
Science of Computer Programming 160 (2018) 48–77

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Centralized coordination vs. partially-distributed coordination

with Reo and constraint automata

S.-S.T.Q. Jongmans a,b,c,∗, F. Arbab c

a Open University of the Netherlands, Valkenburgerweg 177, 6419 AT Heerlen, The Netherlands
b Radboud University Nijmegen, Toernooiveld 212, 6525 EC Nijmegen, The Netherlands
c Centrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 February 2016
Received in revised form 3 May 2017
Accepted 8 June 2017
Available online 20 June 2017

Keywords:
Concurrency
Coordination protocols
Compilation
Benchmarks

High-level concurrency notations and abstractions have several well-known software
engineering advantages when it comes to programming concurrency protocols among
threads. To also explore their complementary performance advantages, in ongoing work,
we are developing compilation technology for a high-level coordination language, Reo,
based on this language’s formal automaton semantics. By now, as shown in our previous
work, our tools are capable of generating code that can compete with carefully hand-
crafted code, at least for some protocols. An important prerequisite to further advance
this promising technology, now, is to gain a better understanding of how the significantly
different compilation approaches that we developed so far, which vary in the amount of
parallelism in their generated code, compare against each other. For instance, to better
and more reliably tune our compilers, we must learn under which circumstances parallel
protocol code, with high throughput but also high latency, outperforms sequential protocol
code, with low latency but also low throughput.
In this paper, we report on an extensive performance comparison between these ap-
proaches for a substantial number of protocols, expressed in Reo. Because we have always
formulated our compilation technology in terms of a general kind of communicating
automaton (i.e., constraint automata), our findings apply not only to Reo but, in principle,
to any language whose semantics can be defined in terms of such automata.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Context

In the early 2000s, hardware manufacturers shifted their attention from manufacturing faster—but purely sequential—
unicore processors to manufacturing slower—but increasingly parallel—multicore processors. In the wake of this shift,
concurrent programming became essential for writing scalable programs on general hardware. Conceptually, concurrent
programs consist of (sequential) processes, which implement modules of computation, and (concurrency) protocols, which
implement the rules of interaction that processes must abide by. As programmers have been writing sequential code for

* Corresponding author at: Centrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, The Netherlands.
E-mail addresses: jongmans@cwi.nl (S.-S.T.Q. Jongmans), farhad@cwi.nl (F. Arbab).
http://dx.doi.org/10.1016/j.scico.2017.06.004
0167-6423/© 2017 Elsevier B.V. All rights reserved.

https://core.ac.uk/display/301636095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.scico.2017.06.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:jongmans@cwi.nl
mailto:farhad@cwi.nl
http://dx.doi.org/10.1016/j.scico.2017.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2017.06.004&domain=pdf

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 49
Fig. 1. Example connectors (ordered alphabetically).

decades, programming of processes poses no new fundamental challenges. What is new—and notoriously difficult—is pro-
gramming of protocols.

In ongoing work, we study an approach to concurrent programming based on syntactic separation of processes from
protocols. In this approach, programmers write their processes in a general-purpose language (gpl), while they write their
protocols in a complementary domain-specific language (dsl). Paraphrasing the definition of dsls by Van Deursen et al. [1], a
dsl for protocols “is a programming language that offers, through appropriate notations and abstractions, expressive power
focused on, and [..] restricted to, [programming protocols].”

Low-level synchronization constructs (e.g., locks or semaphores) make the programming of protocols prone to errors and
misbehavior. On the other hand, there are coordination models and languages [2] with high-level abstractions that let pro-
grammers specify the intended protocols of interaction and provide a correct implementation of said protocols. In developing
dsls for protocols, we draw inspiration from the latter. Significant as the software engineering advantages of coordination
models and languages may be, however, performance is an important concern, too. A crucial step toward adoption of co-
ordination models and languages for programming of protocols is, therefore, the development of efficient compilers. Such
compilers should be capable of generating efficient (in terms of both time and memory) lower-level protocol implementa-
tions from higher-level protocol specifications.

Our current work focuses on developing compilation technology for the coordination language Reo [3,4]: a domain-
specific language for protocols. Reo facilitates compositional construction of protocol specifications manifested as connectors:
channel-based mediums through which processes can communicate with each other. Briefly, in Reo, a connector consists of
one or more channels, through which data items flow, and a number of nodes, on which channel ends coincide. To give an
impression, Fig. 1 shows a number of example connectors in Reo’s graphical syntax; we discuss the meaning of one of these
connectors in detail in Section 2 and the others in Appendix A.

50 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
Fig. 2. Connector compilation spectrum (thick line in the middle), including an overview of the workings of the three main compilation approaches (above
the thick line) and their characteristics (below the thick line).

1.2. Problem

Three main approaches for compiling Reo connectors exist. Two of these approaches constitute the ends of the connector
compilation spectrum in Fig. 2: the further we get to the left end of this spectrum, the more centralized compiler-generated
connector implementations become.

• In the distributed approach [5–7,9–15], a compiler implements the behavior of each of the n constituents of a connector
(i.e., its nodes and its channels) and runs these n implementations in parallel as a distributed system. See also Fig. 2.
The distributed approach yields maximal parallelism, in the sense that every connector constituent constitutes a distinct
unit of parallelism. It has the advantages of fast compilation at build-time and high throughput at run-time. However,
this comes at the cost of higher latency at run-time (because of a necessary distributed consensus algorithm). See also
Fig. 2.

• In the centralized approach [5–8], a compiler computes the behavior of a connector as a whole, implements this behavior,
and runs this implementation sequentially as a centralized system. See also Fig. 2.
Contrasting the distributed approach, the centralized approach yields maximal sequentiality. It has the advantage of
low latency at run-time. However, this comes at the cost of slower compilation at build-time and lower throughput at
run-time. See also Fig. 2.

• Proença et al. [14,15] observe that a partially-distributed, partially-centralized hybrid approach is generally ideal [7,
16–19]. In the hybrid approach, a compiler splits a connector into parts, implements those parts according to the
centralized approach, and runs those implementations according to the distributed approach. See also Fig. 2.
The hybrid approach should strike a perfect middle ground between latency (sequentiality) and throughput (parallelism)
at run-time while achieving reasonably fast compilation at build-time. See also Fig. 2.

We started developing a centralized-approach compiler. Subsequently, we gradually moved to a hybrid-approach version.
The latter’s advantage of fast compilation at build-time constituted our main motivation for this transition. Before this
paper, however, we had only little understanding of the implications with respect to run-time performance. Moreover, we

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 51
Table 1
Graphical syntax and informal semantics of common channels.

Syntax Semantics

Synchronously [accepts a data item d through its source end e1 and offers d through its sink end e2].

Synchronously [accepts a data item d through its source end e1 and nondeterministically [either offers d through its sink end e2 or
loses d]].

Synchronously [accepts data items through both its source ends and loses them].

Asynchronously [accepts a data item d through its source end e1 and stores d in a buffer x], then [offers d through its sink end e2

and clears x].

recently found a case where hybrid-approach compilation actually took much longer than centralized-approach compilation.
This made us realize that we must improve our understanding of the differences between the centralized approach and the
hybrid approach to advance our compilation technology.

1.3. Contribution

In this paper, we compare centralized-approach compilation and execution with hybrid-approach compilation and ex-
ecution, focusing on performance in terms of time; we do not consider memory in this paper. Previously studying the
theoretical foundations of the hybrid approach [16–19], we have not performed such an experimental evaluation before.
For this comparison, we use nine different connector “families” (i.e., connectors parametric in their number of coordinated
processes). “Members” of these nine families are shown in Fig. 1. Our comparison reveals previously unknown strengths
and weaknesses of the approaches under investigation. These new insights seem imperative for the future development of
our compilation technology. Inspired by our experimental results, we also present a general framework to mend one of the
weaknesses of the hybrid approach.

Although framed in the context of Reo, our technology works at the more general level of Reo’s formal automaton
semantics. This formal automaton semantics is based on constraint automata [20,21]. Therefore, our findings are of relevance
to any high-level model or language whose semantics can be defined in terms of constraint automata. We expect this
generality to make our work interesting to a larger audience, beyond the Reo community.

In Section 2, we discuss preliminaries on Reo and its automaton semantics. In Section 3, we present a centralized-
approach and a hybrid-approach compiler for Reo. We implemented these compilers from scratch to perform the exper-
iments reported on in this paper. In Section 4, we explain our experimental setup. In Sections 5 and 6, we discuss our
experimental results: in Section 5, we discuss results related to the compilation of our experimental connectors, while in
Section 6, we discuss results related to their execution. In Section 7, we present a general framework to improve hybrid-
approach compilation, inspired by our findings in Sections 5 and 6. In Section 8, we present related work. Section 9
concludes this paper.

Parts of the material presented in this paper were previously presented at the 6th Ipm International Conference on Fun-
damentals of Software Engineering (Fsen 2015) [22] and at the 7th Interaction and Concurrency Experience (Ice 2014) [23].
The new material in this paper consists of (i) a more self-contained presentation of our compilation technology and its as-
sociated programming model, (ii) a more comprehensive analysis of our experimental results, previously scattered over the
two aforementioned publications, (iii) a general framework to improve hybrid-approach compilation, and (iv) an overview
of related work.

2. Background

2.1. Reo

Reo is a language for compositional construction of concurrency protocols, manifested as connectors. Connectors consist
of channels and nodes, organized in a graph-like structure. The rest of this section gives a brief overview of Reo; the
standard reference is [3], and a more modern (and gentle) introduction is [4].

Table 1 shows four common channels. Every channel consists of two ends and a constraint that relates the timing and
the content of the data-flows at those ends. Reo features an open-ended set of channels, which means that programmers
can define their own channels with custom semantics. The only rule that user-defined channels must abide by is that every
channel end has one of two types: source ends accept data (i.e., a source end of a channel connects to that channel’s data
source/producer), while sink ends dispense data (i.e., a sink end of a channel connects to that channel’s data sink/consumer).
Reo makes no other assumptions about channels and allows, for instance, channels with two source ends.

Channel ends coincide on nodes. Contrasting channels, every node behaves in the same way: repeatedly, it nondetermin-
istically selects an available data item out of one of its coincident sink ends and replicates this data item into each of its
coincident source ends. A node’s nondeterministic selection and its subsequent replication constitute one atomic execution

52 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
step (i.e., an atomic data-flow through a connector); nodes cannot temporarily store, generate, or lose data items. A node
with only coincident source ends is called a source node; one with only coincident sink ends is called a sink node; one with
both coincident source ends and coincident sink ends is called a mixed node. Source and sink nodes constitute the boundary
nodes of a connector. The boundary nodes of a connector admit i/o operations—writes to send and takes to receive—from
processes; a connector uses its mixed nodes only for internal routing of data items. In figures (e.g., Fig. 1), we distinguish
the white, named boundary nodes of a connector from its shaded, anonymous mixed nodes.

Before a connector makes a global execution step, usually instigated by pending i/o operations, its channels and its
nodes must have reached consensus about their behavior to guarantee mutual consistency of their local execution steps
(e.g., a node cannot replicate a data item into a channel with an already full buffer). Afterward, connector-wide data-flow
emerges. Note that, as Reo supports both synchronous and asynchronous channels, programmers using Reo can mix both
synchronous and asynchronous communication within the same protocol.

Conceptually, using Reo, every process primarily performs sequential computation, locally, using its own logically private
memory. Additionally, a process can exchange data items with its environment by performing value-passing blocking in-
put/output operations exclusively on its own local ports. A subsequent binding operation that composes a set of processes
and connectors into a full concurrent application, establishes a one-to-one mapping between the set of ports of processes
and the set of boundary nodes of connectors in the application: it identifies an output port of a process with a source node
of a connector, and an input port of a process with a sink node of a connector. This identification ensures that at run-time,
every process has access to a number of boundary nodes (of one or more connectors). A process can interact with other
processes only through the boundary nodes accessible to it; moreover, the value-passing semantics of the i/o operations
available to processes means that logically, processes have no shared memory to directly exchange data with each other. To
interact with another process, thus, a process needs to perform a i/o operation on one of its own ports, which maps to a
unique boundary node; subsequently, it waits until that operation completes.

Although Reo stipulates i/o operations to be blocking, write operations can effectively be made partially nonblocking by
binding a port of a process to the source end of an asynchronous channel in a connector: so long as the buffer of the asyn-
chronous channel is not full, a write will immediately complete, and only once the buffer has become full, a subsequent
write is blocking. (To support completely nonblocking operations, the original paper on Reo also features asynchronous
channels with unbounded buffers [3], but we do not consider those further in this paper.) This use of asynchronous chan-
nels also shows that using Reo, it is unnecessary—and actually discouraged—to implement buffers explicitly as (simplistic)
processes. On the contrary, buffers are part of protocols and should therefore be part of connectors, where they can be
analyzed, verified, reasoned about, and compiled in the right (protocol) context and level of abstraction.

Importantly, because a process performs its i/o operations only on its own local ports, whenever a write completes,
the process that performed this operation does not know whereto the written data item goes. Similarly, whenever a take
completes, the process that performed this operation does not know wherefrom the taken data item comes. Only connectors
decide how data items flow between nodes, thereby coordinating the interaction among processes “from outside” (i.e.,
“exogenously”). The purpose of Reo is to facilitate construction of connectors, and this is why, from a Reo perspective,
we consider processes as black boxes (i.e., it is the perspective opposite to processes’ obliviousness toward connectors).
Only once we need to reason about a concurrent system in full, we need to open the black boxes and look inside to see
how processes exactly behave. The formal model that we use to express behavior of Reo connectors (Sect. 2.3) is sufficiently
powerful to also express behavior of processes. As such, it is a suitable formal model in which both connectors and processes
can be specified and composed, thereby enabling comprehensive reasoning about concurrent systems in full.

2.2. Example: LateAsyncMerger2

To exemplify Reo, Fig. 3 shows a two-producers-single-consumer program, with producers Alice and Bob, and with
consumer Carol. As shown in Fig. 3a, the output port of Alice is identified with source node In1, that of Bob with source
node In2, and the input port of Carol with sink node Out.

Whenever Alice (Bob) writes a data item on her (his) accessible source node In1 (In2), this data item flows through
channel ends e1, e2, and e5 (e3, e4, and e5) into the buffer (unless this buffer is already filled, in which case the write
suspends until the buffer becomes empty). Alice (Bob) can immediately continue, possibly before Carol has completed a
take for the data item in the buffer (i.e., communication between Alice/Bob and Carol transpires asynchronously). When-
ever Carol takes a data item from her accessible sink node Out, the connector empties the hitherto full buffer. Carol takes
data items in the order in which Alice/Bob write them (i.e., communication between Alice/Bob and Carol transpires undis-
rupted). Note that the connector among Alice, Bob, and Carol is identical to the LateAsyncMerger2 connector in Fig. 1g
(although in Fig. 3a, we also annotated the connector with names for channel ends). The behavior of the other connectors
in Fig. 1 is explained in Appendix A.

