would expand to a constraint automaton with infinitely many states
or transitions, or to a constraint automaton with a transition labeled with a data constraint with an infinite disjunction.
Consequently, with large or infinite data domains, we run into exactly the same problems as those described in Section 1.2.
By extending constraint automata with memory cells as first-class objects, including their explicit inclusion in definitions of
behavior and operations in Sections 4 and 5, we avoid these problems.

Another difference is that idling-enabledness is hard-coded in the definitions of constraint automata (without memory
cells), whereas it is optional in our definitions of constraint automata w/mc. This makes our definitions simpler and more
expressive: constraint automata w/mc can, for instance, faithfully model lock-step composition of completely independent
components, which constraint automata (without memory cells) cannot model. Lock-step composition is, for instance, useful
in defining a notion of soft constraint automata [15,16], where synchronization constraints and data constraints are tagged
with a preference value. Lock-step composition makes it also possible to model the semantics of synchronous languages.
One notable candidate is xmas [17], a graphical hardware description language reminiscent of Reo’s graphical notation, but
with synchronous semantics.

Remark. By removing also data constraints, constraint automata (without memory cells) further reduce to port automata,
first studied by Koehler and Clarke [18]. (In turn, the semantic domain of the connector algebras developed by Bliudze
and Sifakis essentially consist of single-state port automata [19,20].) Extensions of constraint automata with memory cells
include constraint automata with state memory, used in work of Pourvatan et al. and formalized in a categorical setting by
Krause et al. [9–11]. However, Pourvatan et al. do not define foundational notions as behavior (e.g., language), equivalence
(e.g., language equality), and congruence (e.g., bisimilarity), which are crucial for rigorous reasoning about constraint au-
tomata w/mc, while Krause et al. define only homomorphy and isomorphy, which is natural in their categorical setting but
less so in an automata-theoretic context, where one reasonably may expect languages to play a role, too. Moreover, com-
position is only partly defined in both the work of Pourvatan et al. and Krause et al.: in terms of the operations presented
in Section 5, Pourvatan et al. and Krause et al. define multiplication but not subtraction and aggregation (i.e., join without
hide).

4. Constraint automata w/MC: behavior

4.1. Overview

In Section 3, we defined the structure of constraint automata w/mc; in this section, we define their behavior. As with
classical finite automata, we associate every constraint automaton w/mc with a language consisting of words consisting of
letters. A letter describes an execution step in terms of which data flow through which ports, disregarding memory cells
(which are inherently internal and not directly observable by an external observer).

Definition 10 (letters). A letter is a partial function from ports to data. Lett = (P ⇀ D) \ ∅ denotes the set of all letters,
ranged over by λ.

For instance, letter {p1 �→ 0, p2 �→ 0} can model an execution step where datum 0 flows from port p1 to port p2, let-
ter {p1 �→ 0} models an execution step where 0 flows through p1 (perhaps into a memory cell), while letter {p2 �→ 0}
models an execution step where 0 flows (perhaps out of a memory cell) through p2 (cf. the example data assignments
below Definition 5).

A word describes an infinite execution.

Definition 11 (words). A word is an infinite sequence of letters. Word = Lett
ω denotes the set of all words, ranged over

by w .

For instance, the following three words model executions where (i) the natural numbers synchronously flow from port p1
to port p2, (ii) the natural numbers asynchronously flow from p1 to p2, and (iii) the natural numbers flow from In1, In2,
and In3 to Out according to Alternator3 in Figs. 1b and 6.

(i) : {p1 �→ 0, p2 �→ 0}, {p1 �→ 1, p2 �→ 1}, {p1 �→ 2, p2 �→ 2}, {p1 �→ 3, p2 �→ 3}, {p1 �→ 4, p2 �→ 4}, . . .
(ii) : {p1 �→ 0}, {p2 �→ 0}, {p1 �→ 1}, {p2 �→ 1}, {p1 �→ 2}, {p2 �→ 2}, {p1 �→ 3}, {p2 �→ 3}, . . .
(iii) : {In1 �→ 0, In2 �→ 1, In3 �→ 2,Out �→ 0}, {Out �→ 1}, {Out �→ 2},

{In1 �→ 3, In2 �→ 4, In3 �→ 5,Out �→ 3}, {Out �→ 4}, {Out �→ 5},
{In1 �→ 6, In2 �→ 7, In3 �→ 8,Out �→ 6}, {Out �→ 7}, {Out �→ 8}, . . .

A language describes all possible execution alternatives.

Definition 12 (languages). A language is a set of words. Lang = 2Word denotes the set of all languages.

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.11 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 11
Fig. 7. Addendum to Definition 15.

Remark. Our letters, words, and languages go by different names in the literature. For instance, Izadi et al. call letters records,
words streams of records, and languages languages of records [21,22]. Alternatively, both Baier et al. [23–26], Klein [27], and
Klüppelholz et al. [28–30] call letters concurrent i/o operations and words i/o streams, while Arbab et al. call words scheduled
data streams [31]. Each of those names refers to the same kind of mathematical object, though. Tuples of timed data streams
comprise a different but related kind of mathematical object, originally introduced by Rutten and Arbab [32] and later
further developed by Arbab into abstract behavior types [33]. Every tuple of timed data streams contains one timed data
stream for every port of interest. Every timed data stream, in turn, consists of two infinite sequences: a time stream of
monotonically increasing real numbers and a data stream of data. A timed data stream for a port p subsequently models
that the i-th datum in the data stream flows through p at the time represented by the i-th real number in the time stream.
Consequently, tuples of timed data streams contain not only information about the order in which data-flow through ports
takes place but also more precise timing information.

4.2. Behavior

The memory cells in constraint automata w/mc may remind one of stacks in pushdown automata: both memory cells
and stacks register behaviorally relevant—yet externally unobservable—information. In defining the runs of a constraint
automaton w/mc, we therefore adopt terminology and notation from pushdown automata, as follows. An instantaneous
description (q, w, μ) of a constraint automaton w/mc consists of three elements: its current state q, the remaining word w
(“input tape”), and the current content of memory cells μ (“stack”), called a snapshot.

Definition 13 (snapshots). A snapshot is a partial function from memory cells to data. Snapsh = M ⇀ D denotes the set of
all memory snapshots, ranged over by μ.

Definition 14 (instantaneous descriptions). Descr =Q ×Word × Snapsh denotes the set of all instantaneous descriptions.

A constraint automaton w/mc can move from one instantaneous description to the next by firing a transition out of its
current state, thereby possibly changing its state, consuming the first letter of the remaining word, and changing the con-
tent of memory cells. More precisely, for a constraint automaton w/mc α with memory cells M to move from instantaneous
description (q, λw, μ) to instantaneous description (q′, w, μ′), several conditions must hold. First, α should have a transi-
tion (q, P , φ, q′) from state q to state q′ . Second, snapshots μ and μ′ should have exactly M as their domain (i.e., in making
a transition, α cannot affect, or be affected by, memory cells that it does not know about). Third, letter λ should satisfy the
synchronization constraint of the transition: λ should have exactly P as its domain. Finally, the data assignment composed
of λ, μ and μ′ should satisfy data constraint φ.

Importantly, unless φ explicitly states otherwise (e.g., by using the Keep predicate), the content of memory cells in M
can arbitrarily change during a move. In other words, we do not hard-code in the semantics of a constraint automaton w/mc

that a move should preserve the content of memory cells; if the content should be preserved, this must be explicitly stated
in the data constraint. This is not always necessary, though. For instance, if a memory cell is to be read from only once after
a write, the constraint automaton w/mc should preserve the content of this memory cell only between the write and the
first subsequent read; after the read, it does not matter what happens to the content of the memory cell (until the next
write), and we allow the automaton to change it however it likes. This approach is in line with the nondeterministic nature
of constraint automata w/mc and significantly simplifies the definition of moves (compared to the deterministic alternative
where memory cells always keep their content unless explicitly stated otherwise).

As an alternative to the previous conditions, α can also move from (q, w, μ) to (q′, w, μ′) if a transition from q to q′
with an empty synchronization constraint exists: such an internal transition does not directly contribute to α’s observable
behavior.

Definition 15 (move). � ⊆Descr ×Descr ×Autom denotes the smallest relation induced by the rules in Fig. 7.

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.12 (1-37)

12 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
Let α denote a constraint automaton w/mc, let q1 ∈ Init(α) denote an initial state (existentially quantified), let w1 denote
a word, and let μ1 : Memor(α) →D denote an initial snapshot (also existentially quantified). If α has an infinite run (i.e., in-
finite sequence of successive moves) starting from instantaneous description (q1, w1, μ1), word w1 belongs to the language
of α. In that case, α accepts w1. Because we use constraint automata w/mc only to represent languages—branching transi-
tion structures do not directly matter to us—we call the language of α its behavior. Henceforth, as a notational convention,
let all variables that are not bound in set-builder notation be existentially quantified.

Definition 16 (behavior). Behav :Autom → Lang denotes the function defined by the following equation:

Behav(α) = {w1 | q1 ∈ Init(α) and (q1, w1,μ1) �α (q2, w2,μ2) �α · · · }

In this definition, (q1, w1, μ1) �α (q2, w2, μ2) �α · · · means that there exist an infinite sequence of states q1, q2, . . ., an
infinite sequence of words w1, w2, . . ., and an infinite sequence of snapshots μ1, μ2, . . ., such that for all i > 0, we
have (qi, wi, μi) �α (qi+1, wi+1, μi+1).

Definition 16 is insensitive to divergence (i.e., infinitely many internal steps): Behav(α) contains only the words that
induce infinite sequences of steps such that always eventually an observable step happens. It is possible to make the defini-
tion sensitive to divergence by omitting (9) in Fig. 7 and by redefining Lett in Definition 10 as P ⇀D (thereby making ∅ a
valid letter). Because we are interested only in observable data-flows, however, we do not pursue divergence-sensitivity in
this paper.3

4.3. Equivalence and congruence

Two automata are behaviorally equivalent if they have the same behavior.

Definition 17 (behavioral equivalence). ≈ ⊆Autom ×Autom denotes the smallest relation induced by the following rule:

Behav(α1) = Behav(α2)

α1 ≈ α2
(10)

Theorem 1. ≈ is an equivalence

As usual, ≈ is an equivalence but not a congruence for the operations presented in Section 5 (witness: the constraint
automata versions of processes a(b + c) and (ab) + (ac) in process algebra, which are equivalent but incongruent for parallel
composition). To remedy this situation, again as usual, we define a congruence on constraint automata w/mc that implies ≈,
based on bisimulation, taking into account the branching structure of constraint automata w/mc. Only languages and ≈ truly
matter to us in the end, though; congruence, and the branching structure of constraint automata w/mc, serve just as a means
to simplify reasoning about languages and ≈. We define congruence in two steps. First, we define simulation and behavioral
preorder.

Definition 18 (simulation). � ⊆Autom ×Autom × 2Q×Q is the relation defined as follows:[[[
q1

P ,φ1−−−→ q′
1

and q1 R q2

]
implies φ1 ⇒

∨{
φ2

∣∣∣∣∣ q2
P ,φ2−−−→ q′

2
and q′

1 R q′
2

}]
for all q1,q′

1,q2, P , φ1

]

and R ⊆ Q 1 × Q 2 and Q 0
1 ⊆ {q1 | q1 R q2 and q2 ∈ Q 0

2 }
(Q 1, (P all, P in, P out), M,−→1, Q 0

1) �R (Q 2, (P all, P in, P out), M,−→2, Q 0
2)

(11)

In words, α2 simulates α1 under R—in which case α1 �R α2 holds true—whenever three conditions hold. The first condition
in Definition 18 states that if states q1 and q2 are related by R , then α2 in q2 must be able to “mimic” every transition
of α1 in q1. A transition labeled by P , φ1 is mimicked by a transition labeled by P , φ2 whenever (i) the target states
of the two transitions are related by R and (ii) φ1 implies φ2. Requirement (ii) means that any letter (i.e., data-flow)
that satisfies φ1 also satisfies φ2 (i.e., any data-flow induced by the simulated transition can, indeed, be simulated by the
simulating transition). Requirement (i) means that α2 in q2 can mimic α1 in q1 not only for the next transition, but also for
all future transitions to come. The second condition in Definition 18 states that R is a relation on the states of α1 and α2.
The third condition in Definition 18 states that every initial state of α1 must be simulated by an initial state of α2. If we
care only about the existence of a simulation relation between (the states of) α1 and α2 but not about its exact content, we
often simply write α1 � α2. Formally, we “overload” relation symbol � as follows.

3 Our behavioral congruence (Definition 20) is sensitive to divergence, though. Because we usually (including in this paper) reason about behavior modulo
behavioral congruence (or stronger) instead of behavioral equivalence, thus, our results are also applicable in a divergence-sensitive setting.

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.13 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 13
Definition 19 (behavioral preorder). � ⊆Autom ×Autom is the relation defined as follows:

α1 �R α2 for some R

α1 � α2
(12)

Theorem 2. � is a preorder

The definitions of bisimulation and behavioral congruence now straightforwardly follow.

Definition 20 (bisimulation). � ⊆Autom ×Autom × 2Q×Q is the relation defined as follows:

α1 �R α2 and α2 �R-1 α1

α1 �R α2
(13)

Note that we need to take the inverse of R for the simulation between α2 and α1 (second conjunct in the antecedent of the
rule). A variant where α2 is allowed to simulate α1 under R1, and α1 is allowed to simulate α2 under R2, with R2 �= R-1

1 ,
also exists (simulation equivalence), but is weaker than bisimulation.

Definition 21 (behavioral congruence). � ⊆Autom ×Autom is the relation defined as follows:

α1 �R α2 for some R

α1 � α2
(14)

Theorem 3. � is an equivalence

In Section 5, we show that � is not just an equivalence but actually a congruence for composition. Note also that α1 � α2
implies

[
α1 � α2 and α2 � α1

]
, but

[
α1 � α2 and α2 � α1

]
does not imply α1 � α2.

The following theorem states that behavioral congruence implies behavioral equivalence, as desired.

Theorem 4. � ⊆ ≈

5. Constraint automata w/MC: operations

5.1. Overview

As explained in Section 1.1, composition—the act of constructing complex constraint automata w/mc out of simpler
ones—plays a leading role in our Reo compiler. Having defined the structure and behavior of constraint automata w/mc in
Sections 3 and 4, in this section, we define a number of operations—multiplication, subtraction, and aggregation—on con-
straint automata w/mc that facilitate their compositional construction. We use multiplication to “join” constraint automata
w/mc on their shared ports, thereby constructing larger constraint automata w/mc; we use subtraction and aggregation to
“hide” information from constraint automata w/mc, notably internal ports and internal transitions. To compose constraint
automata w/mc, we first multiply them, subsequently subtract the internal ports from the resulting product automaton, and
finally aggregate internal transitions in the resulting difference automaton. We exemplify this process in this section for the
Alternator3 connector.

