
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository
Journal Pre-proof

Indexing weighted sequences: Neat and efficient

Carl Barton, Tomasz Kociumaka, Chang Liu, Solon P. Pissis, Jakub Radoszewski

PII: S0890-5401(19)30078-1

DOI: https://doi.org/10.1016/j.ic.2019.104462

Reference: YINCO 104462

To appear in: Information and Computation

Received date: 15 May 2018

Revised date: 15 March 2019

Accepted date: 27 March 2019

Please cite this article as: C. Barton et al., Indexing weighted sequences: Neat and efficient, Inf. Comput. (2019), 104462,
doi: https://doi.org/10.1016/j.ic.2019.104462.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2019 Published by Elsevier.

https://core.ac.uk/display/301636082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ic.2019.104462
https://doi.org/10.1016/j.ic.2019.104462

Indexing Weighted Sequences: Neat and Efficient�

Carl Bartona, Tomasz Kociumakab,c,1, Chang Liud, Solon P. Pissise, Jakub Radoszewskic,2

aEuropean Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
bDepartment of Computer Science, Bar Ilan University, 5290002 Ramat Gan, Israel
cInstitute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

dComprehensive Cancer Centre, King’s College London, London SE1 9RT, UK
eCentrum Wiskunde & Informatica, 1098 XG Amsterdam, The Netherlands

Abstract

In a weighted sequence, for every position of the sequence and every letter of the alphabet a probability of
occurrence of this letter at this position is specified. Weighted sequences are commonly used to represent
imprecise or uncertain data, for example in molecular biology, where they are known under the name of
Position Weight Matrices. Given a probability threshold 1

z , we say that a string P of length m occurs in a
weighted sequence X at position i if the product of probabilities of the letters of P at positions i, . . . , i+m−1
in X is at least 1

z . In this article, we consider an indexing variant of the problem, in which we are to
pre-process a weighted sequence to answer multiple pattern matching queries. We present an O(nz)-time
construction of an O(nz)-sized index for a weighted sequence of length n that answers pattern matching
queries in the optimal O(m+Occ) time, where Occ is the number of occurrences reported. The cornerstone
of our data structure is a novel construction of a family of �z� strings that carries the information about
all the strings that occur in the weighted sequence with a sufficient probability. We thus improve the most
efficient previously known index by Amir et al. (Theor. Comput. Sci., 2008) with size and construction time
O(nz2 log z), preserving optimal query time. On the way we develop a new, more straightforward index for
the so-called property matching problem. We provide an open-source implementation of our data structure
and present experimental results using both synthetic and real data. Our construction allows us also to
obtain a significant improvement over the complexities of the approximate variant of the weighted index
presented by Biswas et al. at EDBT 2016 and an improvement of the space complexity of their general
index. We also present applications of our index.

Keywords: weighted sequence, position weight matrix (PWM), text indexing, suffix tree, property
indexing

1. Introduction

We consider a type of uncertain sequence called a weighted sequence. In a weighted sequence, every
position contains a subset of the alphabet and every letter of the alphabet is associated with a probability
of occurrence such that the sum of probabilities at each position equals 1.

�This is a simplified and extended version of an article presented at the 27th Annual Symposium on Combinatorial Pattern
Matching (CPM 2016) without Chang Liu [1].

Email addresses: carl@ebi.ac.uk (Carl Barton), kociumaka@mimuw.edu.pl (Tomasz Kociumaka),
chang.2.liu@kcl.ac.uk (Chang Liu), solon.pissis@cwi.nl (Solon P. Pissis), jrad@mimuw.edu.pl (Jakub Radoszewski)

1Supported by ISF grants no. 824/17 and 1278/16 and by an ERC grant MPM under the EU’s Horizon 2020 Research and
Innovation Programme (grant no. 683064).

2Supported by the “Algorithms for text processing with errors and uncertainties” project carried out within the HOMING
program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development
Fund.

Preprint submitted to Elsevier September 3, 2019

Weighted sequences are common in a wide range of applications: (i) data measurements with imprecise
sensor measurements; (ii) flexible sequence modelling, such as binding profiles of DNA sequences; (iii)
observations that are private and thus sequences of observations may have artificial uncertainty introduced
deliberately (see [2] for a survey). Pattern matching (or substring matching) is a core operation in a wide
variety of applications including genome assembly, computer virus detection, database search, and short
read alignment. Many of the applications of pattern matching generalise immediately to the weighted case
as much of this data is more commonly uncertain (e.g. reads with quality scores) than certain.

In the Weighted Pattern Matching (WPM) problem, we are given a string P called a pattern, a weighted
sequence X called a text, both over an alphabet Σ, and a threshold probability 1

z . The task is to find all
positions i in X where the product of probabilities of the letters of P at positions i, . . . , i+ |P | − 1 in X is
at least 1

z . Each such position is called an occurrence of the pattern; we also say that the fragment of X
and the pattern match.

In this article, we consider the indexing (or off-line) version of the WPM problem, called Weighted
Indexing. Here we are given a text being a weighted sequence and we are asked to construct a data structure
(called an index) to provide efficient operations for answering WPM queries related to the text. We also
consider other variants of the indexing problem. In the Approximate Weighted Indexing problem, given a
pattern and a threshold z′, we are to report all occurrences of the pattern with probability at least 1

z′ but
we may also report additional occurrences with probability 1

z′ − ε, for a pre-selected value of ε > 0. Note
that in this problem there is no pre-selected threshold z. In the Generalised Weighted Indexing problem,
we are to construct a data structure that allows for WPM queries to be answered for any threshold z′ with
z′ ≤ z.

A problem that is known to be closely related to the Weighted Indexing problem is Property Indexing,
first introduced in [3]. In this problem, we are given a string S called the text and a hereditary property
Π, which is a family of integer intervals contained in {1, . . . , |S|} (hereditary means that it is closed under
subintervals). Our goal is to pre-process the text so that, for a query string P , we can report all occurrences
of P in S which, interpreted as intervals, belong to Π. The property Π can be represented in O(|S|) space
using an array π[1 . . |S|] such that the longest interval starting at position i is {i, . . . , π[i]}.

In each of the indexing problems, we denote the length of the text by n, the length of a query pattern
by m, and the number of occurrences of the pattern in the text by Occ.

1.1. Previous Results
An O(n logm)-time solution for the WPM problem over constant-sized alphabet based on the Fast

Fourier Transform was proposed in [4, 5]. Recently, an O(n log z)-time solution using the suffix array and
lookahead scoring was presented in [6]; on-line algorithms for this problem were also proposed [7]. The
average case complexity of the WPM problem has also been studied and a number of fast algorithms have
been presented for certain values of weight ratio z

m [8, 9].
The Weighted Indexing problem was first considered by Iliopoulos et al. [10], who introduced a data

structure called a weighted suffix tree allowing optimal O(m+Occ)-time queries. The construction time and
size of that data structure was, however, O(n|Σ|z log z). Their data structure is a compact trie of all of the
factors with the probability of occurrence greater than or equal to 1

z .
Amir et al. [3] reduced the Weighted Indexing problem to the Property Indexing problem in a text of

length O(nz2 log z). For the latter, they proposed a solution with O(n log log n) preprocessing time and
optimal O(m+Occ) query time. Later, it was shown that Property Indexing can be solved in linear time;
see [11, 12, 13] (see also [14]). This led to a solution to Weighted Indexing with index size and construction
time O(nz2 log z), preserving optimal query time.

Biswas et al. [15] presented a data structure that solves the Approximate Weighted Indexing problem
in O(1εnz

2) space (with Ω(1εn
2z2) construction time) with O(m+ Occ)-time queries; here Occ denotes the

number of occurrences reported. They also proposed a data structure for the Generalised Weighted Indexing
problem with O(nz2 log z) space and O(m+m ·Occ) query time. The construction time is not mentioned,
but a direct construction of their index works in Ω(n2z2) time. Moreover, they also consider the problem of
document listing for weighted sequences.

2

1.2. Our Contributions
In a preliminary version of this article [1], we presented an O(nz)-sized data structure for the Weighted

Indexing problem that can be constructed in O(nz) time. The query time is still O(m + Occ). The con-
struction works for integer alphabets; however, for non-constant-sized alphabets the construction algorithm
becomes randomized.

In this article, we present a new O(nz)-time construction of an O(nz)-sized data structure for the
Weighted Indexing problem that answers queries in the optimal O(m + Occ) time. Our index is based on
a novel observation that one can always construct a family of �z� strings of length n that carries all the
information about all the strings that occur in the weighted sequence. This yields a significantly simpler
construction than in the previous index [1] preserving all of its applications. The construction works for
integer alphabets and the construction time is worst-case. As a by-product, we obtain an optimal solution
to the Property Indexing problem that avoids complex tools used in the previous solutions [3, 11, 12, 14].

We also discuss an even simpler randomised construction with worse space complexity and construction
time of the weighted index. We provide an open-source implementation of our data structure and present
experimental results using both synthetic and real data.

Our approach lets us significantly improve upon the variants of the weighted index proposed in [15].
In the Approximate Weighted Indexing problem, we obtain O(nε) space and O(nε log

n
ε) construction time,

preserving the query time. We improve the space usage in the Generalised Weighted Indexing problem to
O(nz), also in the document listing variant.