Fig. 3c shows possible implementations of Alice, Bob, and Carol in Java1: method Producer.main implements Alice
and Bob, while method Consumer.main implements Carol. Each of these methods has a formal SrcNode parameter

1 Conceptually, there is nothing Java-specific about this example, though: the approach works equally well for other gpls, and our choice for Java is in
that sense arbitrary.

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 53
Fig. 3. Programming example.

(for a source node) or a formal SnkNode parameter (for a sink node), which represents the boundary node accessible to
Alice, Bob, or Carol. Fig. 3d shows two additional classes: one for the protocol among Alice, Bob, and Carol, and one for
the entire program. The latter class, Program, consists of only a main method. In this method, first, two SrcNodes and
a SnkNode are constructed. Subsequently, two method calls to Producer.main (for Alice and Bob) and one method call
to Consumer.main (for Carol) are made, each wrapped in a separate Java thread. Finally, a Protocol, which extends
Thread, is constructed and started.

The binding operation that composes these independent threads into a concurrent application uses parameter-passing
to establish the one-to-one identification of ports with boundary nodes. This works by passing the same SrcNode and
SinkNode objects to methods Producer.main/Consumer.main and the constructor of Protocol. As a result, concep-
tually, the boundary nodes in Fig. 3a become accessible to Alice, Bob, and Carol. The run method in Protocol simulates
the LateAsyncMerger2 connector in an event-driven fashion, by monitoring the SrcNodes and SnkNode passed to its
constructor; the details of this simulation do not matter in this paper and appear elsewhere [7].

Whereas the code in Fig. 3c is hand-written by programmers, the code in Fig. 3d—both classes—is fully compiler-generated
from a high-level diagram, such as the one in Fig. 3a. This means that programmers do not need to know anything about

54 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
Fig. 4. Constraint automata for the channels in Table 1 (first four from the left), for a mixed node with two incoming and one outgoing channels (fifth
from the left), for a mixed node with one incoming and two outgoing channels (sixth from the left), and for two boundary nodes, each with either one
incoming or one outgoing channel (seventh from the left). The latter ca is defined not only over the names of its coincident channel ends but also over its
own name. (The names of boundary nodes, instead of the names of their coincident channel ends, are used to bind local ports of processes with boundary
nodes, thereby providing processes access to these nodes. Therefore, names of boundary nodes must explicitly occur in their ca semantics.).

the concurrency model of Java (e.g., the Thread api). Instead, programmers only need to write modules of sequential code
and i/o operations on nodes.

The generation of a Program class, with its main method, is fairly straightforward; the challenging part is compiling
connectors into efficient Protocol classes. We focus on the latter in the rest of this paper (in terms of time; we do not
consider memory in this paper).

2.3. Constraint automata

Our compilers generate code for Reo connectors based on their constraint automaton (ca) semantics [20,21]. Constraint
automata are a general formalism for modeling concurrent systems, better suited for modeling Reo connectors—and the
composition of their nodes and channels in particular—than classical automata or traditional process calculi. For Reo, a ca

specifies when during execution of a connector which data items flow where (i.e., through which channel ends). Structurally,
every ca consists of finite sets of states and transitions, which model a connector’s internal configurations and atomic
execution steps. Every transition has a label that consists of two elements: (i) a set with the names of those channel ends
that have synchronous data-flow, called a synchronization constraint, and (ii) a logical formula that specifies which particular
data items may flow through which of those ends, called a data constraint. Examples of such formulas include e1 = e2
(meaning: the same data item flows through channel ends e1 and e2), e = x• (meaning: the same data item flows through
channel end e and into buffer x), •x = e (meaning: the same data item flows out of buffer x and through channel end e)
and � (meaning: any data item may flow through any channel end or into/out of any buffer). Although = is a theoretically
symmetric operator, as a notational convention, we usually put source ends on the left-hand side and sink ends on the
right-hand side. Let DC denote the set of all data constraints.

Definition 1. A constraint automaton is a tuple (Q , Esrc, Esnk, X, −→, q0), where:

• Q denotes a set of states
• Esrc, Esnk denote sets of source ends and sink ends such that Esrc ∩ Esnk = ∅
• X denotes a set of buffers
• −→ ⊆ Q × 2Esrc∪Esnk ×DC× Q denotes a transition relation
• q0 denotes an initial state

Autom denotes the set of all constraint automata. �
We call a ca a asynchronous, denoted as

1−→(a), whenever each of its transitions has a singleton synchronization con-
straint; an asynchronous ca never synchronizes multiple of its ends. Note that, as stated before, cas can also be used to
express the behavior of processes, in terms of when they perform i/o operations on which ports (but abstracting away their
actual internal computation).

The semantics of a constraint automaton (Q , Esrc, Esnk, X, −→, q0) is defined in terms of accepted words and languages.
Informally, every word is an infinite sequence δ1, δ2, . . ., where every δi is a (partial) function from (a subset of) Esrc ∪ Esnk to
a set of data items; intuitively, every δi represents one atomic data-flow from source ends to sink ends through a connector
(i.e., an execution step), where data item δi(e) flows through end e. The language of a constraint automaton is the set of
all words on which it can perform an infinite run (every δi causes a transition to fire); formal details appear elsewhere [20,
21]. Notational differences aside, the main difference between constraint automata and classical (non)deterministic finite
automata is that alphabet symbols (δi -s) are represented symbolically (as data constraints) instead of explicitly; this makes
it possible to handle infinite data domains with finite automata.

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 55
We associate every node and every channel of a connector with a ca for its local behavior. Fig. 4 shows examples of such
cas, where in synchronization constraints, we separate source ends from sink ends by a semicolon. Note that the fourth
ca from the right is asynchronous. A product operator on cas subsequently models composition of nodes and channels into
arbitrarily complex connectors: to obtain the “big” ca for a whole connector, one can incrementally compute the product of
the “small” cas for its constituent nodes and channels. Let dc1 ∧ dc2 denote the conjunction of data constraints dc1 and dc2,
let ∃e.dc denote existential quantification of e in data constraint dc, and let ∃E.dc extend such existential quantification
from single elements to sets. Also, let E1 � E2 denote the symmetric difference of sets E1 and E2.

Definition 2. ⊗ : Autom ×Autom ⇀Autom denotes the partial function defined by the following equation:⎛
⎜⎜⎜⎜⎜⎜⎝

Q 1,

Esrc
1 ,

Esnk
1 ,

X1,

−→1
q0,1

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎜⎜⎜⎝

Q 2,

Esrc
2 ,

Esnk
2 ,

X2,

−→2
q0,2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Q 1 × Q 2

(Esrc
1 ∪ Esrc

2) \ (Esnk
1 ∪ Esnk

2)

(Esnk
1 ∪ Esnk

2) \ (Esrc
1 ∪ Esrc

2)

X1 ∪ X2
−→⊗

(q0,1,q0,2)

⎞
⎟⎟⎟⎟⎟⎟⎠

if
[
(Esrc

1 ∩ Esrc
2) = (Esnk

1 ∩ Esnk
2) = ∅

and X1 ∩ X2 = ∅
]

where −→⊗ denotes the smallest relation induced by the following rules:

q1
E1,dc1−−−−→ q′

1 and q2
E2,dc2−−−−→ q′

2
and Eall

1 ∩ E2 = Eall
2 ∩ E1

(q1,q2)
E1�E2,∃E1∩E2.(dc1∧dc2)−−−−−−−−−−−−−−−→⊗ (q′

1,q′
2)

q1
E1,dc1−−−−→ q′

1 and q2 ∈ Q 2

and Eall
2 ∩ E1 = ∅

(q1,q2)
E1,dc1∧[X2]−−−−−−−→⊗ (q′

1,q2)

q2
E2,dc2−−−−→ q′

2 and q1 ∈ Q 1

and Eall
1 ∩ E2 = ∅

(q1,q2)
E2,dc2∧[X1]−−−−−−−→⊗ (q1,q′

2)

where Eall
1 = Esrc

1 ∪ Esnk
1 and Eall

2 = Esrc
2 ∪ Esnk

2 . �
The meaning of predicate [X] in the latter two rules does not matter in this paper (but omitting it would yield a

technically incorrect definition) and is explained elsewhere [7].
In words, the product operator consumes cas a1 and a2 as input and produces a ca a1 ⊗ a2 as output if two conditions

hold. The first condition states that the ends shared between a1 and a2 must have compatible directions; the second
condition states that a1 and a2 may not share buffers, essentially to prevent data races among cas. If these conditions
hold, we take the cartesian product of the sets of states, the “direction-sensitive” difference of the sets of ends, the union
of the sets of buffers, a new transition relation, and the pair of the initial states. For the computation of a new transition
relation, we use three rules. The first rule states that a transition in a1 involving a shared end can fire iff a transition
in a2 involving that same shared end also fires. In other words, a1 and a2 must agree on instantaneously firing transitions
involving exactly the same shared ends (the conjunct on the second line in the premise). The compound transition, then,
is labeled with a synchronization constraint consisting of all unshared ends of the constituent transitions (i.e., the shared
ends are abstracted away and become unobservable) and with a data constraint consisting of an existential quantification
for the shared ends over the two data constraints of the constituent transitions. The second rule states that a transition
in a1 involving no shared ends can fire at any time. The third rule is symmetric to the second one. Figs. 5 and 6 show
an example of computing the product expression for the connector in Fig. 3a. Note that in Fig. 6, we can eliminate the ∃
quantifiers by iteratively exploiting equivalence ∃b.(a = b ∧b = c) ≡ a = c. For ∃ quantifiers that are added to data constraints
by the product operator, our compilers perform this optimization automatically [16]; this can always be done for the data
constraints that we consider in this paper. Whether or not quantifiers can be eliminated in arbitrary data constraints in
general depends on the particular instantiation of DC.

Note that the first rule in Definition 2 also applies to pairwise independent transitions in a1 and a2, which do not
involve any shared ends. As such, because of this first rule, the product operator supports true concurrency among pairwise
independent transitions.

2.4. Remark about generality

Our compilers operate fully at the level of Reo’s ca semantics. Our focus on Reo so far in this paper is therefore mis-
leading: we use Reo’s graphical notations and channel-based abstractions just as a—not the—programmer-friendly syntax
for exposing ca-based protocol programming. Different syntax alternatives for cas may work equally well or yield perhaps
even more user-friendly languages. For instance, we know how to translate Uml sequence/activity diagrams and Bpmn to
cas [24–26]. Algebras of Bliudze and Sifakis [27,28], originally developed for Bip [29], also have a straightforward interpre-
tation in terms of cas [30], thereby offering an interesting alternative possible syntax. Due to their generality, cas can thus
serve as an intermediate format for compiling specifications in many different languages and models of concurrency, by
reusing the core of our compilers. This makes the development of our compilation technology relevant beyond Reo.

In this paper, for simplicity, we consider only the four Reo channels in Table 1. In principle, however, Reo allows users to
define their own channels with custom semantics. For instance, another common channel in the Reo literature is the filter

56 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
Fig. 5. Constraint automata product example (i).

channel [3]. This channel is similar to the synchronous channel in Table 1 (in the top row), except that it loses data items
that do not satisfy a predefined filter predicate. Arbab et al. established (with a constructive proof) that the four channels
in Table 1 and the filter channel are complete under the ca semantics [31]: for every ca, there exists a corresponding Reo
connector consisting of these five channels. A corollary of this result is that these five channels are as expressive as the Bip

connector algebra of Bliudze and Sifakis [27]; this is further detailed by Dokter et al. [30].

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 57
Fig. 6. Constraint automata product example (ii).

3. Compilers

For our performance comparison, based on earlier implementations [16,19], we developed two Reo/ca-to-Java compilers
as mentioned already in Section 1: a centralized-approach one, henceforth referred to as Compilercentr, and a hybrid-
approach one, henceforth referred to as Compilerhybr. Both compilers generate shared memory Java code. On input of
a connector, Compilercentr (i) first finds a small ca for every channel and every node that this connector consists of,
(ii) then forms the product of all those cas to get a big ca for the whole connector, and (iii) finally generates one piece
of sequential code for that big ca. The size of this piece of code is linear in the number of states and transitions of the
big ca. At run-time, this piece of code logically has its own Java thread. Essentially, the construction of a big ca in this way
corresponds to parallel expansion in process algebra [32]. Compilerhybr also first finds a set of small cas, but in contrast to
Compilercentr, it does not form their product to get a big ca. Instead, it computes an m-size partition of this set. By doing
so, Compilerhybr effectively splits a connector into a number of “regions” (i.e., connected subconnectors), each of which
has a corresponding subset in the partition. After computing a partition, Compilerhybr forms products on a per-region
basis, which results in m “medium” cas, and generates a piece of sequential code for each of them. As in the centralized
approach, the sizes of these pieces of code are linear in the number of states and transitions of their respective medium cas.
At run-time, every such piece of code logically has its own Java thread. These threads use shared memory (plus concurrency
protection) to synchronize their actions whenever necessary, using a consensus algorithm.

Fig. 7 pseudomathematically shows centralized-approach compilation and hybrid-approach compilation; for complete-
ness, we also show distributed-approach compilation (essentially, a special case of Compilerhybr where n = m), but we
do not consider this kind of compilation further in this paper. Every bi in b1 (x) · · · (x) bm represents a piece of code
generated for a medium ca, while the (x) symbols between them represent their necessary consensus algorithm.

Compilerhybr’s partitioning algorithm—the crucial element of hybrid-approach compilation—iterates over the set of
small cas and incrementally extends its computed partition (starting from an empty one) [16,19]. For every small ca a,
the algorithm decides either to add {a} to the partition (as a new singleton subset) or to add a to one or more existing
parts. (In the latter case, the algorithm subsequently merges all extended subsets into one new subset.) We formulated
the condition based on which the algorithm makes this decision generally, in terms of cas and their transitions [16,19].

58 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
Fig. 7. Connector compilation approaches relative to the connector compilation spectrum in Fig. 2.