5.2. Multiplication

Multiplication consumes two constraint automata w/mc α1 and α2 as input and produces a constraint automaton w/mc

as output. We formally define multiplication on constraint automata w/mc as a partial function. This partiality represents
that not all constraint automata w/mc can compose into a new one: two constraint automata w/mc can compose only if
(i) each of their shared ports serves as an input port in one constraint automaton w/mc and as an output port in the other
and (ii) these two constraint automata w/mc have no shared memory cells. Thus, constraint automata w/mc in composition
cannot share anything except ports, which naturally corresponds to the intuition that memory cells are private.

Because constraint automata w/mc have a rather involved structure, the formal definition of multiplication may look
deceivingly complex. Therefore, we first present a more informal, operational description to explain the main concepts
involved. Let α1 = (Q 1, (P all

1 , P in
1 , P out

1), M1, −→1, Q 0
1), and let α2 = (Q 2, (P all

2 , P in
2 , P out

2), M2, −→2, Q 0
2). Assuming that

conditions (i) and (ii) hold true, we take the following steps to multiply α1 and α2.

• We take the Cartesian product of Q 1 and Q 2 as the new set of states. Similarly, we take the Cartesian product of Q 0
1

and Q 0 as the new set of initial states.
2

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.14 (1-37)

14 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
• We take the union of P all
1 and P all

2 as the new set of all ports. Subsequently, we put every port in P in
1 ∪ P in

2 in the
new set of input ports, except those that serve also as output port in the other automaton. Similarly, we put every port
in P out

1 ∪ P out
2 in the new set of output ports, except those that serve also as input port in the other automaton. Ports

with complementary directions (e.g., those that serve as input port in α1 and as output port in α2) become internal
ports in the product.

• We take the union of M1 and M2 as the new set of memory cells. (It is not necessary to take the disjoint union, because
we assume that M1 and M2 are already disjoint.)

• Finally, we must construct a new transition relation out of −→1 and −→2. The intuition here is as follows: αi (i ∈ {1,2})
can fire a transition in the product of α1 and α2 only whenever α j (j ∈ {1,2} \ {i}) can synchronously fire a transition
involving the same shared ports. In other words, α1 and α2 must always agree on data-flow through their shared ports.
One notable case of applying this rule is the case where α1 and α2 fire transitions that do not involve any shared
ports; in that case, these automata “vacuously” agree. A notable subcase within this notable case is the case where α j
fires an internal transition, which does not involve ports whatsoever (i.e., the synchronization constraint of an internal
transition is empty; firing such a transition can only change the content of memory cells). This happens, for instance,
whenever α j fires an idling transition.

Definition 22 (multiplication). ⊗ :Autom×Autom ⇀Autom denotes the partial function defined by the following equation:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q 1,⎛
⎝P all

1 ,

P in
1 ,

P out
1

⎞
⎠ ,

M1,

−→1,

Q 0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q 2,⎛
⎝P all

2 ,

P in
2 ,

P out
2

⎞
⎠ ,

M2,

−→2,

Q 0
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q 1 × Q 2,⎛
⎝ P all

1 ∪ P all
2 ,

(P in
1 \ P out

2) ∪ (P in
2 \ P out

1),

(P out
1 \ P in

2) ∪ (P out
2 \ P in

1)

⎞
⎠ ,

M1 ∪ M2,

−→⊗,

Q 0
1 × Q 0

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

if

⎡
⎣ P all

1 ∩ P all
2 =

(P in
1 ∩ P out

2) ∪ (P out
1 ∩ P in

2)

and M1 ∩ M2 = ∅

⎤
⎦

where −→⊗ denotes the smallest relation induced by the following rule:

q1
P1,φ1−−−→1 q′

1 and q2
P2,φ2−−−→2 q′

2 and P all
1 ∩ P2 = P all

2 ∩ P1

q
P1∪P2,φ1∧φ2−−−−−−−−→⊗ q′

(15)

Theorem 5. α1 ⊗ α2 � α2 ⊗ α1

Theorem 6. α1 ⊗ (α2 ⊗ α3) � (α1 ⊗ α2) ⊗ α3

We use left-associative notation for ⊗ and omit brackets whenever possible (e.g., we write α1 ⊗α2 ⊗α3 for (α1 ⊗α2) ⊗α3).
Similarly, we adopt left-associative notation for pairs of states (e.g., we write (q1, q2, q3) for ((q1, q2), q3)). Behaviorally,
bracketing is insignificant, because ⊗ is associative and commutative modulo behavioral congruence as stated in the pre-
vious theorems. However, bracketing does matter for our structural reasoning about constraint automata w/mc later in this
paper.

Figs. 8 and 9 show an example of multiplication. As shown in this example, to compute the global constraint automaton
w/mc for a connector, we compute the product of the local constraint automata w/mc for its nodes and channels using ⊗,
in an iterative manner. Generally, for an expression α1 ⊗ · · · ⊗ αn , we first compute α := α1 ⊗ α2, then α := α ⊗ α3,
then α := α ⊗α4, and so on. For instance, in Fig. 8b, let the numbers in the top-left corners indicate values for i in αi . Then,
the computation in Figs. 8 and 9 can be expressed as follows:

(α1 ⊗ α2 ⊗ α3) ⊗ α4 ⊗ (α5 ⊗ α6 ⊗ α7) ⊗ α8 ⊗ (α9 ⊗ α10 ⊗ α11) ⊗ α12 ⊗ α13

(Only for the sake of presentation, we do not compute the multiplication in the exact order of the indices, as expressed with
the bracketing; because multiplication is associative and commutative, however, this does not matter for the end result.)
Henceforth, we call every α ⊗ αi<n in this computation an intermediate composite; we call α ⊗ αn the final composite.

Essentially, multiplication joins the constituent components modeled by its operands on their shared ports. In particular,
every execution step involving a shared port by one component must synchronize with every execution step involving the
same shared port by the other component. This kind of (synchronous parallel) composition has two notable properties: mul-
tiparty synchronization and indirect synchronization. Multiparty synchronization means that through successive applications, ⊗
can synchronize transitions in one constraint automaton w/mc with transitions in multiple other constraint automata w/mc.
For instance, ⊗ synchronizes the transitions in the constraint automata w/mc in the middle “column” in Fig. 8b with tran-
sitions in constraint automata w/mc in both the left column and the right column (i.e., from Fig. 8b to Fig. 9a). Indirect
synchronization means that through successive applications, ⊗ can synchronize transitions in a constraint automaton w/mc

with transitions in another constraint automaton w/mc via intermediate products. For instance, ⊗ synchronizes the transi-
tions in the constraint automata w/mc on the top “row” in Fig. 8b with transitions in the constraint automata w/mc on the

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.15 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 15
Fig. 8. Multiplication example: Alternator3 (part 1/2).

bottom row in Fig. 8b via transitions in the constraint automata w/mc on the middle row in Fig. 8b (i.e., from Fig. 8b to
Fig. 9b via Fig. 9a). Indirect synchronization enables compositional construction of globally synchronous composites out of
locally synchronous primitives.

The following theorems state that � is a congruence for ⊗.

Theorem 7.
[
α1 � α2 and α3 � α4

]
implies α1 ⊗ α3 � α2 ⊗ α4

Remark. The main difference between the join operation on constraint automata (without memory cells) and the multi-
plication on our constraint automata w/mc is the number of rules to derive new transitions with [4]: the join operation
on constraint automata (without memory cells) has two additional rules that explicitly state that αi (i ∈ {0,1}) can fire a
transition without shared ports always independent of α j (j ∈ {0,1} \ {i}). Effectively, these rules hard-code an assumption
that components can always run at their own pace and may idle at will. As already explained in Section 3.3, this assumption
is natural in the context of Reo but may generally be too restrictive. In particular, in this paper, we follow Clarke et al. [34],
and require idling to be an explicit part of constraint automata w/mc in the form of idling transitions—optionally, if desired.

5.3. Subtraction

Subtraction consumes two constraint automata w/mc α1 and α2 as input and produces a constraint automaton w/mc as
output. As multiplication, we formally define subtraction on constraint automata w/mc as a partial function. Operationally,
to subtract α2 from α1, we remove all states, ports, memory cells, transitions, and initial states in α2 from α1. Addition-
ally, we also remove all ports in α2 from all synchronization constraints and data constraints in α1. Henceforth, let data
constraint ∃{x1, . . . , xl}.φ be a shorthand for ∃x1. · · · .∃xl.φ.

Definition 23 (subtraction). � :Autom ×Autom ⇀Autom denotes the partial function defined by the following equation:

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.16 (1-37)

16 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
Fig. 9. Multiplication example: Alternator3 (part 2/2).

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.17 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 17
Fig. 10. Subtraction example: Alternator3.⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q 1,⎛
⎝P all

1 ,

P in
1 ,

P out
1

⎞
⎠ ,

M1,

−→1,

Q 0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q 2,⎛
⎝P all

2 ,

P in
2 ,

P out
2

⎞
⎠ ,

M2,

−→2,

Q 0
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q 1 \ Q 2,⎛
⎝ P all

1 \ P all
2 ,

P in
1 \ P in

2 ,

P out
1 \ P out

2

⎞
⎠ ,

M1 \ M2,

−→�,

Q 0
1 \ Q 0

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

if
[

(P all
1 \ P in

1) ∩ P in
2 = ∅

and (P all
1 \ P out

1) ∩ P out
2 = ∅

]

where −→� denotes the smallest relation induced by the following rule:

q1
P1,φ1−−−→1 q′

1 and q1,q′
1 /∈ Q 2

q
P1\P all

2 ,∃P all
2 ∪•M2∪M•

2.φ1−−−−−−−−−−−−−−−−→� q′
(16)

Note that � is not a congruence for � in general. As a simple witness, let

α1 = ({q1}, ({A},∅,∅),∅, {(q1, {A},�,q1)}, {q1})
α2 = ({q2}, ({A},∅,∅),∅, {(q2, {A},�,q2)}, {q2})
α = ({q1}, (∅,∅,∅),∅,∅,∅)

be constraint automata w/mc, where q1 and q2 are concrete states from Q. Clearly, α1 � α2. Subtraction of α from α1
and α2, however, yields an empty constraint automaton w/mc and α2. Clearly, thus, α1 � α �� α2 � α. Although � is not a
congruence for � in general, it is a congruence in all currently practically relevant cases: typically, we do not use the full
power of subtraction but only its ability to remove behaviorally insignificant internal ports from synchronization constraints
and data constraints, to compress the minuend constraint automaton w/mc. Because this use of subtraction is so important,
we overload operation symbol � as follows.

Definition 24 (subtraction of ports). � :Autom × 2P →Autom denotes the function defined by the following equation:

α � P = α � (∅, (P , P ∩ Input(α), P ∩ Outp(α)),∅,∅,∅)

Note that subtraction of constraint automata w/mc is partial whereas subtraction of ports is total.
Fig. 10 shows an example of subtraction of (internal) ports. The constraint automaton w/mc on the left-hand side of the

equality symbol in Fig. 10 is the same as the final composite in Fig. 9d. The constraint automaton w/mc on the right-hand
side of the equality symbol in Fig. 10 and the constraint automaton w/mc on the second line in Fig. 10 are congruent,
because substitution of data constraints with equivalent data constraints—the only difference between these two constraint
automata w/mc—preserves congruence (as one would expect). Note also that the constraint automaton w/mc on the second

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.18 (1-37)

18 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
line in Fig. 10 and the constraint automaton w/mc in Fig. 6 already look quite alike; to make them equal, we need just
one more operation to also hide the internal transition in the former constraint automaton w/mc (from its third state to its
fourth state).

The following theorems state that � is a congruence for � and that subtraction of unshared ports distributes over
multiplication.

Theorem 8. α1 � α2 implies α1 � P � α2 � P

Theorem 9. P ∩ Port(α1) ∩ Port(α2) = ∅ implies (α1 ⊗ α2) � P � (α1 � P) ⊗ (α2 � P)

Remark. The main difference between the hide operation on constraint automata (without memory cells) and the subtrac-
tion of ports on our constraint automata w/mc is that the hide operation on constraint automata (without memory cells)
also aggregates internal transitions. Because aggregation is substantially more complex in constraint automata w/mc, we
present aggregation as a separate operation in Section 5.4.

5.4. Aggregation

The idea behind aggregation is simple: replace every chain of internal transitions followed by an observable transi-

tion, q1
∅,φ1−−−→ q2

∅,φ2−−−→ · · · ∅,φn−1−−−−→ qn
P ,φn−−−→ qn+1 where P �= ∅, with a transition from q1 to qn+1 labeled with synchronization

constraint P and some combination of data constraints φ1, . . . φn+1. This new transition, then, all by itself models a sequence
of internal execution steps of a component followed by an observable one. In the absence of memory cells, data constraints
can straightforwardly be combined by taking their conjunction, as data constraints without memory cells have no “sequen-
tial dependencies” among each other. Data constraints with memory cells do have such dependencies. Consider, for instance,

transitions ◦
∅,•b2=b•

1−−−−−→ ◦
{;;Out},•b1=Out−−−−−−−−−→ ◦ in the constraint automaton w/mc on the second line of Fig. 10. The sequential de-

pendency between the data constraints of these two transitions is that b•
1 in the first data constraint and •b1 in the second

data constraint actually refer to the same datum: in the first transition, a datum flows into buffer b1, after which in the

second transition, that same datum flows out of b1. Replacing these two transitions with transition ◦
{;;Out},•b2=b•

1∧•b1=Out−−−−−−−−−−−−−−→ ◦
is thus incorrect. Instead, before taking the conjunction, we should manipulate data constraints so as to preserve their
sequential dependencies. For instance, let † denote some fresh data variable (relative to the two data constraints under
consideration); a correct replacement transition in our example, then, is ◦

{;;Out},∃†.(•b2=†∧†=Out)−−−−−−−−−−−−−−−→ ◦, which can be further
simplified to ◦

{;;Out},•b2=Out−−−−−−−−−→ ◦.
To generalize the previous example, we need to introduce some technical machinery. First, we more generally define †

as an injection that consumes as input a memory cell and a natural number and produces as output a data variable. We
stipulate that this output data variable is fresh relative to the data constraints under consideration (it is possible to formalize
this freshness, but we skip doing so here for simplicity).

Definition 25 (memory cell substitutes). † :M ×N →X \ (•M∪M•) is an injective function.

Next, we introduce three functions that substitute †i(m) for •m and m• data constraints. Let φ� denote the application of
every substitution [x′/x] in � to φ (assuming that every x′ differs from every x to avoid ambiguity, which is covered by our
previous freshness assumption).

Definition 26 (substitution of memory cells). substNext, substPrev, subst : DC → DC denote the functions defined by the fol-
lowing equations:

substNexti(φ) = φ{[†i(m)/m•] | m ∈M}
substPrevi(φ) = φ{[†i−1(m)/•m] | m ∈M}
substi(φ) = substNexti(substPrevi(φ))

Now, aggregation consumes as input a constraint automaton w/mc and produces as output a constraint automaton w/mc.
We formally define aggregation on constraint automata w/mc as a total function.

