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0. INTRODUCTION

In this note we prove that only finitely many unknown perfect codes
over arbitrary alphabets correcting at least three errors exist. This is an
extension of the result of E. BANNAT which states that for each fixed t = 3
only finitely many t—perfect codes exist.

The proof does not make use of the sphere packing condition, but it
heavily depends on the generalized Lloyd theorem relating the existence of
perfect codes to the zeros of Krav&uk polynomials (lemmé 9.2). We list a
number of properties of these polynomials in section 2. In particular we
make use of the difference equation (lemma 2.4). This equation, together
with two elementary results on recurrence relations (section 1), will lead
to the conclusion that the distances between consecutive zeros of a Kravduk
polynomial of sufficiently large degree cannot be integral simultaneously,
This implies. the non-existence of perfect codes correcting sufficiently
many errors. Combination with Bannai's theorem yields the theorem stated
above.

This note is only a preliminary one. Shorthly a paper will appear in

which the bounds are to be made explicit.
1. THREE TERM RECURRENCE RELATIONS

In this section we derive estimates for the solution of a recurrence

relation of the type
F(x+1) - A(X)F(x) + R(x)F(x-1) = 0

in which R does not vanish anywhere.
Without loss of generality we may assume R = 1 because of the follow-
ing substitution. Let g be a function which does not have any zeros and

which satisfies the simple two term recursion
g(x+1) = R(x)g(x-1),

and define G by F = gG. Then



g(x+1)G(x+1) - A(X)g(x)G(x) + R(X)g(x-1)G(x-1) = 0,

S0
G(x+1) - ‘f‘-——(—)}ﬁ{—’)ﬁl G(x) + G(x=1) = 0.
. Defining B by
A(x)g(x)
B(X) - g(X+1) 9
we find

G(x+1) - B(x)G(x) + G(x-1) = 0.

In the next two lemmas we analyze the effect of a perturbation of the
function B. In view of later applications we do not restrict ourselves to
x € Z (which is obviously allowed), but let x run through some subset of
Z+a for some a ¢ R. The lemmas regain their natural form by taking a = 1.

Before stating the lemma, we introduce a notation which will be used
7 [a,b]z,'

(a,b)z, (a’b]Z denote the usual intervals [a,b), ete. of the reals, inter-

throughout this paper. Let a, b be real numbers. Then [a,b)

sected by the set ZZ+a. So e.g.
[a,b)Z = [a,b) n (Z+a).
LEMMA 1.1. Let a € R, b e Z+a, and ¥, G, A and B be real function so that

F(a-1) = G(a-1),

F(a) = G(a),
F(k+1) = A(K)F(k) + F(k-1) =0 for k ¢ [a,b)z,
G(k+1) - B(k)G(k) + G(k-1) =0 for k e [a,b)z,
and
F(k) # 0 for k ¢ [a,b]z.
Then
F(k)G(k-1) - F(k-1)G(k) = B(k) for k € [a,b] ,
and Z
G(k) = (1-vy(K))F(k) for k € [a,b]zz,
where :
B(i)
'Y(k) = ETINT S fOI‘ k € [a,b] s
ie(a,k]ZF(l)F(l 1) /A
" B(k) = 2 oa(i) for k € [a,b]z,

ie[a,k)Z



and , L
a(k) = (Ak)-B(k))F(k)G(k) for k ¢ [a,b)zz.

PROOF. For k = a the assertions are clear. Assume that they have been proved

for certain k ¢ [a,b)z. Then by the two recurrence relations:
F(k+1)G~(k) - F(k)G(k+1) =
= (A(k)-B(K))F(K)G(k) + F(K)G(k~1) ~ F(k-1)G(k) =

= a(k) + B(k) = B(k+1),

SO
F(k+1)G(k)-B(k+1) _
F(k) -

G(k+1) =

= U=y - ST Pkt = (I=y(e1)F(ks1) .

LEMMA 2. Let a € R, b € Z+a, and F, G, A and B be real functions so that

F(a-1) = G(a-1) =2 0
F(a) = G(a),

A(a) > B(a),

A(k) = B(k) for k ¢ (a,b)z,
F(k+1) - A(K)F(k) + F(k-1) =0 for k ¢ [a,b)z,
G(k+1) - B(k)G(k) + G(k-1) =0 for k e [a,b)z,
G(k) >0 for k e La,b),
G(b) = 0.
Then
F(k)G(k-1) > F(k-1)G(k) for k ¢ (a,b] ,
and : Z
F(k) > G(k) for k ¢ (a,b]z.