In the context of Reo, however, this partitioning algorithm coincides with the identification of synchronous/asynchronous
regions of a connector [15,17] (each of which gets a corresponding subset in the partition). The asynchronous regions of a
connector are its smallest connected subconnectors that have asynchronous data-flow (e.g., the fourth channel in Table 1).
By removing the asynchronous regions from a connector, its pairwise disconnected synchronous regions remain: largest
connected subconnectors with synchronous data-flow. Intuitively, asynchronous regions decouple synchronous regions. Such
decoupling enables synchronous regions to run independently of each other: communication between synchronous regions
always proceeds in an asynchronous fashion, through a shared asynchronous region. (A connector without asynchronous
regions consists of one comprehensive synchronous region. For such connectors, Compilerhybr reduces to Compilercentr.
Conversely, a connector consisting of only asynchronous channels is compiled into a “maximally parallel” implementation,
where every channel runs in its own thread. For such connectors, thus, hybrid-approach compilation effectively reduces to
distributed-approach compilation, as explained in Sect. 1.2.)

For instance, Fig. 5d shows the medium cas that result from applying the previously explained partitioning algorithm
to the LateAsyncMerger2 connector in Figs. 1g and 3a. This connector consists of two synchronous regions and one asyn-
chronous region between them. The middle ca represents the asynchronous channel in the middle (i.e., one asynchronous
region). The leftmost ca represents the synchronous region left of the asynchronous channel (i.e., three nodes, two chan-
nels). At run-time, the Java thread for this ca repeatedly makes a choice between its two inputs and passes the data item
from the chosen input into the asynchronous channel (i.e., into buffer x). The rightmost ca represents the synchronous
region right of the asynchronous channel (i.e., only one node). At run-time, the Java thread for this ca repeatedly passes a
data item from the asynchronous channel (i.e., from buffer x) to its output. As a side note, Fig. 6b shows the big ca com-
puted for LateAsyncMerger2 in the centralized approach; Fig. 5b shows the small cas for LateAsyncMerger2 in the distributed
approach.

Notably, a connector represents the logic behind—not the architecture of—the data-flow in a protocol. For instance, even
though Lock2 in Fig. 1j, which represents a classical lock, consists of a mix of synchronous, asynchronous, and lossy channels,
its compiler-generated code uses neither physical hardware channels nor virtual software channels to realize its desired
behavior.

4. Experimental setup

To study under which circumstances code generated by Compilerhybr outperforms code generated by Compilercentr,
we performed a number of experiments. In every experiment, we compared the performance (in terms of time; we
do not consider memory in this paper) of centralized and hybrid implementations of a k-parametric connector family,
for k ∈ {2, 4, 6, 8, 10, 12, 14, 16,32, 48, 64}. Fig. 1 shows the k = 2 members of the nine connector families that we inves-
tigated. (One can extend these k = 2 members to their k > 2 versions in a similar way as how we extended Fig. 1a to

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 59
Fig. 1b.) We selected these families because each of them exhibits a different behavior in terms of (a)synchrony, exclusion,
nondeterminism, polarity, sequentiality, and parallelism, thereby collectively providing a balanced comparison. In total, thus,
we investigated 99 different connectors and twice as many Java implementations. We ran every implementation nine times
on a machine with 24 cores (two Intel E5-2690V3 processors with twelve physical cores statically at 2.6 ghz in two sockets,
hyperthreading disabled) and averaged our measurements. In every run, we warmed up the Jvm for thirty seconds before
starting to measure the number of “rounds” that an implementation could finish in the subsequent four minutes. What
constitutes one round differs per connector; see below.

Primarily, we wanted to study and measure the overhead of the consensus algorithm among the Java threads in the
hybrid implementations (which increases their latency) relative to those implementations’ increased parallelism (which
increases their throughput). To focus our measurements on only that particular aspect, we needed to eliminate as much
as possible all other, orthogonal sources of computation inside compiler-generated code. For this reason, even though our
compilers fully support data constraints, we configured our compilers to ignore data constraints during compilation of
our experimental connectors (i.e., by replacing every data constraint with �, essentially). As a result, no data processing
occurred at run-time during our experiments (i.e., � is trivially true and requires no run-time resources), which would have
constituted a substantial source of sequential computation. Had we enabled data processing, its irrelevant—at least to this
comparison—overhead would have polluted our measurements.

For convenience, we divided the connector families under study (Fig. 1) over two categories, except Lock: k-producer–
single-consumer and singleproducer-k-consumer. Each of these categories consists of four families. The k-producer-
single-consumer category contains LateAsyncMerger (Fig. 1g), EarlyAsyncMerger (Fig. 1d), EarlyAsyncBarrierMerger
(Fig. 1c), and Alternator (Figs. 1a and 1b); the single-producer–k-consumer category contains LateAsyncReplicator (Fig. 1h),
EarlyAsyncReplicator (Fig. 1f), LateAsyncRouter (Fig. 1i), and EarlyAsyncOutSequencer (Fig. 1e). Appendix A explains the
behavior of members of these connector families.

5. Experimental results: compilation

5.1. Measurements

We used Compilerhybr and Compilercentr to compile the connector families in Fig. 1 for the aforementioned values
of k with a transition limit of 8096 and a timeout after five minutes. We imposed a transition limit, because the Java
compiler cannot conveniently handle Java code generated for cas with so many transitions;2 we imposed a compilation
timeout, because waiting for longer than five minutes to compile a single connector in practice seems unacceptable. Fig. 8
shows the measured compilation times; per-family figures (with the same curves as in Fig. 8) appear in Appendix B.

For most connector families, Compilerhybr required substantially less time than Compilercentr. In fact, for six of our
nine connector families, Compilercentr failed to run to completion beyond certain (relatively low) values of k, as witnessed
also by their very steep curves in Fig. 8:

• For EarlyAsyncMergerk>7, LateAsyncReplicatork>8 and LateAsyncRouterk>7, the transition number of their “big” cas
exceeded the limit (e.g., EarlyAsyncMerger8 has 23801 transitions, LateAsyncReplicator9 has 19172 transitions, and
LateAsyncRouter8 has 23801 transitions) or the compiler timed out.

• For EarlyAsyncBarrierMergerk>4, EarlyAsyncOutSequencerk>14, and Lockk>12, the compiler timed out.

In contrast, Compilerhybr had no problems compiling these connector families for all values of k under investigation. For
LateAsyncMergerk and EarlyAsyncReplicatork , our two compilers required a comparable amount of time for all values of k
under investigation. Finally, only for Alternatork , Compilerhybr required substantially more time than Compilercentr did.
In this case, Compilerhybr timed out for k > 12, while Compilercentr had no problems.

5.2. Discussion

In Section 1, we stated that hybrid-approach compilers have the advantage of “fast compilation at build-time” compared
to centralized-approach compilers. The idea behind this statement is that the computation of a big ca in the centralized
approach requires many resources, especially whenever this big ca has a size exponential in k. In contrast, hybrid-approach
compilers generally compute multiple medium cas instead of a single big ca; typically, the medium cas computed for (the
regions of) a connector are much smaller than that connector’s big ca, because each of those medium cas is computed out
of fewer small cas than that big ca. As a result, in cases of exponential growth, medium cas typically have a much smaller
exponent than their corresponding big ca. A superficial look at our measurements in Fig. 8 seems to confirm this intu-
ition: compilation time grows exponentially as k increases for each of the six connector families for which Compilercentr
eventually failed. Beyond this superficial look, however, there are peculiarities that need clarification.

2 Recall from Section 3 that the size of generated code is linear in the number of states and transitions of big/medium cas. Java code generated for a ca

with excessively many transitions, thus, can be too large for the Java compiler to process within reasonable resource bounds.

60 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
Fig. 8. Compilation times (solid/dotted lines for centralized/hybrid; thinner black curves for proportional growth x = y).

• A first peculiarity relates to the measurements for Alternator, which Compilerhybr—instead of Compilercentr—
eventually fails on. To understand these measurements, consider Fig. 9. This figure shows Alternator3, its ca, its single
synchronous region, and the ca for this region (including names for four of its channel ends).
The first transition in Fig. 9b, from the top state to the bottom state, models an execution step of Alternator3 where
data items synchronously flow from source node In1 to sink node Out, from source node In2 into buffer x1, and from
source node In3 into buffer x2. The second transition, then, models an execution step of Alternator3 where a data item
flows out of buffer x1 to Out. The third transition—an unobservable one—models an execution step where a data item
flows out of buffer x2 into buffer x1. And the fourth transition is the same as the second transition. These transitions
correspond to the behavior of Alternator3 as described in terms of completions of writes/takes in Appendix A.

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 61
Fig. 9. Alternator3.

Next, consider Fig. 9d. The “north” transition in this figure corresponds to the first transition in Fig. 9b; the “west”
transition corresponds to the second and the fourth transitions in Fig. 9b; the “east” transition corresponds to the
third transition in Fig. 9b. Finally, the “south” transition models an execution step of the synchronous region where the
execution steps modeled by the west and east transitions incidentally occur simultaneously, by true concurrency. An in-
teresting observation about this south transition, however, is that it is, in fact, permanently disabled in the environment
within which the synchronous region runs (i.e., the two asynchronous regions, each of which consists of a single asyn-
chronous channel). To see this, derive from Table 1 that buffers of asynchronous channels cannot become empty and
full again in the same execution step, which is required for the south transition to fire (i.e., buffer x1 is both emptied
and filled in the south transition). Only by computing the product of the ca for the synchronous region of Alternator3
with cas for its asynchronous regions, the south transition becomes formally recognizable as permanently disabled and
is subsequently filtered out (i.e., the south transition violates the premise of every rule in Definition 2 of ⊗). This is
why Fig. 9b does not have a corresponding transition.
Now, imagine Alternatork (as in Appendix A). This connector has k−1 buffers. Consequently, the medium ca for its
single synchronous region has k−2 unobservable transitions (among others), each of which models an execution step
where a data item flows out of one buffer into the buffer directly above it. Because any subset of those transitions
may fire simultaneously, by true concurrency, the medium ca has roughly 2k−2 transitions. For instance, the medium
ca for Alternator512 has over 10153 transitions—approximately 1073 times the estimated number of hydrogen atoms
in the observable universe—meaning that merely representing this ca in memory is already problematic, let alone
compositionally computing it. Of course, the bulk of these transitions become permanently disabled in the environment
of the asynchronous buffers that this ca connects to; however, Compilerhybr does not know this fact a priori, to
filter them out. This transition relation explosion, then, is exactly why Compilerhybr requires exponentially many more
resources as k increases, as we observed.
Essentially, thus, a hybrid-approach compiler does not have the required information to treat every mixed node of a
connector, which a connector uses only for internal routing of data items, as truly internal: the channel ends coincident
on mixed nodes that mark the boundaries between a connector’s regions are not abstracted away in the corresponding
medium cas. In fact, from a practical perspective, they cannot be: at run-time, threads for medium cas for neighboring
regions synchronize their actions through their shared channel ends, which makes it essential to explicitly represent
them in compiler-generated code. From a more theoretical perspective, abstraction of channel ends generally occurs only
whenever those ends are shared in a product of cas, but because the particular channel ends under discussion mark
the boundaries between regions, and because hybrid-approach compilers compute products only on a per-region basis,
these particular channel ends are never shared in any product computed by a hybrid-approach compiler. Hence, those
channel ends never get abstracted away, and many conceptually unobservable transitions may remain, potentially to the
extent that these transitions cause transition relation explosion in medium cas (as with Alternator). In Section 7, we
propose a new optimization technique to resolve this issue.

• The second peculiarity concerns centralized-approach compilation. First, by analyzing the big cas of the k-parametric
connector families EarlyAsyncBarrierMerger, EarlyAsyncMerger, LateAsyncReplicator, and LateAsyncRouter, we found that
those cas grow exponentially as k increases (due to the many ways in which their k independent transitions can syn-
chronously fire, by true concurrency). This explains why Compilercentr requires exponentially more time as k increases
to compile members of those families, as shown in Fig. 8. Now, it seems not unreasonable to assume also the in-
verse: for k-parametric connector families whose big cas grow only linearly in k, Compilercentr should scale fine.
Alternator, EarlyAsyncReplicator, and LateAsyncMerger, which satisfy this premise, seem to validate this assumption. In-
deed, Fig. 8 shows that Compilercentr has no problems with compiling members of those families. (The big cas of the
EarlyAsyncReplicator family even have a constant number of transitions.) However, this still leaves us with two fami-
lies whose compilation behavior we have not yet accounted for: EarlyAsyncOutSequencer and Lock. Although the big

62 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
cas of both these k-parametric families grow only linearly in k, Fig. 8 shows that Compilercentr nevertheless requires
exponentially more time as k increases.
It turns out that even if big cas grow only linearly in k, the “intermediate products” encountered during their computa-
tion may “temporarily” grow exponentially. For instance, if we have three cas a1, a2 and a3, the intermediate product
of a1 and a2 may grow exponentially in k, while the full product of a1, a2, and a3 grows only linearly. This is easiest
to explain for EarlyAsyncOutSequencerk (cf. Fig. 1e), in terms of its number of states. EarlyAsyncOutSequencerk consists
of a subconnector that, in turn, consists of a cycle of k buffered channels (of capacity 1). The first buffered channel
initially contains a dummy data item � (i.e., its actual value does not matter); the other buffered channels initially
contain nothing. As in the literature [3,4], we call this subconnector Sequencerk . Because no new data items can flow
into Sequencerk , only � cycles through the buffers—ad infinitum—such that only one buffer holds a data item at any
time. Consequently, the ca for Sequencerk has only k states, each of which represents the presence of � in a different
one of the k buffers. However, when Compilercentr compositionally computes this ca out of a number of smaller cas
by forming their product, it closes the cycle only with the very last application of the product operator: until that mo-
ment, the “cycle” still looks to the compiler as an open-ended chain of buffered channels. Because new data items can
freely flow into it, such an open-ended chain can have a data item in any buffer at any time. Consequently, the ca for
the largest chain (i.e., the chain of k−1 buffered channels, just before it becomes closed) has 2k−1 states. Only when
Compilercentr forms the product of [the ca of the k-th buffered channel] and [the previously formed ca for the chain
of k−1 buffered channels], the state space of 2k−1 states collapses into k states, as the compiler “finds out” that the
open-ended chain is actually an input-closed cycle with exactly one data item. Clearly, because Sequencerk constitutes
EarlyAsyncOutSequencerk , also EarlyAsyncOutSequencerk itself suffers from this problem. A similar argument applies to
Lockk .
Thus, even for k-parametric connector families whose big cas grow only linearly in k, Compilercentr can have scala-
bility issues because of exponential growth in intermediate products. Compilerhybr has no problems with the kind of
cycle-based exponential growth discussed above because of how it deals with such cycles in its partitioning algorithm.

