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Abstract
Given two strings S and T , each of length at most n, the longest common substring (LCS) problem
is to find a longest substring common to S and T . This is a classical problem in computer science
with an O(n)-time solution. In the fully dynamic setting, edit operations are allowed in either of the
two strings, and the problem is to find an LCS after each edit. We present the first solution to this
problem requiring sublinear time in n per edit operation. In particular, we show how to find an LCS
after each edit operation in Õ(n2/3) time, after Õ(n)-time and space preprocessing. 1

This line of research has been recently initiated in a somewhat restricted dynamic variant by
Amir et al. [SPIRE 2017]. More specifically, they presented an Õ(n)-sized data structure that returns
an LCS of the two strings after a single edit operation (that is reverted afterwards) in Õ(1) time.
At CPM 2018, three papers (Abedin et al., Funakoshi et al., and Urabe et al.) studied analogously
restricted dynamic variants of problems on strings. We show that the techniques we develop can
be applied to obtain fully dynamic algorithms for all of these variants. The only previously known
sublinear-time dynamic algorithms for problems on strings were for maintaining a dynamic collection
of strings for comparison queries and for pattern matching, with the most recent advances made by
Gawrychowski et al. [SODA 2018] and by Clifford et al. [STACS 2018].

As an intermediate problem we consider computing the solution for a string with a given set of
k edits, which leads us, in particular, to answering internal queries on a string. The input to such a
query is specified by a substring (or substrings) of a given string. Data structures for answering
internal string queries that were proposed by Kociumaka et al. [SODA 2015] and by Gagie et al.
[CCCG 2013] are used, along with new ones, based on ingredients such as the suffix tree, heavy-path
decomposition, orthogonal range queries, difference covers, and string periodicity.
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6:2 Longest Common Substring Made Fully Dynamic

1 Introduction

Given two strings S and T , each of length at most n, the longest common substring (LCS)
problem, also known as the longest common factor problem, is to find a longest substring
common to S and T . This is a classical problem in theoretical computer science. Knuth had
conjectured that the LCS problem was in Ω(n logn). In 1973 Weiner solved it in the optimal
O(n) time [49] designing a data structure that was later called the suffix tree (see also [21]).
Knuth declared Weiner’s algorithm the “Algorithm of the Year” [11]. Since O(n) time is
optimal for this problem, a series of studies have been dedicated in improving the working
space [37, 44]. The LCS problem has also been studied under Hamming and edit distance.
We refer the interested reader to [1, 43, 47, 16, 46, 12] and references therein.

In [43], Starikovskaya mentions that an answer to the LCS problem “is not robust and
can vary significantly when the input strings are changed even by one character”, implicitly
posing the following question: Can we compute an LCS after editing S or T in o(n) time?

I Example 1. The length of an LCS of S and T below is doubled when substitution S[4] := a
is performed. The next substitution, T [3] := b, halves the length of an LCS.

S = caabaaa

T = aaaaaab

S[4] := a S = caaaaaa

T = aaaaaab

T [3] := b S = caaaaaa

T = aabaaab

This question poses the challenge of dynamically updating the suffix tree in the presence of
edit operations (i.e. insertions, deletions and substitutions), which remains the main obstacle
for answering this type of questions.

Amir et al. [8] introduced a restricted dynamic variant, where any single edit operation is
allowed and is reverted afterwards. We call this problem LCS after One Edit. Amir et
al. presented an Õ(n)-sized data structure that can be constructed in Õ(n) time supporting
Õ(1)-time computation of an LCS, after one edit operation is applied on S. This work
initiated a new line of research on analogously restricted dynamic variants of problems
on strings [26, 27, 48]. Abedin et al. [3] improved the complexities of the data structure
proposed by Amir et al. [8] by logO(1) n factors. Two other restricted variants of the dynamic
LCS problem were considered by Amir and Boneh in [5]. In both variants substitutions
were allowed in one of the strings; one was of decremental nature and in the other one the
complexity was parameterized by the period of the static string.

In this paper we make substantial progress: we show a strongly sublinear-time solution
for the general version of the problem, namely, the fully dynamic case of the LCS problem.
Given two strings S and T , the problem is to answer the following type of queries in an
on-line manner: perform an edit operation (substitution, insertion, or deletion) on S or on T
and then return an LCS of the new S and T . We call this problem Fully Dynamic LCS.

Below we mention some of the known results on dynamic problems on strings.

Dynamic Pattern Matching. Finding all occ occurrences of a pattern of length m in a
static text can be performed in the optimal O(m+ occ) time using suffix trees, which can be
constructed in linear time [49, 21]. In the fully dynamic setting, the problem is to compute
the new set of occurrences when allowing for edit operations anywhere on the text. A
considerable amount of work has been carried out on this problem [31, 22, 23]. The first
data structure with polylogarithmic update time and time-optimal queries was shown by
Sahinalp and Vishkin [41]. The update time was later improved by Alstrup et al. [4] at the
expense of slightly suboptimal query time. The state of the art is the data structure by
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Gawrychowski et al. [29] supporting time-optimal queries with O(log2 n) time for updates.
Clifford et al. [18] have recently shown upper and lower bounds for variants of exact matching
with wildcard characters, inner product, and Hamming distance.