PROOF. For k = a+l we have, assuming b = atl:

F(a+t1)G(a) - F(a)G(a+l) =

= (A(a)-B(a))F(a)G(a) + F(a)G(a-1) - F(a-1)G(a) > 0O



because of

A(a) - B(a) > 0,

F(a) = G(a) > 0.

and

F(a)G(a-1) - F(a-1)G(a) = F(a)(F(a)-G(a)) = 0.
Hence )

F(a+1)G(a) > F(a)G(a+l) = G(a)G(a+l),
80

F(a+l) > G(a+l).

Now suppose that the assertions have been proved for certain k ¢ (a,b)zr
Then
F(k+1)G(k) - F(k)G(k+1l) =

= (A(k)-B(k))F(k)G(k) + F(k)G(k-1) - F(k-1)G(k) > O,

because of

A(k) - B(k) = 0,

F(k) > G(k) =20 (induction hypothesis),
and

F(k)G(k-1) > F(k-1)G(k) (induction hypothesis).
Hence

F(k+1)G(k) > F(k)G(k+1) 2 G(k)G(k+1),
so

F(k+1) > G(k+1).

This proves the lemma by induction. [J

2. KRAVCUK POLYNOMIALS

)

Up to section 9, we assume that q > 1 and n e N.”

For any k ¢ N, the KravCuk polynomial Ky of degree k is defined by

B = 1 DI@EnIOETD  for attv e v,

]

o~

0

*)

In this note, 0 is considered to belong to WN.



A simple expression for the generating formal power series exists.

LEMMA 1. Let v € R. Then

] K @ = (14D V(10"
k=0

PROOF. This follows by taking the Cauchy product of the formal power series

expansions of the‘factors on the right hand side. 0
Amongst Krav&uk polynomials the following recurrence relation holds.
LEMMA 2. Let v € R. Then
(k+DK, (V) = (k+(g=1) (n=k)=quIK, (v) + (q-1) (u-k+DK, _,(v) = O
for each k € WN\{0}, and Ko(v) =1 and K](v) = (g~1)n—qv.

PROOF. Define & = kzO Kk(v)xk. Then, by lemma 1, & satisfies the following

differential equation:

99

(1=x) (1+(g-Dx) == ((g-1) () (I-x) ~v(1+(gq-1)x)) 2.
Hence o
2 k-1
(1+(g-2)x-(q-1)x°) )} k K, (V) =
k=0
= ((@=Do—qv=(¢-Dnx) | K (="
k=0
Comparison of coefficients yields the required relation. 0

A certain symmetry between k and v in Ky (v) exists.
LEMMA 3. Let k € N, v € M. Then
n v _ .n _1\k
(VK@ (@-D 7 = (K (k) (q=1)".

PROOF. By lemma ! we have:

DRGNS (@D 7%y =
= I U@ -0 (@D =
. v=0

= (1+(q-1) (x+y—xy)) ™.



This is symmetric in x and y, hence (:)Kk(v)(q—l)v is symmetric in k and v. [

From this symmetry relation we derive the following difference equation

for KravEuk polynomials.

LEMMA 4. Let k € '{o,njz, v e R. Then
(q—l)(n-v)Kk(v+1) - (v+(q—1)(n—v)-qk)Kk(v) + ka(v—l) = 0,

PROOF. According to lemma 2 we have for v ¢ N (define K_1 = 0):

(V+1)Kv+l(k) - (v+(q—1)(n—v)—qk)KV(k) + (q—l)(n—v+1)Kv_1(k) = 0,
8o by lemma 3 (after multiplication by (E)(q-—l)k )ﬁ

WD () @ DR (1) = (v (a-1) (m0)=qi) () (-1 'R (0) +

n

+ (a=1) (a-v+1) (|

) (a-DV K (v-1) = 0,

Division by (3)(q—1)v yields the required relation for v € [O’njﬂf
Since both sides of the identity are polynomials in v of degree at most

n, the identity holds for all v ¢ R, [
A combined difference recurrence relation also exists.
LEMMA 5. Let k € N~ {0}, v ¢ R. Then

K (v+l) - Kk(V) + Kk_](v) + (@-DK, _, (v+1) = 0.