5.3. Conclusion

For the four k-parametric connector families whose big cas grow exponentially in k (i.e., EarlyAsyncBarrierMerger,
EarlyAsyncMerger, LateAsyncReplicator, and LateAsyncRouter), hybrid compilation has clear advantages over centralized com-
pilation, as we already expected. For the two k-parametric connector families whose big cas and intermediate products grow
only linearly in k (i.e., LateAsyncMerger and EarlyAsyncReplicator), centralized-approach compilation and hybrid-approach
compilation do not make much of a difference; here, run-time performance—investigated in Section 6—becomes the key
factor in deciding which approach to apply. For Alternator, centralized compilation has clear advantages over hybrid com-
pilation. Finally, for the two k-parametric connector families whose intermediate products grow exponentially in k (i.e.,
EarlyAsyncOutSequencer and Lock), at first sight, hybrid compilation seems to have clear advantages over centralized com-
pilation as suggested by Fig. 8. However, our previous analysis also showed that the big cas—the only cas that we actually
care about—for both EarlyAsyncOutSequencer and Lock grow only linearly in k: if we can develop technology that enables
Compilercentr to avoid temporary exponential growth of intermediate products, thus, Compilercentr should perform sim-
ilar to Compilerhybr.

One option is to equip Compilercentr with a novel static analysis technique to infer, before computing the full product,
which states are unreachable after computing the full product. For instance, in the case of EarlyAsyncOutSequencerk (or its
subconnector Sequencerk), every state where two or more buffers contain a data item is unreachable in the full product
but not so yet in the intermediate products. If Compilercentr can determine such “eventually unreachable states” from the
start, it can already remove those states while computing the full product to keep the intermediate products as small as
possible. Recently, we formulated this optimization technique and proved its correctness [33].

Another option is not really a solution to our problem but a way to avoid it. We observed that the Sequencerk sub-
connector of EarlyAsyncOutSequencerk causes its intermediate products to grow exponentially in k. For simplicity, let us
therefore focus on this problematic Sequencerk . The obvious way to construct a connector with the behavior of Sequencerk
is by composing k buffered channels in a cycle, as we did before. An alternative way to construct such a connector, however,
is by connecting a Sequencer0.5k to another Sequencer0.5k with a “glue subconnector”. The details of this glue subconnector
do not matter here: what matters is that in this alternative construction, Compilercentr can first compute the products
of the Sequencer0.5k subconnectors to get two cas with 0.5k states, and then compute the products of those cas and the
two-state ca of the glue subconnector. The largest intermediate ca encountered by the compiler during this process has at
most max(20.5k, 0.5k · 0.5k · 2) states. In contrast, the largest intermediate ca for the obviously constructed Sequencerk—the
one with the cycle—has 2k−1 states. This analysis shows that hierarchically constructing Sequencerk out of Sequencerl<k
subconnectors reduces its centralized-approach compilation complexity compared to its flat design. Admittedly, hierarchi-
cal design of a Sequencerk obfuscates its simple cyclic flat structure parameterized by k. Nevertheless, the above analysis
justifies encouraging programmers to design connectors as hierarchically as possible.

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 63
Fig. 10. Performance, in rounds per four minutes (solid/dotted lines for centralized/hybrid; thinner black curves for inverse-proportional growth).

6. Experimental results: execution

6.1. Measurements

We ran every successfully compiled connector with “empty” processes: in every iteration of its infinite loop, a pro-
ducer/consumer had no work and immediately performed an i/o operation on its accessible boundary node. As a result,
we measured the performance of only the compiler-generated code. Fig. 10 shows our measurements, in completed pro-
tocol rounds per four minutes. By dividing this number of rounds by 240, one gets the round-throughput, in rounds per
second. By further dividing this number by the number of transitions per round, one gets the (transition-)throughput. Thin-
ner black curves indicate, for every connector family, inverse-proportional growth (ipg) relative to the k = 1 measurement
(ipg(k) = meas(1)/k), as a baseline to scalability; ideally, all measurements are above the inverse-proportional growth curve
(e.g., if k doubles, connector overhead should ideally less than double, i.e., the number of completed rounds for 2k should
be more than 1

2 the number of completed rounds for k).
Figs. 10a, 10b, 10c, and 10f show the performances in the k-producers-single-consumer category. For LateAsyncMerger,

EarlyAsyncMerger, and EarlyAsyncBarrierMerger, their centralized implementations outperform their hybrid implementations
in cases involving only few producers (up to/including four in the case of LateAsyncMerger and EarlyAsyncBarrierMerger;

64 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
up to/including six in the case of EarlyAsyncMerger). In cases involving more producers, either the hybrid implementations
outperform the centralized implementations, or Compilercentr failed to compile such that we cannot make a direct com-
parison. In those latter cases, however, it seems reasonable to assert, by extrapolation, that if compilation had succeeded,
these generated centralized implementations would have performed worse than their corresponding hybrid counterparts.
For Alternator, in contrast, its centralized implementations always outperform its hybrid implementations.

Figs. 10d, 10e, 10g, and 10h show the performances in the single-producer-k-consumers category. The figures
for LateAsyncReplicator and LateAsyncRouter are similar to those of LateAsyncMerger, EarlyAsyncMerger, and
EarlyAsyncBarrierMerger that we saw before: with only few consumers, their centralized implementations outperform their
hybrid implementations, while with more consumers, their hybrid implementations outperform their centralized implemen-
tations. For EarlyAsyncReplicator, the performances of its centralized and hybrid implementations are nearly the same. For
EarlyAsyncOutSequencer, because Compilercentr failed to generate code for k > 14, the comparison remains inconclusive.

6.2. Discussion

For six of the nine connector families, the obtained results look as expected. For those families, we observe that with
low values of k (i.e., little parallelism), their centralized implementations outperform their hybrid implementations. In those
cases, the increased throughput of hybrid implementations as compared to their centralized counterparts cannot yet com-
pensate for their increased latency. As k increases and more parallelism becomes available, however, hybrid implementations
start to outperform centralized implementations. In those cases, increased throughput does seem to compensate for in-
creased latency. This, however, is not the only reason why hybrid implementations outperform centralized implementations
for larger values of k. More importantly, we found that the latency of not only hybrid implementations but also centralized
implementations increases with k. In fact, the latency of centralized implementations increases much more dramatically. By
analyzing the big cas computed by Compilercentr for the families currently under discussion, we found that their expo-
nential growth (cf. Section 5) causes this steep increase in latency: the more transitions a ca has per state, the more time
it takes to select and check any one of them at run-time. (EarlyAsyncReplicator constitutes a special case, where increased
throughput and increased latency roughly balance out.)

Contrasting the families discussed in the previous paragraph, the results obtained for Alternator, EarlyAsyncOutSequencer,
and Lock are more peculiar. In Section 5, we already briefly explained why Compilercentr succeeded in generating code
for Alternatork>12, while Compilerhybr failed. This, however, does not yet explain why centralized implementations of
Alternator connectors outperform their hybrid implementations also at run-time. The reason becomes clear when we realize
that Alternatork essentially behaves sequentially: in every round, the producers start by synchronously writeing their data
items (and the consumer synchronously takes the first data item), after which the consumer asynchronously takes the
remaining k−1 data items in sequence. The centralized implementation of Alternatork at run-time sequentially simulates
one ca, which consists of k transitions between k states, that represents exactly this sequentiality, as shown in Fig. 9b.
Its hybrid implementation, in contrast, at run-time uses k Java threads and, as such, suffers from overparallelization: it
uses parallelism—and incurs the overhead that parallelism involves—to implement intrinsically sequential behavior. Because
also EarlyAsyncOutSequencer and Lock essentially behave sequentially, they suffer from the same problem. For these two
families, however, this observation is even more important than for Alternator. After all, hybrid-approach compilation fails for
Alternatork>12, so for larger k, we must use centralized-approach compilation anyway. For EarlyAsyncOutSequencerk>14 and
Lockk>12, in contrast, centralized-approach compilation fails, even though centralized implementations of those connectors
are, by extrapolation, likely to perform better than their hybrid counterparts.

Our centralized implementations consist of only one Java thread, which can do only one thing at a time. If many pro-
cesses each perform an i/o operation roughly simultaneously, depending on the connector, this may result in contention (i.e.,
every process must wait until the protocol has time to handle the i/o operation of that process). To further study the effect
of contention, we repeated our experiments with z-parametric producers/consumers that wait a random amount of time
between 0 and [z times the previously measured round-latency] before they perform their write/take, for z ∈ {1,10,100}.
Our measurements appear elsewhere, in a technical report [34]. The short conclusion is that as z increases, the performance
of centralized implementations and hybrid implementations becomes more similar. We doubt whether this can be ascribed
to less contention, though. Instead, we consider it more likely that the producers’/consumers’ waiting times now dominate
our measurements. Although perhaps not too surprising, we nevertheless consider this something that one should be aware
of: the more work processes perform, the less important the choice between centralized/hybrid implementation becomes
(with respect to run-time performance).

6.3. Conclusion

For six of the nine connector families, the obtained results are as we expected: their centralized implementations outper-
form their hybrid implementations for smaller values of k, while their hybrid implementations outperform their centralized
implementations for larger values of k. As k increases and more parallelism becomes available, the higher throughput of hy-
brid implementations as compared to their centralized counterparts compensates for their higher latency, while the latency
of centralized implementations dramatically increases.

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 65
Because Alternator, EarlyAsyncOutSequencer, and Lock essentially behave sequentially, their centralized implementations
in fact outperform their hybrid implementations for all k. This is a strong incentive to improve our centralized-approach
compilation technology (e.g., the optimization techniques proposed in Section 5.3).

7. General framework to improve Compilerhybr

7.1. Motivation

Through our experimental results in Sections 5 and 6, we discovered the following two issues with the hybrid approach:
at build-time, hybrid-approach compilation may suffer from transition relation explosion, while at run-time, hybrid-approach
implementations may suffer from overparallelization. Alternator, for instance, has both these issues. Our current hybrid-
approach compiler Compilerhybr, thus, does not yet strike the perfect middle ground between the centralized approach
and the distributed approach (as explained in Section 1.2). In particular, in terms of the connector compilation spectrum in
Figs. 2 and 7, Compilerhybr is still too far to the right: to avoid transition relation explosion, as explained in Section 5,
Compilerhybr should compute “larger-than-medium” cas (to filter out permanently disabled transitions), while to avoid
overparallelization, Compilerhybr should introduce more sequentiality in its generated code. In this section, we present a
general framework to move Compilerhybr further toward the left of the compilation spectrum.

7.2. Idea

Using Compilerhybr, as explained in Section 3, every medium ca has its own Java thread at run-time. Overparalleliza-
tion means that (some of) the parallelism among those threads is actually useless (if not counterproductive). The central
question to avoid overparallelization, then, is how to preserve only useful parallelism. This, in turn, raises the question
of when parallelism is useful. To answer this question, first, observe that at least the parallelism among Java threads for
“boundary cas” (i.e., medium cas with boundary nodes accessible to processes) is useful. Such parallelism, after all, al-
lows i/o operations of any process to complete independently of, and in parallel with, i/o operations of other processes. As
processes perform the real computations of an application—protocols are, essentially, just overhead—independence and par-
allelism among them is desirable. In contrast, parallelism among “internal cas” (i.e., medium cas without boundary nodes)
is often actually useless, in the sense that their execution in separate Java threads increases latency (because of the nec-
essary consensus algorithm) typically without increasing throughput (because parallelism among processes is affected only
by boundary cas). For instance, the parallelism between the medium cas for the two asynchronous regions in Alternator3 in
Fig. 9 would be useful only if this parallelism would allow (the processes connected to) the synchronous regions connected
to these asynchronous regions to progress independently of each other. However, these synchronous regions are, in fact, the
same single synchronous region. This makes the “parallelism” between the medium cas for the two asynchronous regions
effectively useless: their neighboring medium ca for the single synchronous region can, after all, never fire a transition
independently, in parallel, of itself.

To preserve only useful parallelism (among boundary cas), the idea is to merge synchronous and asynchronous regions
together, until only “boundary synchronous regions” remain, separated by asynchronous regions. Intuitively, merging regions
in this way mitigates transition relation explosion at build-time because a compiler now essentially computes larger-than-
medium cas (which may eliminate permanently disabled transitions), while overparallelization at run-time is mitigated
because the compiler preserves only useful parallelism among boundary regions. As with all our compilation technology, we
formulate such merging of regions not specifically in terms of Reo but generally in terms of (medium) cas, as follows.

7.3. Framework

Suppose that, after partitioning and computing per-subset products, we have m medium cas b1, . . . , bm (as in Fig. 7).
Now, instead of directly generating code for those medium cas (as our current hybrid-approach compiler does), we first
compute a graph representation of the dependencies among those medium cas. To do this, let {B, Basync} denote a partition
of {b1, . . . , bm}, where Basync contains only asynchronous cas (as defined directly below Definition 1), and where B =
{b1, . . . , bm}\ Basync denotes the remaining cas. A dependency graph for {B, Basync}, then, is a directed graph with vertices B ∪
Basync and with an arc from basync ∈ Basync to b ∈ B whenever basync and b share at least one end (i.e., basync and b
correspond to neighboring regions). These arcs may also be interpreted as undirected edges, yielding a bipartite graph with
partite sets B and Basync. Let End(b) denote the set of ends of a ca b.

Definition 3. A dependency graph is a tuple (B, Basync, �→), where:

• B ⊆Autom denotes a set of cas

• Basync ⊆Autom denotes a set of a cas such that
[1−→(basync) for all basync ∈ Basync

]
• �→ ⊆ Basync × B denotes the smallest relation induced by the following rule:

66 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
Fig. 11. Example dependency graphs, where diamonds represent vertices in B , and where circles represent vertices in Basync.

basync ∈ Basync and b ∈ B and End(basync) ∩ End(b) �= ∅
basync �→ b

Graph denotes the set of all dependency graphs. �
Fig. 11 shows examples of dependency graphs.
Next, we define a contraction operator on dependency graphs to merge synchronous and asynchronous regions in terms

of dependency graphs (to mitigate transition relation explosion and overparallelization). This contraction operator has three
operands: a ca b, called the gobbler, a ca basync, called the gobblee, and a dependency graph G = (B, Basync, �→). There are
two cases to consider:

• If B contains gobbler b (i.e., b corresponds to a synchronous region), and if Basync contains gobblee basync (i.e., basync

corresponds to an asynchronous region), and if basync depends on b according to �→ (i.e., basync and b correspond to
neighboring regions), then the contraction operator produces a new dependency graph by letting gobbler b “gobble up”
gobblee basync in G (i.e., merge the regions corresponding to b and basync).
The naive way to define such “gobbling” is by removing b from B , by removing basync from Basync, and by adding the
product b ⊗ basync to B (i.e., the two existing regions constitute a new synchronous region when merged). The problem
with this approach is that it is unclear how to redefine �→ after gobbling: if basync depends on other cas beside b

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 67
before gobbling, then these dependencies need to be preserved after gobbling, but the only way to achieve this is by
letting b ⊗ basync depend on these cas, which Definition 3 forbids (because b ⊗ basync ∈ B).
A better way to define “gobbling” is therefore to let b not only gobble up basync, henceforth called the primary gobblee,
but also all cas in B on which basync depends according to �→ (beside b), called secondary gobblees. This approach
ensures that there are no “dangling” dependencies after gobbling.
For notational convenience in formulating a contraction algorithm (presented shortly), the contraction operator not only
outputs the updated dependency graph but also the gobbler after gobbling up its gobblees (both primary and secondary)
and the set of secondary gobblees.