Definition 27 (aggregation). ·� :Autom →Autom denotes the function defined by the following equation:

(Q , (P all, P in, P out), M,−→, Q 0)� = (Q , (P all, P in, P out), M,−→�, Q 0)

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.19 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 19
where −→� denotes the smallest relation defined by the following rules:

q1
∅,φ1−−−→ q2

∅,φ2−−−→ · · · ∅,φn−1−−−−→ qn
P ,φn−−−→ qn+1 and P �= ∅

q1
P ,∃Img(†).substNext1(φ1)∧subst2(φ2)∧···∧substn−1(φn−1)∧substPrevn(φn)−−−→� qn+1

q
P ,φ−−→ q′ and P �= ∅

q
P ,φ−−→� q′

(17)

In this definition, q1
∅,φ1−−−→ q2

∅,φ2−−−→ · · · ∅,φn−1−−−−→ qn
P ,φn−−−→ qn+1 means that there exists a natural number n ≥ 1 such that

(i) q1
∅,φ1−−−→ q2, (ii) for all 1 ≤ i < n, there exist a state qi and a data constraint φi such that qi

∅,φi−−→ qi+1, and (iii)

qn
P ,φn+1−−−−→ qn+1. The meaning of the ellipsis in the consequent of the rule is that the conjunction contains a con-

junct substi(φi) for every φi in the antecedent of the rule.
If we apply aggregation to the constraint automaton w/mc on the second line in Fig. 10, and if we simplify the resulting

constraint automaton w/mc modulo data constraint equivalence, we obtain exactly the same constraint automaton w/mc as
shown in Fig. 6. This concludes our compositional construction of the constraint automaton w/mc for Alternator3.

The following theorem states that � is a congruence for ·� .

Theorem 10. α1 � α2 implies α�
1 � α�

2

In addition to the previous congruence theorem, the following two theorems are essential to safely use aggregation in
practice. The first theorem states that aggregation does not change the behavior of a constraint automaton w/mc. The second
theorem states that aggregation is a homomorphism for multiplication.

Theorem 11. α ≈ α�

Theorem 12.
[
IdlingEnabled(α1) and IdlingEnabled(α2)

]
implies (α1 ⊗ α2)

� � α�
1 ⊗ α�

2

Note that in Theorem 11, we use behavioral equivalence instead of behavioral congruence. Behavioral congruence is too
strong in this case, because it is sensitive to internal transitions, while aggregation exactly removes such transitions. Behav-
ioral equivalence, in contrast, is insensitive to internal transitions.

Remark. As already remarked in Section 5.3, the hide operation on constraint automata (without memory cells) combines
both subtraction of ports and aggregation. However, aggregation in constraint automata (without memory cells) is signifi-
cantly simpler due to the absence of memory cells (i.e., data constraints in a chain of transitions in a constraint automaton
(without memory cells) can be straightforwardly combined using conjunction, without first applying substitutions).

5.5. Pruning

We call a state q reachable iff q is an initial state or a finite sequence of k transitions exists that form a path from
some initial state to q. When using the operations on constraint automata w/mc defined in this section, we can obtain a
constraint automaton w/mc that contains states that are unreachable, even if the constraint automata w/mc we started out
with do not have this property. This can occur for one of three reasons:

1. By multiplication: a state (q1, q2) ∈ Stat(α1 ⊗α2) is unreachable if there is no pair of equally long paths of length k from
Init(α1) to q1 in α1 and Init(α2) to q2 in α2 such that, for all 1 ≤ i ≤ k, the i-th transition on the path in α1 and the
i-th transition on the path in α2 can compose into a new transition (which requires their synchronization and the data
constraints to agree), i.e., such that they manifest as a path from Init(α1) × Init(α2) to (q1, q2) in α1 ⊗ α2.

2. By aggregation: when all incoming transitions to q ∈ Stat(α) are internal, q is unreachable in α� .
3. By transitivity: a state q may be unreachable because it is only reachable from states that have become unreachable as

a result of one of the two cases above; when this is the case, we attribute the unreachability of q to its root cause.

We formalize pruning as an operation on constraint automata w/mc that removes unreachable states. Let Reach denote
the reachability function that consumes as input a constraint automaton w/mc and produces as output its set of reachable
states.

Definition 28. Reach :Autom → 2Q is the function defined as follows4:

Reach(α) = Init(α) ∪
{

qk

∣∣∣∣ (q1, P1, φ1,q2), . . . , (qk−1, Pk−1, φk−1,qk) ∈ Trans(α)

and q1 ∈ Init(α)

}

4 Alternatively, one can define Reach inductively as follows:

Reach(α,q) =⋃{{q′} ∪ Reach(α,q′) | (q, P , φ,q′) ∈ Trans(α)}
Reach(α) =⋃{{q0} ∪ Reach(α,q0) | q0 ∈ Init(α)}.

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.20 (1-37)

20 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
In this definition, (q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Trans(α) means that for all 1 ≤ i < k, there exist states qi, qi+1,
a set of ports Pi and a data constraint φi such that (qi, Pi, φi, qi) ∈ Trans(α).

Next, let �·� denote the pruning function, which takes as input a constraint automaton w/mc and produces as output a
behaviorally congruent—proven below—constraint automaton w/mc for its reachable states (i.e., the pruning function prunes
a constraint automaton w/mc down to its reachable fragment).

Definition 29. �·� :Autom →Autom is the function defined as follows:

�α� = (Reach(α), (Port(α), Input(α),Outp(α)),Memor(α),−→�·�, Init(α))

where −→�·� denotes the smallest relation induced by the rule

(q, P , φ,q′) ∈ Trans(α) and q ∈ Reach(α)

q
P ,φ−−→�·� q′

(18)

The following theorem states that a constraint automaton w/mc and its pruned version are behaviorally congruent.

Theorem 13. α �{(q,q)|q∈Reach(α)} �α�

6. Composition approach I: automaton-by-automaton

6.1. Approach

Suppose that we have n constraint automata w/mc that we must compose into one (e.g., our Reo-to-Java compiler
needs to compute the global constraint automaton w/mc for a connector from the local constraint automata w/mc for that
connector’s nodes and channels). Arguably the most natural approach to do this—our Reo-to-Java compiler has been using
this approach from its inception—is the automaton-by-automaton approach: to compose constraint automata w/mc α1, . . . , αn

using this approach, we first compose α1 with α2, then we compose the resulting (intermediate) composite with α3, and
so on. Every composition step in this process consists of multiplication, subtraction of ports, aggregation, and pruning, as
follows:

�((· · · (�((�((α1 ⊗ α2) � P12)
��︸ ︷︷ ︸

composition 1

⊗ α3) � P (12)3)
��

︸ ︷︷ ︸
composition 2

· · ·) ⊗ αn) � P ((12)3)···n)��

︸ ︷︷ ︸
composition n−1

where P12 contains the internal ports of α1 ⊗ α2, P (12)3 the internal ports of ((α1 ⊗ α2) � P12) ⊗ α3, etc.
Though conceptually simple, there is a subtle—and easy to miss—point about use of aggregation in the automaton-by-

automaton approach to composition. Recall that Theorem 11 states that aggregation preserves behavioral equivalence but
not behavioral congruence. As we are using aggregation inside multiplication, Theorem 11 is thus insufficient: generally, we
cannot conclude α1 ⊗ α2 ≈ α�

1 ⊗ α2 from α1 ≈ α�
1. To resolve this issue, we define another congruence beside behavioral

congruence, called weak behavioral congruence, that implies behavioral equivalence (as behavioral congruence does), that is
a congruence for multiplication (as behavioral congruence is), and that equates α to α� (as behavioral equivalence does).

Definition 30 (weak behavioral congruence). �⊆Autom ×Autom is the smallest relation induced by the following rule:

α�
1 � α�

2

α1 � α2
(19)

Theorem 14. � is an equivalence

The following two theorems state that behavioral congruence implies weak behavioral congruence (to motivate the “weak”)
and that weak behavioral congruence implies behavioral equivalence (cf. Theorem 4).

Theorem 15. � ⊆�

Theorem 16. �⊆ ≈

The following two theorems state that � is a congruence for multiplication (cf. Theorem 7) and that aggregation preserves
weak behavioral congruence (cf. Theorem 11; the correctness criterion for aggregation).

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.21 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 21
Theorem 17.

⎡
⎣ α1 � α2 and α3 � α4

and IdlingEnabled(α1 ⊗ α3)

and IdlingEnabled(α2 ⊗ α4)

⎤
⎦ implies α1 ⊗ α3 � α2 ⊗ α4

Theorem 18. α � α�

Condition IdlingEnabled(α1 ⊗ α3) in Theorem 17 is equivalent to
[
IdlingEnabled(α1) and IdlingEnabled(α3)

]
; multiplication

preserves idling-enabledness. Note also that Theorem 17 works only for idling-enabled constraint automata w/mc. As a
simple witness of � not being a congruence for multiplication in general, let

α1 = ({q1}, ({A},∅,∅),∅, {(q1, {A},�,q1)}, {q1})
α2 = ({q2,q′

2}, ({A},∅,∅),∅, {(q2,∅,�,q′
2), (q′

2, {A},�,q′
2)}, {q2})

α3 = α4 = ({q3}, ({B},∅,∅),∅, {(q3, {B},�,q3)}, {q3})
be constraint automata w/mc, where q1, q2, q′

2 and q3 are concrete states from Q. Clearly, α1 � α2 and α3 � α4. However,
whereas α1 ⊗ α3 always starts with a {A,B}-transition, α2 ⊗ α4 always starts with a {B}-transition.

The final theorem in this section states that first computing all multiplications, then computing all subtractions of ports,
and finally computing one aggregation produces a behaviorally equivalent constraint automaton w/mc to the constraint
automaton w/mc computed in the automaton-by-automaton approach (where multiplying, subtracting, aggregating, and
pruning are interleaved).

Theorem 19. The following weak behavioral congruence holds.

�((· · · (�((α1 ⊗ α2) � P12)
�� · · ·) ⊗ αn) � P (12)···n)��� �((α1 ⊗ · · · ⊗ αn) � P12 � · · · � P (12)···n)��

In this theorem, we use the following shorthands:

• �((· · · (�((α1 ⊗α2) � P12)
�� · · ·) ⊗αn) � P (12)···n)�� is a shorthand for f (α1, . . . , αn), where α1, . . . , αn is a shorthand for

a sequence of n alphas, and where f :⋃{Autom
i →Autom | i > 0} is recursively defined by the following equation:

f (α1, . . . ,αn) =
{
α1 if n = 1
�((f (α1, . . . ,αn−1) ⊗ αn) � (Port(f (α1, . . . ,αn−1)) ∩ Port(αn)))

�� if n > 1

• α1 ⊗ · · · ⊗ αn is a shorthand for f⊗(α1, . . . , αn), where α1, . . . , αn is a shorthand for a sequence of n alphas, and
where f⊗ :⋃{Autom

i →Autom | i > 0} is recursively defined by the following equation:

f⊗(α1, . . . ,αn) =
{
α1 if n = 1
f (α1, . . . ,αn−1) ⊗ αn if n > 1

• α � P1 � · · ·� Pn is a shorthand for f�(α, P1, . . . , Pn), where P1, . . . , Pn is a shorthand for a sequence of n alphas, and
where f� :⋃{Autom × Pi →Autom | i > 0} is recursively defined by the following equation:

f�(α, P1, . . . , Pn) =
{
α � P1 if n = 1
f (α, P1, . . . , Pn−1) � Pn if n > 1

In the next section, we use the previous theorem to relate the automaton-by-automaton approach to the alternative ap-
proach presented.

6.2. Experimental results and analysis

To study the performance of the automaton-by-automaton approach to composition, we performed a number of experi-
ments. In every experiment, we let our Reo-to-Java compiler compute the global constraint automaton w/mc for a connector
from the local constraint automata w/mc for that connector’s nodes and channels (without subsequently actually generat-
ing code) and measured the composition time. To improve performance, our compiler first heuristically orders the local
constraint automata w/mc in such a way that, later in the computation, every intermediate composite is always further
composed with one of its direct neighbors (if it has any). Generally, this is more efficient than composing constraint au-
tomata w/mc randomly.

To perform our experiments, we selected a number of k-parametric families of connectors. Every member in a family of
connectors embodies the same concurrency protocol as the other members in that family; what differs among members—
and this is what parameter k represents—is the number of components that can be coordinated by the connector. As such, k
controls the size of a connector. Fig. 1 shows the k = 2 members of the families with which we experimented. One can
extend these k = 2 members to k > 2 members in a similar way as how we extended Fig. 1a to Fig. 1b (i.e., by duplicating
a subconnector and juxtaposing that duplicate with the original connector). We selected these particular families because

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.22 (1-37)

22 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
their members exhibit different behavior in terms of synchrony, exclusion, nondeterminism, direction, sequentiality, and
parallelism, thereby aiming for a balanced set of experiments.

Fig. 11 shows the composition times measured for the k-parametric families under study, for 2 ≤ k ≤ 64, averaged over
sixteen runs.5 For two families, EarlyAsyncReplicatork and LateAsyncMergerk , the compiler scales roughly linearly in k. This
is expected, because the number of transitions of the final composites computed for EarlyAsyncReplicatork and LateAsync-
Mergerk also grows linearly in k (while the number of states stays constant). For one family, Alternatork , the compiler scales
roughly quadratically in k, because its final composites, before aggregation, grow quadratically in k. For the remaining six
families, the compiler exhausted its available resources (five minutes of time or 2 gb of heap space) long before reach-
ing k = 64. This was caused by “rapid”—at least exponential—growth in k. For four of these families, we have a good
explanation for why this happened: the final composites computed for EarlyAsyncMergerk , EarlyAsyncBarrierMergerk , Late-
AsyncReplicatork , and LateAsyncRouterk grow exponentially in k, so that the amount of resources required to compute those
final composites logically also grows at least exponentially in k. For the other two families, in contrast, our measurements
seem more difficult to explain: the final composites computed for EarlyAsyncOutSequencerk and Lockk grow only linearly
in k, making an exponential growth in resource requirements rather surprising. The fact that the plots for these two families
look identical (the scales on the y-axes are different, but only the shapes/trends of the plots matter here; not the absolute
numbers) is a first indication that these families may be suffering from the same issue.

Analysis of the intermediate composites of EarlyAsyncOutSequencerk and Lockk revealed the following: even if final com-
posites grow linearly in k, their intermediate composites, as explicitly computed in the automaton-by-automaton approach,
may nevertheless grow exponentially in k. We can explain this easier for EarlyAsyncOutSequencerk , through the size of its
state space, but the same argument applies to Lockk . EarlyAsyncOutSequencerk consists of a subconnector that, in turn,
consists of a cycle of k buffered channels (of capacity 1). The first buffered channel initially contains a dummy datum � (its
actual value does not matter); the other buffered channels initially contain nothing. As in the literature [1,2], we call this
subconnector Sequencerk . Because no new data can flow into Sequencerk , only � indefinitely cycles through the buffers so
that only one buffer holds a datum at any time. Consequently, the constraint automaton w/mc for Sequencerk has only k
states, each of which represents the presence of � in exactly one of its k buffers.