We also present two applications of our index: computation of a weighted prefix table (and, more
generally, answering longest common prefix queries on a weighted text) and computation of covers of a
weighted text. In both cases, we obtain O(nz)-time algorithms which improve upon the complexities of
previously known algorithms (see [16] and [10, 3], respectively) by a factor of z log z.

1.3. Comparison of Our Techniques with the Previous Work
Two main building blocks of our weighted index are a construction of a family of �z� solid (standard)

strings with properties and a solution to the Property Indexing problem.
The family of strings that we construct has the same set of patterns occurring at each position (respecting

the properties) as the weighted text X and, moreover, the number of occurrences of each pattern at each
position is a good estimate of the probability of its occurrence at this position in X. The former is used in
the construction of a weighted index and the latter in the construction of an approximate weighted index.
The existence of such a family is not immediate. However, our proof is not involved and we design an
O(nz)-time elementary construction algorithm of such a family based on tries (also known as radix trees).
In the end, we show that a simple generation of a number of strings according to the probability distribution
implied by the weighted text with high probability yields a family of strings that also well describes the set
of patterns in X. However, the number of strings that one needs to generate is much larger. Excluding the
exponential-size index of Iliopoulos et al. [10], previous work includes the O(nz2 log z)-space index of Amir
et al. [3] and our O(nz)-space index [1]. Amir et al. [3] show that, after a small modification of the weighted
text, the set of maximal string patterns that occur in it has a total length O(nz2 log z). In [1] we show a
representation of this set as a trie and apply Shibuya’s algorithm for suffix tree of a trie construction [17].

In our solution to the Property Indexing problem, we construct a data structure called property suffix
tree being the suffix tree in which the nodes corresponding to factors that do not belong to the property are
trimmed. The algorithm makes only several traversals of the suffix tree and uses an amortisation argument
similar to the one from Ukkonen’s suffix tree construction [18]. Very similar data structures were constructed
by Amir et al. [3] and Kopelowitz [14]. Amir et al. [3] use a heavy machinery of weighted ancestor queries and
a fancy algorithm to mark the properties on edges of the suffix tree. Kopelowitz [14] designs an algorithm for
a dynamic setting, but also mentions its static application. He uses amortisation ideas similar to ours, but
his construction is more involved due to its generality and also utilises less basic longest common extension
queries (i.e., range minimum queries). The solution to the Property Indexing problem that was developed
by Iliopoulos et al. [11] and clarified by Juan et al. [12] constructs a different data structure that, in a sense,
shifts the hardness of the problem from the construction to the queries. It also requires range minimum
queries. Charalampopoulos et al. have recently introduced the property suffix array [13].

3

Our techniques let us immediately answer decision queries of a weighted index. To answer counting
and reporting queries in optimal time, we require coloured range counting and reporting data structures
in the property suffix tree that were already used for this purpose in our previous construction [1]. In our
solution to the Approximate Weighted Indexing, we need to augment the property suffix tree with a data
structure for top-k document retrieval queries. The same type of queries was used in the previous solution
by Biswas et al. [15], however, not as a black box. Moreover, they also use the less efficient reduction of [3]
which caused their data structure to use O(1εnz

2) space, assuming that z′ ≤ z in each query. Finally, we
improve the space complexity of the generalised weighted index of Biswas et al. [15] by plugging in our novel
construction of �z� strings with properties.

1.4. Structure of the Article
In Section 3 we present a combinatorial construction of the special family of �z� strings. An efficient

implementation of the construction of this family based on tries is proposed in Section 4. In Section 5
a new optimal solution for the Property Indexing problem is presented. Using the construction and the
property index, we obtain our weighted index in Section 6. Some applications of our index are presented
in Section 7. With the aid of an auxiliary tool, an approximate weighted index is obtained in Section 8.
Alternative randomised constructions of the two indexes with worse parameters are discussed in Section 9.
In Section 10, we present an experimental evaluation of our weighted index construction. Our improvement
to the generalised weighted index is briefly discussed in Section 11.

2. Preliminaries

A string S over an alphabet Σ is a finite sequence of letters from Σ. By n = |S| we denote the length
of S and by S[i], for 1 ≤ i ≤ n, we denote the i-th letter of S. By S[i. .j] we denote the string S[i] · · ·S[j]
called a factor of S (if i > j, then the factor is the empty string ε). A factor is called a prefix if i = 1 and a
suffix if j = n. We say that a string P occurs at position i in S if P = S[i . . i+ |P | − 1].

A property Π of S is a hereditary collection of integer intervals contained in {1, . . . , n}. For simplicity,
we represent every property Π with an array π[1 . . |S|] such that the longest interval I ∈ Π starting at
position i is {i, . . . , π[i]}. Observe that π can be an arbitrary array satisfying π[i] ∈ {i − 1, . . . , n} and
π[1] ≤ π[2] ≤ · · · ≤ π[n]. For a string P , by Occπ(P, S) we denote the set of occurrences i of P in S such
that i+ |P | − 1 ≤ π[i]. These notions lead us to the statement of the Property Indexing problem.

Problem (Property Indexing).
Input: A string S of length n over an alphabet Σ and an array π representing a property Π.
Queries: For a given pattern string P of length m, compute |Occπ(P, S)| or report all elements of
Occπ(P, S).

Let us consider an indexed family S = (Sj , πj)
k
j=1 of strings Sj with properties πj . For a string P and

an index i, by
CountS(P, i) = |{j : i ∈ Occπj (P, Sj)}|

we denote the total number of occurrences of P at position i in the strings S1, . . . , Sk that respect the
properties.

A weighted sequence X = x1, x2, . . . , xn of length |X| = n over an alphabet Σ is a sequence of sets of
pairs of the form xi = {(c, p

(X)
i (c)) : c ∈ Σ}. Here, p(X)

i (c) is the occurrence probability of the letter c at
the position i ∈ {1, . . . , n}. These values are non-negative and sum up to 1 for a given i. An example of a
weighted sequence is shown in Table 1 (running example).

The probability of matching of a string P at position i of a weighted sequence X equals

ProbX(P, i) =

|P |∏

j=1

p
(X)
i+j−1(P [j]).

4

i 1 2 3 4 5 6
p
(X)
i (A) 1 1

2
3
4

4
5

1
2

1
4

p
(X)
i (B) 0 1

2
1
4

1
5

1
2

3
4

Table 1: A weighted sequence X of length 6 over Σ = {A, B}.

We say that a string P occurs in X at position i if ProbX(P, i) ≥ 1
z . We also say that P is a solid factor of

X (starting, occurring) at position i. By Occ 1
z
(P,X) we denote the set of all positions where P occurs in

X. The main problem in this scope can be formulated as follows.

Problem (Weighted Indexing).
Input: A weighted sequence X of length n over an alphabet Σ and a threshold 1

z .
Queries: For a given pattern string P of length m, check if Occ 1

z
(P,X) �= ∅ (decision query), compute

|Occ 1
z
(P,X)| (counting query), or report all elements of Occ 1

z
(P,X) (reporting query).

Our model of computations. We assume the word-RAM model with word size w = Ω(log(nz)). We
consider the log-probability model of representations of weighted sequences in which probabilities can be
multiplied exactly in O(1) time. Without loss of generality, we further assume that each position contains at
most 	z
 characters with non-zero probability. This is because characters c with p

(X)
i (c) < 1

z can be merged
into a dummy character $i. Consequently, a weighted sequence of length n has a representation using O(nz)
space. We further assume that Σ ⊆ {1, . . . ,O(nz)} consists of positive integers.

3. Existence of an Equivalent Family of Strings

In the definition below, we formally characterise a string family that we aim to construct.

Definition 1. We say that an indexed family S = (Sj , πj)
�z�
j=1 containing strings Sj of length n is a z-

estimation of a weighted sequence X of length n if and only if, for every string P and position i ∈ {1, . . . , n},
CountS(P, i) = �ProbX(P, i)z�.

Note that a z-estimation S of a weighted sequence X carries the information about all solid factors of
X: a string P occurs in X at position i if and only if it occurs at position i in at least one of the strings
Sj respecting its property πj . This observation will be used in the construction of our weighted index.
Moreover, the value CountS(P, i) provides a good estimation of the probability ProbX(P, i):

1
zCountS(P, i) ≤ ProbX(P, i) < 1

zCountS(P, i) +
1
z .

This will let us design an approximate weighted index. An example of a z-estimation is shown in Table 2
(running example). Below, we prove the existence of a z-estimation. An efficient construction is deferred to
the next section.

For a fixed weighted sequence X of length n and a threshold z, we can use compact notation:

ti(P) = �ProbX(P, i)z� and mi(P) = ti(P)−
∑

c∈Σ

ti(Pc)

for i = 1, . . . , n. (Note that Pc denotes the concatenation of P and the letter c.) We start with an equivalent
characterisation of z-estimations of X.

Observation 3.1. A family S = (Sj , πj)
�z�
j=1 is a z-estimation of X if and only if for each position i, every

string P is a prefix of exactly ti(P) strings Sj [i . . πj [i]].