PROOF. From lemma 1 we derive (define K_1 =0):

oo

I ® D) - K @) + K )+ (@=DK_ (v+1))x" =

k=0
= (U+@=-D " -0 - (14 =DV (1-x)7 +

+ x(1+(@=D0) V(107 + (=Dx(1+(=Dx)> 7V -x) V! =
- n-v-1 v,

(1+(q-1x) " (1-x)

“(I-x - (1+(g~1)x) + x(1+(gq-1)x) + (g-D)x(1-x)) = 0. 0O



We give an alternative presentation of the KravCuk polynomials.

LEMMA 6. Let k € N. Then
k k

G = 1 IEIEH AT - L raw
j=0 ’
for all v € R, where F is defined by
Tk
F(w) = ) c, w(w-1)(w=2)...(w-j+1)
j=0 ,

for all w, where

-1.573 (a-j)! k

ey = (—El—) i) (j) for all j € [O,k]z.

Particularly ¢ =1, 80 F 18 a monic polynomial of dégree k.

PROOF. According to lemma 1, we have

I ke = a0 Gra0™ = ] ET 0™ @ -
k=0 - i=0
=1 I D i@ -
i=0 =0 J
= ] & ] nifIETh e,
=0 j=0

This proves the first identity. The others follow straightforwardly. [

In lemma 6 we proved that Kk is indeed a polynomial of degree k. The
family {Kklk € N} 1is orthogonal on the integers with respect to the weight
function p defined by p(v) = q—n(g) (q-l)v.

LEMMA 7. Iet k ¢ N and £ ¢ N. Then

n
L KK P ) = 82 (a-D*
v=

PROOF.

oo

) 2 (MK, (@) p (% y =
k=0 £=0 v=0 ke

7 q () @DV U+ (=) Y (1+(g=Dy) T (1) =
vio



q P((q-1) (1=x) (1=y) + (1+(q=1)x) (1+(g~Dy)" =

il

n
(1+(q-1)xy)® = kX (E)(q—l)kxkyk.
=0

Comparison of corresponding coefficients yields the desired orthogonality

relation. 0

Lemma 7 places the theory of orthogonal polynomials at our disposal.
For example, we know that the zeros of K, are real and simple (cf. SZEGO
[6], theorem 3.3.1).

3. THE MIDDLEMOST ZERO OF A KRAVCUK POLYNOMIAL

Up to section 9, we assume that q ¢ N, q > 2.

In this section we look for zeros of K, close to gél-n. E. BANNAT (cf.[1D)
proved that for fixed odd k and n/q-+0>the_midd1emost zero of Kk:asymptotically

equals

q-1 _ _ (q-2) (k-1)
q n 3q + 0(1)

(cf. proposition 15). We shall not use this result, but show instead that

for each odd k > 1, a zero occurs in the interval

(q—l q - L= (k-1 gl n).

q q > n
For each v €¢ R, we define y by
I
For each k ¢ W, we deﬁine the function L. by
Lk(y) = (—1)%k(k_1) Kk(v) for all v € R.
The recurrence relation from lemma 2.2 can be.translated into

LEMMA 1. Let vy € R, Then

C DL, ) = GO L ) + (@D (kDL ()



for all k € W\{0}, and Lo(y) = 1 and L](y) = (q-2)y.

PROOF.

@) (DL 5+ (02 Gy (DL () 4

+ (g1 (ks ) ((DEETDED gy 200 D

LEMMA 2. Let m be the smallest value of k ¢ W for which either k = n or

Lk c?ntains at least two zeros in the interval (0,k). Then sequences
Lo L (e

(nz)kig 1] and (Ez)ﬂLi(m D] exist so that ng =0 and so that for each

£ e M\{0} with 2£+1 < m the following assertions hold

1. > 0.

-1
2. LZK(nK—l) > 0.

3. Ly has at most one zero in (nz_l,ZK). This s Ep if 1t exists;
otherwise £p = 2L.

4, np_y < gz < 22,

5. L2£+l(€£) > 0.

6. Loyp,(np_y) < 0.

7o Lopus has at least one zero in (nz_],gz). If 28+1 < m, then this zero
18 unique, and equals Npe

PROOF. We first prove 1-7 for £ = 1 provided m 2 3.

1. 0= 0.