Dynamic String Collection with Comparison. The problem is to maintain a dynamic
collection W of strings of total length n supporting the following operations: adding a string
to W, adding the concatenation of two strings from W to W, splitting a string from W and
adding the two residual strings in W , and returning the length of the longest common prefix
of two strings from W. This line of research was initiated by Sundar and Tarjan [45]. Data
structures supporting updates in polylogarithmic time were presented by Mehlhorn et al. [40]
and Alstrup et al. [4]. Finally, Gawrychowski et al. [30] proposed an optimal solution.

Longest Palindrome and Longest Lyndon Substring. A string is called palindrome if it
the same as its reverse. A string is called Lyndon if it is smaller lexicographically than all its
suffixes [38]. Computing a longest palindrome and a longest Lyndon substring of a string
after a single edit have been recently studied in [26] (see also [27]) and in [48], respectively.

Maintaining Repetitions. Squares are strings of the form XX. In [7], the authors show
how to maintain squares in a dynamic string S of length n in no(1) time per operation. A
modification of this algorithm, with the same time complexity per operation, allows them
to determine in Õ(1) time whether a queried substring of S is periodic, and if so, compute
its period.

Our Results. We give the first fully dynamic algorithm for the LCS problem that works
in strongly sublinear time per edit operation in any of the two strings. Specifically, for two
strings, each of length up to n, it computes an LCS after each edit operation in Õ(n2/3) time
after Õ(n)-time and space preprocessing. To ease the comprehension of the algorithm for
Fully Dynamic LCS, we first show a solution of an auxiliary problem called LCS after
One Substitution per String, where a single substitution is allowed in each of the strings
and is reverted afterwards, with Õ(1)-time queries after Õ(n)-time and space preprocessing.

Notably, we showcase the applicability of our techniques to other string problems in
the fully dynamic setting. We present a fully dynamic algorithm for computing a longest
repeat of a string S of length n, i.e. a longest substring occurring more than once in S, in
Õ(n2/3) time. We also present a fully dynamic algorithm for computing a longest palindrome
substring of a string S requiring Õ(

√
n) time per edit. Finally, we present a fully dynamic

algorithm, requiring Õ(
√
n) time per edit, for computing a longest Lyndon substring of string

S as well as maintaining a representation of the Lyndon factorization of S that allows us to
efficiently extract the t-th element of the factorization in Õ(1) time.

Our data structure is randomized due to the use of data structures for dynamic strings [30]
and internal pattern matching [35]; the latter can be derandomized [34].

Roadmap. Section 2 provides the necessary definitions and notation used throughout as
well as the standard algorithmic toolbox for string processing and the general scheme of our
approach. In Section 3 we show an optimal, up to polylogarithmic factors, solution for LCS
after One Substitution per String. In Section 4 we show our main result: a solution
for Fully Dynamic LCS. Some technical details, including details on several special cases
of internal LCS queries, are omitted in this version. A brief overview of our fully dynamic
algorithms for computing the longest repeat, the longest palindrome, and the longest Lyndon
substring of a string is provided in Section 5. We conclude this work in Section 6.

ESA 2019
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2 Preliminaries

Strings. Let S = S[1]S[2] . . . S[n] be a string of length |S| = n over an integer alphabet
Σ = {1, . . . , nO(1)}. The elements of Σ are called characters. For two positions i and j on S,
we denote by S[i . . j] = S[i] . . . S[j] the substring of S that starts at position i and ends at
position j (it is empty if i > j). A substring of S is represented in O(1) space by specifying
the indices i and j. A prefix S[1 . . j] is denoted by S(j) and a suffix S[i . . n] is denoted by
S(i). A substring of S is called proper if it is shorter than S. We denote the reverse string of
S by SR = S[n]S[n− 1] . . . S[1]. By ST , Sk, and S∞ we denote the concatenation of strings
S and T , k copies of string S, and infinitely many copies of string S, respectively. If a string
B is both a proper prefix and a proper suffix of string S, then B is called a border of S. A
positive integer p is called a period of S if S[i] = S[i+ p] for all i = 1, . . . , n− p. String S
has a period p if and only if it has a border of length n− p. We refer to the smallest period
as the period of the string and, analogously, to the longest border as the border of the string.