Next, we prove that this condition uniquely defines the multiset

{Sj [i . . πj [i]] : 1 ≤ j ≤ �z�}.
5

i 1 2 3 4 5 6
S1[i] A A A A A A

π1[i] 2 2 3 4 5 6
S2[i] A A A A A B

π2[i] 4 4 5 6 6 6
S3[i] A B A A B B

π3[i] 4 4 5 6 6 6
S4[i] A B B B B B

π4[i] 2 2 3 3 5 6

string P ProbX(P, 3) {j : 3 ∈ Occπj (P, Sj)}
ε 1 1, 2, 3, 4
A 0.75 1, 2, 3
AA 0.6 2, 3
AAA 0.3 2
AAB 0.3 3
B 0.25 4

Table 2: To the left: a 4-estimation S of the weighted sequence X from Table 1. To the right: all the strings that occur at
position i = 3 in X together with the probabilities of occurrence in X and occurrences in S.

Lemma 3.2. There exists a unique multiset Mi such that each string P is a prefix of exactly ti(P) strings
in Mi.

Proof. Consider a multiset Mi satisfying the required condition and an arbitrary string P . For each c ∈ Σ,
there are ti(Pc) strings in Mi with the prefix P followed by a letter c. In the remaining ti(P)−∑

c∈Σ ti(Pc)
strings in Mi, the prefix P it is not followed by any letter. Thus, the multiplicity of P in Mi must be
mi(P). This implies uniqueness of Mi.

Note that ti(P) ≥∑
c∈Σ ti(Pc) because ProbX(P, i) ≥∑

c∈Σ ProbX(Pc, i) and the function x �→ �p · x� is
superadditive3. Consequently, we may define a multiset Mi using values mi(P) as multiplicities. It remains
to prove that this multiset satisfies the required condition. For this, we consider strings P in the order
of decreasing lengths. The base case is trivial because strings P longer than X satisfy ProbX(P, i) = 0.
The inductive hypothesis yields that, for each c ∈ Σ, the string Pc is a prefix of ti(Pc) strings in Mi.
Consequently, the string P is a prefix of mi(P) +

∑
c∈Σ ti(Pc) = ti(P) strings in Mi, as claimed.

Observe that in a z-estimation, Sj [i . . πj [i]] can be obtained from Sj [i+ 1 . . πj [i+ 1]] by inserting a
leading letter and dropping some number of trailing letters. (This includes dropping the newly inserted
letter if Sj [i . . πj [i]] = ε.) The relation between these strings can be formalised as follows.

Definition 2. We say that P ∈Mi is compatible with Q ∈Mi+1 if P = ε or P = cQ′ for some letter c ∈ Σ
and a prefix Q′ of Q.

Thus, if a z-estimation exists, it yields a perfect matching between Mi+1 and Mi such that the matched
strings are compatible. We prove that such a matching exists unconditionally. For an example, see Table 3
(running example).

3A function f(x) is superadditive if f(x+ y) ≥ f(x) + f(y) for all arguments x and y.

index M1 M2 M3 M4 M5 M6

1 AA — A — A — A — A — A

2 AAAA — AAA — AAA — AAB — AB — B

3 ABAA — BAA — AAB — ABB — BB — B

4 AB — B — B — ε — B — B

Table 3: The sets Mi for the weighted sequence X from Table 1 with z = 4. Perfect matchings of compatible strings between
Mi and Mi+1 are marked. The first letters of the strings form the 4-estimation from Table 2 and the length of the j-th string
in Mi corresponds to πj [i]− i+ 1.

6

Lemma 3.3. For every 1 ≤ i ≤ n− 1, there exists a one-to-one correspondence from Mi+1 into Mi such
that each Q ∈Mi+1 is matched with a compatible P ∈Mi.

Proof. We greedily transform each Q ∈Mi+1 into the longest compatible P ∈Mi which is still unmatched.
If no compatible P ∈ Mi is available, we leave Q unmatched. We will show that all strings Q ∈ Mi+1 are
actually matched at the end of this process. Since |Mi| = ti(ε) = �z� = ti+1(ε) = |Mi+1|, it suffices to
prove that no P ∈Mi is left unmatched.

An empty string P ∈ Mi is compatible with every Q ∈ Mi+1, so it cannot be left unmatched. Thus,
suppose that P = cQ′ ∈ Mi, for some c ∈ Σ and string Q′, is left unmatched. Let us denote by R the
multiset containing all strings Q ∈ Mi+1 compatible with P , i.e., starting with Q′. We further define L as
the multiset containing all strings P ′ ∈Mi that start with c′Q′ for some c′ ∈ Σ. The construction procedure
guarantees that each Q ∈ R has been matched to a compatible P ′ satisfying |P ′| ≥ |P |; such P ′ must belong
to the multiset L.

Observe that |L| = ∑
c′∈Σ ti(c

′Q′) ≤ ti+1(Q
′) = |R| because ProbX(Q′, i + 1) =

∑
c′∈Σ ProbX(c′Q′, i)

and the function x �→ �xz� is superadditive. Consequently, each P ′ ∈ L must be matched to some Q ∈ R.
Since P ∈ L is unmatched, we obtain a contradiction.

Due to Lemma 3.3, we can index the strings Mi = {Pj,i : 1 ≤ j ≤ �z�} so that we have �z� chains
Pj,1, . . . , Pj,n, Pj,n+1 = ε with compatible subsequent strings. It is easy to transform each such chain to
a string Sj with property πj so that Sj [i . . πj [i]] = Pj,i. The value Sj [i] is not specified if Pj,i = ε; in
this case, we may set Sj [i] to an arbitrary letter. The resulting family S = (Sj , πj)

�z�
j=1 clearly satisfies the

characterisation of Observation 3.1, which completes the proof of the following result.

Theorem 3.4. Each weighted sequence has a z-estimation.

4. Efficient Implementation

In this section, we describe an algorithm which, given a weighted sequence X of length n and a threshold
z, constructs a z-estimation of X in O(nz) time.

At a high level, we follow the existential construction of Section 3. We start with Mn+1, which consists
of �z� copies of ε, and we iterate over positions i = n, . . . , 1 transforming Mi+1 to Mi so that each
Pj,i+1 ∈ Mi+1 is replaced with a compatible string Pj,i ∈ Mi. We simultaneously build the z-estimation
S = (Sj , πj)

�z�
j=1. More precisely, we set πj [i] to i + |Pj,i| − 1 and Sj [i] to the leading letter of Pj,i, or an

arbitrary letter if Pj,i = ε.
Each transformation follows the lines of the procedure described in the proof of Lemma 3.3. However, our

implementation uses solid factor tries in order to achieve O(z) amortised running time. We introduce this
auxiliary data structure in Section 4.1. Next, in Sections 4.2 and 4.3, we provide efficient implementations
for constant-sized and integer alphabets, respectively.

4.1. Solid Factor Tries
Recall that a trie is a rooted tree in which each node represents a string; the string corresponding to node

u, called the label of u, is denoted L(u). The root has label ε, and the parent of a node u with L(u) = Pc
for c ∈ Σ is the node v with L(v) = P ; the edge from P to Pc is labelled with c. Observe that the family of
solid factors occurring at position i (i.e., strings P such that ti(P) > 0) is closed with respect to prefixes.
Thus, we can define a solid factor trie Ti whose nodes represent these factors.

We store Mi using tokens in Ti: each Pj,i ∈ Mi is represented by a token (with identifier j) located at
the node u ∈ Ti with L(u) = Pj,i. For each token j, we store the node u ∈ Ti with L(u) = Pj,i and the
probability ProbX(Pj,i, i). Observe that the number of tokens at the node u is mi(L(u)) and the number
of tokens in the subtree rooted at u is ti(L(u)). To simplify notation, we denote mi(u) = mi(L(u)) and
ti(u) = ti(L(u)). The observation below follows from the properties of mi and ti; for an example, see
Figure 1 (running example).

Observation 4.1. The trie Ti contains �z� tokens in total and every leaf contains a token.

7

1

2
A

A

A

4

3
A

A

B

A

T1

1

2
A

A

A

4

3
A

A

B

T2

1

2
A

3
B

A

A

4
B

T3

4

1

2
B

A

3
B

B

A

T4

1

2
B

A

4

3
B

B

T5

1
A

2,3,4
B

T6

Figure 1: The solid factor tries for the weighted sequence X from Table 1 with z = 4. Tokens in the nodes are numbered
according to the order from Table 3.

4.2. Transformation Algorithm for Alphabets of Constant Size
For each index i, we transform the solid factor trie Ti+1 to Ti and move the tokens so that Mi+1 is

transformed to Mi. Before we describe the implementation, let us formulate a relation between Ti and
Ti+1.

Observation 4.2. If u ∈ Ti has a non-empty label, L(u) = cP , for some c ∈ Σ, then Ti+1 contains a node
v with label L(v) = P .

Consequently, each non-root node u ∈ Ti has a corresponding node v ∈ Ti+1. In our construction
algorithm, we sometimes reuse v as u; otherwise, we create u as a copy of v. More precisely, at position i

we distinguish a heavy letter h ∈ Σ maximising probability p
(X)
i (c) over c ∈ Σ. We reuse v if L(u) starts

with h and create a copy of v otherwise.
This approach is implemented as follows. First, we create the root of Ti and attach Ti+1 to the new root

using an edge with label h. The resulting subtree, denoted Ti,h, contains all tokens present in Ti+1 and may
contain nodes v with ti(v) = 0 (we piggyback trimming them to the last phase when tokens are moved).
Next, we consider all the remaining letters c ∈ Σ \ {h}. For each such letter, we shall build a subtree Ti,c

representing solid factors occurring at position i and starting with letter c. We simultaneously build and
traverse Ti,c: we construct the children of a node u while visiting u for the first time. While at node u with
L(u) = cP , we maintain the probability ProbX(cP, i) and a pointer to the corresponding node v ∈ Ti,h such
that L(v) = hP . To construct the children of u, we simply compute ti(cPc′) for each c′ ∈ Σ. Moreover, we
determine mi(cP) and place mi(cP) token requests at node v, announcing that mi(cP) tokens are needed
at u.