2. L2(O) > 0, for 2L2(0) = (q-2)L1(O)+(q—1)nLO(0) = (gq-1) n > 0.

3. L2 has at the most one zero in (0,2) because of m = 3. Call it

gl if it exists; othefwise define E] = 2,
4, 0 < gl < 2 - obvious.

5. LB(EI) > 0, for 3L3(€1) = “(Q‘Z)(Z“El) + (q'l)(n“l)Ll(El) > 0,
since (Z—EI)LZ(EI) =0 (3), and Ll(gl) > 0 because of'Ej1 >0 (4).

6. L3(O) < 0, for 3L3(0) = —2(q—2)L2(O) + (q—l)(n—l)Ll(O) < 0, since
LZfO) >0 (2) and LI(O) = 0,



10

7. L3 has at least one zero in (O,El). This follows from 4, 5 and 6. If

m > 3, this zero is unique because of gl < 3 (4). call it n.

Now suppose that £ = 2, m > 2{+1, and that 1-7 have been proved for
£-1 instead of £. We prove 1-7:

1. Follows from Np_i > Np—s =0 (7, 1).

2.%)

Assume that L2£r2(n£r]) < 0. Since L2£—2(n£—2) >0 (2) and
Np_o < Np_y @, L2£—2 has a zero in the interval (nﬁ—z’nﬂ-lj'

. o 4 4 —
Since Np_sy < 28-2 (4), L2£—2 has a zero in the interval (n£_2,2£ 2].
According to 3 this zero is unique, so it equals gﬂ—l' From 7 follows
that £p_, > np_;» 50 Ep_, ¢ (nﬂ—Z’nK—lj' Contradiction. Hence

) > 0. Since L ) =0 (7), and n-28+2 > n-m+3 = 3,

Lop—p (e 20-1(Mp—1

we find
2£L2£(n£_1) = (q—Z)(Z@-l-nﬂ_l)Lu_l(nK_l) + (q—l)(n—2Z+2)L2£_2(n£_1) > 0.
3. From Np_ >0 (1) follows (nz_l,ZK) c (0,2f). Since m = 2£+1, LZK has

at the most one zero in (n£_1,2£). Call it EK if it exists; otherwise
define SK = 20,

4, If gz € (nz_],ZZ), then obvious.
If Ep = 22, then Np_q < Ep-1 < 20-2 < Ep < 20 (7,4).

5. Suppose that Lzz_](gz) < 0. Since LZK—I(EK—I) >0 (5, Npo1 < ££_1
(7) and Ny < EK (4), LZK-I has, beside in Np_1° another zero in
the interwval [gz,gz_l) u (gﬂ—l’gﬂj' Since L2£ dOfS not have zeros in
(nz_l,gz) (3), we must have EK < gﬂ—l (cf. SZEGO [6], thm. 3.3.2).
Since EK—I < 28-1 (&), LZZ—I has two zeros in the interval (0,2£-1).
Hence 2£-1 2 m. Contradiction.

Consequently, Lzz_l(gz) > 0, Since (ZK—gZ)LZK(gﬂ) = 0 and

n-20+1 = n-m+2 = 2, we find

(26+1)Lyp,  (Ep) = =(a-2) (2L-Ep)Lyp(Ep) + (q=1) (a=24+1)L,, | (£,) > O.

%)
Th#s claim can also be derived from the facts that the zeros of Lzz and
LZK—I are interlaced, and that LZK—I vanishes and increases in Np_y*



11
6. Since 'r]/e_1 < 22 4, Lzﬂ(nz_l) >0 (2), and LZﬁ-l(nK"]) =0 (),
we find
(2e+ DL, (np_) = =(q=2) (2L, )DL, ,(np_) + (q=D)(n-2£+1)L,, (n, )< 0.

7o Lopar has at least one zero in (nﬂ_l,gz). This follows from 4,5 and 6.
If 2£+1 < m, this zero is unique because of 0 < np | < g, < 2£+I
(1,4). call it np- |

LEMMA 3. Let k be an odd integer, 3 < k < n. Then Ky has a zero M with
gl 9472 . ).
vo € (g 7 (1), A=)

PROOF. According to lemma 2 (1,4,7), L2£+1 has a zero in the interval
(0,22) provided 3 < 2£+1 < m. Hence if k < m, then L has a zero in (0,k-1).
Furthermore, L has at least two zeros in (O,m) provided m < n, so if

m < k £ n, then Lk has a zero in (0,m), so in (0,k=~1) (cf. SZEGO [6], thm.
3.3.3). Hence for each odd k with 3 € k € n, Lk has a zero in (0,k-1). The

lemma follows from the definition of Ly- 0
4, KRAVEUK POLYNOMIALS WITH INTEGRAIL ZEROS

Up to section 9, we assume that t ¢ N, n 2 t, and that Ky has only

integral zeros.