• Otherwise, if B does not contain gobbler b, or if Basync does not contain gobblee basync, or if basync does not depend
on b according to �→, then the contraction operator does nothing.

In the following definition, b′ denotes the gobbler after gobbling up its gobblees (both primary and secondary), while B ′
denotes the set of secondary gobblees.

Definition 4. : Autom × Autom × Graph → Autom × 2Autom × Graph denotes the function defined by the following
equation:

b basync : (B, Basync, �→) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(b′, B ′,

⎛
⎝ (B \ B ′) ∪ {b′},

Basync \ {basync},
�→′

⎞
⎠) if

⎡
⎣b ∈ B

and basync ∈ Basync

and basync �→ b

⎤
⎦

(b,∅, (B, Basync, �→)) otherwise

where b′ = basync ⊗ ⊗
B ′ , B ′ = {b̂ | basync �→ b̂}, and �→′ is the smallest relation induced by the following rules:

b̂
async �→ b̂ and b̂ /∈ B ′

b̂
async �→′ b̂

b̂
async �→ b̂ and b̂ ∈ B ′ and b̂

async �= basync

b̂
async �→′ b′ �

The notation b basync : G should be read, from left to right, as “gobbler b gobbles up () the gobblee basync in (:)
dependency graph G”.

Given this contraction operator, the idea is to let boundary cas gobble up internal cas until only boundary cas remain,
separated by internal asynchronous cas. Specifically, we let a boundary ca gobble up a number of internal cas only if none
of the secondary gobblees is a boundary ca different from the gobbler. Otherwise, in terms of Reo, we would merge different
boundary regions into one, thereby losing useful parallelism.

To formulate this approach as an algorithm, let Bbnd ⊆ B denote the set of boundary cas in a dependency
graph (B, Basync, �→). Associate a unique natural number—an id—to every boundary ca in Bbnd, and denote the corre-
sponding (partial) bijection by ι : N ⇀ Bbnd. Let ι-1 denote the inverse of ι. To indicate that a boundary ca b ∈ Bbnd, with
id n = ι-1(b), needs to gobble up an asynchronous ca basync, we write the pair (n, basync). A sequence of such pairs, then,
naturally corresponds to a sequence in which boundary cas need to gobble up internal cas. Formally, we represent such
a sequence with a total order on Dom(ι) × Basync, denoted by <. For instance, (1, b2) < (3, b4) < (3, b5) means that first
the boundary ca with id 1 must gobble up b2. Subsequently, the boundary ca with id 3 must gobble up b4. Finally, the
boundary ca with id 3 must gobble up b5. Note that bijectivity is a property of ι and not of <. Thus, it is no problem that
id 3 occurs twice in <; it simply means that the boundary ca with id 3 must gobble twice. In contrast, two boundary cas
cannot have the same id, because this violates the bijectivity of ι.

Fig. 12 shows a contraction algorithm, which consumes (B, Basync, �→) and ι and < as input and produces a contracted
dependency graph as output. This algorithm terminates because k is finite and j is increasing. Because produces only
well-formed dependency graphs by Definition 4 (i.e., with abuse of terminology, we can say that “Graph is closed under ”),
the final G after the algorithm terminates is also a well-formed dependency graph (i.e., G ∈ Graph).

The output of our algorithm depends on order <. Consider, for instance, the connector in Fig. 13. In this example, we
can let either the left-most boundary ca (b1) or the right-most boundary ca (b5) gobble up the internal cas, but not both,
with different results: in the former case, we end up with b1 ⊗ b2 ⊗ b3, b4, and b5, whereas in the latter case, we end
up with b1, b2, and b3 ⊗ b4 ⊗ b5. Thus, although the algorithm in Fig. 12 itself is deterministic, it can produce different
results depending on input <. Every result (i.e., every <) may lead to a different set of performance characteristics at
run-time. A thorough investigation into finding an optimal < (to maximize performance) given the shape of a dependency
graph (and/or properties of the cas involved) is beyond the scope of this paper. On the contrary, the main contribution of
this section is a general framework for merging synchronous and asynchronous regions (i.e., Definitions 3 and 4 and the
algorithm in Fig. 12) that indeed allows adoption of alternative orders and their respective performance characteristics.

In the rest of this section, in examples to illustrate our algorithm, we compute < according to the simple heuristic that
all boundary cas gobble up internal cas in a round-robin fashion (see the examples below), one after the other, starting
from boundary cas with source nodes. The idea behind this heuristic is to distribute the work of internal cas evenly over

68 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
Input:

• (B, Basync, �→) ∈Graph such that Bbnd ⊆ B
• ι :N ⇀ Bbnd such that ι is bijective
• < ⊆ Dom(ι) × Basync such that:

[
< is a strict total order

]
and

[
(n1, b1) < · · · < (nk, bk) for some n1, . . . ,nk ∈ Dom(ι)

and b1, . . . , bk ∈ Basync

]

Algorithm:

1. // Initialize return variable G
G := (B, Basync, �→)

2. // Initialize loop variable j
j := 1

3. // For each pair (n j , b j) in chain (n1, b1) < · · · < (nk, bk)

while j ≤ k do
(a) // Initialize variable b as the current boundary automaton associated with id n j

b := ι(n j)

(b) // Tentatively contract
(b′, B ′, G ′) := b b j : G

(c) // If gobbler b did not gobble up another boundary ca, finalize contraction
if B ′ ∩ (Bbnd \ {b}) = ∅ then G := G ′

(d) // Update the boundary automaton associated with id n j

ι := ι[n j �→ b′]
(e) // Update loop variable j

j := j + 1

Output:

• G ∈Graph

Fig. 12. Contraction algorithm.

Fig. 13. Example connector (and its dependency graph) to show that the result of the contraction algorithm in Fig. 12 depends on input <.

all boundary cas. It is possible to formally define this heuristic, but because this does not yield any fundamental new
insight, we skip this here; in practice, it is straightforward to implement this heuristic with nested loops (the top one
of which iterates over boundary cas; the nested one of which iterates over internal cas), possibly on-the-fly during the
execution of the contraction algorithm (instead of precomputing <). In future work, as mentioned above, we need to study
whether it is possible to compute an optimal < (on-line or off-line), under some formal definition of optimality; such a
definition currently does not exist. It is also interesting to investigate to what extent our current straightforward heuristic
approximates such a theoretical optimum.

7.4. Examples

• Alternator3
Reconsider Fig. 11a. Observe that b1 is a boundary ca. Define ι = {(1, b1)} (i.e., a1 has id 1).
Order < can now be computed (automatically) using the heuristic explained above, with nested loops. In the outer loop,
we iterate over all boundary cas. Because there is only one boundary ca (namely a1), this loop has only one iteration.
In the inner loop, we iterate over all internal cas. For every internal ca a j , we add a new pair (1, a j) to “the back”
of the order. In this way, we get (1, b2) < (1, b3). This means that a1 (i.e., the ca with id 1) first gobbles up a2 and
then a3.
Fig. 14a shows the evolution of the dependency graph in Fig. 11a under the algorithm in Fig. 12. Every ⇒ represents
the execution of one iteration of the while loop.
Applied to the dependency graph for Alternator3, our algorithm yields a dependency graph consisting of one comprehen-
sive boundary ca, namely, the very same big ca as computed in the centralized approach. This observation generalizes
to Alternatork . For Alternatork , thus, our algorithm reduces the hybrid approach to the centralized approach, which is

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 69
Fig. 14. Examples of the contraction algorithm in Fig. 12.

exactly what we want in order to avoid transition relation explosion at build-time (as explained in Section 5.2) and
overparallelization at run-time (as explained in Section 6.2).

• EarlyAsyncOutSequencer2
Reconsider Fig. 11b. Observe that b1 and b3 are boundary cas. Define ι = {(1, b1), (3, b3)} (i.e., a1 has id 1, and a3 has
id 3).
Order < can now be computed (automatically) using the heuristic explained above, with nested loops. In the outer
loop, we iterate over all boundary cas. In each iteration, we create an auxiliary order; after the outer loop, we merge
these auxiliary orders into the final <. In the first iteration of the outer loop, we consider a1. In the inner loop, we
iterate over all internal cas. For every internal ca a j , we add a new pair (1, a j) to “the back” of the auxiliary order. In
this way, we get (1, b2) <1 (1, b4) <1 (1, b5), where <1 denotes the auxiliary order. In the second iteration of the outer
loop, we consider a3. In the same way as in the first iteration, we get (3, b2) <3 (3, b4) <3 (3, b5), where <3 denotes
the auxiliary order. By “zipping” <1 and <3, we get (1, b2) < (3, b2) < (1, b4) < (3, b4) < (1, b5) < (3, b5).
Fig. 14b shows the evolution of the dependency graph in Fig. 11b under the algorithm in Fig. 12. Consecu-
tive ⇒-symbols represent that the dependency graph does not change during all but the last iteration represented
by the ⇒-symbols. For instance, the dependency graph does not change in the first iteration, because contrac-
tion ι(1) b2 : G causes b1 to gobble up not only b2 but also b3, which is a boundary ca (and recall that boundary
cas have useful parallelism and should, therefore, not be composed at build-time); in Fig. 12, the corresponding check
occurs in step 3c. As another example, the dependency graph does not change in the third iteration, because contrac-
tion ι(1) b4 causes b1 to gobble up b4, which is not a neighboring ca, so the contraction operator does nothing (see
Definition 4).
Applied to the dependency graph for EarlyAsyncOutSequencer2, our algorithm yields a dependency graph with two
boundary cas—one of which is larger-than-medium—and one internal asynchronous ca between them. This observation
generalizes to EarlyAsyncOutSequencerk . For EarlyAsyncOutSequencerk , thus, our algorithm moves the hybrid approach
toward the left of the compilation spectrum in Figs. 2 and 7, thereby alleviating overparallelization at run-time (while
maintaining useful parallelism between the two boundary cas).
One concern is that by moving the hybrid approach toward the left of the compilation spectrum,
EarlyAsyncOutSequencerk becomes subject to the centralized-approach issue of “exponentially sized intermediate prod-

70 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
ucts”. To resolve this, we can use the same optimization techniques as proposed in Section 5.3, one of which we already
developed and implemented in a proof-of-concept tool [33].

• Lock2
Reconsider Lock2 in Fig. 11c. Observe that b1 and b5 are boundary cas. Define ι = {(1, b1), (5, b5)} (i.e., b1 has id 1,
and b5 has id 5).
Regardless of the definition of <, running the algorithm in Fig. 12 does not change the dependency graph in Fig. 11c
whatsoever, because every possible contraction causes b1 to gobble up also b5 or vice versa. Crucially, however, observe
that b1 and b5 are connected to the same processes (i.e., every i-th process has access both to node Acqi of b1 and to
node Reli of b5). This means that the parallelism among these two boundary cas is actually useless and that b1 and b5
should be composed already at build-time.
To resolve this issue, we need a preprocessing step before we run our algorithm, to compose boundary cas that are con-
nected to the same processes. To formalize this composition, we can introduce some formal representation of processes,
for instance as cas. Such a formalism is straightforward, but as it does not yield any new fundamental insight, we skip
it here. Implementing such a preprocessing step in a compiler is also straightforward.
Fig. 14c shows the evolution of the dependency graph in Fig. 11c (for an order < computed in the same way as for
Alternator3, above). In this figure, � represents the preprocessing step. The rest of the figure (and its analysis) is similar
to Fig. 14a of Alternator3. For Lockk , thus, our algorithm reduces the hybrid approach to the centralized approach, thereby
avoiding overparallelization at run-time; the remark about exponentially sized intermediate products in our previous
discussion of EarlyAsyncOutSequencerk applies here, too, though.

7.5. Comparison with [33]

Among other findings, our experimental results in Sections 5 and 6 suggest that:

(1) Hybrid-approach compilation may suffer from exponentially sized cas, caused by transition relation explosion.
(2) Hybrid implementations may overparallelize inherently sequential connectors.
(3) Centralized-approach compilation may suffer from exponentially sized intermediate products.

The general framework presented in this section aims to address findings (1) and (2). Concurrently, we also worked on a
different optimization technique that addresses finding (3) [33].

The problem underlying finding (3) is that the centralized-approach compiler computes every full end product “one ca

at a time” (i.e., first a1 ⊗ a2 = a12, then a12 ⊗ a3 = a123, then a123 ⊗ a4, and so on). As a result, the state space of the
intermediate products (a12, a123, and so on) may grow exponentially, even if many of those states become unreachable
in the full product. The idea behind the [33]-optimization is to not generate such “eventually unreachable states” in the
first place. To achieve this, instead of computing the full product “one ca at a time”, the [33]-optimization ensures that the
compiler computes the full product by processing all cas at the same time: it starts from the initial state of the full product
(which is the tuple consisting of the initial states of all constituent cas), and computes successor states of this initial state
by simultaneously considering the transition relations of all constituent cas. This goes on until no new successor states are
found. In this way, effectively, the compiler computes only the reachable states of the full product, without ever computing
an “eventually unreachable state”.

The [33]-optimization affects only compilation; it has no effect on run-time performance, because the full product is
identical to the one computed without the [33]-optimization. Furthermore, the [33]-optimization cannot alleviate transition
relation explosion (finding (1)), because transition relation explosion occurs in the full product. If the full product happens
to contain (exponentially) many transitions, the [33]-optimization will not eliminate those. As such, the general framework
presented in this section indeed serves a different purpose than the [33]-optimization. This general framework and the
[33]-optimization can and should be used together, though (as already mentioned in the EarlyAsyncOutSequencer2 example,
above). The general framework presented in this section and the [33]-optimization are, thus, complementary.

8. Related work

8.1. Reo

Although we use Reo’s ca semantics in our research on compilation [20,21], many other formal semantics exist [35],
including those based on coalgebra [36], the connector coloring framework [5], Plotkin-style structural operational seman-
tics [37], the tile model [38], and the Unifying Theories of Programming [39].