Finally, we move the tokens and trim the redundant nodes of Ti,h. We process the tokens in an arbitrary
order. Consider a token located at node v of Ti,h with L(v) = hQ (the token used to represent Q ∈Mi+1).
Recall that we store ProbX(Q, i+ 1) and ProbX(L(v), i) is that number multiplied by p

(X)
i (h). We traverse

the path from v towards the root of Ti maintaining the probability ProbX(L(v′), i) at the currently visited
node v′. First, we check if there is any token request at v′. If so, we comply with the request, remove it, and
terminate the traversal. Otherwise, we compute mi(v

′) using the probability. If v′ contains less than mi(v
′)

already processed tokens, we place our token at v′ and terminate the traversal. Otherwise, we proceed to
the parent of v′. If v′ is a leaf and does not contain any (processed or unprocessed) tokens, we remove v′

from Ti,h. If the traversal reaches the root of Ti, we place the token unconditionally at the root. For an
example, see Figure 2 (running example).

4.2.1. Correctness
We shall prove that the procedure described above correctly computes Ti and Mi. Due to Observa-

tion 4.2, each node of the trie Ti except for the root is uniquely determined by the corresponding node of the
trie Ti+1 and a letter c. The root of Ti is created explicitly. Each node of Ti+1 is reused as its corresponding

8

4

1

2

B, 3
4

A, 1
2

3

B, 3
4

B, 1
2

A, 4
5

T4

4

1

2

B, 3
4

A, 1
2

3

B, 3
4

B, 1
2

A, 4
5

A, 3
4 B, 1

4

∗

∗ ∗

∗

T3,A and T3,B

1

2

A, 1
2

3

B, 1
2

A, 4
5

A, 3
4

4

B, 1
4

T3

Figure 2: Transformation between T4 to T3 from the example in Figure 1. To the left: the trie T4 with letter probabilities (in
blue). In the middle: the trie T4 is copied as T3,A, whereas T3,B is created using a backtracking algorithm (in this case, it has
only one node). Asterisks denote nodes that require tokens. The token request is shown with an arrow. To the right: the final
T3 created after the tokens are moved up and redundant nodes are removed. Note that the tokens number 1 and 4 could have
been interchanged depending on the order of processing.

node in Ti for the heavy letter h (provided that such a node exists in Ti), and for each of the remaining
letters we create its copies in a recursive descent. Hence, Ti contains all the necessary nodes.

We only need to prove that no redundant nodes v (with ti(v) = 0) are left in Ti,h. Suppose that
v is the deepest such node; clearly, it must be a leaf of Ti,h. We did not place the token at v because
mi(v) ≤ ti(v) = 0. On the other hand, tokens were present in all leaves of Ti+1, so the subtree of v in
Ti,h initially contained a token. Let us consider the moment of moving the last token in this subtree. If
the token travelled further to the parent of v, we would have removed v. Thus, the token must have been
placed at a node u complying with a token request at v or its descendant. However, in that case we have
ti(v) ≥ ti(u) ≥ mi(u) > 0, because h is the heavy letter. This contradiction concludes the proof.

We proceed to prove that the final configuration of tokens represents Mi. For this, we observe that our
algorithm simulates the greedy procedure in the proof of Lemma 3.3. In other words, we shall prove that
we transformed Pj,i+1 ∈ Mi+1 to the longest compatible element of Mi which was still unmatched when
we processed token j. Suppose that there was an unmatched string P ′ ∈Mi longer than Pj,i. Let P ′ = cQ′

and observe that, when processing token j, we visited the node v′ with L(v′) = hQ′. If c = h, then we would
have less than mi(v

′) processed tokens at v′. Otherwise, there must have been a token request at v′. In
either event, we would not have proceeded to the parent of v′. This contradiction concludes the proof.

4.2.2. Running Time Analysis
It remains to show that the total running time of the n transformations is O(nz). In a single iteration,

processing the j-th token, i.e., transforming Pj,i+1 to Pj,i, we visited at most 1+ |Pj,i+1|−|Pj,i| nodes of Ti,h

and deleted some of them. Across all iterations this is O(n) per token and O(nz) in total. The remaining
operations (construction of subtrees Ti,c) take O(|Σ|) = O(1) time per created node. The final tree T1 has
O(nz) nodes and the overall number of deleted nodes is O(nz). Hence, the total number of created nodes
is also O(nz).

This concludes the proof that the running time is O(nz). Hence, we achieve the main goal of this section.

Proposition 4.3. For a weighted sequence of length n over a constant-sized alphabet, one can construct a
z-estimation in O(nz) time.

4.3. Transformation Algorithm for Integer Alphabets
For integer alphabets, the running time of the procedure above may increase to O(nz|Σ|) for the following

two reasons:

1. Having created a node u with L(u) = cP , we compute ti(cPc′) for c′ ∈ Σ.

9

2. Moving the token through a node v′ with L(v′) = hP , we compute mi(v
′).

Below, we modify the algorithm so that it avoids these bottlenecks.
Before we run the algorithm, we preprocess the input weighted sequence.

Fact 4.4 ([3, Section 4.2]). The weighted sequence X can be preprocessed in O(nz) time so that for any
position i and probability p ≥ 1

z , the characters {c : p
(X)
i (c) ≥ p} can be listed with O(1) amortised time

delay.

Now, having created a node u of Ti,c with L(u) = cP , we only process characters c′ for which a child u′

with L(u′) = cPc′ needs to be created. In other words, these are characters c′ such that ProbX(cPc′, i) ≥ 1
z

or, equivalently, p(X)
i+|cP |(c

′) ≥ 1
zProbX(cP,i) . This way, the construction of the subtrees Ti,c and the underlying

token requests takes O(1) time per node created.
On the other hand, to facilitate moving tokens, we explicitly store ti(v) for each node v of Ti. These

values are easily initialised while we build Ti,c, but for v ∈ Ti,h with L(v) = hP , some effort is needed
to update the stored value from ti+1(P) to ti(v) = ti(hP). This operation generalises trimming Ti,h (i.e.,
identifying nodes with ti(v) = 0), and we implement it while moving tokens.

In contrast to the case of constant-size alphabet, we move all tokens simultaneously, processing Ti,h in
a bottom-up fashion. Having processed a node v with L(v) = hP , we report the probability ProbX(hP, i),
the change ti+1(P)− ti(hP), as well as a collection of tokens from the subtree of v that need to be moved to
the parent of v (or above). We say that the output is trivial if the change is 0 and the collection is empty.

Observe that if a node v does not contain any token and if processing its children results in trivial
outputs, then processing v also yields a trivial output. Hence, we do not need to process v in that case.
In other words, we process a node only if it contains a token or processing one of its children reported a
non-trivial output.

The operation of processing a node v with L(v) = hP is implemented as follows. First, we retrieve
ProbX(hP, i): either directly from a token at v or based on ProbX(hPc, i) (if processing a child v′ with
L(v′) = hPc resulted in a non-trivial output). Next, we use this probability to determine ti(v) = ti(hP), and
we store this value at v, keeping the change so that it can be reported. Then, we compute mi(v) = mi(hP):
we start from mi+1(P) (equal to the number of tokens at v) and update this value based on the changes
ti+1(P)− ti(hP) and ti+1(Pc)− ti(hPc) for children v′ of v with L(v′) = hPc. As the last step, we actually
process the tokens: we make a single collection C out of the tokens stored at v and reported by the children
of v, handle the token requests at v, and place mi(v) tokens at v. The remaining tokens are forwarded to
the parent of v.

For a single node v, the running time of the procedure above is proportional to |C| plus the number
of children of v with non-trivial output. The latter can be accounted to processing these children, so the
amortised time is O(max(1, |C|)). If |C| = 0, then ti must have decreased at v due to a token request in
the subtree of v. Hence, processing such a node can be accounted to the creation of a copy of v during the
construction of the trees Ti,c. On the other hand, the total size of collections C is proportional to the total
distance traversed by tokens.

At this point we can finally use the amortisation designed for |Σ| = O(1) to prove that overall running
time across all iterations i is O(nz).

Theorem 4.5. For a weighted sequence of length n over an integer alphabet, one can construct a z-estimation
in O(nz) time.

5. Property Indexing Made Simple

Most known solutions to the Property Indexing problem make use of suffix trees; our solution makes use
of suffix trees as well. Thus, below we recall the basics on suffix trees.

10

5.1. Suffix Trees
The suffix tree T of a non-empty string S of length n is a compact trie representing all suffixes of S.

The nodes of the trie which become nodes of the suffix tree (i.e., branching nodes, terminal nodes, and the
root) are called explicit nodes, while the other nodes are called implicit. The edges out-going from a node
are numbered with their first letters and can be stored, e.g., in a list.