From this "Lloyd-condition" we shall derive several consequences con~
cerning the possible values of g, n and t, but first we make an almost tri-

vial remark on the position of the zeros of Kt'
LEMMA 1. K, does not have zeros in two consecutive integers.

PROOF. Suppose the contrafy. Then the difference equation (lemma 2.4) would
imply that Kt has zeros in all integers 0,!,...,n, which implies t > n,

contradicting our assumption. O

LEMMA 2. For each j € [O’t]ZP

.3 (t-i+1) (a-t+1) c 7z

1 qi

1
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PROOF. According to lemma 2.6 and the notation used there (with k = t), F is
a monic polynomial with integral zeros, hence with integral coefficients.
This implies ey € 7Z for j € [O,t]z. (Proof by induction on j.) Now the

lemma follows from

(-l)jc. _ % (t—i+1)§n—t+i)‘. 0
J i=1 qi

From lemma 2, upper bounds for q and t in terms of n can be derived.
Below, we prove some bounds which are sufficient for our purposes. But that

does not alter the fact that better estimates are possible.

LEMMA 3. If n 2 1, then t < 2 log n.

)

PROOF.”’ From lemma 2 with i = t follows

.

n(n-1). ... .(n-t+1) c

t
q

Let pu be a prime power dividing q. Then’

patln(n—l). vee o (n-t+1),

so
_ 2
pat (Le/p]+Lelp J+"')| n-t for some T € [O,t)ﬂp
so
Pat—t/(p—l) < .
Hence

t(o- ;%T) log p < log n.

If q is a power of 2, choose p = 2, o = 2. Then t log 2 < log n.
If q is not a power of 2, choose p 2 3, a = 1. Then it log 3 < log n.

In both cases the assertion of the lemma follows. O

LEMMA 4, If t = 2, then q2 < nt>.

%)
The, idea of the proof is due to A. TIETAVAINEN (cf. [71).
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PROOF. Lemma 2 yields for j = 1:

t(n~-t+1) - ez
q 3
and for j = 2:

t(n=t+1)  (t=1) (n=-t+2) _ AZ(t=1) (n-t+2)
g 2q T 2t(n-t+])

€ Z.

Hence 9 9
t”(t~1) (n—-t+1)
2 3
q

n—t+1]12(t—1) =
SO

|2 (e-1) (n-t+1).
From this the lemma follows immediately. [
Up to section 9, we assume that t is sufficiently large.
3

LEMMA 5. qt™ < n,

PROOF. Immediate from lemma 3 and 4. N

5, THE DIFFERENCE EQUATION OF A KRAVCUK POLYNOMIAL

In lemma 2.4 we proved the following difference equation for K. 3
(q—l)(n—v)Kt(v+1) - (V+(q—1)(n—v)—qt)Kt(v) + vKt(v-l) = 0.

We transform this equation according to the method of §1 into a form

which allows us to apply the lemmas 1.1 and 1.2. We define the function L by
v -1
K, (v) = (q-1) V(iy-1)1(n-4v-1) 'L(v)  for all v e (-1,n+l),
where x! = T(x+1). Then

LEMMA 1.

vt(g-1) (n-v)-qt  (3v-3):(3n-3v-3)! L(v) + L(v-1) = 0

L(v+l) - 2T o Gv)TUn-iv)!

for all v ¢ (0,n).

PROOF. By lemma 2.4 and the definition of L we have
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2(q=1) " (4v) T (dn-tv) IL(v+1) +
- (v+(g-1) (n~v)~-qt) (q~1)_%v(%v—%) tGo-iv-D InGv) +

+ 2(¢=1) " (4v) L (bn-bv) TL(v-1) =

-1 1
Division by 2(q-1) 2V+2(%v)!(§n—%v)! yields the required identity. [

In the following lemmas, the coefficient of L(v) will be estimated.