There is a striking visual resemblance between Reo connectors and Petri nets (e.g., [40]): places in Petri nets seem to
correspond to asynchronous channels in Reo connectors, while transitions in Petri nets seem to correspond to synchronous
channels and nodes in Reo connectors. The actual (non)correspondence between Reo connectors and Petri nets is, how-
ever, substantially more subtle than their visual similarities may suggest. While it is possible to translate a Petri net into
a Reo connector (albeit using a somewhat more complicated encoding than the previously suggested correspondence be-
tween Petri net/Reo connector elements), there is no known structural translation of Reo connectors into Petri nets (i.e.,

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 71
Reo connectors seem more expressive). It is possible, though, to structurally translate Reo connectors into zero-safe nets [41].
Zero-safe nets constitute a variant of Petri nets with special execution semantics [42]. An interesting research area where
Petri nets and Reo connectors meet is scheduling: recently, Dokter et al. have studied a game-theoretic framework for deriv-
ing schedules for processes coordinated by Reo connectors [43], not unlike the work on deriving schedules for applications
modeled as Petri nets [44–47].

Beside Petri nets, Reo connectors may seem similar also to specifications in other higher-level graphical languages, such
as Bpmn specifications and Uml activity diagrams. Arbab et al., Changizi et al., and Sun Meng et al. have worked on trans-
lating such specifications into Reo [24–26]. Also, Proença and Clarke studied the relation between Reo and orchestration
language Orc [48], while Talcott et al. compared Reo with coordination languages Arc, and Pbrd [49].

8.2. Distributed coordination

In the mid 1980s, Gelernter introduced the coordination language Linda [50]. At the heart of Linda lies the concept of
a tuple space, a structure in which both processes and tuples of data, originating from and accessible to those processes,
“float”. Although a tuple space gives the programmer the illusion of shared memory, at the hardware level, this memory
may actually reside at n different locations. Several approaches to implementing physically distributed tuple spaces exist.
For instance, one can maintain the entire tuple space at one of the n locations (e.g., Feng et al. [51], Wyckoff et al. [52]),
but although simple to implement, this does not scale well in the number of processes [53]. The centralized approach
in this paper actually has a similar scalability problem, as all parallelism is sequentialized. Alternatively, one can scatter
(with or without replication) the tuples in the tuple space over all n locations. Although such an approach has better
scalability, one must resolve several issues to obtain a workable implementation, such as deciding where to store which
tuple, efficiently retrieving tuples, and load balancing [2]. For instance, Russello et al. developed an adaptive distributed tuple
space middleware that monitors processes and, based on their monitored behavior, selects a distribution/replication policy
for tuples that meets predefined performance/availability requirements best [54]. Other works on implementing distributed
tuple spaces include the work by Bjornson [55], Feng et al. [53], Rowstron and Wood [56], Menezes and Tolksdorf [57], and
Atkinson [58]. Although both distributed tuple spaces and the hybrid approach in this paper facilitate a form of distributed
coordination, they differ in one fundamental aspect: whereas distributed tuple spaces distribute data (i.e., tuples), the hybrid
approach distributes control (i.e., medium cas).

Bonakdarpour et al. worked on an approach for automatically generating distributed implementations for specifica-
tions in Bip [59], a framework for specifying component-based systems at three specification levels [29]: behavior of
components, interaction between components (similar to transitions in cas), and priorities on interaction. Bip forbids si-
multaneous execution of conflicting interactions (similar to transitions in cas with overlapping synchronization constraints).
In automatically-generated distributed implementations of Bip specifications, therefore, Bonakdarpour et al. have to ensure
that such conflicting interactions execute mutually exclusively. To achieve this, Bonakdarpour et al. propose a three-layered
implementation architecture: the bottom layer consists of distributed components, the middle layer consists of a number of
interaction execution engines, each responsible for executing its own subset of all interactions, and the top layer resolves
potential conflicts. In terms of the hybrid approach in this paper, the bottom layer represents processes, while the middle
layer roughly represents a product expression of cas. Importantly, however, Bonakdarpour et al. aim for a finer distribution
granularity than we do, which requires them to handle conflicting interactions with their third layer at run-time. We avoid
this problem in the hybrid approach, by putting cas with “conflicting transitions” in the same subset of the computed par-
tition at build-time, thereby effectively serializing those transitions at run-time; for performance reasons, we prefer firing
such transitions sequentially over adding an algorithm for run-time conflict resolution.

The hybrid approach may seem similar to state distribution techniques in distributed explicit-state model checking. In
distributed explicit-state model checking, the state space of the model under verification is distributed over several compute
nodes. Each of the nodes subsequently explores its “own” part of the state space. The main challenge is to distribute
states over nodes in such a way that communication among nodes is minimal [60]. Several policies for state distribution
have been studied. A conceptually straightforward policy is randomly distributing states over nodes [61–64]. Although this
policy achieves good load balancing, it also incurs high communication costs. To lower communication costs, alternative
distribution policies distribute states based on the property being verified [65] or based on the model under verification [60,
66]. Although related, the difference between distribution of states in the hybrid approach (in terms of medium automata)
and distribution of states in distributed model checking is that the states in the hybrid approach are not directly part of
the full model (i.e., the full product of all medium automata). For instance, if q1 and q2 are states of medium automata a1
and a2, then only (q1, q2) is a state in the full model a1 ⊗a2. Whereas only q1 and q2 are distributed in the hybrid approach,
only (q1, q2) is available to be distributed in distributed model checking.

8.3. Higher-level concurrent programming

We discuss four major alternatives to protocol dsls for higher-level concurrent programming.
Transactional memory provides a means of controlling concurrent accesses to shared memory as an alternative to lower-

level synchronization constructs (e.g., locks or semaphores). Although originally described by Knight in the late 1980s and
popularized by Herlihy and Moss in the early 1990s [67,68], the advent of multicore processors caused a renewed interest in

72 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
transactional memory from both academia and industry. Support for transactional memory can exist in hardware or in soft-
ware. Below, we focus on the software variant, first described by Shivat and Touitou [69]. Primarily, transactional memory
supports transactions: sequences of reads/writes to shared memory that occur atomically. Whenever two running transac-
tions access the same memory location, one of these transactions aborts, rollbacks all the changes it has made so far, and
reruns itself. The other transaction may proceed. Whenever a transaction runs to completion without conflicting memory ac-
cesses, it commits all the changes it has made. Because a transactional memory system manages transactions transparently
to programmers, higher-level transactions should simplify programming compared to lower-level synchronization constructs.
One major open issue with transactional memory, however, is performance [70,71]. Another issue is “horizontally” compos-
ing individual transactions into full protocol implementations: although every single transaction represents a single protocol,
not every single protocol can be represented by a single transaction (i.e., generally, the implementation of a protocol may
require multiple transactions). As far as we know, no existing transactional memory system supports composition of proto-
col implementations in a structural way. Lack of such support forces programmers to implement protocols with a mixture
of transactions and lower-level computation code, which can be more complex than using higher-level notations and ab-
stractions provided by a dsl for protocols. Note that such horizontal composition is different from “vertical” composition
(i.e., nesting) of transactions, which has received considerable attention from the transactional memory community.

Algorithmic skeletons, introduced by Cole in the late 1980s [72], provide software engineers a means of writing programs
by composing templates of common patterns of parallel computation and interaction. Algorithmic skeleton apis conveniently
hide all processes and protocols inside their implementation, thereby completely relieving software engineers from the
task of implementing protocol specifications. Many algorithmic skeleton apis exist [73], which seem useful in cases where
programs can indeed break down into the algorithmic skeletons provided by those apis. In other cases, programmers still
need to manually implement protocols using lower-level synchronization constructs, which can be more complex than using
higher-level notations and abstractions provided by a dsl for protocols. Protocol dsls are, thus, more generally applicable
than algorithmic skeletons. Although not always applicable, the principles behind algorithmic skeletons seem generally
useful—also when using a dsl for protocols—as parallel design patterns that can help software architects and programmers
in specifying and implementing their concurrent programs [74–76], much in the same way as the classical software design
patterns help in developing object-oriented programs.

Actors, introduced by Hewitt et al. in the early 1970s [77], constitute another higher-level abstraction for concurrent
programming. At run-time, actors mix performing computation with exchanging asynchronous messages in an event-driven
fashion. Whenever an actor sends a message to another actor, that message first arrives in the receiving actor’s mailbox.
Once an actor has finished processing a message, it selects a next message from its mailbox, should one exist. While
processing messages, actors perform computation and may send messages to other actors. The pure actor abstraction hides
the underlying shared memory: pure actors communicate with each other only through asynchronous messaging. This
asynchronous nature of actors—and their lack of support for synchrony—is their main attraction and a significant weakness
at the same time, as synchrony is sometimes essential at the application level. Tasharofi et al., for instance, discovered that
programmers often mix Scala/Akka actors [78,79] with Java threads [80], thereby breaking the pure actor abstraction, which
can be more complex than using higher-level notations and abstractions provided by a dsl for protocols.

Choreographies recently gained considerable attention from the research community (e.g., [81–84]). A choreography is a
global specification of the communication among processes (services, threads, components, etc.), expressed in a high-level
language, actually similar to a Reo connector. Unlike our approach of compiling Reo connectors to separate modules of code,
however, choreographies are usually projected onto processes. This means that with choreographies, there are no separate
software entities to enforce protocols among processes; all protocol code is dispersed among process code in process imple-
mentations. In early work on choreographies, the per-process communication specifications resulting from projection were
primarily used to validate the conformance of (the communication in) process implementations against the choreography.
In recent years, projection operations are also used to generate executable code (i.e., process skeletons that, when further
filled, are guaranteed to conform to the choreography). Example languages for which such tool support exists include Scrib-
ble/Pabble [85,86], Chor [87], and Aioc [88]. A major difference between choreography approaches and our approach is that
not every (syntactically) well-formed choreography is amenable to projection (i.e., not every choreography can be imple-
mented), while we can generate code for every well-formed Reo connector. Another difference is that all communication in
the same choreography has the same transport characteristics (e.g., asynchronous, reliable, and order-preserving), while Reo
allows mixing different transport characteristics within the same Reo connector.

9. Conclusion

Better understanding the differences between centralized-approach compilation and hybrid-approach compilation is cru-
cial to further advance our compilation technology. Initially, we wanted to investigate under which circumstances parallel
protocol code (generated by a hybrid-approach compiler), outperforms sequential protocol code (generated by a centralized-
approach compiler). Based on our comparison, the answer to this question emerges as:

• Except for cases with overparallelization, hybrid implementations of connectors among more than a few (at least ten to
twelve) processes perform at least as good as their centralized counterparts.

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 73
Our comparison taught us much more about centralized-/hybrid-approach compilation, though. To summarize our other
findings:

• Hybrid-approach compilation may suffer from exponentially sized cas (caused by transition relation explosion) in cases
where centralized-approach compilation works fine.

• Centralized-approach compilation may suffer from exponentially sized intermediate products in cases where hybrid-
approach compilation works fine.

• Programmers should prefer hierarchically constructed connectors over flat constructed connectors to reduce compilation
complexity.

• Hybrid implementations may overparallelize inherently sequential connectors, which leads to poor run-time perfor-
mance.

• Centralized implementations may in fact have even higher latency than hybrid implementations.
• The more work processes perform, the less important the choice between centralized/hybrid approach becomes (with

respect to run-time performance).

These findings suggest that we need a means to alleviate both transition relation explosion (at build-time) and overparal-
lelization (at run-time). To this end, we presented a general framework for moving our hybrid-approach compiler further
toward the left of the compilation spectrum in Figs. 2 and 7. Complementarily, in other recent work, we developed an opti-
mization technique to alleviate exponentially sized intermediate products [33]. The development of these two improvements
would not have been possible without (the careful analysis of) the experimental results in this paper. It shall be interesting
to see how these optimization techniques, in turn, affect our earlier real-world case studies with compiler-generated Reo
implementations, such as the NAS Parallel Benchmarks [7] and RSA decryption [89].

We heavily used Reo/connector terminology in this paper as a narrative mechanism. Despite this, we really have been
talking about, and investigating, compiler technology for a general kind of communicating automata. Because also other pro-
gramming languages can have semantics in terms of such automata (e.g., Rebeca [90,91] and Bip [29,30]), our findings may
have applications beyond Reo. Moreover, although encountered by us in the context of Reo, mitigating overparallelization
seems a generally interesting problem: specifying a system as many parallel processes may feel natural to a system de-
signer, but implementing each of those processes as a thread may give poor performance. By studying overparallelization in
terms of automata, our results may advance compilation technology in areas other than Reo, too. For instance, automatically
partitioning Bip interaction specifications for generating optimal distributed implementations is still an open problem [59,
92]. Formal relationship between BIP and Reo [30] establishes a basis for extending the impact of our contributions in this
paper. Further studies should clarify the extent to which the correspondence between Bip interactions and the automata
considered in this paper can be leveraged by reusing our results.

In this paper, we focused on performance in terms of time. We did not consider other efficiency aspects, such as code
size and memory. These are, however, important aspects too. In particular, even though compiler-generated implementations
of protocols (based on connectors) in some cases can compete with hand-written implementations [7], the size of the
generated code is typically much larger than the code programmers would manually write (essentially because transitions
are represented explicitly). The same holds for the data structures used at run-time. This can be problematic for systems
with limited memory resources in general, and for embedded and cyber–physical systems in particular. In future work, we
need to better study these aspects and also develop optimization techniques to address issues related to them.

Finally, it would be interesting to see the extent to which the findings in this paper extend to a timed setting. To
study this, we need to extend our compilers from ordinary constraint automata to the existing model of timed constraint
automata [93]. Compilation of timed constrain automata has, to the best of our knowledge, not been done before and seems
a challenging and interesting direction for future work.

Appendix A. Experimental connectors (Fig. 1)

We divided the connector families in Fig. 1 over two categories, except Lock: k-producer–single-consumer and
single-producer–k-consumer. Each category consists of four families. The k-producer–single-consumer category contains
LateAsyncMerger (Fig. 1g), EarlyAsyncMerger (Fig. 1d), EarlyAsyncBarrierMerger (Fig. 1c), and Alternator (Figs. 1a and 1b); the
single-producer–k-consumer category contains LateAsyncReplicator (Fig. 1h), EarlyAsyncReplicator (Fig. 1f), LateAsyncRouter
(Fig. 1i), and EarlyAsyncOutSequencer (Fig. 1e). In the rest of this appendix, we explain the behavior of these connectors.