The suffix tree T (S) of string S is a compact trie representing all suffixes of S. The suffix
tree of a string of length n over an integer alphabet can be constructed in O(n) time and
space [21]. By lcpstring(S, T ) we denote the longest common prefix of S and T , by lcp(S, T )
we denote |lcpstring(S, T )|, and by lcp(r, s) we denote lcp(S(r), S(s)). Further by lcsstring(S, T )
we denote the longest common suffix of S and T . An O(n)-sized lowest common ancestor
data structure can be constructed over the suffix tree of S in O(n) time [14], supporting
lcp(r, s)-queries in O(1) time. A symmetric construction on SR (the reverse of S) can answer
the so-called longest common suffix (lcs) queries in the same complexity. The lcp and lcs
queries are also known as longest common extension (LCE) queries.

General Scheme and Relation to Internal Pattern Matching. The scheme of our approach
for most of the considered dynamic problems on strings is as follows. Let the input be
a string S of length n (in the case of the LCS problem, this can be the concatenation of
the input strings S and T separated by a delimiter). We construct a data structure that
answers the following type of queries: given k edit operations on S, compute the answer to a
particular problem on the resulting string S′. Assuming that the data structure occupies
O(sn) space, answers queries for k edits in time O(qn(k)) and can be constructed in time
O(tn) (sn ≥ n and qn(k) ≥ k is non-decreasing with respect to k), this data structure can be
used to design a dynamic algorithm that preprocesses the input string in time O(tn) and
answers queries dynamically under edit operations in amortized time O(qn(κ)), where κ is
such that qn(κ) = (tn + n)/κ, using O(sn) space. The query time can be made worst-case
using time slicing: for sn, tn = Õ(n) and qn(k) = Õ(k) we obtain a fully dynamic algorithm
with Õ(

√
n)-time queries, whereas for qn(k) = Õ(k2) the query time is Õ(n2/3).

A k-substring of a string S is a concatenation of k strings, each of which is either a
substring of S or a single character. A k-substring of S can be represented in O(k) additional
space using a doubly-linked list if the string S itself is stored. The string S after k subsequent
edit operations can be represented as a (2k + 1)-substring due to the following lemma.

I Lemma 2. Let S′ be a k-substring of S and S′′ be S′ after a single edit operation. Then
S′′ is a (k + 2)-substring of S. Moreover, S′′ can be computed from S′ in O(k) time.

Proof. Let S′ = F1 . . . Fk where each Fi is either a substring of S or a single character. We
traverse the list of substrings until we find the substring Fi such that the edit operation takes
place at the j-th character of Fi. As a result, Fi is decomposed into a prefix and a suffix,
potentially with a single character inserted in between in case of insertion or substitution.
The resulting string S′′ is a (k + 2)-substring of S. J
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Thus the fully dynamic version reduces to designing a data structure over a string S
of length n that computes the result of a specific problem on a k-substring F1 . . . Fk of S.
For the considered problems we aim at computing the longest substring of S that satisfies
a certain property. Then there are two cases. Case 1: the sought substring occurs inside
one of the substrings Fi (or each of its two occurrences satisfies this property in case of the
LCS and the longest repeat problems). Case 2: it contains the boundary between some two
substrings Fi and Fi+1. Case 1 requires to compute the solution to a certain problem on a
substring or substrings of a specified string. This is the so-called internal model of queries;
this name was coined by Kociumaka et al. in [35]. We call Case 2 cross-substring queries.
Due to string periodicity, certain internal queries arise in cross-substring queries as well.

3 LCS After One Substitution Per String

Let us now consider an extended version of the LCS After One Edit problem, for simplicity
restricted to substitutions.

LCS after One Substitution per String
Input: Two strings S and T of length at most n
Query: For given indices i, j and characters α and β, compute LCS(S′, T ′) where S′ is
S after substitution S[i] := α and T ′ is T after substitution T [j] := β

To solve this problem we consider three cases depending on whether an occurrence of the
LCS contains any of the changed positions in S and T . We prove the following result.

I Theorem 3. LCS after One Substitution Per String can be computed in Õ(1)
time after Õ(n)-time and space preprocessing.

3.1 LCS Contains No Changed Position
We use the following lemma for a special case of internal LCS queries. Its proof is deferred
to the full version. In the fully dynamic algorithm a less restrictive approach is necessary.

I Lemma 4. Let S and T be two strings of length at most n. After O(n log2 n)-time and
O(n logn)-space preprocessing, an LCS between any prefix or suffix of S and prefix or suffix
of T can be computed in O(logn) time.

It suffices to apply internal LCS queries of Lemma 4 four times: each time for one of
S(i−1), S(i+1) and one of T (j−1), T(j+1).

3.2 LCS Contains a Changed Position in Exactly One of the Strings
We use the following lemma that encapsulates one of the main techniques of [8]. It involves
computing so-called ranges of substrings in the generalized suffix array of S and T and it
relies on a result by Fischer et al. [24].

I Lemma 5. Let S and T be strings of length at most n. After O(n log logn)-time and
O(n)-space preprocessing, given two substrings P and Q of S or T , we can compute:
(a) a substring of T equal to PQ, if it exists, in O(log logn) time;
(b) the longest substring of T that is a prefix (or a suffix) of PQ in O(logn log logn) time.