However, if we compose the local constraint automata w/mc for Sequencerk ’s nodes and channels using the automaton-
by-automaton approach, we “close the cycle” only with the very last application of ⊗: until then, this soon-to-become-cycle
still appears an open-ended chain of buffered channels. Because new data can freely flow into such an open-ended chain,
this chain can have a datum in any buffer at any time. Consequently, the constraint automaton w/mc for the largest chain
has 2k states. Only when we compose this penultimate composite with the last local constraint automaton w/mc, the reach-
able state space collapses into k states, as we “find out” that the open-ended chain actually forms a cycle with exactly
one datum; indeed, this is an instance of unreachability-by-multiplication, as explained in Section 5.5. Because Sequencerk
constitutes EarlyAsyncOutSequencerk , also EarlyAsyncOutSequencerk suffers from this problem.

Fig. 12 shows our previous analysis in pictures. Notably, the intermediate composites in Fig. 12—the first three constraint
automata w/mc from the left—contain progressively more states with the following peculiar property: they are reachable
from an initial state in those intermediate composites, called intermediate-reachability, but neither those states themselves
nor any composite state that they constitute, are reachable in the final composite, called eventual-unreachability. Thus, by
using the automaton-by-automaton approach for computing a final composite, we may spend exponentially many resources
on generating a state space that can be pruned without altering its behavior; the computations to find out the structure of
this space are, thus, useless. This seems the heart of the problem with the automaton-by-automaton approach and explains
the previously surprising performance results for EarlyAsyncOutSequencerk and Lockk .

7. Composition approach II: state-by-state

7.1. Approach

To solve the problem with the automaton-by-automaton approach to composition discovered in Section 6.2, in this sec-
tion, we present a novel alternative: the state-by-state approach. In this alternative approach, instead of composing constraint
automata w/mc in sequence, we compose constraint automata w/mc in parallel. It works as follows. We start by computing
the initial state of the final composite (by straightforwardly forming the Cartesian product of the sets of initial states in
the constraint automata w/mc under composition). Subsequently, we expand each of those initial states by computing their
outgoing composite transitions. These composite transitions enter new composite states, which we subsequently recursively
expand. As such, we compute only the reachable states of the final composite, avoiding the unnecessary computation of
now-reachable-but-eventually-unreachable states. Of course, we do not expand composite states that have been expanded
before; this may remind one of memoization in dynamic programming.

To formalize the state-by-state approach and its central concepts, we start by formalizing the state-based decomposition
of a constraint automata w/mc into its per-state “subautomata” and the recomposition of that constraint automaton w/mc

5 Different scales on the y-axes of the plots in Fig. 11 convey an intended message: we mean to compare compile times of individual cases only within
each family, but not across families. Meaningful as they may be, cross-family comparisons of compile time figures convey information irrelevant for our
purpose in this paper.

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.23 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 23
Fig. 11. Composition times (y-axis) for nine k-parametric families, for 2 ≤ k ≤ 64 (x-axis). Time is measured in seconds, except for EarlyAsyncReplicatork

and LateAsyncMergerk , where time is measured in milliseconds.

from those decompositions. Let σ denote the selection function (cf. relational algebra) that consumes as input a transition
relation −→ and a state q and produces as output the subrelation of −→ consisting of precisely the transitions in −→ that
exit q.

Definition 31. σ : 2Q×2P×DC×Q ×Q → 2Q×2P×DC×Q is the function defined as follows:

σq(−→) = {(q, P̂ , φ̂, q̂′) | q
P̂ ,φ̂−−→ q̂′}

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.24 (1-37)

24 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
Fig. 12. Composition of the constraint automata w/mc for a cycle of three buffered channels (of capacity 1), closed by a synchronous channel, using the
automaton-by-automaton approach. State labels xyz indicate the emptiness/fullness of buffers, where x refers to the first buffer, y to the second buffer,
and z to the third buffer; we omitted transition labels to avoid clutter. One buffer is full in the initial state, because otherwise, there is no behavior once
the cycle is closed.

Next, let ·〈·〉 denote the (state-based) decomposition function that consumes as input a constraint automaton w/mc α and a
state q and produces as output a constraint automaton w/mc consisting of exactly the same set of states, sets of ports, set of
memory cells, and set of initial states, and with a transition relation consisting of precisely the transitions in α that exit q.

Definition 32. ·〈·〉 :Autom ×Q →Autom is the function defined as follows:

α〈q〉 = (Stat(α), (Port(α), Input(α),Outp(α)),Memor(α),σq(Trans(α)), Init(α))

We call q the significant state in α〈q〉.
To exemplify state-based decomposition—and shortly also recomposition—we revisit our Alternator3 example that we

used in Sections 3 and 5 to illustrate (operations on) constraint automata w/mc (see Figs. 6, 8, 9, 10; see also Section 2.2
for an informal description of the behavior of Alternator3). Fig. 13 shows the state-based decomposition of the constraint
automata w/mc indexed 12 and 13 in Fig. 8b (i.e., the constraint automata w/mc for the two asynchronous channels that
constitute Alternator3). Because the other constraint automata in Fig. 8b have only a single state, state-based decomposition
is basically an identity function for them. Fig. 13 shows also the state-based decomposition of the constraint automata w/mc

in Fig. 9d.
The following theorem states that decomposition distributes over composition: instead of first computing the composi-

tion of n local constraint automata w/mc and then decomposing the resulting global constraint automaton w/mc relative to
a global state, we can equally first decompose every local constraint automaton w/mc relative to its local state and then
compute the composition of the resulting per-state decompositions.

Theorem 20 ([35], Lemma 13, p. 31). (α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 = α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉

In this theorem, we use the same shorthands as those defined below Theorem 19. Additionally, let q1, . . . , qn denote a
sequence of n states.

We now revisit our previous Alternator3 example. The global constraint automaton w/mc for Alternator3 has four global
states, as shown in Fig. 9d. The decompositions of that automaton relative to those global states are shown in Figs. 13e–13h.
By the previous theorem, we can equally decompose the local constraint automata w/mc that constitute Alternator3 and
compose the resulting decompositions. Because all automata in Fig. 8b, except the ones indexed by 12 and 13, have only
one state, the composition of those single-state automata with the automata in Figs. 13a (top buffer empty) and 13c (bottom
buffer empty) equals the automaton in Fig. 13e (both buffers empty). Likewise, the composition of the single-state automata
and the automata in Figs. 13b (top buffer full) and 13d (top buffer full) equals the automaton in Fig. 13f (both buffers
full). Likewise, the composition of the single-state automata and the automata in Figs. 13a (top buffer empty) and 13d
(bottom buffer full) equals the automaton in Fig. 13g (top buffer empty, bottom buffer full). Likewise, the composition
of the single-state automata and the automata in Figs. 13b (top buffer full) and 13d (bottom buffer empty) equals the
automaton in Fig. 13h (top buffer full, bottom buffer empty).

The previous definitions (and theorem) cover the essentials of state-based decomposition; next, we discuss recompo-
sition. Let ! denote a recomposition function that consumes as input a set of constraint automata w/mc and produces as
output a constraint automaton w/mc by taking the union of the sets of states, sets of ports, sets of memory cells, sets of
transitions, and sets of initial states.

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.25 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 25
Fig. 13. State-based decomposition example: Alternator3 (cf. Figs. 8b and 9d).

Definition 33. !· : 2Autom →Autom is the function defined as follows:

! A =

⎛
⎜⎜⎜⎝

⋃{Stat(α) | α ∈ A},
(
⋃{Port(α) | α ∈ A},⋃{Input(α) | α ∈ A},⋃{Outp(α) | α ∈ A}),⋃{Memor(α) | α ∈ A},⋃{Trans(α) | α ∈ A},⋃{Init(α) | α ∈ A}

⎞
⎟⎟⎟⎠

It is straightforward to see that, in our Alternator3 example, the recomposition of the constraint automata w/mc in
Figs. 13e, 13f, 13g, and 13h is equal to the constraint automaton w/mc in Fig. 9d.

The following theorem states that a constraint automaton w/mc equals the recomposition of its state-based decomposi-
tions.

Theorem 21 ([35], Lemma 14, p. 32). α =!{α〈q〉 | q ∈ Stat(α)}

We are now in a position to formulate what it means for the state-by-state approach to be correct. Roughly, the following
theorem states that the composition of n local constraint automata w/mc equals the recomposition of that composition’s
state-based decompositions. More precisely, however, it states that this composition equals the recomposition of the compo-

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.26 (1-37)

26 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
Fig. 14. Algorithm for computing the composition of n constraint automata w/mc using the state-by-state approach. In this figure, we use the same
shorthands as those defined below Theorems 19 and 20.

Fig. 15. Algorithm for computing the composition of n constraint automata w/mc using the state-by-state approach, annotated with assertions for total
correctness. In this figure, we use the same shorthands as those defined below Theorems 19 and 20.

sition of state-based decompositions of the local constraint automata w/mc. This is a subtle but important point: it means that
to compute the composition of n local constraint automata w/mc, we need to compute only compositions of state-based
decompositions of those local constraint automata w/mc. We further clarify this point in the rest of this subsection.

Theorem 22 ([35], Theorem 4, p. 32).

α1 ⊗ · · · ⊗ αn =!{α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . ,qn) ∈ Stat(α1) × · · · × Stat(αn)}

In this theorem, we use the same shorthands as those defined below Theorem 19. Additionally, let q1, . . . , qn denote a
sequence of n states.

Together with Theorem 19, the previous theorem establishes that the automaton-by-automaton approach and the state-
by-state approach yield weakly behaviorally congruent constraint automata w/mc (and thus compute the same result).

Having formalized de/recomposition, we can now formulate an algorithm for computing the reachable fragment of com-
positions of n constraint automata w/mc. Fig. 14 shows an algorithm for computing the composition of n local constraint
automata w/mc using the state-by-state approach, including a precondition and a postcondition, formulated in terms of
de/recomposition and reachability. This algorithm works as described in the beginning of this section. A denotes the subset
of so-far computed state-based decompositions whose significant state the algorithm already has expanded (i.e., the algo-
rithm has processed all constraint automata w/mc in A). A′ , in contrast, denotes the full set of so-far computed state-based
decompositions (i.e., A′ contains A and is such that A′ \ A contains the constraint automata w/mc that the algorithm still
needs to process). After the algorithm terminates, A contains a number of state-based decompositions. The postcondition
subsequently asserts that the recomposition of the constraint automata w/mc in A equals the reachable fragment of the
grand composition. Applied to Alternator3, the algorithm constructs the global constraint automaton w/mc in Fig. 9d in the
same order as the order of Figs. 13e, 13f, 13g, and 13h.

Fig. 15 shows the algorithm in Fig. 14 annotated with assertions for total correctness; Fig. 16 shows the loop invariant.
This invariant consists of four conjuncts. The first conjunct states that A ∪ A′ contains the initial states in the final composite.
The second conjunct states that the A and A′ contain only state-based decompositions of the final composite. The third

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.27 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 27
Fig. 16. Addendum to Fig. 15. In this figure, we use the same shorthands as those defined below Theorems 19 and 20.

conjunct states that every constraint automaton w/mc in A ∪ A′ is a state-based decomposition of the final composite, with
respect to some reachable state in that final composite. The fourth conjunct states that if a constraint automaton w/mc in A
has a transition entering a (global) state q′ , A ∪ A′ contains a decomposition of the final composite with respect to q′ . As
soon as the loop terminates, the invariant and the negated loop condition imply that every constraint automaton w/mc in A
has a reachable significant state (“soundness”; consequence of the third conjunct) and that, in fact, A contains a constraint
automaton w/mc for every reachable state (“completeness”; consequence of the fourth conjunct).

Theorem 23 ([35], Theorem 6, p. 35). The algorithm in Fig. 14 is correct.

Note that the invariant refers only to decompositions of the global constraint automaton w/mc with respect to a global
state (e.g., (α1 ⊗ · · · ⊗ αn)〈q〉 for a global state q), whereas the algorithm refers only to decompositions of local constraint
automata w/mc with respect to local states (e.g., α1〈q1〉 ⊗· · ·⊗αn〈qn〉 for local states q1, . . . , qn). Recognizing this difference
is important, because it highlights the main advantage of the state-by-state approach: by using only decompositions of local
constraint automata w/mc, the algorithm never needs to compute any intermediate compounds, so avoiding a potential
source of exponential resource requirements.

7.2. Experimental results and analysis

We implemented the state-by-state approach to composition as an extension to our Reo-to-Java compiler. To evaluate the
performance of the state-by-state approach, we experimented with the same k-parametric families of connectors as those in
Fig. 11 under the same experimental conditions as those described in Section 6.2. Fig. 17 shows the composition times that
we measured for both the automaton-by-automaton approach (dotted blue lines, same as in Fig. 11) and the state-by-state
approach (solid yellow lines, new), for all connectors, and for several values of 2 ≤ k ≤ 64.

The four families whose compositions grow exponentially in k (i.e., EarlyAsyncBarrierMergerk , EarlyAsyncMergerk , Late-
AsyncReplicatork , and LateAsyncRouterk) logically provoke exponential growth in resource requirements not only in the
automaton-by-automaton approach (as already observed in Section 6.2) but also in the state-by-state approach.

For EarlyAsyncOutSequencerk and Lockk , as shown in Figs. 17d and 17i, the state-by-state approach has substantially
better performance than the automaton-by-automaton approach: whereas the automaton-by-automaton approach fails
for k > 14, the state-by-state approach succeeds for all values of k under study. This is explained by the fact that the
reachable state spaces of these families (which the state-by-state approach computes) grow linearly in k, whereas their com-
plete state spaces (which the automaton-by-automaton approach computes) grow exponentially in k until cycles are closed.
(Recall that these two families formed the main motivation for developing the state-by-state approach.)

For EarlyAsyncBarrierMergerk and EarlyAsyncMergerk , EarlyAsyncReplicatork and LateAsyncMergerk , the state-by-state ap-
proach seems substantially slower than the automaton-by-automaton approach. A mundane reason may be that we have not
optimized our implementation of the state-by-state approach as aggressively as our implementation of the automaton-by-
automaton approach (which has been under development for several years). Another reason may be that the state-by-state
approach is not as cache/memory-friendly as the automaton-by-automaton approach, because the state-by-state approach
continuously accesses all local constraint automata w/mc.