A.1. k-producer-single-consumer

With LateAsyncMergerk (Fig. 1g), whenever producer i writes a data item on its accessible source node Ini , the con-
nector stores this data item in its only buffer (unless this buffer is already filled by another producer, in which case the
write suspends until the buffer becomes empty). The relieved producer can immediately continue, possibly before the
consumer has completed a take for its data item (i.e., communication between a producer and the consumer transpires
asynchronously). Whenever the consumer takes a data item from its accessible sink node Out, the connector empties the
hitherto full buffer. The consumer takes data items in the order in which producers write them (i.e., communication

74 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
between a producer and the consumer transpires undisrupted by other producers). Every round consists of a write by a
producer and a take by the consumer; in every round, two transitions fire.

With EarlyAsyncMergerk (Fig. 1d), whenever producer i writes a data item on its accessible source node Ini , the con-
nector stores this data item in its corresponding buffer. The relieved producer can immediately continue, possibly before the
consumer has completed a take for its data item (i.e., communication between a producer and the consumer transpires
asynchronously). Whenever the consumer takes a data item from its accessible sink node Out, the connector empties one
of the hitherto full buffers, selected nondeterministically. The consumer does not necessarily take data items in the order
in which producers write them (i.e., communication between a producer and the consumer may be interleaved with com-
munication between another producer and the consumer). Every round consists of a write by a producer and a take by
the consumer; in every round, two transitions fire.

Connectors in the EarlyAsyncBarrierMerger family work in largely the same way as those in the EarlyAsyncMerger family,
except that the former enforce a barrier on the producers: no producer can write its n-th data item until every other
producer has completed the write of its (n−1)-th data item. The consumer may still take data items in an order different
from the order in which the producers write them. Every round consists of a write by every producer and k takes by
the consumer, one for every producer; in every round, 2k transitions fire.

With Alternatork (Figs. 1a and 1b), whenever producer i attempts to write a data item on its accessible source node Ini ,
this operation suspends until both (1) the consumer attempts to take a data item from its accessible sink node Out, and (2)
every other producer j attempts to write a data item on its accessible source node In j (i.e., the producers can write only
synchronously). Once each of the producers and the consumer attempt to write/take, the consumer takes the data item
sent by the top producer (i.e., communication between the top producer and the consumer transpires synchronously), while
the connector stores the data items of the other producers in their corresponding buffers (i.e., communication between the
other producers and the consumer transpires asynchronously). Subsequently, the consumer takes the remaining buffered
data items in the spatial top-to-bottom order of the producers. Every round consists of a write by every producer and k
takes by the consumer, one for every producer; in every round, k transitions fire.

A.2. Single-producer–k-consumer

With EarlyAsyncReplicatork (Fig. 1f), whenever the producer writes a data item on its accessible source node In, the
connector stores this data item in its only buffer. The relieved producer can immediately continue, possibly before the
consumers have completed takes for its data item (i.e., communication between the producers and a consumer transpires
asynchronously). Whenever consumer i attempts to take a data item from its accessible sink node Outi , this operation
suspends until both (1) the buffer has become full, and (2) every other consumer attempts to take a data item (i.e., the
consumers can take only synchronously). Once the buffer has become full and each of the consumers attempts to take,
every consumer takes a copy of the data item in the buffer, after which the connector empties that buffer. Every round
consists of a write by the producer and a take by every consumer; in every round, two transitions fire.

With LateAsyncReplicatork (Fig. 1h), whenever the producer writes a data item on its accessible source node In, the
connector stores a copy of this data item in each of its buffers. The relieved producer can immediately continue, possibly
before the consumers have completed takes for copies of its data item (i.e., communication between the producers and
a consumer transpires asynchronously). Whenever consumer i takes a data item from its accessible sink node Outi , the
connector empties its corresponding hitherto full buffer. Every round consists of a write by the producer and a take by
every consumer; in every round, k+1 transitions fire.

With LateAsyncRouterk (Fig. 1i), whenever the producer writes a data item on its accessible source node In, the con-
nector stores this data item in exactly one of its buffers (instead of a copy in each of its buffers as LateAsyncReplicatork
does), selected nondeterministically. The relieved producer can immediately continue, possibly before the consumer of the
selected buffer has completed a take for its data item (i.e., communication between the producer and a consumer tran-
spires asynchronously). Whenever consumer i takes a data item from its accessible sink node Outi , the connector empties
its corresponding full buffer. The consumers do not necessarily take data items in the order in which the connector stored
those data items in its buffers. Every round consists of a write by the producer and a take by a consumer; in every
round, two transitions fire.

With EarlyAsyncOutSequencerk (Fig. 1e), whenever the producer writes a data item on its accessible source node In,
the connector stores this data item in its leftmost buffer. The relieved producer can immediately continue, possibly before
a consumer has completed a take for its data item (i.e., communication between a producer and the consumers transpires
asynchronously). The connector ensures that the consumers can take only in their spatial top-to-bottom order. Whenever
consumer i takes a data item from its accessible sink node Outi , the connector empties its corresponding full buffer. Every
round consists of k writes by the producer and a take by every consumer; in every round, 2k transitions fire.

A.3. Lock

Finally, Lockk represents a classical lock (Fig. 1j). To acquire the lock, process i writes an arbitrary data item (i.e., a sig-
nal) on its accessible source node Acqi ; to release the lock, this process writes an arbitrary data item on its accessible

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 75
source node Reli . A write on Acqi suspends until every process j that previously performed a write on Acq j has per-
formed its complementary write on Rel j (i.e., the connector guarantees mutual exclusion). Every round consists of two
writes by one of the k processes; in every round, two transitions fire.

Appendix B. Experimental results: per-family compilation time charts

Fig. B.15 shows the measured compilation times of compiling the connector families in Fig. 1 for various values of k with
Compilercentr and Compilerhybr.

Fig. B.15. Compilation times (solid/dotted lines for centralized/hybrid; thinner black curves for inverse-proportional growth). See Fig. 8 for the same curves
plotted in a single chart.

References

[1] A. van Deursen, P. Klint, J. Visser, Domain-specific languages: an annotated bibliography, ACM SIGPLAN Not. 35 (6) (2000) 26–36.
[2] G. Papadopoulos, F. Arbab, Coordination models and languages, Adv. Comput. 46 (1998) 329–400.
[3] F. Arbab, Reo: a channel-based coordination model for component composition, Math. Struct. Comput. Sci. 14 (3) (2004) 329–366.

http://refhub.elsevier.com/S0167-6423(17)30125-9/bib76444B563030s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib50413938s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4172623034s1

76 S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77
[4] F. Arbab, Puff, the magic protocol, in: Formal Modeling: Actors, Open Systems, Biological Systems (Talcott Festschrift), in: LNCS, vol. 7000, Springer,
2011, pp. 169–206.

[5] D. Clarke, D. Costa, F. Arbab, Connector colouring I: synchronisation and context dependency, Sci. Comput. Program. 66 (3) (2007) 205–225.
[6] D. Costa, Formal Models for Component Connectors, Ph.D. thesis, Vrije Universiteit, Amsterdam, 2010.
[7] S.-S. Jongmans, Automata-Theoretic Protocol Programming, Ph.D. thesis, Leiden University, 2016.
[8] S.-S. Jongmans, F. Arbab, Modularizing and specifying protocols among threads, in: Proceedings of PLACES 2012, in: EPTCS, CoRR, vol. 109, 2013,

pp. 34–45.
[9] D. Clarke, J. Proença, Partial connector colouring, in: Coordination Models and Languages (Proceedings of COORDINATION 2012), in: LNCS, vol. 7274,

Springer, 2012, pp. 59–73.
[10] D. Clarke, J. Proença, A. Lazovik, F. Arbab, Channel-based coordination via constraint satisfaction, Sci. Comput. Program. 76 (8) (2011) 681–710.
[11] J. Proença, D. Clarke, Data abstraction in coordination constraints, in: Advances in Service-Oriented and Cloud Computing (Proceedings of FOCLASA

2013), in: CCIS, vol. 393, Springer, 2013, pp. 159–173.
[12] J. Proença, D. Clarke, Interactive interaction constraints, in: Coordination Models and Languages (Proceedings of COORDINATION 2013), in: LNCS,

vol. 7890, Springer, 2013, pp. 211–225.
[13] J. Proença, D. Clarke, E. de Vink, F. Arbab, Decoupled execution of synchronous coordination models via behavioural automata, in: Foundations of

Coordination Languages and Software Architectures (Proceedings of FOCLASA 2011), in: EPTCS, CoRR, vol. 58, 2011, pp. 65–79.
[14] J. Proença, D. Clarke, E. de Vink, F. Arbab, Dreams: a framework for distributed synchronous coordination, in: Proceedings of SAC 2012, ACM, 2012,

pp. 1510–1515.
[15] J. Proença, Synchronous Coordination of Distributed Components, Ph.D. thesis, Universiteit Leiden, 2011.
[16] S.-S. Jongmans, F. Arbab, Global consensus through local synchronization: a formal basis for partially-distributed coordination, Sci. Comput. Program.

115–116 (2016) 199–224.
[17] S.-S. Jongmans, D. Clarke, J. Proença, A procedure for splitting data-aware processes and its application to coordination, Sci. Comput. Program. 115–116

(2016) 47–78.
[18] S.-S. Jongmans, S. Halle, F. Arbab, Reo: a dataflow inspired language for multicore, in: Proceedings of DFM 2013, IEEE, 2014, pp. 42–50.
[19] S.-S. Jongmans, F. Santini, F. Arbab, Partially-distributed coordination with Reo and constraint automata, Serv. Oriented Comput. Appl. 9 (3) (2015)

311–339.
[20] C. Baier, M. Sirjani, F. Arbab, J. Rutten, Modeling component connectors in Reo by constraint automata, Sci. Comput. Program. 61 (2) (2006) 75–113.
[21] S.-S. Jongmans, T. Kappé, F. Arbab, Constraint automata with memory cells and their composition, Sci. Comput. Program. (2017),

http://dx.doi.org/10.1016/j.scico.2017.03.006, in press.
[22] S.-S. Jongmans, F. Arbab, Can high throughput atone for high latency in compiler-generated protocol code?, in: Fundamentals of Software Engineering

(Proceedings of FSEN 2015), in: LNCS, vol. 9392, Springer, 2015, pp. 238–258.
[23] S.-S. Jongmans, F. Arbab, Toward sequentializing overparallelized protocol code, in: Proceedings of ICE 2014, in: EPTCS, CoRR, vol. 166, 2014, pp. 38–44.
[24] F. Arbab, N. Kokash, S. Meng, Towards using Reo for compliance-aware business process modeling, in: Leveraging Applications of Formal Methods,

Verification and Validation (Proceedings of ISoLA 2008), in: CCIS, vol. 17, Springer, 2008, pp. 108–123.
[25] B. Changizi, N. Kokash, F. Arbab, A unified toolset for business process model formalization, in: Preproceedings of FESCA 2010, 2010, pp. 147–156.
[26] S. Meng, F. Arbab, C. Baier, Synthesis of Reo circuits from scenario-based interaction specifications, Sci. Comput. Program. 76 (8) (2011) 651–680.
[27] S. Bliudze, J. Sifakis, The algebra of connectors—structuring interaction in BIP, IEEE Trans. Comput. 57 (10) (2008) 1315–1330.
[28] S. Bliudze, J. Sifakis, Causal semantics for the algebra of connectors, Form. Methods Syst. Des. 36 (2) (2010) 167–194.
[29] A. Basu, M. Bozga, J. Sifakis, Modeling heterogeneous real-time components in BIP, in: Proceedings of SEFM 2006, IEEE, 2006, pp. 3–12.
[30] K. Dokter, S.-S. Jongmans, F. Arbab, S. Bliudze, Relating BIP and Reo, in: Interaction and Concurrency Experience (Proceedings of ICE 2015), in: EPTCS,

CoRR, vol. 189, 2015, pp. 3–20.
[31] F. Arbab, C. Baier, F. de Boer, J. Rutten, M. Sirjani, Synthesis of Reo circuits for implementation of component-connector automata specifications, in:

Coordination Models and Languages (Proceedings of COORDINATION 2005), in: LNCS, vol. 3454, Springer, 2005, pp. 236–251.
[32] J.F. Groote, M.R. Mousavi, Basic manipulation of processes, in: Modeling and Analysis of Communicating Systems, The MIT Press, 2014, pp. 141–165,

Ch. 9.
[33] S.-S. Jongmans, T. Kappé, F. Arbab, Composing constraint automata, state-by-state, in: Formal Aspects of Component Software (Proceedings of FACS

2015), in: LNCS, vol. 9539, Springer, 2016, pp. 217–236.
[34] S.-S. Jongmans, F. Arbab, Can High Throughput Atone for High Latency in Compiler-Generated Protocol Code?, (Technical Report), Tech. Rep. FM-1503,

CWI, 2015.
[35] S.-S. Jongmans, F. Arbab, Overview of thirty semantic formalisms for Reo, Sci. Ann. Comput. Sci. 22 (1) (2012) 201–251.
[36] F. Arbab, J. Rutten, A coinductive calculus of component connectors, in: Recent Trends in Algebraic Development Techniques (Proceedings of WADT

2002), in: LNCS, vol. 2755, Springer, 2003, pp. 34–55.
[37] M.-R. Mousavi, M. Sirjani, F. Arbab, Formal semantics and analysis of component connectors in Reo, in: Foundations of Coordination Languages and

Software Architectures (Proceedings of FOCLASA 2005), in: ENTCS, vol. 154, Elsevier, 2006, pp. 83–99.
[38] F. Arbab, R. Bruni, D. Clarke, I. Lanese, U. Montanari, Tiles for Reo, in: Recent Trends in Algebraic Development Techniques (Proceedings of WADT 2008),

in: LNCS, vol. 5486, Springer, 2009, pp. 37–55.
[39] S. Meng, F. Arbab, B. Aichernig, L. Aştefănoaei, F.D. Boer, J. Rutten, Connectors as designs: modeling, refinement and test case generation, Sci. Comput.