Each edge of the suffix tree can be viewed as an upward maximal path of implicit nodes starting with an
explicit node. Moreover, each node belongs to a unique path of that kind. Then, each node of the trie can
be represented in the suffix tree by the edge it belongs to and an index within the corresponding path. We
use L(v) to denote the path-label of a node v, i.e., the concatenation of the edge labels along the path from
the root to v, and denote depth(v) = |L(v)|. The terminal node corresponding to suffix S[i . . n] is marked
with the index i. Each string P occurring in S is uniquely represented by either an explicit or an implicit
node of T , called the locus of P . The suffix link of a node v with path-label L(v) = cP is a pointer to the
node path-labelled P , where c ∈ Σ is a single letter and P is a string. The suffix link of every non-root
explicit node v leads to an explicit node of T .

The suffix tree of a string of length n over an integer alphabet Σ can be constructed in O(n) time [19, 20].

5.2. Property Suffix Tree Construction
In analogy to the suffix tree, given a string S with property Π represented by an array π, we define the

property suffix tree of (S, π) as the compact trie representing strings S[i . . π[i]]. Each terminal node v stores
a list Lv containing all indices i such that S[i . . π[i]] is the path-label of v. This way, Occπ(P, S) can be
retrieved by locating the locus of P and writing down indices in lists Lv for all descendants v of the locus.

For a given string S, we construct the property suffix tree with respect to property Π from the suffix
tree of S. This process is implemented in three steps. First, for each index i we determine the locus vi of
S[i . . π[i]]. Next, we make all these loci explicit to create new terminal nodes. Finally, we remove nodes
which should no longer exist in the tree or no longer be explicit.

Our approach to the first phase is similar to Ukkonen’s suffix tree construction [18]. We are to determine
the locus vi of S[i . . π[i]]. For this, we shall traverse the suffix tree starting from an explicit node ui

guaranteed to be an ancestor of vi. We obtain ui by following the suffix link of the nearest explicit ancestor
of vi−1 (vi−1 itself if it is explicit). If i = 1 or the explicit ancestor of vi−1 is the root, we simply set ui as
the root. Since π[i] ≥ π[i− 1] for i > 1, ui is indeed an ancestor of vi. Therefore, we can progress down the
edges in the suffix tree from ui, keeping track of the current depth until the desired depth is reached. We
know that vi exists in the tree, so it suffices to inspect only the first letter of each traversed edge.

This procedure results in the sequence of loci (vi)ni=1. Let us analyse its time complexity. In the i-th
iteration we traverse: one edge to reach ui, then several edges to a node whose suffix link is ui+1, and
finally at most one edge to reach vi. Hence, the number of edges traversed in this iteration is at most
2 + |L(u′)| − |L(ui)| ≤ 3 + |L(ui+1)| − |L(ui)|, which gives O(n) overall.

The remaining steps of the algorithm are performed as follows. We sort the loci vi by the path label
length π[i]− i+1 and group them based on the edge where they are located using bucket sort. This lets us
appropriately subdivide each edge and compute the lists Lv for the new terminal nodes. Finally, we trim
the tree: we traverse the tree bottom-up and remove or dissolve nodes which should no longer be explicit.
These steps clearly work in O(n) time.

5.3. The Case of Integer Alphabet
The above construction also works for an integer alphabet, however, it requires traversing the suffix tree of

S downwards. For integer alphabets, one would need to use perfect hashing [21] to efficiently index children
of a node and, thus, introduce randomisation. This can be avoided with a different trimming algorithm
based on the weighted ancestor problem. In this problem, introduced by Farach and Muthukrishnan [22]
(see also [23]), we consider a rooted tree T with an integer weight function μ defined on the nodes. We
require that the weight of the root is zero and the weight of any other node is strictly larger than the weight
of its parent. A weighted ancestor query, given a node v and an integer value � ≤ μ(v), asks for the highest
ancestor u of v such that μ(u) ≥ �, i.e., such an ancestor u that μ(u) ≥ � and μ(u) is smallest possible.

11

We define the weight of a node of the suffix tree of S as the length of the string it represents. Thus a
weighted ancestor query can be used for the terminal node corresponding to S[i . . n] to and mark the node
that corresponds to S[i . . π[i]]. The remaining steps of the algorithm stay the same.

In the online setting, one can answer weighted ancestor queries in O(log log n) time after O(n)-time
and space preprocessing [24] (see also [22, 25]). In the special case of the weighted tree being a suffix tree
of a string, they can be answered in O(1) time with a data structure of O(n) space [23] (however, the
preprocessing time of this data structure is not stated in the paper). We use an algorithm from [26] where
it is shown that in an offline setting O(n) such queries can be answered in O(n) time.

Counting and reporting queries on the property suffix tree are answered as on a suffix tree. We arrive
at the following theorem.

Theorem 5.1. For a string S and property Π represented with a table π, the property suffix tree can be
computed in O(n) time. Moreover, this data structure can answer property indexing queries in O(m) time
(counting) or O(m+ |Occπ(P, S)|) time (reporting).

6. Weighted Index

Let us first describe our data structure for the Weighted Indexing problem. For a weighted sequence X

and a threshold z, we construct a z-estimation S = (Sj , πj)
�z�
j=1 of X, concatenate all the strings and shift the

properties so that a single string S with property π is obtained. Our weighted index is the property suffix
tree of S and π. In the property suffix tree, each terminal node is labelled by the list of all the occurrences
of the corresponding string in S respecting its property. We shift these indices so that they describe the
indices within the respective strings Sj .

We assume left-to-right orientation of the children of each node (e.g., lexicographic). A global occurrence
list OL is stored being a concatenation of the lists of occurrences in all the terminal nodes in pre-order.
Each node v stores, as OL(v), the occurrence list of terminal nodes in its subtree represented as a pair of
pointers to elements of the global list OL. We enhance the occurrence list OL by a data structure for the
following coloured range listing problem.

Problem (Coloured range listing). Preprocess a sequence A[1 . . N] of elements from [1 . .M] so that, given
a range A[i . . j], one can list all the distinct elements in that range.

Fact 6.1 (Muthukrishnan [27]). A data structure for the coloured range listing problem of O(N) size can
be constructed in O(N +M) time and answers queries in O(k + 1) time where k is the number of distinct
elements reported.

For all nodes we also compute the following values (for the purpose of this computation we replace each
leaf v with |OL(v)| bogus leaves with single occurrences).

Fact 6.2 (Colour set size; Hui [28]). Given a rooted tree with N nodes whose L leaves have colours from
[1 . .M], in O(N +M) time one can find for each node u the number of distinct leaf colours in the subtree
of u.

The space complexity of the index is obviously O(nz), where n is the length of X. Theorems 4.5 and 5.1
show that the data structure can be constructed in O(nz) time. The resulting weighted index is very similar
to the one constructed in [1], even though the construction algorithm is very different.

By Definition 1, a string P occurs at position i in X if and only if it occurs at this position in at least
one of the strings. Thus, to check if Occ 1

z
(P,X) �= ∅, it suffices to traverse down the property suffix tree and

check if it contains an explicit or implicit node v corresponding to P . This search takes O(m) time, where
m = |P |. We can use Fact 6.2 to equip each explicit node with the number of distinct positions where the
string represented by the node occurs. This way, |Occ 1

z
(P,X)| can also be determined in O(m) time. With

the aid of the data structure for coloured range listing, we can also report Occ 1
z
(P,X) in time proportional

to the number of reported elements. We thus obtain the following result.

12

Theorem 6.3. For a weighted sequence X of length n over an integer alphabet and a threshold z, there is
a weighted index of O(nz) size that can be constructed in O(nz) time and answers decision and counting
queries in O(m) time and reporting queries in O(m+ |Occ 1

z
(P,X)|) time.

7. Applications of the Weighted Index

In this section we present two applications of the weighted index presented in Section 6. In both cases
we improve the time complexity of the previously known results by a factor of z log z. Let us denote our
weighted index over X by I.

7.1. Weighted Longest Common Prefixes and Weighted Prefix Table
For a weighted sequence X of length n and a pair of indices i, j, 1 ≤ i, j ≤ n, by wlcp(i, j) we denote the

length of the longest solid factor that occurs in X at both positions i and j. After some preprocessing our
weighted index allows to answer such queries in O(z) time.

Theorem 7.1. Given a weighted sequence X of length n, after O(nz)-time preprocessing we can answer
wlcp(i, j) queries for any 1 ≤ i, j ≤ n in O(z) time.

Proof. For each position i in X we precompute the list of terminal nodes L(i) of the weighted index I that
contain i in their occurrence lists. Prior to that, all terminal nodes are numbered in pre-order, and the
elements of L(i) are stored in this order. By construction through a z-estimation, |L(i)| ≤ z for each i.

Observe that wlcp(i, j) is the maximum depth of a lowest common ancestor (lca) of a terminal node in
L(i) and a terminal node in L(j). To determine this value, we merge the lists L(i) and L(j) according to the
pre-order. The claim below (Lemma 4.6 in [20]) implies that, computing wlcp(i, j), it suffices to consider
pairs of terminal nodes that are adjacent in the resulting list.

Claim. If l1, l2 and l3 are three nodes of a (compacted) trie such that l2 follows l1 and l3 follows l2 in
pre-order, then

depth(lca(l1, l3)) = min(depth(lca(l1, l2)), depth(lca(l2, l3))).

Merging two sorted lists, each of length at most z, takes O(z) time. Finally let us recall that lca-queries
in a tree can be answered in O(1) time after linear-time preprocessing [29, 30].