Finally, Alternatork clearly forms a problematic case for the state-by-state approach. For this family, the automaton-by-
automaton approach performs much better. An analysis of the result of the state-by-state composition of Alternatork tells us
that a large part of the state space becomes unreachable when we subtract internal ports, aggregate internal transitions and
prune unreachable states; refer to Fig. 18 for a sketch of the state space for k = 4. This unreachable-by-aggregation part of
the state space of the result is “useless” as far as the behavior of the composition is concerned.

An example of such a state for Alternatork is the state signifying that all buffers are full, except for the buffer closest
to the output port. When using the automaton-by-automaton approach, this state is “bypassed” early on (as a result of
aggregation) by having all of its incoming transitions rerouted to the state in which all buffers are full, except the buffer

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.28 (1-37)

28 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
Fig. 17. Composition times (y-axis) for nine k-parametric families, for 2 ≤ k ≤ 64 (x-axis), by applying the automaton-by-automaton approach (dotted blue
lines) and the state-by-state approach after subtraction/aggregation (solid yellow lines). Time is measured in seconds, except for EarlyAsyncReplicatork and
LateAsyncMergerk , where time is measured in milliseconds. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 18. Result of the state-by-state approach when applied to Alternator4. State labels xyz indicate the emptiness/fullness of buffers, where z refers to the
buffer closest to the output, y to the middle buffer and z to the buffer furthest from the output. Internal transitions are shown in gray, as are states that
are unreachable-by-aggregation or unreachable-by-transitivity.

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.29 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 29
furthest from the output port. The automaton-by-automaton approach can then safely prune the state from its intermediate
result. In contrast, because the state-by-state approach performs neither subtraction nor aggregation on the intermediate
results, it cannot prune these states as they appear.

While it is certainly possible to evaluate ! A in each iteration of the state-by-state approach and perform subtraction of
the appropriate ports as well as (some form of) aggregation, it would be counterproductive to prune states: a state q that is
unreachable in an intermediate result may yet become reachable in a later iteration, if we expand a state q′ that turns out
to have a transition reaching q. We therefore surmise that, like the automaton-by-automaton approach, the state-by-state
approach may also compute an unnecessary part of the state space, namely the part that is unreachable-by-aggregation.

Interestingly, early subtraction and aggregation by themselves do not have such a significant effect for all families of
connectors under study. This has to do with the particular structure of Alternatork , explained in detail elsewhere and beyond
the scope of this paper [36]. Here, the important point is that, even though the state-by-state approach dramatically im-
proves performance in some cases, it is not a silver bullet. One piece of future work, therefore, concerns the development of
heuristics about which composition approach we should apply when; i.e., when unreachability-by-multiplication dominates
unreachability-by-aggregation and vice versa.

Another piece of future work concerns the investigation of a variant of the state-by-state approach with early subtraction/
aggregation/pruning similar to the automaton-by-automaton approach. The main challenge with this is that to prune, we
require certain information that, in the state-by-state approach, seems to become available only after we have completed
computing the final composite; we need to develop clever techniques to obtain this kind of information earlier in the
process. For instance, it seems useful to have a sufficient condition for a state to be unreachable in the final result, thus
allowing us to prune it in an early iteration and skip its expansion.

7.3. Related work

The main inspiration for the state-by-state approach for composing constraint automata w/mc came from Proença’s
distributed Reo engine [37]. On input of a connector, this engine starts an actor for each of that connector’s nodes and
channels. Each of these actors maintains a local automaton (not quite a constraint automaton w/mc but the differences and
details do not matter here) for its corresponding node or channel. Together, the actors run a distributed consensus algo-
rithm to synchronize their behavior, by composing their local behaviors into one consistent global behavior. As part of this
consensus algorithm, actors exchange data structures with information about their current state and that state’s outgoing
transitions (called frontiers by Proença). By doing so, the actors effectively compute the composition of their automata at
run-time, and only for their reachable states. Our state-by-state approach for computing compositions effectively does a
similar computation at compile-time.

Some literature exists on algorithms for composing constraint automata (without memory cells). For instance, Ghassemi
et al. documented that the order in which a tool composes n constraint automata (without memory cells) matters [38]:
although any order yields the same final composite (because multiplication is associative and commutative by Theorems 5
and 6), different orders may yield different intermediate composites. Some orders may give rise to relatively large interme-
diate composites, with high resource requirements as a result, while other orders may keep intermediate composites small.
Choosing the right order, therefore, matters significantly in practice. In the same paper, Ghassemi et al. also briefly mention
the idea of computing the composition of two constraint automata (without memory cells) in a state-by-state approach,
but they do not generalize this to arbitrary compositions as we do in this paper. Pourvatan and Rouhy also worked on an
algorithm for composing constraint automata (without memory cells) [39]. Their approach consists of a special algebraic
representation of constraint automata (without memory cells), including a reformulation of multiplication to support this
representation. Pourvatan and Rouhy claim that their approach computes composition twice as fast as the approach by
Ghassemi et al., but they provide only limited empirical evidence.

State expansion based on reachability also surfaces in what Hopcroft et al. call “lazy evaluation” of subsets in the
powerset construction for determinizing a nondeterministic finite automaton in classical automata theory [40]. The fact
that we need to compose constraint automata w/mc during the expansion of global states—and explicitly do not want to
compute the composition beforehand—makes our situation more complex, though. Theorem 20 plays a key role in this
respect.

Our work is related also to on-the-fly model checking, proposed by Gerth et al. [41], where the state space under verifi-
cation is generated as needed during the actual decision procedure instead of in its entirety. If a counterexample is found
already early during state space generation/exploration, then, no effort gets wasted on precomputing the entire state space.
A technical difference is our use of Hoare logic to prove our technique’s correctness, which to our knowledge has not been
done in the context of on-the-fly model checking. More conceptually, the main difference between our approach and on-
the-fly model checking is that an on-the-fly model checker can stop generating the state space as soon as a counterexample
is found, whereas we always need to compute the entire reachable state space.

8. Conclusion

In Sections 3, 4, and 5, we presented an extension of constraint automata with a mechanism to finitely and compactly
deal with infinite data domains, based on memory cells, including definitions of foundational notions as languages, language

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.30 (1-37)

30 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
equivalence, bisimilarity, and operations for composition. Although ad-hoc presentations of constraint automata with mem-
ory cells have appeared in previous work [9–11], a rigorous and formal presentation as comprehensive as ours in this paper
does not yet exist.

In Sections 6 and 7, we subsequently studied—including practical experiments—two approaches for computing the
composition of n constraint automata with memory cells: the automaton-by-automaton approach and the state-by-state ap-
proach. The former approach is arguably more natural; the latter approach solves a problem of the former approach where
intermediate composites grow exponentially while their final composite grows only linearly. We proved the correctness of
the algorithm in the state-by-state approach using Hoare logic. Our experimental results show that the state-by-state ap-
proach substantially improves the problematic cases of the automaton-by-automaton approach. However, in other cases, the
automaton-by-automaton approach outperforms the state-by-state approach. In future work, we want to investigate heuris-
tics for deciding which of these two approaches we should use when. We also want to study whether we can combine
the strong points of the automaton-by-automaton approach (early subtraction/aggregation) with the strong points of the
state-by-state approach (only reachable states are computed). Another important piece of future work is investigating the
extent to which the state-by-state approach is compatible with other compiler optimization techniques that we developed
in previous work [6,5,7].

Our primary use case for the development of the state-by-state approach was compilation of connectors to executable
code. In our compiler, we use constraint automata to compositionally represent connector behavior, and our compiler
therefore needs to compose small constraint automata into larger ones as efficiently as possible. When we observed un-
precedented excessive compilation times for certain connectors, we realized that there was a fundamental issue with the
automaton-by-automaton approach to composition. The state-by-state approach resolves these issues, as shown in our exper-
iments in Sections 6 and 7. The implementations of the automaton-by-automaton approach and the state-by-state approach
that we used in these experiments are part of our compiler. The state-by-state approach has, however, wider applicability,
beyond compilation. Also in constraint automaton model checking [23–26], for instance, the reachable state space of a con-
straint automaton needs to be computed; the state-by-state approach helps here, too. Yet another application is connector
animation [42]. We have an animation framework for Reo (part of the Reo toolset; reo.project.cwi.nl) that allows users to
graphically animate data-flows through connectors; under the hood, also this animation framework needs to compute the
reachable state space.

Although inspired by Reo, constraint automata are a generic operational formalism suitable for compositional specifica-
tion of concurrent systems, either directly, or as a semantic model for other languages/models. For instance, the semantics
of the actor-based modeling language Rebeca has been defined in terms of constraint automata (without memory cells) [43,
44]. From our perspective, Reo is just one convenient syntax for writing multiplication/subtraction/aggregation expressions
of constraint automata. Different syntax alternatives for constraint automata may work equally well or yield perhaps even
more user-friendly languages. For instance, we can translate Uml sequence/activity diagrams and Bpmn to constraint au-
tomata [45–47]. Algebras of Bliudze and Sifakis [19,20], originally developed for Bip [48], also have a straightforward
interpretation in terms of constraint automata [49,50], thereby offering an interesting alternative possible syntax. Due to
their generality, constraint automata can thus serve as an intermediate format for compiling specifications in many different
languages and models of concurrency, by reusing the core of our compilers. This makes the work presented in this paper
applicable also beyond Reo.

Appendix A. Proofs for Section 4

Proof of Theorem 1. By applying Definition 17, conclude that ≈ is reflexive, symmetric, and transitive. �
Proof of Theorem 2. For some α, let R = {(q, q) | q ∈ Stat(α)}. Then, by applying Definition 18, conclude α �R α. Then, by
applying Definition 19, conclude α � α. Thus, conclude that � is reflexive.

For some α1, α2, α3, suppose
[
α1 � α2 and α2 � α3

]
. Then, by applying Definition 19, for some R1, R2, conclude

[
α1 �R1

α2 and α2 �R2 α3
]
. Let R = {(q1, q3) | q1 R1 q2 R2 q3}. Then, by applying Definition 18, conclude α1 �R α3. Then, by applying

Definition 19, conclude α1 � α3. Thus, conclude that � is transitive. �
Proof of Theorem 3. By applying Definitions 20 and 21, and by applying (the definitions of R in the proof of) Theorem 2, �
is reflexive and transitive. By applying Definitions 20 and 21, � is symmetric. �
Proof of Theorem 4. For some α1, α2, suppose

[
α1 � α2 and w ∈ Behav(α1)

]
. Then, by applying Definition 16, for some q1,

q′
1, . . . , w

′, w ′′, . . . , μ1, μ′
1, . . ., conclude:

q1 ∈ Init(α1) and (q1, w,μ1) �α1 (q′
1, w ′,μ′

1) �α1 · · ·
Then, because α1 � α2 and by applying Definitions 18, 20, and 21, for some q2 and R , conclude:

q2 ∈ Init(α2) and q1 R q2

For some q̂1, ̂q2, ŵ, ŵ ′, μ̂, μ̂′ , suppose
[
(q̂1, ŵ, μ̂) �α1 (q̂′

1, ŵ
′, μ̂′) and q̂1 R q̂2

]
. Then, by applying Definition 15, for

some P , φ1, λ, distinguish two cases.

http://reo.project.cwi.nl

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.31 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 31
• Case:

(q̂1, P , φ1, q̂′
1) ∈ Trans(α1)

and Dom(μ̂) = Dom(μ̂′) = Memor(α1) and Dom(λ) = P �= ∅
and λ ∪ {•m �→ μ(m) | m ∈ Memor(α1)} ∪ {m• �→ μ′(m) | m ∈ Memor(α1)} |= φ1
and ŵ ′ = λŵ

Then, because α1 � α2, and because q̂1 R q̂2, and by applying Definitions 18, 20, and 21, for some q̂′
2, φ2, conclude:

(q̂2, P , φ2, q̂′
2) ∈ Trans(α2) and q̂′

1 R q̂′
2

and Dom(μ̂) = Dom(μ̂′) = Memor(α2)

and λ ∪ {•m �→ μ(m) | m ∈ Memor(α2)} ∪ {m• �→ μ′(m) | m ∈ Memor(α2)} |= φ2

Then, because Dom(λ) = P �= ∅, by applying Definition 15, conclude (q̂2, ŵ, μ̂) �α2 (q̂′
2, ŵ

′, μ̂′).
• Case:

(q̂1,∅, φ1, q̂′
1) ∈ Trans(α1)

and Dom(μ̂) = Dom(μ̂′) = Memor(α1)

and {•m �→ μ(m) | m ∈ Memor(α1)} ∪ {m• �→ μ′(m) | m ∈ Memor(α1)} |= φ1
and ŵ ′ = ŵ

Then, because α1 � α2, and because q̂1 R q̂2, and by applying Definitions 18, 20, and 21, for some q̂′
2, φ2, conclude:

(q̂2,∅, φ2, q̂′
2) ∈ Trans(α2) and q̂′

1 R q̂′
2

and Dom(μ̂) = Dom(μ̂′) = Memor(α2)

and {•m �→ μ(m) | m ∈ Memor(α2)} ∪ {m• �→ μ′(m) | m ∈ Memor(α2)} |= φ2

Then, by applying Definition 15, conclude (q̂2, ŵ, μ̂) �α2 (q̂′
2, ŵ

′, μ̂′).

Thus, for some q̂2, conclude
[
(q̂2, ŵ, μ̂) �α2 (q̂′

2, ŵ
′, μ̂′) and q̂′

1 R q̂′
2

]
.

Thus, for all q̂1, ̂q2, ŵ, ŵ ′, μ̂, μ̂′ , conclude:[
(q̂1, ŵ, μ̂) �α1 (q̂′

1, ŵ ′, μ̂′) and q̂1 R q̂2
]

implies[[
(q̂2, ŵ, μ̂) �α2 (q̂′

2, ŵ ′, μ̂′) and q̂′
1 R q̂′

2

]
for some q̂′

2

]
Then, because (q1, w, μ1) �α1 (q′

1, w
′, μ′

1) �α1 · · · , and because q1 R q2, and by applying induction, conclude (q2, w, μ2) �α2

(q′
2, w

′, μ′
2) �α2 · · · . Then, because q2 ∈ Init(α2), and by applying Definition 16, conclude w ∈ Behav(α2). Then, con-

clude Behav(α1) ⊆ Behav(α2). Symmetrically, conclude:

Behav(α2) ⊆ Behav(α1)

Then, by applying Definition 17, conclude α1 ≈ α2.
Thus, conclude α1 � α2 implies α1 ≈ α2. Then, conclude � ⊆ ≈. �

Appendix B. Proofs for Section 5

Proof of Theorem 5. For some α1, α2, let R = {((q1, q2), (q2, q1)) | q1 ∈ Stat(α1) and q2 ∈ Stat(α2)}. Then, by applying Defi-
nition 20, conclude α1 ⊗ α2 �R α2 ⊗ α1. Then, by applying Definition 21, conclude α1 ⊗ α2 � α2 ⊗ α1. �
Proof of Theorem 6. For some α1, α2, α3, let:

R = {((q1, (q2,q2)), ((q1,q2),q3)) | q1 ∈ Stat(α1) and q2 ∈ Stat(α2) and q3 ∈ Stat(α3)}
Then, by applying Definition 20, conclude α1 ⊗ (α2 ⊗α3) �R (α1 ⊗α2) ⊗α3. Then, by applying Definition 21, conclude α1 ⊗
(α2 ⊗ α3) � (α1 ⊗ α2) ⊗ α3. �
Proof of Theorem 7. For some α1, α2, α3, α4, suppose

[
α1 � α2 and α3 � α4

]
. Then, by applying Definition 21, for

some R12, R34, conclude
[
α1 �R12 α2 and α3 �R34 α4

]
.