Program. 77 (7–8) (2012) 799–822.
[40] W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer Science, vol. 4, Springer, 1985.
[41] D. Clarke, Coordination: Reo, Nets, and logic, in: Formal Methods for Components and Objects (Proceedings of FMCO 2007), in: LNCS, vol. 5382,

Springer, 2008, pp. 226–256.
[42] R. Bruni, U. Montanari, Zero-safe nets: comparing the collective and individual token approaches, Inf. Comput. 156 (1–2) (2000) 46–89.
[43] K. Dokter, S.-S. Jongmans, F. Arbab, Scheduling games for concurrent systems, in: Coordination Models and Languages (Proceedings of COORDINATION

2016), in: LNCS, vol. 9686, Springer, 2016, pp. 84–100.
[44] M. Sgroi, L. Lavagno, Y. Watanabe, A. Sangiovanni-Vincentelli, Synthesis of embedded software using free-choice Petri nets, in: Proceedings of DAC

1999, ACM, 2009, pp. 805–810.
[45] P.-A. Hsiung, Formal synthesis and code generation of embedded real-time software, in: Proceedings of CODES 2001, ACM, 2001, pp. 208–213.
[46] J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, Y. Watanabe, Quasi-static scheduling of independent tasks for reactive systems, IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 24 (10) (2005) 1492–1514.
[47] C. Liu, A. Kondratyev, Y. Watanabe, J. Desel, A. Sangiovanni-Vincentelli, Schedulability analysis of Petri nets based on structural properties, Fundam.

Inform. 86 (2008) 325–341.
[48] J. Proença, D. Clarke, Coordination models Orc and Reo compared, in: Foundations of Coordination Languages and Software Architectures (Proceedings

of FOCLASA 2007), in: ENTCS, vol. 194, Elsevier, 2008, pp. 57–76.
[49] C. Talcott, M. Sirjani, S. Ren, Comparing three coordination models: Reo, ARC, and PBRD, Sci. Comput. Program. 76 (1) (2011) 3–22.

http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4172623131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4172623131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4343413037s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib436F733130s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A6F6E3136s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A41313362s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A41313362s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib43503132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib43503132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib43504C413131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib5043313361s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib5043313361s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib5043313362s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib5043313362s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib50436456413131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib50436456413131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib50436456413132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib50436456413132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib50726F3131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A41313661s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A41313661s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A43503136s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A43503136s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A4841313462s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A53413135s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A53413135s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib425341523036s1
http://dx.doi.org/10.1016/j.scico.2017.03.006
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A41313561s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A41313561s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A413134s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib414B4D3038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib414B4D3038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib434B413130s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4D41423131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib42533038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib42533130s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4242533036s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib444A4142313561s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib444A4142313561s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib414264422B3035s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib414264422B3035s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib474D3134s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib474D3134s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A4B413136s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A4B413136s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A41313579s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A41313579s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4A413132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib41523033s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib41523033s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4D53413036s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4D53413036s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4142432B3039s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4142432B3039s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4D41412B3132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4D41412B3132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib5265693835s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib436C613038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib436C613038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib424D3030s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib444A413136s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib444A413136s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib534C57533939s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib534C57533939s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4873693031s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib434B4C2B3035s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib434B4C2B3035s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4C4B572B3038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4C4B572B3038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib50433038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib50433038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib5453523131s1

S.-S.T.Q. Jongmans, F. Arbab / Science of Computer Programming 160 (2018) 48–77 77
[50] D. Gelernter, Generative communication in Linda, ACM Trans. Program. Lang. Syst. 7 (1) (1985) 80–112.
[51] M.-D. Feng, W.-F. Wong, C.-K. Yuen, BaLinda lisp: design and implementation, Comput. Lang. 22 (4) (1996) 205–214.
[52] P. Wyckoff, S. McLaughry, T. Lehman, D. Ford, T spaces, IBM Syst. J. 37 (3) (1998) 454–474.
[53] M.-D. Feng, Y.-Q. Gao, C.-K. Yuen, Distributed Linda tuplespace algorithms and implementations, in: Parallel Processing: CONPAR 94 – VAPP VI, in:

LNCS, vol. 854, Springer, 1994, pp. 581–592.
[54] G. Russello, M. Chaudron, M. van Steen, Dynamically adapting tuple replication for managing availability in a shared data space, in: Coordination

Models and Languages (Proceedings of COORDINATION 2005), in: LNCS, vol. 3454, Springer, 2005, pp. 109–124.
[55] R. Bjornson, Linda on Distributed Memory Multiprocessors, Ph.D. thesis, Yale University, 1993.
[56] A. Rowstron, A. Wood, An efficient distributed tuple space implementation for networks of workstations, in: Parallel Processing (Proceedings of Euro-

Par 1996), in: LNCS, vol. 1123, Springer, 1996, pp. 510–513.
[57] R. Menezes, R. Tolksdorf, A new approach to scalable Linda-systems based on swarms, in: Proceedings of SAC 2003, ACM, 2003, pp. 375–379.
[58] A. Atkinson, A dynamic, decentralised search algorithm for efficient data retrieval in a distributed tuple space, in: Proceedings of AusPDC 2010, ACM,

2010, pp. 21–30.
[59] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, J. Sifakis, A framework for automated distributed implementation of component-based models, Distrib.

Comput. 25 (5) (2012) 383–409.
[60] S. Orzan, J. van de Pol, M.V. Espada, A state space distribution policy based on abstract interpretation, in: Parallel and Distributed Methods in Verifica-

tion (Proceedings of PDMC 2004), in: ENTCS, vol. 128, Elsevier, 2005, pp. 35–45.
[61] L. Brim, I. Černá, P. Moravec, J. Šimša, How to order vertices for distributed LTL model-checking based on accepting predecessors, in: Parallel and

Distributed Methods in Verification (Proceedings of PDMC 2005), in: ENTCS, vol. 135, Elsevier, 2006, pp. 3–18.
[62] S. Vijzelaar, K. Verstoep, W. Fokkink, H. Bal, Distributed MAP in the SpinJa model checker, in: Parallel and Distributed Methods in Verification (Pro-

ceedings of PDMC 2011), in: EPTCS CoRR, vol. 72, 2011, pp. 84–90.
[63] H. Garavel, R. Mateescu, W. Serwe, Large-scale distributed verification using CADP: beyond clusters to grids, in: Parallel and Distributed Methods in

Verification (Proceedings of PDMC 2012), in: ENTCS, vol. 296, Elsevier, 2013, pp. 145–161.
[64] J. Barnat, J. Havlíček, P. Ročkai, Distributed LTL model checking with Hash compaction, in: Parallel and Distributed Methods in Verification (Proceedings

of PDMC 2012), in: ENTCS, vol. 296, Elsevier, 2013, pp. 79–93.
[65] J. Barnat, L. Brim, I. Černá, Cluster-based LTL model checking of large systems, in: Formal Methods for Components and Objects (Proceedings of FMCO

2005), in: LNCS, vol. 4111, Springer, 2006, pp. 259–279.
[66] E. Khamespanah, M. Sirjani, M. Mousavi, Z.S. Kaviani, M. Razzazi, State distribution policy for distributed model checking of actor models, in: Automated

Verification of Critical Systems (Proceedings of AVoCS 2015), in: ECEASST, vol. 72, TU, Berlin, 2015, pp. 1–15.
[67] T. Knight, An architecture for mostly functional languages, in: Proceedings of LFP 1986, ACM, 1986, pp. 105–112.
[68] M. Herlihy, E. Moss, Transactional memory: architectural support for lock-free data structures, ACM SIGARCH Comput. Archit. News (Proc. ISCA 1993)

21 (2) (1993) 289–300.
[69] N. Shavit, D. Touitou, Software transactional memory, Distrib. Comput. 10 (2) (1997) 99–116.
[70] C. Caşcaval, C. Blundell, M. Michael, H. Cain, P. Wu, S. Chiras, S. Chatterjee, Software transactional memory: why is it only a research toy?, Commun.

ACM 51 (11) (2008) 40–46.
[71] M. Herlihy, The Multicore Transformation, Ubiquity 2014, 2014, 1, pp. 1–9.
[72] M. Cole, Algorithmic Skeletons: a Structured Approach to the Management of Parallel Computation, Ph.D. thesis, University of Edinburgh, 1988.
[73] H. González-Vélez, M. Leyton, A survey of algorithmic skeleton frameworks: high-level structured parallel programming enablers, Softw. Pract. Exp.

40 (12) (2010) 1135–1160.
[74] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, K. Yelick, A view of

the parallel computing landscape, Commun. ACM 52 (10) (2009) 56–67.
[75] T. Mattson, B. Sanders, B. Massingill, A pattern language for parallel programming, in: Patterns for Parallel Programming, SPS, Addison-Wesley, 2005,

pp. 1–6, Ch. 1.
[76] M. McCool, A. Robinson, J. Reinders, Introduction, in: Structured Parallel Programming, Elsevier, 2012, pp. 1–38, Ch. 1.
[77] C. Hewitt, P. Bishop, R. Steiger, A universal modular ACTOR formalism for artificial intelligence, in: Proceedings of IJCAI 1973, Morgan-Kauffman, 1973,

pp. 235–245.
[78] P. Haller, M. Odersky, Scala actors: unifying thread-based and event-based programming, Theor. Comput. Sci. 410 (2–3) (2009) 202–220.
[79] P. Haller, On the integration of the actor model in mainstream technologies, in: Proceedings of AGERE! 2012, ACM, 2012, pp. 1–6.
[80] S. Tasharofi, P. Dinges, R. Johnson, Why do scala developers mix the actor model with other concurrency models?, in: Object-Oriented Programming

(Proceedings of ECOOP 2013), in: LNCS, vol. 7920, Springer, 2013, pp. 302–326.
[81] M. Bravetti, G. Zavattaro, Towards a unifying theory for choreography conformance and contract compliance, in: Software Composition (Proceedings of

SC 2007), in: LNCS, vol. 4829, Springer, 2007, pp. 34–50.
[82] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, ACM SIGPLAN Not. (Proc. POPL 2008) 43 (1) (2008) 273–284.
[83] S. Basu, T. Bultan, M. Ouederni, Deciding choreography realizability, ACM SIGPLAN Not. (Proc. POPL 2012) 47 (1) (2012) 191–202.
[84] M. Carbone, K. Honda, N. Yoshida, Structured communication-centered programming for web services, ACM Trans. Program. Lang. Syst. 34 (2) (2012)

8.1–8.78.
[85] K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, N. Yoshida, Scribbling interactions with a formal foundation, in: Distributed Computing and Internet

Technology (Proceedings of ICDCIT 2011), in: LNCS, vol. 6536, Springer, 2011, pp. 55–75.
[86] N. Ng, J. Coutinho, N. Yoshida, Protocols by default: safe MPI code generation based on session types, in: Compiler Construction (Proceedings of CC

2015), in: LNCS, vol. 9031, Springer, 2015, pp. 212–232.
[87] M. Carbone, F. Montesi, Deadlock-freedom-by-design: multiparty asynchronous global programming, ACM SIGPLAN Not. (Proc. POPL 2013) 48 (1) (2013)

263–274.
[88] M. Dalla Preda, S. Giallorenzo, I. Lanese, J. Mauro, M. Gabbrielli, AIOCJ: a choreographic framework for safe adaptive distributed applications, in:

Software Language Engineering (Proceedings of SLE 2014), in: LNCS, vol. 8706, Springer, 2014, pp. 161–170.
[89] M. Krauweel, S.-S. Jongmans, Simpler coordination of JavaScript web workers, in: Proceedings of COORDINATION 2017, in: LNCS, vol. 10319, Springer,

2017, pp. 40–58, http://dx.doi.org/10.1007/978-3-319-59746-1_3.
[90] M. Sirjani, M.-M. Jaghoori, C. Baier, F. Arbab, Compositional semantics of an actor-based language using constraint automata, in: Coordination Models

and Languages (Proceedings of COORDINATION 2006), in: LNCS, vol. 4038, Springer, 2006, pp. 281–297.
[91] M. Sirjani, A. Movaghar, A. Shali, F. de Boer, Modeling and verification of reactive systems using Rebeca, Fundam. Inform. 63 (4) (2004) 385–410.
[92] B. Bonakdarpour, M. Bozga, J. Quilbeuf, Model-based implementation of distributed systems with priorities, Des. Autom. Embed. Syst. 17 (2) (2013)

251–276.
[93] F. Arbab, C. Baier, F. de Boer, J. Rutten, Models and temporal logical specifications for timed component connectors, Softw. Syst. Model. 6 (1) (2007)

59–82.

http://refhub.elsevier.com/S0167-6423(17)30125-9/bib47656C3835s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4657593936s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib574D4C463938s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4647593934s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4647593934s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib524376533035s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib524376533035s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib426A6F3933s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib52573936s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib52573936s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4D543033s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib41746B3130s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib41746B3130s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib42424A2B3132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib42424A2B3132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4F50453035s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4F50453035s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib42434D533036s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib42434D533036s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib565646423131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib565646423131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib474D533133s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib474D533133s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4248523133s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4248523133s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4242433036s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4242433036s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4B534D2B3135s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4B534D2B3135s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4B6E693836s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib484D3933s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib484D3933s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib53543937s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib43424D2B3038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib43424D2B3038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4865723134s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib436F6C3838s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib474C3130s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib474C3130s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4142442B3039s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4142442B3039s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4D534D3035s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4D534D3035s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4D52523132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4842533733s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4842533733s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib484F3039s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib48616C3132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib54444A3133s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib54444A3133s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib425A3037s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib425A3037s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4859433038s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib42424F3132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4348593132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4348593132s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4B4D422B3131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4B4D422B3131s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4E43593135s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4E43593135s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib434D3133s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib434D3133s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib44474C2B3134s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib44474C2B3134s1
http://dx.doi.org/10.1007/978-3-319-59746-1_3
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib534A42413036s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib534A42413036s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib534D5364423034s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4242513133s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib4242513133s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib414242523037s1
http://refhub.elsevier.com/S0167-6423(17)30125-9/bib414242523037s1

	Centralized coordination vs. partially-distributed coordination with Reo and constraint automata
	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Contribution

	2 Background
	2.1 Reo
	2.2 Example: LateAsyncMerger2
	2.3 Constraint automata
	2.4 Remark about generality

	3 Compilers
	4 Experimental setup
	5 Experimental results: compilation
	5.1 Measurements
	5.2 Discussion
	5.3 Conclusion

	6 Experimental results: execution
	6.1 Measurements
	6.2 Discussion
	6.3 Conclusion

	7 General framework to improve Compilerhybr
	7.1 Motivation
	7.2 Idea
	7.3 Framework
	7.4 Examples
	7.5 Comparison with [33]

	8 Related work
	8.1 Reo
	8.2 Distributed coordination
	8.3 Higher-level concurrent programming

	9 Conclusion
	Appendix A Experimental connectors (Fig. 1)
	A.1 k-producer-single-consumer
	A.2 Single-producer-k-consumer
	A.3 Lock

	Appendix B Experimental results: per-family compilation time charts
	References