The weighted prefix table WPT [1 . . n] of X is defined as WPT [i] = wlcp(1, i); see [16]. As a consequence
of Theorem 7.1 we obtain an O(nz)-time algorithm for computing this table. It outperforms the algorithm
of [16], which works in O(nz2 log z) time.

Theorem 7.2. The weighted prefix table WPT of a given weighted sequence of length n can be computed in
O(nz) time.

7.2. Efficient Computation of Covers
A cover of a weighted sequence X is a string P whose occurrences as solid factors of X cover all

positions in X; see [10]. More formally, we define maxgap of an ordered set of integers A = {a1, . . . , ak}
(with a1 < . . . < ak) as

maxgap(A) = max{ai − ai−1 : i = 2, . . . , k}.
(Note that this definition extends directly to multisets.) Then P is a cover of X if and only if

1 ∈ Occ 1
z
(P,X) and maxgap(Occ 1

z
(P,X) ∪ {n+ 1}) ≤ |P |.

Note that the former condition means exactly that P is a solid prefix of X. An O(n)-time algorithm
computing a representation of all the covers of a weighted sequence under the assumption that z = O(1)
was presented in [10]. Using the results of [3] it could be improved to O(nz2 log z) time. Here we show an
algorithm that works in O(nz) time.

The algorithm of [10] uses a data structure (which we denote here by D) to store a multiset of elements
A from the set {2, . . . , n} allowing three operations:

13

1. initialisation with a given multiset of elements A;
2. computing maxgap(D) = maxgap(A ∪ {1, n+ 1}) for the currently stored multiset A;
3. removing a specified element from the currently stored multiset A.

The data structure has O(n) size, executes operation 1. in O(|A|+ n) time and supports operations 2. and
3. in constant time. It consists of: (1) an array C[2 . . n] that counts the multiplicity of each element in A;
(2) a list L that stores all distinct elements of A∪{1, n+1} in ascending order and retains its maxgap; and
(3) an array P [1 . . n+ 1] that stores, for each distinct element of A ∪ {1, n+ 1}, a pointer to its occurrence
in L.

The algorithm of [10], formulated in terms of our index I, works as follows. For a node v let D(v) be
the D-data structure storing the multiset OL(v) \ {1}. The path from the root to each terminal node that
represents a maximal solid prefix of X is traversed, and at each explicit node v the data structure D(v) is
computed. To this end, when we move from an explicit node v to its explicit child w on the path, from
D(v) we remove all elements from OL(w′) for w′ being explicit children of v other than w. Afterwards for
the node w we perform the following check, which we call cover-check(w): if maxgap(D(w)) ≤ depth(w),
report the covers being prefixes of L(w) of length [max(maxgap(D(w)), depth(v)+1)..depth(w)]. The whole
procedure works in O(nz2) time, as a single traversal works in linear time w.r.t. the size of the index and
there are at most z maximal solid prefixes of X.

Let us show how this algorithm can be implemented to run in O(nz) time. We will call an explicit
node of I a prefix node if it corresponds to a solid prefix of X. To implement the solution, it suffices for
each prefix node to compute the D-data structure and apply the cover-check routine. A prefix node will be
called branching if it has more than one child being a prefix node, and starting if it is the root or its parent
is branching. A maximal path going down the tree from a starting prefix node and passing only through
non-starting prefix nodes will be called a covering path. Such a path ends in the first branching node or in
a node corresponding to a maximal solid prefix. Considering the prefix node subtree of I, which contains at
most z leaves and, consequently, at most z − 1 branching nodes, we make the following easy but important
observation.

Observation 7.3. There are O(z) starting prefix nodes. There are O(z) covering paths and each prefix
node belongs to exactly one of them.

In the algorithm we compute the D-data structures for all starting prefix nodes (by first computing the
C-arrays) and then update the data structure efficiently along each covering path.

Lemma 7.4. D(v) for all starting prefix nodes v can be computed in O(nz) time.

Proof. We compute the C-arrays of the data structures for all the prefix nodes v from the bottom to the top,
storing them for starting prefix nodes only. In the end we shall construct the L-lists and P -arrays for the
starting prefix nodes, which takes O(nz) time as there are at most z starting prefix nodes (Observation 7.3).

For a terminal node v we initialise its C-array with OL(v) in O(|OL(v)|+ n) time.
For a non-branching prefix node v with prefix node child w, we take the C-array of the latter and insert

all elements of OL(w′) for the remaining explicit children w′ of v. The time complexity is proportional to
the sum of lengths of those lists OL(w′). Note that we do not need to store the C-array of w any more.

Finally, for a branching prefix node v we add up the counters of the C-arrays of all its prefix node children
and insert all elements of OL(w′) for the remaining explicit children w′ of v. This time the complexity is
proportional to the sum of lengths of the lists OL(w′) and n times the number of prefix node children.

Let us analyse the time complexity of the algorithm. Note that each element of the global list OL
will be added to some C-array at most once. Also when two or more C-arrays are added component-wise
at a branching prefix node, all of them correspond to starting prefix nodes and each starting prefix node
participates in such operation at most once. Moreover, note that we maintain exactly one array for each
covering path. This way, the total time and space complexity is O(nz).

Lemma 7.5. The values maxgap(D(v)) for all prefix nodes v can be computed in O(nz) time.

14

Proof. We first perform the computations of Lemma 7.4. Let us fix a starting prefix node. We compute its
maxgap and go along the covering path that it belongs to, maintaining the D-data structure. Every node
on the path (except for the last one) has exactly one prefix node child. Hence, when going from a prefix
node v to its child, prefix node w, we simply remove from D(v) the elements of OL(w′) for all the remaining
children w′ of v. This allows us to compute maxgap(D(w)).

In total each element of the global occurrence list OL will be removed from a D-data structure at most
once, which yields time complexity O(nz).

Theorem 7.6. A representation of size O(nz) of all covers of a weighted sequence X of length n can be
computed in O(nz) time. In particular, all shortest covers of X can be determined in O(nz) time.

Proof. To annotate all the covers on the edges of the index, we compute the maxgaps for all the prefix nodes
using Lemma 7.5 and then apply the constant-time cover-check routine for each of the nodes. As for the
shortest covers, there are at most z of them (as there are at most z different solid prefixes of X of a specified
length, each with probability of occurrence at least 1

z), so they can all be listed explicitly in O(nz) time and
space.

8. Approximate Weighted Index

Let us proceed to the solution of the Approximate Weighted Indexing problem. We are to answer queries
for a pattern P and a probability threshold 1

z′ and are allowed to report occurrences with probability ≥ 1
z′−ε,

for a given value of ε > 0. Let us recall that for constant-sized alphabets [15] solves this problem in O(1εnz
2)

space (with Ω(1εn
2z2) construction time) with O(m + |Occ 1

z′ −ε(P,X)|)-time queries, assuming that z′ ≤ z

holds in all queries. Our techniques lead to a substantial improvement over the complexities of this index.
Assume that the query is for a pattern P and a threshold 1

z′ . If 1
z′ ≤ ε, then the query is trivial as all

the positions in X can be reported. Henceforth, we assume that 1
z′ > ε.

Let us consider a z-estimation S for the weighted sequence with z = 1
ε . Let � =

⌊
z
z′
⌋
. By Definition 1,

we can return position i as an occurrence of P based on whether CountS(P, i) ≥ �; this is shown in the
following lemma.

Lemma 8.1. If CountS(P, i) ≥ �, then ProbX(P, i) ≥ 1
z′ − ε. If CountS(P, i) < �, then ProbX(P, i) < 1

z′ .

Proof. Assume that CountS(P, i) ≥ �. Then

ProbX(P, i) ≥ 1
zCountS(P, i) ≥ 1

z

⌊
z
z′
⌋ ≥ 1

z (
z
z′ − 1) = 1

z′ − ε.

Now assume that CountS(P, i) < �. As CountS(P, i) = �ProbX(P, i)z�, this concludes that ProbX(P, i)z < �,
which is equivalent to ProbX(P, i) < �

z = 1
z

⌊
z
z′
⌋ ≤ 1

z′ .

Thus our approximate weighted index for X is the weighted index for X constructed for z = 1
ε . To

obtain the desired accuracy, it suffices to find the node v in the property suffix tree that corresponds to P
and report all positions i in X such that there are at least

⌊
z
z′
⌋

leaves in the subtree of v labelled with the
position i. Let us show that this can be done by augmenting the weighted index by a data structure for
(top-k) document retrieval.

A version of the document retrieval problem (see [31, Section 4.4]) can be stated operationally as follows.
We are given a compact trie T with N leaves, each leaf labelled with a document number being a positive
integer up to N . (Usually, T is a suffix tree of a collection of documents.) Given a pattern P , let v be the
locus of P . Our goal is to report subsequent documents whose numbers occur most frequently in the leaves
of the subtree of v until the process of reporting is interrupted. In [31] a data structure of size O(N) is
shown that, given the node v, reports k top-scoring documents in O(k) time. The construction time of the
data structure is O(N logN).

We can augment our property suffix tree with this data structure with the document numbers being the
labels of terminals (we can create a separate leaf for each label). This gives N = O(nz) = O(nε). To find the
documents with at least � occurrences, we compute by doubling the smallest k such that the last of the top

15

k documents reported has less than � occurrences. The number of documents reported in the last step of the
doubling search will be at most 2|Occ 1

z′ −ε(P,X)| and the total number will not exceed 4|Occ 1
z′ −ε(P,X)|.