LEMMA 2.
PROOF. By
so

and

Hence

1 1
log(_(_iz__= -3 log(iv) --7, + 0(— 2) for v » .
Stirling's formula we have

log x! = (x+i)logx —-x + § log(2m) + T%E + 0617) for X » o,
X

log(iv) ! = (4v+i) log(iv) - 3v+ 3§ log(2m) + _6% + O(—l-z—) for v + =,
v

log(iv-3)!=4v log(4v=3) — 3v +{ + 4 log(2m) + é%'+ 0(-%) for v = o,

-} Tog(v) + bv Tog(1-2) + 4 + 0(p) =

log(4v) - v + —15) + } + 0(=) =

N

g

log(iv) - e + O(—%) for v - o, U
v

. . . -1 .
It turns out that is easier to work with ga—-n—v instead of v. There-

fore we define x by

q

and the functions M and a by

and

M(x) L(v)

_ vt(g-D)(n-v)-qt  (3v-3) 1 (§n-}v-})!
a(x) Wy . {1

for all v ¢ (0O,n).
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The constants implied by the Landau-Bachmann O-symbol and by the

Vinogradov <<— and >>— symbols are absolute.

LEMMA 3.

+

PROOF. From

v
and
n-v
Hence
log
£
+

_ (g=-Dn _

(%V"z)!(zn—% ~3): -
Gv)T(n-iv)!
log B¥a-l _ g(q=2)x _ q2 + 4 (q -2q+2)x
g 2q Z(q—l)n 4(q—1)n ’(q-l) n
3 5
q (g-%gx ﬂ,(Q“Z)(q -q+1)x O(g79 fbr x| < 9“%% )
4(q=1)"n 6(q—I) n n

the definition of x follows

= {g=Dn (1-

q (q-

Log(}v)~ 7= - § Log(4(a=v)) -

Nop—

(g-n

10g( 2q gx

?E?TSEJ)

F

(-

U+ ) -

4(q

1og( q (l + %?J_

[~

2

gx q°x

Nl

Og(q—l)n

1))—)-00

1
4(n-v) *

- -n

for t » o,

for t » o (cf. lemma 4.5).

2
0y =
n

~1
gqx

q
(q-l)n)

(1 -

1 2
+ 03y =
n

3.3 4

2 q°x

2 2(q-Dn

4q

. 2
q°x
4(q—l)2n

a Xy
4(q-Dn 7 " O( )

ZX 2
) + 0(——0
4n2

3
+ O(q

g,
4n *

— 2
n/g-1 _ q(q-2)x _ _ ¢

4(q—1>2

+ + O(E;J +
6(q—1)3n3 n4

3.3
q'x

6n3

n

qzx 4 4
+ ) +
4n2 4

+ 04

g,(q -2q+2)x

log

2q 2(q-Dn _ 4(g-Dn

 (q=2) (qP=q+1) x>
6(q—1)3n3

q3(q-2)x
4(q-1)2n2

4(q-1)2n2
2

+0&). O
n
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LEMMA 4. ) 4o 5
log a(x) = log 2 - 3 (2e+1) ., g9 x L C(q=2) (e+Dx |

4(g-1)n 8(q—1)2n2 4(q—1)2n2

4 2

5 3 2 /n
- g (q‘Z;X3 -4 tz 5+ 0(5) for |x| <9 J%?
8(¢~1)"n"  8(gq~1)"n n :

PROOF .

v+(q-1) (n-v)—qt _ (g=1)n-gx+(q-1) (n+qx)~q ¢ =
2]/'q_1 2ql/-q—"—1‘

_ 2qDnrq(@Dxeg’ | o/ (), aleDx __a't
2qvq=1 ' 2(q-1)n  2(q-D)n’ >

SO
v+(q-1) (n-v)-qt _
2vq-1

log

— 2 2
= log n/g-1 . q(q-2)x _ _q"t qz(q—Z) x + q3(q-2)tx
q 8(q—l)2n2 4(q-1)2n2

2(g-1)n 2(g=-1)n +

4 2 3 33 32
_ q't s Q=2 x 0(LE Ly o(q4x4
3

).
8(q-1)2n®  24(q-1)3n3 4

Hence

q2(2t+1) + q4x2

3
a (g=2) (t+1)x
4(q-Dn * +

log a(x) = log 2 -
8(q-1)2n>  4(q-1)%n>

5 3 4 2 2
_ 9 (q-2)x" _ qt q
77t O(nz)' O

8(q-1)3n>  8(q-1)%n

In order to simplify the formulas, we introduce the variable o by
defining

0= e .
v2(q~1)n

2.3
/q 23 __qt q ~-3/2
Then ¢ 2 v5- and ot CEN) < 5Ca=1) <1, s00<t (cf. lemma 4.5).