Let R = {(q1, q3) R (q2, q4) | q1 R12 q2 and q3 R34 q4}.
For some q13, q′

13, q24, P13, φ13, suppose
[
(q13, P13, φ13, q′

13) ∈ Trans(α1 ⊗ α3) and q13 R q24
]
. Then by applying Defini-

tion 22, for some q1, q′
1, q3, q′

3, P1, P3, φ1, φ3, conclude:

(q1, P1, φ1,q′
1) ∈ Trans(α1) and (q3, P3, φ3,q′

3) ∈ Trans(α3) and Port(α1) ∩ P3 = Port(α3) ∩ P1
and P = P ∪ P and φ = φ ∧ φ and q′ = (q′ ,q′)
13 1 3 13 1 3 13 1 3

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.32 (1-37)

32 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
Then, because α1 �R12 α3, and because α2 �R24 α4, and because q13 R q24, and by applying Definitions 18, 20, and 21, for
some q2, q4, conclude:

φ1 ⇒∨{φ2 | (q2, P1, φ2,q′
2) ∈ Trans(α2) and q′

1 R12 q′
2}

and φ2 ⇒∨{φ4 | (q4, P3, φ4,q′
4) ∈ Trans(α4) and q′

3 R34 q′
4}

and Port(α2) ∩ P3 = Port(α4) ∩ P1 and q24 = (q2,q4)

Then, conclude:

φ1 ∧ φ3 ⇒∨{
φ2 ∧ φ4

∣∣∣∣ (q2, P1, φ2,q′
2) ∈ Trans(α2) and (q4, P3, φ4,q′

4) ∈ Trans(α4)

and q′
1 R12 q′

2 and q′
3 R34 q′

4

}
Then, because q′

13 = (q′
1, q

′
3), and because q24 = (q2, q4), and because P13 = P1 ∪ P3, and because φ13 = φ1 ∧ φ3, and be-

cause Port(α2) ∩ P3 = Port(α4) ∩ P1, and by the definition of R , conclude:

φ13 ⇒
∨

{φ2 ∧ φ4 | (q24, P13, φ2 ∧ φ4, (q
′
2,q′

4)) ∈ Trans(α2 ⊗ α4) and q′
13 R (q′

2,q′
4)}

Then, by applying Definition 18, conclude α1 ⊗ α3 �R α2 ⊗ α4. Symmetrically, conclude α2 ⊗ α4 �R-1 α1 ⊗ α3. Then, by
applying Definitions 20 and 21, conclude α1 ⊗ α3 � α2 � α4. �
Proof of Theorem 8. For some α1, α2, suppose α1 � α2. Then, by applying Definition 21, for some R , conclude α1 �R α2.

For some q1, q′
1, q2, P�, φ� , suppose

[
(q1, P�, φ�, q′

1) ∈ Trans(α1 � P) and q1 R q2
]
. Then, by applying Definitions 23

and 24, conclude
[
(q1, P1, φ1, q′

1) ∈ Trans(α1) and P� = P1 \ P and φ� = ∃P .φ1
]
. Then, because α1 �R α2, and because q1 R

q2, and by applying Definitions 18, 20, and 21, conclude φ1 ⇒∨{φ2 | (q2, P1, φ2, q′
2) ∈ Trans(α2) and q′

1 R q′
2}. Then, con-

clude:

∃P .φ1 ⇒
∨

{∃P .φ2 | (q2, P1, φ2,q′
2) ∈ Trans(α2) and q′

1 R q′
2}

Then, because P� = P1 \ P , and because φ� = ∃P .φ1, and by applying Definitions 23 and 24, conclude φ� ⇒∨{∃P .φ2 | (q2, P�, φ2, q′
2) ∈ Trans(α2 � P) and q′

1 R q′
2}. Then, by applying Definition 18, conclude α1 � P �R α2 � P .

Then, symmetrically, conclude α2 � P �R-1 α1 � P . Then, by applying Definitions 20 and 21, conclude α1 � P � α2 � P . �
Proof of Theorem 9. For some P , α1, α2, suppose P ∩ Port(α1) ∩ Port(α2) = ∅.

Let R= {((q1, q2), (q1, q2)) | q1 ∈ Stat(α1) and q2 ∈ Stat(α2)}.
For some q12�, q′

12�, q1�2�, P12�, φ12� , suppose:

(q12�, P12�, φ12�,q′
12�) ∈ Trans((α1 ⊗ α2) � P) and q12� R q1�2�

Then, by applying Definitions 22, 23, and 24, for some q1, q′
1, q2, q′

2, P1, P2, φ1, φ2, conclude:

(q1, P1, φ1,q′
1) ∈ Trans(α1) and (q2, P2, φ2,q′

2) ∈ Trans(α2) and Port(α1) ∩ P2 = Port(α2) ∩ P1
and q12� = (q1,q2) and q′

12� = (q′
1,q′

2) and P12� = (P1 ∪ P2) \ P and φ12� = ∃P .(φ1 ∧ φ2)

Then, conclude Port(α1) ∩ (P2 \ P) = Port(α2) ∩ (P1 \ P). Then, because (q1, P1, φ1, q′
1) ∈ Trans(α1), and because

(q2, P2, φ2, q′
2) ∈ Trans(α2), and by Definitions 22, 23, and 24, conclude:

((q1,q2), (P1 \ P) ∪ (P2 \ P), (∃P .φ1) ∧ (∃P .φ2), (q
′
1,q′

2)) ∈ Trans((α1 � P) ⊗ (α2 � P))

Then, because q12� R q1�2� , and because q12� = (q1, q2), and because q′
12� = (q′

1, q
′
2), and by the definition of R , conclude:

(q1�2�, (P1 \ P) ∪ (P2 \ P), (∃P .φ1) ∧ (∃P .φ2), (q
′
1,q′

2)) ∈ Trans((α1 � P) ⊗ (α2 � P)) and q′
12� R (q′

1,q′
2)

Then, because (P1 ∪ P2) \ P = (P1 \ P) ∪ (P2 \ P), and because P12� = (P1 ∪ P2) \ P , conclude:

(q1�2�, P12�, (∃P .φ1) ∧ (∃P .φ2), (q
′
1,q′

2)) ∈ Trans((α1 � P) ⊗ (α2 � P)) and q′
12� R (q′

1,q′
2)

Then, because ∃P .(φ1 ∧ φ2) ⇒ (∃P .φ1) ∧ (∃P .φ2), and because φ12� = ∃P .(φ1 ∧ φ2), conclude:

φ12� ⇒
∨

{φ̂1�2� | (q̂1�2�, P12�, φ̂1�2�, (q̂′
1, q̂′

2)) ∈ Trans((α1 � P) ⊗ (α2 � P)) and q′
12� R (q̂′

1, q̂′
2)}

Then, by applying Definition 18, conclude (α1 ⊗ α2) � P �R (α1 � P) ⊗ (α2 � P).
The proof that (α1 � P) ⊗ (α2 � P) �R-1 (α1 ⊗ α2) � P is analogous, except for two steps: generally, Port(α1) ∩ (P2 \

P) = Port(α2) ∩ (P1 \ P) does not imply Port(α1) ∩ P2 = Port(α2) ∩ P1, and generally, (∃P .φ1) ∧ (∃P .φ2) �⇒ ∃P .(φ1 ∧ φ2).
Because P ∩ Port(α1) ∩ Port(α2) = ∅, and because P1 ⊆ Port(α1) because P2 ⊆ Port(α2), conclude:

Port(α1) ∩ P2 = (Port(α1) ∩ P2) \ P = Port(α1) ∩ (P2 \ P) = Port(α2) ∩ (P1 \ P) = (Port(α2) ∩ P1) \ P

= Port(α2) ∩ P1

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.33 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 33
Similarly, because P ∩ Port(α1) ∩ Port(α2) = ∅, and because P1 ⊆ Port(α1) because P2 ⊆ Port(α2), and because Free(φ1) ⊆
P1 ∪ •M1 ∪ M•

1, and because Free(φ2) ⊆ P2 ∪ •M2 ∪ M•
2, conclude:

(∃P .φ1) ∧ (∃P .φ2) �⇒ ∃P .(φ1 ∧ φ2)

Thus, conclude (α1 ⊗ α2) � P �R (α1 � P) ⊗ (α2 � P) and (α1 � P) ⊗ (α2 � P) �R-1 (α1 ⊗ α2) � P . Then, by applying
Definitions 20 and 21, conclude (α1 ⊗ α2) � P � (α1 � P) ⊗ (α2 � P). �
Proof of Theorem 10. For some α1, α2, suppose α1 � α2. Then, by applying Definition 21, for some R , conclude α1 �R α2.

For some q1, q′
1, q2, P1�, φ1� , suppose

[
(q1, P1�, φ1�, q′

1) ∈ Trans(α�) and q1 R q2
]
. Then, by applying Definition 27, for

some n, q1,1, . . . , q1,n+1, φ1,1, . . . , φ1,n , distinguish two cases:

• Case:

(q1,1,∅, φ1,1,q1,2), . . . , (q1,n−1,∅, φ1,n−1,q1,n), (q1,n, P1�,φ1,n,q1,n+1) ∈ Trans(α1)

and q1 = q1,1 and q′
1 = q1,n+1 and P1� �= ∅

and φ1� = ∃Img(†).(substNext1(φ1,1) ∧ subst2(φ1,2) ∧ · · · ∧ substn−1(φ1,n−1) ∧ substPrevn(φ1,n))

Then, because α1 � α2, and because q1 R q2, and by applying Definitions 18, 20, and 21, and by applying induction, for
some q2,1, . . . , q2,n+1, conclude:

φ1,1 ⇒∨{φ2,1 | (q2,1,∅, φ2,1,q2,2) ∈ Trans(α2) and q1,2 R q2,2}
and · · ·
and φ1,n−1 ⇒∨{φ2,n−1 | (q2,n−1,∅, φ2,n−1,q2,n) ∈ Trans(α2) and q1,n R q2,n}
and φ1,n ⇒∨{φ2,n | (q2,n, P1�,φ2,n,q2,n+1) ∈ Trans(α2) and q1,n+1 R q2,n+1}
and q2 = q2,1

Then, by applying Definition 26, conclude:

substNext1(φ1,1) ⇒∨{substNext1(φ2,1) | (q2,1,∅, φ2,1,q2,2) ∈ Trans(α2) and q1,2 R q2,2}
and subst2(φ1,2) ⇒∨{subst2(φ2,2) | (q2,2,∅, φ2,2,q2,3) ∈ Trans(α2) and q1,3 R q2,3}
and · · ·
and substn−1(φ1,n−1) ⇒∨{substn−1(φ2,n−1) | (q2,n−1,∅, φ2,n−1,q2,n) ∈ Trans(α2) and q1,n R q2,n}
and substPrevn(φ1,n) ⇒∨{substPrevn(φ2,n) | (q2,n,∅, φ2,n,q2,n+1) ∈ Trans(α2) and q1,n+1 R q2,n+1}

Then, conclude:

substNext1(φ1,1) ∧ subst2(φ1,2) ∧ · · · ∧ substn−1(φ1,n−1) ∧ substPrevn(φ1,n)

⇒∨
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

substNext1(φ2,1)

∧ subst2(φ2,2) ∧ · · · ∧ substn−1(φ2,n−1)

∧ substPrevn(φ2,n)

∣∣∣∣∣∣∣∣∣

(q2,1,∅, φ2,1,q2,2),

. . . ,

(q2,n−1,∅, φ2,n−1,q2,n),

(q2,n,∅, φ2,n,q2,n+1) ∈ Trans(α2)

and q1,n+1 R q2,n+1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Then, conclude:

∃Img(†).(substNext1(φ1,1) ∧ subst2(φ1,2) ∧ · · · ∧ substn−1(φ1,n−1) ∧ substPrevn(φ1,n))

⇒∨
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∃Img(†).(
substNext1(φ2,1)

∧ subst2(φ2,2) ∧ · · · ∧ substn−1(φ2,n−1)

∧ substPrevn(φ2,n)

)

∣∣∣∣∣∣∣∣∣∣∣

(q2,1,∅, φ2,1,q2,2),

. . . ,

(q2,n−1,∅, φ2,n−1,q2,n),

(q2,n, P1�,φ2,n,q2,n+1)

∈ Trans(α2)

and q1,n+1 R q2,n+1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Then, because P1� �= ∅, and by applying Definition 27, conclude:

∃Img(†).(substNext1(φ1,1) ∧ subst2(φ1,2) ∧ · · · ∧ substn−1(φ1,n−1) ∧ substPrevn(φ1,n))

⇒∨{φ2� | (q2,1, P1�,φ2�,q2,n+1) ∈ Trans(α�
2) and q1,n+1 R q2,n+1}

Then, because q1 = q1,1, and because q′
1 = q1,n+1, and because q2 = q2,1, and because φ1� = ∃Img(†).(substNext1(φ1,1) ∧

subst2(φ1,2) ∧ · · · ∧ substn−1(φ1,n−1) ∧ substPrevn(φ1,n)), conclude:

φ1� ⇒
∨

{φ2� | (q2, P1�,φ2�,q2,n+1) ∈ Trans(α�
2) and q′

1 R q2,n+1}.
Then, by applying Definition 18, conclude α� �R α� .
1 2

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.34 (1-37)

34 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
• Case
[
(q1, P1�, φ1�, q′

1) ∈ Trans(α1) and P1� �= ∅]. Then, because α1 � α2, and because q1 R q2, and by applying Defini-
tions 18, 20, and 21, and by applying induction, conclude:

φ1� ⇒
∨

{φ2 | (q2, P1�,φ2,q′
2) ∈ Trans(α2) and q′

1 R q′
2}

Then, because P1� �= ∅, and by applying Definition 27, conclude:

φ1� ⇒
∨

{φ2 | (q2, P1�,φ2,q′
2) ∈ Trans(α�

2) and q′
1 R q′

2}
Then, by applying Definition 18, conclude α�

1 �R α�
2.

Thus, conclude α�
1 �R α�

2. Symmetrically, conclude α�
2 �R-1 α�

1. Then, by applying Definitions 20 and 21, conclude
α�

1 � α�
2. �

Proof of Theorem 11. For some α, suppose w ∈ Behav(α). Then, by applying Definition 16, for some q, q′, . . . , w ′, w ′′, . . . ,
μ, μ′, . . ., conclude

[
q ∈ Init(α) and (q, w, μ) �α (q′, w ′, μ′) �α · · ·].