We now show how to compute the longest substring that contains the position i in S,
but not the position j in T (the opposite case is symmetric). We first use Lemma 5(b) to
compute two substrings, U and V , of T in O(logn log logn) time:

U is the longest substring of T that is equal to a suffix of S[1 . . i− 1];
V is the longest substring of T that is equal to a prefix of αS[i+ 1 . . |S|].

ESA 2019
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S′

i
α

i` ir

T ′

j
β

j` jr

Figure 1 Occurrences of an LCS of S′ and T ′ containing both changed positions are denoted by
dashed rectangles. Occurrences of U at which an LCS is aligned are denoted by gray rectangles.

Our task then reduces to computing the longest substring of UV that crosses the boundary
between U and V and is a substring of T (j−1) or of T(j+1). We can compute it using the
following type of queries.

Three Substrings LCS
Input: A string T
Query: Given three substrings U , V , and W of T , compute the longest substring XY
of W such that X is a suffix of U and Y is a prefix of V

Indeed, it suffices to ask two Three substrings LCS queries: one with W = T (j−1)

and one with W = T(j+1).
A solution to a special case of Three Substrings LCS queries with W = T was already

implicitly presented by Amir et al. in [8]. It is based on the heaviest induced ancestors
(HIA) problem on trees, introduced by Gagie et al. [28], applied to the suffix tree of T . We
generalize the HIA queries and use them to answer general Three Substrings LCS queries.
The data structure for answering our generalization of HIA queries turns out to be one of the
most technical parts of the paper. It relies on the construction of multidimensional grids for
pairs of heavy paths (in heavy-path decompositions [42]) of the involved trees. Each query
can be answered by interpreting the answer of O(log2 n) orthogonal range maximum queries
over such grids.

I Lemma 6. Let T be a string of length at most n. After Õ(n)-time preprocessing, we can
answer Three Substrings LCS queries in Õ(1) time.

3.3 LCS Contains a Changed Position in Each of the Strings
A Prefix-Suffix Query gets as input two substrings X and Y of a string S of length n and
an integer d and returns the lengths of all prefixes of X of length between d and 2d that
are suffixes of Y . It is known that such a query returns an arithmetic sequence and if it
has at least three elements, then its difference equals the period of all the corresponding
prefixes-suffixes. Moreover, Kociumaka et al. [35] show that Prefix-Suffix Queries can be
answered in O(1) time using a data structure of O(n) size, which can be constructed in O(n)
time. By considering X = Y = U , this implies the two respective points of the lemma below.

I Lemma 7.
(a) For a string U of length m, the set Br(U) of border lengths of U between 2r and 2r+1− 1

is an arithmetic sequence. If it has at least three elements, all the corresponding borders
have the same period, equal to the difference of the sequence.

(b) [35] Let S be a string of length n. For any substring U of S and integer r, the arithmetic
sequence Br(U) can be computed in O(1) time after O(n)-time and space preprocessing.
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S′

i

αY R
2 X1P1P1P1

u

3p

T ′ XR
2 PR

2 P
R
2 P

R
2 Y1

j

β

3p
u− 3p

Figure 2 A border of length u is denoted by dark gray rectangles. An LCS aligned at a border
of length u− 3p, which is in the same arithmetic sequence, is denoted by the dashed rectangle.

We next show an algorithm that finds a longest string S′[i` . . ir] = T ′[j` . . jr] such that
i` ≤ i ≤ ir and j` ≤ j ≤ jr for the given indices i, j. Let us assume that i− i` ≤ j − j`; the
symmetric case can be treated analogously. We have that U def= S′[i+ 1 . . i` + j − j` − 1] =
T ′[j` + i− i` + 1 . . j − 1] as shown in Figure 1. (U = ε can correspond to i− i` = j − j` or
i− i` + 1 = j− j`, so both these cases need to be checked.) Note that these substrings do not
contain any changed position. Any such U is a prefix of S(i+1) and a suffix of T (j−1); let U0
denote the longest such string. Then, the possible candidates for U are U0 and all its borders.
For a border U of U0, we say that lcsstring(S′(i), T ′(j−|U |−1))U lcpstring(S′(i+|U |+1), T

′
(j)) is

an LCS aligned at U . We compute U0 in time O(logn) by asking Prefix-Suffix Queries for
X = S(i+1), Y = T (j−1) in S#T and d = 2r for all r = 0, 1, . . . , blog jc. We then consider
the borders of U0 in arithmetic sequences of their lengths; see Lemma 7. If an arithmetic
sequence has at most two elements, we compute an LCS aligned at each of the borders in
O(1) time by the above formula using LCE queries. Otherwise, let p be the difference of the
arithmetic sequence, ` be its length, and u be its maximum element. Further let:

X1 = S′(i+u+1), Y1 = T ′(j), P1 = S′[i+ u− p+ 1 . . i+ u],

XR
2 = T ′(j−u−1), Y R

2 = S′(i), PR
2 = T ′[j − u . . j − u+ p− 1].