Theorem 8.2. For a weighted sequence of length n over an integer alphabet and parameter ε > 0, the
Approximate Weighted Indexing problem can be solved in O(nε) space with O(m + |Occ 1

z′ −ε(P,X)|)-time
queries. The construction time is O(nε log

n
ε).

9. Randomised Construction with Greater Space Usage

A symbol X[i] of a weighted sequence X can be interpreted as a probability distribution on Σ, and the
whole sequence X can be interpreted as a product distribution on strings of length n over Σ. In this setting,
if S ∼ X, i.e., S is a random string with distribution X, then, for any position i and string P , we have
P[S[i . . i+|P |−1] = P] = ProbX(P, i). This interpretation can be used to provide a randomised construction
of families S of strings with properties equivalent to the weighted sequence X in a certain sense, weaker
than the one used in Definition 1.

Lemma 9.1. There is a randomised algorithm which, given a weighted sequence X of length n and a
threshold parameter z, in O(nz log(nz)) time constructs a family S of k = O(z log(nz)) strings Sj with
properties πj such that CountS(P, i) > 0 if and only if ProbX(P, i) ≥ 1

z . It succeeds with high probability
(1− 1

(nz)c for arbitrarily large constant c).

Proof. We randomly sample k = 	(c+ 2)z ln(nz)
 strings S1, . . . , Sk. Formally, these are independent
random variables with distribution X. The properties πj are specified so that Sj [i . . πj [i]] is the longest
prefix of Sj [i . . n] with ProbX(Sj [i . . πj [i]], i) ≥ 1

z .
This way, CountS(P, i) > 0 implies ProbX(P, i) ≥ 1

z . On the other hand, if ProbX(P, i) ≥ 1
z , then, since

P[Sj [i . . i+ |P | − 1] �= P] = 1− ProbX(P, i), we have:

P[CountS(P, i) = 0] = (1− ProbX(P, i))k ≤ exp(−kProbX(P, i)) ≤ exp(−(c+ 2) ln(nz)) = 1
(nz)c+2 .

There are at most n2z pairs (P, i) satisfying ProbX(P, i) ≥ 1
z (this is the bound for the sum of lengths of all

strings in the sets Mi from Section 3). Consequently, the resulting family has the required property with
probability at least 1− n2z

(nz)c+2 ≥ 1− 1
(nz)c .

We can directly use the same methods as in Section 6 to construct a weighted index from the family
of strings constructed in Lemma 9.1. The space complexity of the resulting index is worse than the one in
Theorem 6.3 by a factor of log(nz) and the construction is (Monte-Carlo) randomised.

Corollary 9.2. There is a data structure of size O(nz log(nz)) for the Weighted Indexing problem which
answers queries in optimal time. It can be constructed using a randomised O(nz log(nz))-time algorithm
which returns a valid weighted index with high probability.

The same type of construction can be applied to obtain an approximate weighted index. To this end, we
need a stronger equivalence property of a string family and a greater number of sampled strings to satisfy
this property.

Lemma 9.3. There is a randomised algorithm which, given a weighted sequence X of length n and a
parameter ε > 0, in O(n

ε2 log(
n
ε)) time constructs a family S of k = O(1

ε2 log(
n
ε)) strings Sj with properties

πj such that |ProbX(P, i) − 1
kCountS(P, i)| < ε for every position i and string P . It succeeds with high

probability (1− (ε
n)

c for arbitrarily large constant c).

Proof. We randomly sample k =
⌈
(c+ 2) 1

ε2 ln
n
ε

⌉
strings S1, . . . , Sk. The properties πj are so that Sj [i . . πj [i]]

is the longest prefix of Sj [i . . n] such that ProbX(Sj [i . . πj [i]], i) ≥ ε.

16

Observe that if ProbX(P, i) < ε, then CountS(P, i) = 0. On the other hand, if ProbX(P, i) ≥ ε, then
CountS(P, i) ∼ Bin(k,ProbX(P, i)). Consequently, Hoeffding’s inequality [32] implies

P[|ProbX(P, i)− 1
kCountS(P, i)| > ε] ≤ 2e−ε2k = 2e−(c+2) ln

n
ε ≤ 2(ε

n)
c+2.

There are at most n2

ε such pairs (P, i), so the family S satisfies the required condition with probability at
least 1− (ε

n)
c, as claimed.

We can use this family of strings to construct an approximate weighted index using top-k document
retrieval just as in Section 8. We arrive at the following construction with space complexity greater than
the one from Theorem 8.2 by a factor of 1

ε log
n
ε (and the construction is randomised).

Corollary 9.4. There is a data structure of size O(n
ε2 log

n
ε) which solves the Approximate Weighted Indexing

problem with O(m+|Occ 1
z′ −ε(P,X)|) query time. It can be constructed using a randomised O(n

ε2 log
2 n

ε)-time
algorithm which returns a valid approximate weighted index with high probability.

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500 4000

E
la

ps
ed

 ti
m

e
[s

]

Sequence length [KB]

z=16
z=8
z=4
z=2

(a) δ = 1%

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500 4000

E
la

ps
ed

 ti
m

e
[s

]

Sequence length [KB]

z=16
z=8
z=4
z=2

(b) δ = 5%

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500 4000

E
la

ps
ed

 ti
m

e
[s

]

Sequence length [KB]

z=16
z=8
z=4
z=2

(c) δ = 10%

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500 4000

E
la

ps
ed

 ti
m

e
[s

]

Sequence length [KB]

z=16
z=8
z=4
z=2

(d) δ = 20%

Figure 3: Elapsed time on synthetic weighted DNA sequences of length ranging from 125,000 to 4,000,000 with different
degeneracy percentages.

17

10. Experimental Results

We have implemented the algorithm described in Section 6 for constructing the Weighted Index. The
program has been implemented in the C++ programming language and developed under the GNU/Linux
operating system. The input parameters are a weighted sequence of length n over an alphabet of size σ,
represented by an n× σ matrix, and a probability threshold 1

z . The output of our program is the Weighted
Index. Our implementation supports decision, counting, and reporting variants of queries; however, only
decision operations were implemented in worst-case optimal time. We have validated our implementation
for correctness against several known weighted pattern matching algorithms [6, 8, 9]. The source code
is distributed at https://bitbucket.org/kociumaka/weighted_index under the GNU General Public
License. All experiments have been conducted on a Desktop PC using one core of Intel Xeon CPU E5-2640
at 2.60GHz and 64GB of RAM. Our program has been compiled with g++ version 6.2.0 at optimisation level
3 (-O3).

Synthetic weighted DNA sequences. To evaluate the time and space performance of our implementation, we
first used synthetic weighted sequences over the DNA alphabet (σ = 4). (In most real-world applications,
weighted sequences are over the DNA alphabet.) The weighted sequences were of length ranging from

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
um

 m
em

or
y

us
ag

e
[G

B
]

Sequence length [KB]

z=16
z=8
z=4
z=2

(a) δ = 1%

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
um

 m
em

or
y

us
ag

e
[G

B
]

Sequence length [KB]

z=16
z=8
z=4
z=2

(b) δ = 5%

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
um

 m
em

or
y

us
ag

e
[G

B
]

Sequence length [KB]

z=16
z=8
z=4
z=2

(c) δ = 10%

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
um

 m
em

or
y

us
ag

e
[G

B
]

Sequence length [KB]

z=16
z=8
z=4
z=2

(d) δ = 20%

Figure 4: Peak memory usage on synthetic weighted DNA sequences of length ranging from 125,000 to 4,000,000 with different
degeneracy percentages.

18

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 500 1000 1500 2000 2500 3000 3500 4000

E
la

ps
ed

 ti
m

e
[s

]

Sequence length [KB]

(a) Elapsed time

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000 3500 4000

M
ax

im
um

 m
em

or
y

us
ag

e
[G

B
]

Sequence length [KB]

(b) Peak memory usage

Figure 5: Elapsed time and peak memory usage on real weighted DNA sequences of length ranging from 125,000 to 4,000,000
obtained from human chromosome 21.

125,000 to 4,000,000. For each length, four different degeneracy percentages, denoted by δ, were used: 1%,
5%, 10% and 20%: percentage of positions where at least two letters with positive probability exist. The
probability threshold was set to 1

2 ,
1
4 ,

1
8 and 1

16 . The results are plotted in Figure 3, for elapsed time, and in
Figure 4, for peak memory usage. It is evident that, for fixed z, the elapsed time and peak memory usage
grow linearly in n. It should not be difficult to see that, for fixed n, the elapsed time and peak memory
usage grow linearly in z. These results thus confirm fully our theoretical findings (see Theorem 6.3).

Real weighted DNA sequences. To further evaluate the time and space performance of our implementation,
we created real weighted DNA sequences by combining the Genome Reference Consortium Human Build 37
(GRCh37) with the variants obtained from the 1000 Genomes Project (October 2011 Integrated Variant Set
release) [33]. Specifically we made use of human chromosome 21 data. We randomly extracted fragments of
length ranging from 125,000 to 4,000,000 from the generated weighted sequence. The probability threshold
was set to 1

8 . The results are plotted in Figure 5. In both plots (elapsed time and peak memory usage) we
observe that the performance is analogous to the performance with the synthetic data; in particular to the
dataset with δ = 1%. This is because δ is found to be 0.7% in the weighted sequence of chromosome 21.