For some n, ̂q1, . . . , ̂qn+1, ̂λ, ŵ, μ̂1, . . . , μ̂n+1, suppose:

(q̂1, λ̂ŵ, μ̂1) �α · · · �α (q̂n, λ̂ŵ, μ̂n) �α (q̂n+1, ŵ, μ̂n+1)

Then, by applying Definition 15, for some φ̂1, . . . , φ̂n, P̂ , conclude:

(q̂1,∅, φ̂1, q̂2), . . . , (q̂n−1,∅, φ̂n−1, q̂n), (q̂n, P̂ , φ̂n, q̂n+1) ∈ Trans(α)

and Dom(μ̂1) = · · · = Dom(μ̂n−1) = Memor(α) and Dom(λ̂) = P̂ �= ∅
and {•m �→ μ̂1(m) | m ∈ Memor(α)} ∪ {m• �→ μ̂2(m) | m ∈ Memor(α)} |= φ̂1

and {•m �→ μ̂2(m) | m ∈ Memor(α)} ∪ {m• �→ μ̂3(m) | m ∈ Memor(α)} |= φ̂2
and · · ·
and {•m �→ μ̂n−1(m) | m ∈ Memor(α)} ∪ {m• �→ μ̂n(m) | m ∈ Memor(α)} |= φ̂n−1

and λ̂ ∪ {•m �→ μ̂n(m) | m ∈ Memor(α)} ∪ {m• �→ μ̂n+1(m) | m ∈ Memor(α)} |= φ̂n

Then, conclude:

{•m �→ μ̂1(m) | m ∈ Memor(α)} ∪ {†1(m) �→ μ̂2(m) | m ∈ Memor(α)} |= φ̂1{[†1(m)/m•] | m ∈M}
and {†1(m) �→ μ̂2(m) | m ∈ Memor(α)} ∪ {†2(m) �→ μ̂3(m) | m ∈ Memor(α)}

|= φ̂2{[†1(m)/•m] | m ∈M}{[†2(m)/m•] | m ∈M}
and · · ·
and {†n−2(m) �→ μ̂n−1(m) | m ∈ Memor(α)} ∪ {†n−1(m) �→ μ̂n(m) | m ∈ Memor(α)}

|= φ̂n−1{[†n−2(m)/•m] | m ∈M}{[†n−1(m)/m•] | m ∈M}
and λ̂ ∪ {†n−1(m) �→ μ̂n(m) | m ∈ Memor(α)} ∪ {m• �→ μ̂n+1(m) | m ∈ Memor(α)}

|= φ̂n{[†n−1/
•m] | m ∈M}

Then, by applying Definition 26, conclude:

{•m �→ μ̂1(m) | m ∈ Memor(α)} ∪ {†1(m) �→ μ̂2(m) | m ∈ Memor(α)} |= substNext1(φ̂1)

and {†1(m) �→ μ̂2(m) | m ∈ Memor(α)} ∪ {†2(m) �→ μ̂3(m) | m ∈ Memor(α)} |= subst2(φ̂2)

and · · ·
and {†n−2(m) �→ μ̂n−1(m) | m ∈ Memor(α)} ∪ {†n−1(m) �→ μ̂n(m) | m ∈ Memor(α)} |= substn−1(φ̂n−1)

and λ̂ ∪ {†n−1(m) �→ μ̂n(m) | m ∈ Memor(α)} ∪ {m• �→ μ̂n+1(m) | m ∈ Memor(α)} |= substPrevn(φ̂n)

Then, conclude:

λ̂ ∪ {•m �→ μ̂1(m) | m ∈ Memor(α)}
∪{†1(m) �→ μ̂2(m) | m ∈ Memor(α)}
∪ · · ·
∪{†n−1(m) �→ μ̂n(m) | m ∈ Memor(α)}
∪{m• �→ μ̂n+1(m) | m ∈ Memor(α)} |= substNext1(φ̂1)

∧subst2(φ̂2) ∧ · · · ∧ substn−1(φ̂n−1)

∧substPrevn(φ̂n)

Then, conclude:

λ̂ ∪ {•m �→ μ̂1(m) | m ∈ Memor(α)} ∪ {m• �→ μ̂n+1(m) | m ∈ Memor(α)}
|= ∃Img(†).(substNext (φ̂) ∧ subst (φ̂) ∧ · · · ∧ subst (φ̂) ∧ substPrev (φ̂))
1 1 2 2 n−1 n−1 n n

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.35 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 35
Because (q̂1, ∅, φ̂1, ̂q2), . . . , (q̂n−1, ∅, φ̂n−1, ̂qn), (q̂n, P̂ , φ̂n, ̂qn+1) ∈ Trans(α), and because P̂ �= ∅, and because Dom(μ̂1) =
Dom(μ̂n+1) = Memor(α), and by applying Definition 27, conclude:

(q̂1, P̂ ,∃Img(†).(substNext1(φ̂1) ∧ subst2(φ̂2) ∧ · · · ∧ substn−1(φ̂n−1) ∧ substPrevn(φ̂n)), q̂n+1) ∈ Trans(α�)

and Dom(μ̂1) = Dom(μ̂n+1) = Memor(α�) and Init(α) = Init(α�)

Then, because λ̂ ∪ {•m �→ μ̂1(m) | m ∈ Memor(α)} ∪ {m• �→ μ̂n+1(m) | m ∈ Memor(α)} |= ∃Img(†).(substNext1(φ̂1) ∧
subst2(φ̂2) ∧ · · · ∧ substn−1(φ̂n−1) ∧ substPrevn(φ̂n)), and by Definition 15, conclude (q̂1, ̂λŵ, μ̂1) �α� (q̂n+1, ŵ, μ̂n+1).

Thus, for all n, ̂q1, . . . , ̂qn+1, ̂λ, ŵ, μ̂1, . . . , μ̂n+1, conclude:

(q̂1, λ̂ŵ, μ̂1) �α · · · �α (q̂n, λ̂ŵ, μ̂n) �α (q̂n+1, ŵ, μ̂n+1)

implies (q̂1, λ̂ŵ, μ̂1) �α� (q̂n+1, ŵ, μ̂n+1)

Then, because (q, w, μ) �α · · · , and by applying induction, conclude (q, w, μ) �α� · · · . Then, because q ∈ Init(α), and be-
cause Init(α) = Init(α�), and by applying Definition 16, conclude w ∈ Behav(α�). Then, conclude Behav(α) ⊆ Behav(α�).
Analogously, conclude Behav(α�) ⊆ Behav(α). Then, by applying Definition 17, conclude α ≈ α� . �
Proof of Theorem 12. For some α1, α2, suppose

[
IdlingEnabled(α1) and IdlingEnabled(α2)

]
.

Let R = {((q1, q2), (q1, q2)) | q1 ∈ Stat(α1) and q2 ∈ Stat(α2)}.
For some q12�, q′

12�q1�2�, P12�, φ12� , suppose:[
(q12�, P12�,φ12�,q′

12�) ∈ Trans((α1 ⊗ α2)
�) and q12� R q1�2�

]
Then, by applying Definitions 22 and 27, for some n, q1,1, . . . , q1,n, q2,1, . . . , q2,n, φ1,1, . . . , φ1,n, φ2,1, . . . , φ2,n, P1, P2, con-
clude:

(q1,1,∅, φ1,1,q1,2), . . . , (q1,n−1,∅, φ1,n−1,q1,n), (q1,n, P1, φ1,n,q1,n+1) ∈ Trans(α1)

and (q2,1,∅, φ2,1,q2,2), . . . , (q2,n−1,∅, φ2,n−1,q2,n), (q1,n, P2, φ2,n,q2,n+1) ∈ Trans(α2)

and P1 �= ∅ and P2 �= ∅ and Port(α1) ∩ P2 = Port(α2) ∩ P1
and q12� = (q1,1,q2,1) and q′

12� = (q1,n,q2,n) and P12� = P1 ∪ P2
and φ12� = ∃Img(†).(

substNext1(φ1,1 ∧ φ2,1)

∧ subst2(φ1,2 ∧ φ2,2) ∧ · · · ∧ substn−1(φ1,n−1 ∧ φ2,n−1)

∧ substPrevn(φ1,n ∧ φ2,n)

)

Then, by applying Definitions 22 and 27, conclude:⎛
⎜⎜⎜⎝

(q1,1,q2,1),

P12�,

(∃Img(†).(substNext1(φ1,1) ∧ subst2(φ1,2) ∧ · · · ∧ substn−1(φ1,n−1) ∧ substPrevn(φ1,n)))

∧ (∃Img(†).(substNext1(φ2,1) ∧ subst2(φ2,2) ∧ · · · ∧ substn−1(φ2,n−1) ∧ substPrevn(φ2,n))),

(q1,n+1,q2,n+1)

⎞
⎟⎟⎟⎠

∈ Trans(α�
1 ⊗ α�

2)

Then, because φ12� = ∃Img(†).(substNext1(φ1,1 ∧φ2,1) ∧subst2(φ1,2 ∧φ2,2) ∧· · ·∧substn−1(φ1,n−1 ∧φ2,n−1) ∧substPrevn(φ1,n ∧
φ2,n)), conclude φ12� ⇒∨{φ1�2� | ((q1,1, q2,1), P12�, φ1�2�, (q1,n+1, q2,n+1)) ∈ Trans(α�

1 ⊗ α�
2)}. Then, because q12� R q1�2� ,

and because q12� = (q1,1, q2,1), and because q′
12� = (q1,n+1, q2,n+1), and by the definition of R , conclude φ12� ⇒∨{φ1�2� | (q1�2�, P12�, φ1�2�, (q1,n+1, q2,n+1)) ∈ Trans(α�

1 ⊗ α�
2) and q′

12� R (q1,n+1, q2,n+1)}. Then, by applying Definition 18,
conclude (α1 ⊗ α2)

� �R α�
1 ⊗ α�

2.
The proof that α�

1 ⊗ α�
2 �R-1 (α1 ⊗ α2)

� is analogous except for two complications. First, handle:

(q1,1,∅, φ1,1,q1,2), . . . , (q1,n−1,∅, φ1,n1−1,q1,n1), (q1,n1 , P1, φ1,n1 ,q1,n1+1) ∈ Trans(α1)

and (q2,1,∅, φ2,1,q2,2), . . . , (q2,n2−1,∅, φ2,n2−1,q2,n2), (q1,n2 , P2, φ2,n2 ,q2,n2+1) ∈ Trans(α2)

and n1 �= n2

by using IdlingEnabled(α1) or IdlingEnabled(α2) to prefix the shortest chain with idling transitions until both chains are of
equal length. Second, conclude:

(∃Img(†).(substNext1(φ1,1) ∧ subst2(φ1,2) ∧ · · · ∧ substn−1(φ1,n−1) ∧ substPrevn(φ1,n)))

∧ (∃Img(†).(substNext1(φ2,1) ∧ subst2(φ2,2) ∧ · · · ∧ substn−1(φ2,n−1) ∧ substPrevn(φ2,n)))

⇒ ∃Img(†).(
substNext1(φ1,1 ∧ φ2,1)

∧ subst2(φ1,2 ∧ φ2,2) ∧ · · · ∧ substn−1(φ1,n−1 ∧ φ2,n−1)

∧ substPrevn(φ1,n ∧ φ2,n)

)

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.36 (1-37)

36 S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–•••
by observing that Img(†) ∩ Free(substNext1(φ1,1) ∧ subst2(φ1,2) ∧ · · · ∧ substn−1(φ1,n−1) ∧ substPrevn(φ1,n)) and Img(†) ∩
Free(substNext1(φ2,1) ∧ subst2(φ2,2) ∧ · · · ∧ substn−1(φ2,n−1) ∧ substPrevn(φ2,n)) are disjoint (because Memor(α1) and
Memor(α2) are disjoint).

Thus, conclude (α1 ⊗ α2)
� �R α�

1 ⊗ α�
2 and α�

1 ⊗ α�
2 �R-1 (α1 ⊗ α2)

� . Then, by applying Definitions 20 and 21, con-
clude (α1 ⊗ α2)

� � α�
1 ⊗ α�

2. �
Proof of Theorem 13. For a detailed proof, we refer to our technical report [35, Theorem 5, p. 33]. �
Appendix C. Proofs for Section 6

Proof of Theorem 14. By applying Definition 30, and by applying Theorem 3, conclude that � is reflexive, symmetric, and
transitive. �
Proof of Theorem 15. For some α1, α2, suppose α1 � α2. Then, by applying Theorem 10, conclude α�

1 � α�
2. Then, by apply-

ing Definition 30, conclude α1 � α2. �
Proof of Theorem 16. For some α1, α2, suppose α1 � α2. Then, by applying Definition 30, conclude α�

1 � α�
2. Then, by

applying Theorem 4, conclude α�
1 ≈ α�

2. Then, by applying Theorem 11, conclude α1 ≈ α�
1 ≈ α�

2 ≈ α2. Then, by applying
Theorem 1, conclude α1 ≈ α2. �
Proof of Theorem 17. For some α1, α2, α3, α4, suppose:

α1 � α2 and α3 � α4 and IdlingEnabled(α1 ⊗ α3) and IdlingEnabled(α2 ⊗ α4)

Then, by applying Definition 30, conclude
[
α�

1 � α�
2 and α�

3 � α�
4

]
. Then, by applying Theorem 7, conclude α�

1 ⊗α�
3 � α�

2 ⊗α�
4.