The setting is presented in Figure 2. It can be readily verified (inspect Figure 2) that a
longest common substring aligned at the border of length u−wp, for w ∈ [0, `−1], is equal to

lcs(XR
2 (PR

2 )w, Y R
2 ) + u−wp+ lcp(Pw

1 X1, Y1) = lcp(Pw
2 X2, Y2) + lcp(Pw

1 X1, Y1) + u−wp

which we further denote by g(w). Thus, a longest LCS aligned at a border whose length is
in this arithmetic sequence is max`−1

w=0 g(w). The following observation facilitates efficient
evaluation of this formula.

I Observation 8. For any strings P,X, Y , the function f(w) = lcp(PwX,Y ) for integer
w ≥ 0 is piecewise linear with at most three pieces. Moreover, if P,X, Y are substrings of a
string S, then the exact formula of f can be computed with O(1) LCE queries on S.

Proof. Let a = lcp(P∞, X), b = lcp(P∞, Y ), and p = |P |. Then:

f(w) =


a+ wp if a+ wp < b

w + lcp(X,Y [aw + 1 . . |Y |]) if a+ wp = b

b if a+ wp > b.

Note that a can be computed from lcp(P,X) and lcp(X,X[p+1 . . |X|]), and b analogously.
Thus if P,X, Y are substrings of S, five LCE queries on S suffice. J

ESA 2019



6:8 Longest Common Substring Made Fully Dynamic

By Observation 8, g(w) can be expressed as a piecewise linear function with O(1) pieces.
Moreover, its exact formula can be computed using O(1) LCE queries on S′#T ′, hence, in
O(1) time using LCE queries. This allows to compute max`−1

w=0 g(w) in O(1) time. Each
arithmetic sequence is processed in O(1) time. The global maximum that contains both
changed positions is the required answer. Thus the query time in this case is O(logn) and
the preprocessing requires O(n) time and space.

By combining the results of Sections 3.1 to 3.3, we arrive at Theorem 3.

4 Fully Dynamic LCS

In this section we assume that the sought LCS has length at least 2. The case that it is of unit
or zero length can be easily treated separately. We use the following auxiliary problem that
generalizes LCS after One Substitution per String into the case of k edit operations:

(k1, k2)-Substring LCS
Input: Two strings S and T of length at most n
Query: Compute LCS(S′, T ′) where S′ = F1 . . . Fk1 is a k1-substring of S, T ′ =
G1 . . . Gk2 is a k2-substring of T , and k1 + k2 = k

As in Section 3, we consider three cases listed below. The main difference in the approach
takes place in the first case since the most general internal LCS queries are probably hard to
answer. Indeed, this query can be reduced via a binary search to O(logn) two-range-LCP
queries of Amir et al. [10]. With their Theorem 6, we can construct a data structure of
size O(n) in O(n

√
n) time that allows for Õ(

√
n)-time queries. We cannot use this data

structure in our scheme though due to its high preprocessing cost. In fact, Amir et al. [10]
show that the two-range-LCP data structure problem is at least as hard as the Set Emptiness
problem: preprocess a collection of sets of total cardinality n so that queries of whether the
intersection of two sets is empty can be answered efficiently. The best known O(n)-sized data
structure for this problem has O(

√
n/w)-query-time, where w is the size of the computer

word. The reduction of [10] can be adapted to show that answering general internal LCS
queries is at least as hard as answering Set Emptiness queries. In light of this, in the first
case, we develop a different global approach to circumvent answering such queries.

1. An LCS does not contain any position (or boundary between positions) in S or T where
an edit took place. As it was mentioned before, this problem probably cannot be solved
efficiently in the language of k-substrings. Instead, we compute such an LCS via an
inherently dynamic algorithm for the Decremental LCS problem. See Section 4.1.

2. An LCS contains at least one position where an edit operation took place in exactly one
of the strings. This corresponds to the (k1, k2)-Substring LCS problem when an LCS
contains the boundary between some substrings of exactly one of S′ and T ′. We compute
such an LCS by combining the techniques of Section 3.2 with a sliding window approach.
See Section 4.2.

3. An LCS contains at least one position where an edit operation took place in both of the
strings. This corresponds to the (k1, k2)-Substring LCS problem when an LCS contains
the boundary between some substrings in both of S′ and T ′. We compute such an LCS
by building upon the techniques of Section 3.3 and employing efficient LCE queries for
k-substrings. See Section 4.3.
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4.1 Decremental LCS
We use the following convenient formulation of the problem, where the only letter that can
be inserted or substituted in S (resp. in T ) is # /∈ Σ, (resp. $ /∈ Σ), with # 6= $. An insertion
in S in Fully Dynamic LCS corresponds to an insertion of a #, while both deletions
and substitutions correspond to substitutions with a #. T is treated similarly. We call the
problem of reporting an LCS after each such operation Decremental LCS.