11. Final Remarks

In this article we presented an efficient index for Weighted Pattern Matching along with new combina-
torial insights into the nature of weighted sequences.

Our ideas can also be used to improve the solution for the Generalised Weighted Indexing problem
from [15]. The authors use a notion of special weighted sequences in which each position contains at most
one letter with a positive probability. (In this case, the assumption that the probabilities sum up to 1
at each position is waived.) In [15] the input weighted sequence is transformed using the reduction of [3]
into a special weighted sequence of length O(nz2 log z) that preserves the set of maximal solid factors. In
the special weighted sequence, a query for a pattern P under the probability threshold 1

z′ is answered in
O(m+m · |Occ 1

z′
(P,X)|) time.

Our z-estimation S can be transformed into a special weighted sequence of length O(nz) that also
preserves the set of solid factors. We simply concatenate the strings, taking the letter probabilities from the
respective positions in X, and split the concatenated parts with a zero-probability position. This gives a
more space-efficient reduction that can be used in the data structure of [15].

19

Corollary 11.1. For a weighted sequence of length n over an integer alphabet, the Generalised Weighted
Indexing problem can be solved with O(m+m · |Occ 1

z′
(P,X)|)-time queries with an index of size O(nz).

Acknowledgements

We thank an anonymous referee of a previous version of this article for the idea of a simple randomised
construction. We also thank Tsvi Kopelowitz for bringing our attention to the multitude of existing solutions
to the Property Indexing problem.
[1] C. Barton, T. Kociumaka, S. P. Pissis, J. Radoszewski, Efficient index for weighted sequences, in: R. Grossi, M. Lewenstein

(Eds.), 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016, Vol. 54 of LIPIcs, Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2016, pp. 4:1–4:13. doi:10.4230/LIPIcs.CPM.2016.4.

[2] C. C. Aggarwal, P. S. Yu, A survey of uncertain data algorithms and applications, IEEE Trans. Knowl. Data Eng. 21 (5)
(2009) 609–623. doi:10.1109/TKDE.2008.190.

[3] A. Amir, E. Chencinski, C. S. Iliopoulos, T. Kopelowitz, H. Zhang, Property matching and weighted matching, Theor.
Comput. Sci. 395 (2–3) (2008) 298–310. doi:10.1016/j.tcs.2008.01.006.

[4] M. Christodoulakis, C. S. Iliopoulos, L. Mouchard, K. Tsichlas, Pattern matching on weighted sequences, in: Algorithms
and Computational Methods for Biochemical and Evolutionary Networks, CompBioNets 2004, KCL publications, 2004.

[5] S. Rajasekaran, X. Jin, J. L. Spouge, The efficient computation of position-specific match scores with the fast Fourier
transform, J. Comput. Biol. 9 (1) (2002) 23–33. doi:10.1089/10665270252833172.

[6] T. Kociumaka, S. P. Pissis, J. Radoszewski, Pattern matching and consensus problems on weighted sequences and profiles,
Theory Comput. Syst. 63 (3) (2019) 506–542. doi:10.1007/s00224-018-9881-2.

[7] P. Charalampopoulos, C. S. Iliopoulos, S. P. Pissis, J. Radoszewski, On-line weighted pattern matching, Inf. Comput. 266
(2019) 49–59. doi:10.1016/j.ic.2019.01.001.

[8] C. Barton, C. Liu, S. P. Pissis, On-line pattern matching on uncertain sequences and applications, in: T. H. Chan, M. Li,
L. Wang (Eds.), 10th International Conference on Combinatorial Optimization and Applications, COCOA 2016, Vol.
10043 of LNCS, Springer, 2016, pp. 547–562. doi:10.1007/978-3-319-48749-6_40.

[9] C. Barton, C. Liu, S. P. Pissis, Fast average-case pattern matching on weighted sequences, Int. J. Found. Comput. Sci.
29 (8) (2018) 1331–1343. doi:10.1142/S0129054118430062.

[10] C. S. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, A. K. Tsakalidis, The weighted suffix tree: An
efficient data structure for handling molecular weighted sequences and its applications, Fundam. Inform. 71 (2–3) (2006)
259–277.
URL http://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-07

[11] C. S. Iliopoulos, M. S. Rahman, Faster index for property matching, Inf. Process. Lett. 105 (6) (2008) 218–223. doi:

10.1016/j.ipl.2007.09.004.
[12] M.-T. Juan, J.-J. Liu, Y.-L. Wang, Errata for "Faster index for property matching", Inf. Process. Lett. 109 (18) (2009)

1027–1029. doi:10.1016/j.ipl.2009.06.009.
[13] P. Charalampopoulos, C. S. Iliopoulos, C. Liu, S. P. Pissis, Property suffix array with applications, in: M. A. Bender,

M. Farach-Colton, M. A. Mosteiro (Eds.), 13th Latin American Symposium on Theoretical Informatics, LATIN 2018, Vol.
10807 of LNCS, Springer, 2018, pp. 290–302. doi:10.1007/978-3-319-77404-6_22.

[14] T. Kopelowitz, The property suffix tree with dynamic properties, Theor. Comput. Sci. 638 (2016) 44–51. doi:10.1016/j.
tcs.2016.02.033.

[15] S. Biswas, M. Patil, S. V. Thankachan, R. Shah, Probabilistic threshold indexing for uncertain strings, in: E. Pitoura,
S. Maabout, G. Koutrika, A. Marian, L. Tanca, I. Manolescu, K. Stefanidis (Eds.), 19th International Conference on
Extending Database Technology, EDBT 2016, OpenProceedings.org, 2016, pp. 401–412. doi:10.5441/002/edbt.2016.37.

[16] C. Barton, C. Liu, S. P. Pissis, Linear-time computation of prefix table for weighted strings & applications, Theor. Comput.
Sci. 656 (2016) 160–172. doi:10.1016/j.tcs.2016.04.029.

[17] T. Shibuya, Constructing the suffix tree of a tree with a large alphabet, IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E86-A (5) (2003) 1061–1066.
URL https://search.ieice.org/bin/summary.php?id=e86-a_5_1061

[18] E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (3) (1995) 249–260. doi:10.1007/BF01206331.
[19] M. Farach-Colton, P. Ferragina, S. Muthukrishnan, On the sorting-complexity of suffix tree construction, J. ACM 47 (6)

(2000) 987–1011. doi:10.1145/355541.355547.
[20] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on strings, Cambridge University Press, 2007. doi:10.1017/

cbo9780511546853.
[21] M. L. Fredman, J. Komlós, E. Szemerédi, Storing a sparse table with O(1) worst case access time, J. ACM 31 (3) (1984)

538–544. doi:10.1145/828.1884.
[22] M. Farach, S. Muthukrishnan, Perfect hashing for strings: Formalization and algorithms, in: D. S. Hirschberg, E. W.

Myers (Eds.), 7th Annual Symposium on Combinatorial Pattern Matching, Vol. 1075 of LNCS, Springer, 1996, pp. 130–
140. doi:10.1007/3-540-61258-0_11.

[23] P. Gawrychowski, M. Lewenstein, P. K. Nicholson, Weighted ancestors in suffix trees, in: A. S. Schulz, D. Wagner
(Eds.), 22th Annual European Symposium on Algorithms, ESA 2014, Vol. 8737 of LNCS, Springer, 2014, pp. 455–466.
doi:10.1007/978-3-662-44777-2_38.

20

[24] A. Amir, G. M. Landau, M. Lewenstein, D. Sokol, Dynamic text and static pattern matching, ACM Trans. Algorithms
3 (2) (2007) 19. doi:10.1145/1240233.1240242.

[25] D. E. Willard, Log-logarithmic worst-case range queries are possible in space Θ(N), Inf. Process. Lett. 17 (2) (1983) 81–84.
doi:10.1016/0020-0190(83)90075-3.

[26] T. Kociumaka, M. Kubica, J. Radoszewski, W. Rytter, T. Waleń, A linear time algorithm for seeds computation (2019).
arXiv:1107.2422v2.

[27] S. Muthukrishnan, Efficient algorithms for document retrieval problems, in: D. Eppstein (Ed.), 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2002, ACM/SIAM, 2002, pp. 657–666.
URL http://dl.acm.org/citation.cfm?id=545381.545469

[28] L. C. K. Hui, Color set size problem with application to string matching, in: A. Apostolico, M. Crochemore, Z. Galil,
U. Manber (Eds.), 3rd Annual Symposium on Combinatorial Pattern Matching, CPM 1992, Vol. 644 of LNCS, Springer,
1992, pp. 230–243. doi:10.1007/3-540-56024-6_19.

[29] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, P. Sumazin, Lowest common ancestors in trees and directed
acyclic graphs, J. Algorithms 57 (2) (2005) 75–94. doi:10.1016/j.jalgor.2005.08.001.

[30] D. Harel, R. E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.
doi:10.1137/0213024.

[31] G. Navarro, Y. Nekrich, Time-optimal top-k document retrieval, SIAM J. Comput. 46 (1) (2017) 80–113. doi:10.1137/

140998949.
[32] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc. 58 (301) (1963) 13–30.

doi:10.1080/01621459.1963.10500830.
[33] 1000 Genomes Project Consortium, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M. Kang, J. O. Korbel, J. L.

Marchini, S. McCarthy, G. A. McVean, G. R. Abecasis, A global reference for human genetic variation, Nature 526 (7571)
(2015) 68–74. doi:10.1038/nature15393.

21