Then, because IdlingEnabled(α1 ⊗ α3), and because IdlingEnabled(α2 ⊗ α4), and by applying Theorem 12, conclude (α1 ⊗
α3)

� � (α2 ⊗ α4)
� . Then, by applying Definition 30, conclude:

α1 ⊗ α3 � α2 ⊗ α4 �
Proof of Theorem 18. For some α, let R = {(q, q) | q ∈ Stat(α)}. Then, by applying Definition 27, conclude α� �R α�� . Then,
by applying Definition 21, conclude α� � α�� . Then, by applying Definition 30, conclude α � α� . �
Proof of Theorem 19. By its definition, P12 contains the internal ports of a1 ⊗ a2. Consequently, no port in P12 is shared
with any other constraint automaton. Then, by applying Definitions 23 and 24, conclude ((a1 ⊗ a2) � P12) ⊗ a3 = ((a1 ⊗
a2) � P12) ⊗ (a3 � P12). Then, by applying Theorem 9, conclude:

((a1 ⊗ a2) � P12) ⊗ a3 � ((a1 ⊗ a2) ⊗ a3) � P12

In this way, “move” all port subtractions outward to conclude:

((· · · (((α1 ⊗ α2) � P12) · · ·) ⊗ αn) � P (12)···n) � ((α1 ⊗ · · · ⊗ αn) � P12 � · · · � P (12)···n)
Then, by applying Theorem 15, conclude:

((· · · (((α1 ⊗ α2) � P12) · · ·) ⊗ αn) � P (12)···n) � ((α1 ⊗ · · · ⊗ αn) � P12 � · · · � P (12)···n)
Then, by applying Theorems 8, 17 and 18, conclude:

((· · · (((α1 ⊗ α2) � P12)
� · · ·) ⊗ αn) � P (12)···n)� � ((α1 ⊗ · · · ⊗ αn) � P12 � · · · � P (12)···n)�

Finally, by applying Theorems 8, 13, 15 and 17, conclude:

�((· · · (�((α1 ⊗ α2) � P12)
�� · · ·) ⊗ αn) � P (12)···n)��� �((α1 ⊗ · · · ⊗ αn) � P12 � · · · � P (12)···n)�� �

References

[1] F. Arbab, Reo: a channel-based coordination model for component composition, Math. Struct. Comput. Sci. 14 (3) (2004) 329–366.
[2] F. Arbab Puff, The Magic Protocol, in: G. Agha, O. Danvy, J. Meseguer (Eds.), Formal Modeling: Actors, Open Systems, Biological Systems (Talcott

Festschrift), in: LNCS, vol. 7000, Springer, 2011, pp. 169–206.
[3] S.-S. Jongmans, F. Arbab, Overview of thirty semantic formalisms for Reo, Sci. Ann. Comput. Sci. 22 (1) (2012) 201–251.
[4] C. Baier, M. Sirjani, F. Arbab, J. Rutten, Modeling component connectors in Reo by constraint automata, Sci. Comput. Program. 61 (2) (2006) 75–113.
[5] S.-S. Jongmans, Automata-Theoretic Protocol Programming, Ph.D. thesis, Leiden University, 2016.
[6] S.-S. Jongmans, F. Arbab, Global consensus through local synchronization: a formal basis for partially-distributed coordination, Sci. Comput. Program.

115–116 (2016) 199–224.
[7] S.-S. Jongmans, F. Santini, F. Arbab, Partially-distributed coordination with Reo and constraint automata, Serv. Oriented Comput. Appl. 9 (3) (2015)

311–339.

http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4172623034s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4172623131s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4172623131s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A413132s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib425341523036s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A6F6E313679s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A41313661s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A41313661s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A53413135s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A53413135s1

JID:SCICO AID:2080 /FLA [m3G; v1.213; Prn:6/04/2017; 9:41] P.37 (1-37)

S.-S.T.Q. Jongmans et al. / Science of Computer Programming ••• (••••) •••–••• 37
[8] S.-S. Jongmans, F. Arbab, Can high throughput atone for high latency in compiler-generated protocol code?, in: M. Dastani, M. Sirjani (Eds.), Funda-
mentals of Software Engineering (Proceedings of FSEN 2015), in: LNCS, vol. 9392, Springer, 2015, pp. 238–258.

[9] C. Krause, H. Giese, E. de Vink, Compositional and behavior-preserving reconfiguration of component connectors in Reo, J. Vis. Lang. Comput. 24 (3)
(2013) 153–168.

[10] B. Pourvatan, M. Sirjani, F. Arbab, M. Bonsangue, Decomposition of constraint automata, in: L. Barbosa, M. Lumpe (Eds.), Formal Aspects of Component
Software (Proceedings of FACS 2010), in: LNCS, vol. 6921, Springer, 2012, pp. 237–258.

[11] B. Pourvatan, M. Sirjani, H. Hojjat, F. Arbab, Symbolic execution of Reo circuits using constraint automata, Sci. Comput. Program. 77 (7–8) (2012)
848–869.

[12] S.-S. Jongmans, T. Kappé, F. Arbab, Composing constraint automata, state-by-state, in: C. Braga, P. Ölveczky (Eds.), Formal Aspects of Component
Software (Proceedings of FACS 2015), in: LNCS, vol. 9539, Springer, 2016, pp. 217–236.

[13] W. Reisig, Introductory examples and basic definitions, in: Petri Nets: An Introduction, in: EATCS Monographs on Theoretical Computer Science, vol. 4,
Springer, 1985, pp. 3–16, Ch. 1.

[14] W. Rautenberg, First-order logic, in: A Concise Introduction to Mathematical Logic, 3rd edition, in: Universitext, Springer, 2010, pp. 41–90, Ch. 2.
[15] F. Arbab, F. Santini, Preference and similarity-based behavioral discovery of services, in: Web Services and Formal Methods (Proceedings of WS-FM

2012), in: LNCS, vol. 7843, Springer, 2013, pp. 118–133.
[16] T. Kappé, F. Arbab, C. Talcott, A compositional framework for preference-aware agents, in: Proceedings of V2CPS 2016, 2016.
[17] S. Chatterjee, M. Kishinevsky, U. Ogras, xMAS: quick formal modeling of communication fabrics to enable verification, IEEE Des. Test Comput. 29 (3)

(2012) 80–88, http://dx.doi.org/10.1109/MDT.2012.2205998.
[18] C. Koehler, D. Clarke, Decomposing port automata, in: M. Schumacher, A. Wood (Eds.), Proceedings of SAC 2009, ACM, 2009, pp. 1369–1373.
[19] S. Bliudze, J. Sifakis, The algebra of connectors—structuring interaction in BIP, IEEE Trans. Comput. 57 (10) (2008) 1315–1330.
[20] S. Bliudze, J. Sifakis, Causal semantics for the algebra of connectors, Form. Methods Syst. Des. 36 (2) (2010) 167–194.
[21] M. Izadi, M. Bonsangue, D. Clarke, Büchi automata for modeling component connectors, Softw. Syst. Model. 10 (2) (2011) 183–200.
[22] M. Izadi, Model Checking of Component Connectors, Ph.D. thesis, Leiden University, 2011.
[23] C. Baier, T. Blechmann, J. Klein, S. Klüppelholz, W. Leister, Design and verification of systems with exogenous coordination using vereofy, in: T. Margaria,

B. Steffen (Eds.), Leveraging Applications of Formal Methods, Verification, and Validation (Proceedings of ISoLA 2010), in: LNCS, vol. 6416, Springer,
2010, pp. 97–111.

[24] C. Baier, T. Blechmann, J. Klein, S. Klüppelholz, A uniform framework for modeling and verifying components and connectors, in: J. Field, V. Vasconcelos
(Eds.), Coordination Models and Languages (Proceedings of COORDINATION 2009), in: LNCS, vol. 5521, Springer, 2009, pp. 247–267.

[25] C. Baier, T. Blechmann, J. Klein, S. Klüppelholz, Formal verification for components and connectors, in: F. de Boer, M. Bonsangue, E. Madelaine (Eds.),
Formal Methods for Components and Objects (Proceedings of FMCO 2008), in: LNCS, vol. 5751, Springer, 2009, pp. 82–101.

[26] C. Baier, J. Klein, S. Klüppelholz, Modeling and verification of components and connectors, in: M. Bernardo, V. Issarny (Eds.), Formal Methods for Eternal
Networked Software Systems (Proceedings of SFM 2011), in: LNCS, vol. 6659, Springer, 2011, pp. 114–147.

[27] J. Klein, Compositional Synthesis and Most General Controllers, Ph.D. thesis, Dresden University of Technology, 2012.
[28] S. Klüppelholz, C. Baier, Symbolic model checking for channel-based component connectors, Sci. Comput. Program. 74 (9) (2009) 688–701.
[29] S. Klüppelholz, C. Baier, Alternating-time stream logic for multi-agent systems, Sci. Comput. Program. 75 (6) (2010) 398–425.
[30] S. Klüppelholz, Verification of Branching-Time and Alternating-Time Properties for Exogenous Coordination Models, Ph.D. thesis, Dresden University of

Technology, 2012.
[31] F. Arbab, C. Baier, F. de Boer, J. Rutten, Models and temporal logical specifications for timed component connectors, Softw. Syst. Model. 6 (1) (2007)

59–82.
[32] F. Arbab, J. Rutten, A coinductive calculus of component connectors, in: M. Wirsing, D. Pattinson, R. Hennicker (Eds.), Recent Trends in Algebraic

Development Techniques (Proceedings of WADT 2002), in: LNCS, vol. 2755, Springer, 2003, pp. 34–55.
[33] F. Arbab, Abstract behavior types: a foundation model for components and their composition, Sci. Comput. Program. 55 (1–3) (2005) 3–52.
[34] D. Clarke, D. Costa, F. Arbab, Connector colouring I: synchronisation and context dependency, Sci. Comput. Program. 66 (3) (2007) 205–225.
[35] S.-S. Jongmans, T. Kappé, F. Arbab, Composing Constraint Automata, State-by-State (Technical Report), Tech. Rep. FM-1506, CWI, 2015,

http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23621.
[36] S.-S. Jongmans, F. Arbab, Toward sequentializing overparallelized protocol code, in: I. Lanese, A. Lluch-Lafuente, A. Sokolova, H.T. Vieira (Eds.), Proceed-

ings of ICE 2014, in: EPTCS, vol. 166, 2014, pp. 38–44, CoRR.
[37] J. Proença, Synchronous Coordination of Distributed Components, Ph.D. thesis, Universiteit Leiden, 2011.
[38] F. Ghassemi, S. Tasharofi, M. Sirjani, Automated mapping of Reo circuits to constraint automata, in: F. Arbab, M. Sirjani (Eds.), Foundations of Software

Engineering (Proceedings of FSEN 2005), in: ENTCS, vol. 159, Elsevier, 2006, pp. 99–115.
[39] B. Pourvatan, N. Rouhy, An alternative algorithm for constraint automata product, in: F. Arbab, M. Sirjani (Eds.), Fundamentals of Software Engineering

(Proceedings of FSEN 2007), in: LNCS, vol. 4767, Springer, 2007, pp. 412–422.
[40] J. Hopcroft, R. Motwani, J. Ullman, Finite automata, in: Introduction to Automata Theory, Languages, and Computation, 2nd edition, Addison-Wesley,

2001, pp. 37–81, Ch. 2.
[41] R. Gerth, D. Peled, M. Vardi, P. Wolper, Simple on-the-fly automatic verification of linear temporal logic, in: P. Dembinski, M. Sredniawa (Eds.), Protocol

Specification, Testing and Verification XV (Proceedings of PSTV 1995), in: IFIP AICT, Springer, 1995, pp. 3–18.
[42] D. Costa, Formal Models for Component Connectors, Ph.D. thesis, Vrije Universiteit Amsterdam, 2010.
[43] M. Sirjani, M.-M. Jaghoori, C. Baier, F. Arbab, Compositional semantics of an actor-based language using constraint automata, in: P. Ciancarini, H.

Wiklicky (Eds.), Coordination Models and Languages (Proceedings of COORDINATION 2006), in: LNCS, vol. 4038, Springer, 2006, pp. 281–297.
[44] M. Sirjani, A. Movaghar, A. Shali, F. de Boer, Modeling and verification of reactive systems using Rebeca, Fundam. Inform. 63 (4) (2004) 385–410.
[45] F. Arbab, N. Kokash, S. Meng, Towards using Reo for compliance-aware business process modeling, in: T. Margaria, B. Steffen (Eds.), Leveraging Appli-

cations of Formal Methods, Verification and Validation (Proceedings of ISoLA 2008), in: CCIS, vol. 17, Springer, 2008, pp. 108–123.
[46] B. Changizi, N. Kokash, F. Arbab, A unified toolset for business process model formalization, in: B. Buhnova, J. Happe (Eds.), Preproceedings of FESCA

2010, 2010, pp. 147–156.
[47] S. Meng, F. Arbab, C. Baier, Synthesis of Reo circuits from scenario-based interaction specifications, Sci. Comput. Program. 76 (8) (2011) 651–680.
[48] A. Basu, M. Bozga, J. Sifakis, Modeling heterogeneous real-time components in BIP, in: D.V. Hung, P. Pandya (Eds.), Proceedings of SEFM 2006, IEEE,

2006, pp. 3–12.
[49] K. Dokter, S.-S. Jongmans, F. Arbab, S. Bliudze, Relating BIP and Reo, in: S. Knight, I. Lanese, A. Lluch-Lafuente, H.T. Vieira (Eds.), ICE 2015, in: EPTCS,

vol. 189, 2015, pp. 3–20, CoRR.
[50] K. Dokter, S.-S. Jongmans, F. Arbab, S. Bliudze, Combine and conquer: relating BIP and Reo, J. Log. Algebraic Methods Program. 86 (2017) 134–156,

http://dx.doi.org/10.1016/j.jlamp.2016.09.008.

http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A41313561s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A41313561s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4B4764563133s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4B4764563133s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib505341423132s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib505341423132s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib505348413132s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib505348413132s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A4B413136s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A4B413136s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib5265693835s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib5265693835s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib526175313061s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib41533133s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib41533133s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4B41543136s1
http://dx.doi.org/10.1109/MDT.2012.2205998
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4B433039s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib42533038s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib42533130s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4942433131s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib497A613131s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib42424B2B3130s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib42424B2B3130s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib42424B2B3130s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib42424B4B303961s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib42424B4B303961s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib42424B4B303962s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib42424B4B303962s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib424B4B3131s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib424B4B3131s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4B6C653132s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4B423039s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4B423130s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4B6C753132s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4B6C753132s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib41426442523037s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib41426442523037s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib41523033s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib41523033s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4172623035s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4343413037s1
http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23621
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A413134s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4A413134s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib50726F3131s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4754533036s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4754533036s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib50523037s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib50523037s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib484D553031s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib484D553031s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib475056573935s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib475056573935s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib436F733130s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib534A42413036s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib534A42413036s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib534D5364423034s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib414B4D3038s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib414B4D3038s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib434B413130s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib434B413130s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4D41423131s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4242533036s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib4242533036s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib444A4142313561s1
http://refhub.elsevier.com/S0167-6423(17)30055-2/bib444A4142313561s1
http://dx.doi.org/10.1016/j.jlamp.2016.09.008

	Constraint automata with memory cells and their composition
	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Contribution

	2 Preliminaries on Reo
	2.1 Overview
	2.2 Examples

	3 Constraint automata w/mc: structure
	3.1 Overview
	3.2 Data constraints
	3.3 Constraint automata w/mc

	4 Constraint automata w/mc: behavior
	4.1 Overview
	4.2 Behavior
	4.3 Equivalence and congruence

	5 Constraint automata w/mc: operations
	5.1 Overview
	5.2 Multiplication
	5.3 Subtraction
	5.4 Aggregation
	5.5 Pruning

	6 Composition approach I: automaton-by-automaton
	6.1 Approach
	6.2 Experimental results and analysis

	7 Composition approach II: state-by-state
	7.1 Approach
	7.2 Experimental results and analysis
	7.3 Related work

	8 Conclusion
	Appendix A Proofs for Section 4
	Appendix B Proofs for Section 5
	Appendix C Proofs for Section 6
	References