We first consider the case where the sought LCS (in the fully dynamic case) is of length
bounded by d; we call this problem d-Bounded-Length LCS.

Before we proceed to describe a solution to this problem we discuss how to answer LCE
queries efficiently in a dynamic string. We resort to the main result of Gawrychowski et
al. [30] to obtain the following lemma.

I Lemma 9. A string S of length n can be preprocessed in O(n) time and space so that
k = O(n) edit operations and m = O(n) lcp queries, in any order, can be processed in
O(logn) time each, using O(k logn+m logn) space in total.

I Lemma 10. d-Bounded-Length LCS can be solved in O(d log2 n) time per operation
after Õ(n)-time preprocessing, using Õ(n+ kd) space for k performed operations.

Proof. Let U and V be the multisets of d-length substrings and the d− 1 suffixes of length
smaller than d of S and T , respectively. We will maintain balanced BSTs BX , with respect to
the lexicographical order, containing the elements of X, for X = U, V , stored as substrings.
We can search in these balanced BSTs in O(log2 n) since a comparison in it is an lcp query,
which requires O(logn) by Lemma 9, possibly followed by a character comparison. Each
node of BX will maintain a counter denoting its multiplicity in X. Let Y = U ∪ V ; we do
not use Y in the algorithm, we just introduce it for conceptual convenience.

I Observation 11. The length of the LCS of length at most d is equal to the maximum lcp
between pairs of consecutive substrings in (the sorted) Y that originate from different strings.

During preprocessing, we compute the lcp of all pairs described in Observation 11 and
store them in a max heap H. To each element of the heap, we store a pointer from the nodes
u ∈ BU , v ∈ BV it originates from.

Each edit in S or T yields O(d) deletions and O(d) insertions of substrings in each of U ,
V and Y . We first perform deletions and then insertions. For each such operation, we have
to check if it destroys or creates a pair of consecutive elements in (the sorted) Y , originating
from different strings. We observe that upon the insertion/deletion of a string P , only pairs
involving P , predU (P ), predV (P ), succU (P ) and succV (P ) may be involved, where pred, succ
are predecessor and successor with respect to the lexicographical order. These elements can
be identified in O(log2 n) time. The max heap can then be updated using a constant number
of LCE queries and heap updates. By Lemma 9, LCE queries (and heap updates) require
O(logn) time each. Finally, we return the maximum element of the heap. J

We now focus on the harder case that the sought LCS is of length at least d.
Let S′ and T ′ be the strings S and T after p operations; for some p ≤ k. For a position i,

by succ#
S′(i) we denote the smallest position j ≥ i such that S′[j] = #. If no such position

exists, we set succ#
S′(i) = |S′|+ 1. Similarly, by pred#

S′(i) we denote the greatest position
j ≤ i such that S′[j] = #, or 0 if no such position exists. Similarly we define succ$

T ′(i) and
pred$

T ′(i). Such values can be computed in O(logn) time if the set of replaced positions is
stored in a balanced BST (note that positions of # and $ can be shifted due to insertions).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

h(4, 11) = 4 h(4, 11) = 4

Figure 3 An example of a 6-cover S20(6) = {2, 3, 5, 8, 9, 11, 14, 15, 17, 20}, with the elements
marked as black circles. For example, we may have h(4, 11) = 4 since 4 + 4, 11 + 4 ∈ S20(6).

We say that a set S(d) ⊆ Z+ is a d-cover if there is a constant-time computable function
h such that for i, j ∈ Z+ we have 0 ≤ h(i, j) < d and i+ h(i, j), j + h(i, j) ∈ S(d).

I Lemma 12 ([39, 15]). For each d ∈ Z+ there is a d-cover S(d) such that S(d) ∩ [1, n] is
of size O( n√

d
) and can be constructed in O( n√

d
) time.

The intuition behind applying the d-cover in our string-processing setting is as follows
(inspect also Figure 3). Consider a position i on S and a position j on T . Note that
i, j ∈ [1, n]. By the d-cover construction, we have that h(i, j) is within distance d and
i+ h(i, j), j + h(i, j) ∈ S(d). Thus if we want to find a longest common substring of length
at least d, it suffices to compute longest common extensions to the left and to the right of
only positions i′, j′ ∈ S(d) (black circles in Figure 3) and then merge these partial results
accordingly.

For this we use the following auxiliary problem that was introduced in [16].
Two String Families LCP
Input: A compact trie T (F) of a family of strings F and two sets P,Q ⊆ F2

Output: The value maxPairLCP(P,Q), defined as
maxPairLCP(P,Q)=max{lcp(P1, Q1) + lcp(P2, Q2) : (P1, P2) ∈ P and (Q1, Q2) ∈ Q}

An efficient solution to this problem was shown in [16] (and, implicitly, in [20, 25]).

I Lemma 13 ([16]). Two String Families LCP can be solved in O(|F|+N logN) time,
where N = |P|+ |Q|.

I Lemma 14. Decremental LCS can be solved in Õ(n2/3) time per query, using Õ(n+
kn2/3) space, after Õ(n)-time preprocessing for k performed operations.

Proof. Let us consider an integer d ∈ [1, n]. For lengths up to d, we use the algorithm for
the Bounded-Length LCS problem of Lemma 10. If this problem indicates that there
is a solution of length at least d, we proceed to the second step. Let A = S(d) ∩ [1, n] be a
d-cover of size O(n/

√
d) (see Lemma 12).

We consider the following families of pairs of strings: P = { (S[pred#
S′(i − 1) + 1 . . i −

1])R, S[i . . succ#
S′(i)−1]) : i ∈ A } and Q = { (T [pred$

T ′(i−1)+1 . . i−1])R, T [i . . succ$
T ′(i)−

1]) : i ∈ A}. We define F as the family of strings that occur in the pairs from P and Q.
Then maxPairLCP(P,Q) equals the length of the sought LCS, provided that it is at least d.

Note that |P|, |Q|, |F| are O(n/
√
d). A compact trie T (F) can be constructed in

O(|F| log |F|) time by sorting all the strings (using lcp-queries) and then a standard left-to-
right construction; see [19]. Thus we can use the solution to Two String Families LCP
which takes Õ(n/

√
d) time. We set d = bn2/3c to obtain the stated complexity. J

4.2 One-Sided Cross-Substring Queries
We show a solution with Õ(k2)-time queries after Õ(n)-time preprocessing by building upon
the techniques from Section 3.2.
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S′
a1
β

a2
α

p p+ `− 1

T ′

b1

α

b2

β
b3

γ
q q + `− 1

Figure 4 Occurrences of an LCS of S′ and T ′ crossing the boundaries in both are denoted by
dashed rectangles. The starting positions fi+1 and gj+1 minimize the formula |(fi+1−p)−(gj+1−q)|.
Hence the gray rectangle, denoting U , is a prefix of S′[fi+1 . . fi+2−1] and a suffix of T ′[gj . . gj+1−1].
We thus process it as a border while processing (Fi, Fi+1) and (Gj , Gj+1) and hence find this LCS.

We present an algorithm that computes, for each i = 1, . . . , k1, the longest substring
of S′ that contains the first character of Fi, but not of Fi−1 and occurs in Gp for a given
p ∈ {1, . . . , k2} in Õ(k) time. These are the possible LCSs that cross the substring boundaries.

Let us start by a global part of the computation. For convenience let us assume that
F0 = Fk1+1 are empty strings. For an index i ∈ {1, . . . , k1}, by next(i) we denote the greatest
index j ≥ i − 1 for which Fi . . . Fj is a substring of T . These values are computed using
a sliding-window-based approach. We start with computing next(1). To this end, we use
Lemma 5(a) for subsequent substrings F1, F2, . . . as long as their concatenation is a substring
of T . This takes O(k log logn) time. Now assume that we have computed next(i) and we
wish to compute next(i + 1). Obviously, next(i + 1) ≥ next(i). Let j = next(i). We start
with Fi+1 . . . Fj which is represented as a substring of T . We keep extending this substring
by Fj+1, Fj+2, . . . using Lemma 5(a) as before as long as the concatenation is a substring of
T . In total, computing values next(i) for all i = 1, . . . , k1 takes Õ(k) time.

Let us now fix i and let j = next(i). We use Lemma 5(b) to find the longest prefix Pi of
(Fi . . . Fj)Fj+1 that occurs in T ; it is also the longest prefix of Fi . . . Fk1 that occurs in T by
the definition of next(i). Then Lemma 5(b) can be used to compute the longest suffix Qi of
Fi−1 that occurs in T . For each i it takes time Õ(1) time to find Pi and Qi after Õ(n) time
and space preprocessing.

We then compute the sought result for given i ∈ {1, . . . , k1} and p ∈ {1, . . . , k2} by a
Three Substrings LCS query for U = Qi, V = Pi, and W = Gp. With Lemma 6 this
takes Õ(k2) time in total after Õ(n) time and space preprocessing.

4.3 Two-Sided Cross-Substring Queries

We show a solution with O(k2 log3 n)-time queries after O(n logn)-time preprocessing by
combining the ideas presented in Section 3.3 and efficient LCE queries in the dynamic setting
(cf. Lemma 9). We consider each pair of boundaries between pairs (Fi, Fi+1) and (Gj , Gj+1),
for 1 ≤ i ≤ k1 − 1 and 1 ≤ j ≤ k2 − 1. We process the prefixes of Fi+1 that are suffixes of
Gj as in Section 3.3 (the symmetric case is treated analogously).

We next argue that we do not miss any possible LCS by only considering such prefix-
suffix pairs of Fi+1 and Gj . Let fi and gi be the starting positions of Fi and Gj in S′

and T ′, respectively. An LCS S′[p . . p + ` − 1] = T ′[q . . q + ` − 1] of this type will be
reported when processing the pairs (Fi, Fi+1) and (Gj , Gj+1), satisfying p ≤ fi+1 ≤ p+ `− 1,
q ≤ gj+1 ≤ q + ` − 1, for which |(fi+1 − p) − (gj+1 − q)| is minimal. Without loss of
generality assume fi+1 − p ≤ gj+1 − q. Then, S′[fi+1 . . p+ gj+1 − q − 1] is a prefix of Fi+1
and T ′[q+ fj+1 − p+ 1 . . gj+1 − 1] is a suffix of Gj and hence it is a prefix-suffix that will be
processed by our algorithm; see Figure 4.
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We assume that k = O(
√
n), which is sufficient for our main result. We consider

k1 × k2 = O(k2) pairs (Fi, Fi+1), (Gj , Gj+1) and, by the analysis in Section 3.3, the time
required for processing each of them (i.e. finding the longest prefix-suffix and then considering
all its borders in O(logn) batches) is bounded by the time required to answer O(logn) LCE
queries, which can be answered in time O(k2 logn) by Lemma 9. By Lemma 9 we have
that k2 = O(n) LCE queries over a k-substring of S, can be performed in O(k2 logn) time,
using this much extra space, after O(n)-time preprocessing. Hence the total time required is
O(k2 log3 n) after Õ(n)-time preprocessing.

4.4 Main Result

By combining the results of Sections 4.1 to 4.3 we obtain the following.

I Lemma 15. (k1, k2)-Substring LCS queries can be answered in Õ(n2/3 +k2) time, where
k = k1 + k2 = O(

√
n), using a data structure that can be constructed in Õ(n) time.

We now formalize the time slicing deamortization technique for our purposes.

I Lemma 16. Assume that there is a data structure D over an input string of length n
that occupies O(sn) space, answers queries for k-substrings in time O(qn(k)) and can be
constructed in time O(tn). Assume that sn ≥ n and q(k, n) ≥ k is non-decreasing with respect
to k. We can then design an algorithm that preprocesses the input string in time O(tn) and
answers queries dynamically under edit operations in worst-case time O(qn(κ)), where κ is
such that qn(κ) = (tn + n)/κ, using O(sn) space.

By plugging Lemma 15 into Lemma 16 we arrive at our main result.

I Theorem 17. Fully Dynamic LCS on two strings, each of length up to n, can be solved
in Õ(n2/3) time per operation, using Õ(n) space, after Õ(n)-time preprocessing.

5 Applications

We present three applications of our techniques. The fully dynamic algorithm for computing
the longest repeat is very similar to the fully dynamic algorithm for LCS.

Another application is a fully dynamic algorithm for the longest palindrome substring
which extends the results of [26, 27]. We consider two cases. In the internal case, in which
the longest palindrome occurs between edited positions, we use range queries on the set
of maximal palindrome substrings of a string (which is known to have linear size). In the
cross-substring case, we use the known fact that the lengths of suffix palindromes of a string
can be represented as a logarithmic number of arithmetic progressions which lets us use
string periodicity similarly as in Section 3.3. We remark that a more efficient algorithm for
computing the longest palindrome in a dynamic string has recently been proposed [6].

The authors of [48] presented algorithms for computing a representation of a Lyndon
factorization of a prefix of a string and of a suffix of a string in Õ(1) time after Õ(n)
preprocessing. For the prefixes, their solution is based on the Lyndon representations of
prefixes of a Lyndon string, whereas for the suffixes, it is based on the structure of a Lyndon
tree (originally due to [13]). In order to devise our fully dynamic algorithm, we carefully
combine these two approaches to obtain general internal computation of a representation of
a Lyndon factorization in the same time bounds.
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6 Final Remarks

We anticipate that the techniques presented in this paper to obtain fully dynamic algorithms
for several classical problems on strings are applicable in a wider range of problems on strings.

The significance of our results is additionally highlighted by the following argument.
It is known that finding an LCS when the strings have wildcard characters [2] or when
k = Ω(logn) mismatches are allowed [36] in strongly subquadratic time would refute the
Strong Exponential Time Hypothesis (SETH) [33, 32] (on the other hand, pattern matching
with wildcard characters can be solved in Õ(n) time [17] and with k mismatches in Õ(n

√
k)

time [9]). It is therefore unlikely that a fully dynamic algorithm with strongly sublinear-time
queries exists for these problems: such an algorithm could be trivially applied as a black box
to solve the problems in their static setting in strongly subquadratic time, refuting SETH.

This research could inspire more work on the lower bound side of dynamic problems.
The currently known hardness (and conditional hardness) results for dynamic problems on
strings have been established for dynamic pattern matching [18, 30]. It would be interesting
to investigate (conditional) lower bounds for the dynamic problems considered in this paper.
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