Now we can summarize the lemmas 1 and 4 into

&
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LEMMA 5. M(x+1) ~- a(x)M(x) + M(x-1) =

where

04(t+l)x +

log a(x) = log 2 - io (2t+1) + 104X2 + ﬂig

- ﬂé& 06x3 - l04t2 + 0(04) for |x| < 9/%% . 0

6. THE FUNCTIONS A AND B

Let %, be a real variable in the interval [-2,t+1], which is allowed to

0
depend on q, t and n. This dependence will be specified latér. Define y by

y =%~ X,
and the function A by
A(y) = a(x).

5 5 5. AT o,
1f |yl <~ then |x] < Iyl + Ixyl < —=+ts (5v2+1) /g; <9

flal
(53

Hence by lemma 5.5°¢

log A(y) = log a(x) =

Tog 2 407 (2e+1) + Jo' (o) + L2 6% (e1) (o) - I2 oy

- %o4t2 + 0(04) =

log 2 - io (2t+1) + 204y2 + o4cﬂig(t+l)+xo)y +

4, 2 . q-2 2 -2 63 4
-1 -2 4”4 - - 9=
o (t°=-2 1 §t+1)x0 xo) 1 oy + 0().

First, we derive from this a coarse estimate for A(y):

LEMMA 1. 2 cos(20VE) < A(y) < 2 cos(oVt) for lyl S‘—é- .
I o/t

PROOF. This follows from oVt -+ 0 for t - =,

F3
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log A(y) = log 2 - czt + 0(02t) for t > =,

SO

A(y) = 2(1 - Uzt + 0(02t)) - for t > =,

2 cos(20Vt) 2(1 - Zczt + 0(02t)) for t = o,

2 cos(20vt) 2(1 - %ozt + O(Gzt)) for t >, [

Now define the function B by

B(y) = A(-y).

5
Then one has for < —:
Iyl oVt

log B(y) = log 2 - 30 (2t+l) + 204y2 - 04(-9-:?2—(t+1)+x0)y +

4,2 -2 2 -2 63 4
- o7 (72 %—(tﬂ)xo—xo) + g(r oy +0@),

hence
q-2 6.3

log A(y) - log B(y) = 20~ (322 (t+1)+x0)y -2 2% 0™y,

From this upper and lower estimates for A(y) — B(y) will be derived.

LEMMA 2. A(y) - B(y) << o°VE for |yl s —=.

o/t

PROOF. log A(y) = log B(y) << ol'ty + 06y3 + 04 << 03/?,

80
AW - By = AW (1 - £E8) << |log BB << o™/, [
LEMMA 3. A(y) > B(y) for} <y 3—5—/_ i
ovt

PROOF.  log A(y) - log B(y) >> o'ty + 0¢cs®y%) + 0(s™) =

4 o’y I 4 I 4
= o ty(l + 0( ) + 0(=)) = o ty(1 + 0> oty >0. 0O
t ty t
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7. THE CASE t EVEN

If t is odd, M has a zero very close to the origin, from which we can
start the recursion to find the neighbouring zeros. However, in case t is
even, then generally no such zeros exist, so we need some extra preparation.

We assume that t is even. We aim to choose an Xq close to 0 so that
M(XO—%) = M(x0+%); or, equivalently, a Yo close to ﬂil n so that
L(vgy-z)

L(v0+%). The corresponding problem for Kt instead of L is fairly
easy, but the multiplication factor in the definition of L makes our task

cumbersome.

LEMMA 1. There is a vy € G%;-n—t, ﬂii-n+%{]so that L(vo-%) = L(v0+%).

PROOF. We introduce the abbreviation v = ﬂél n. According to lemma 3.3

there is an a ¢ (v-t+2,v) so that Kt_l(a) = 0. From lemma 2.4 one obtains
(g-1) (n—)K _; (a+1) + oK __ (a-1) = 0,

s0 Kt_l(a—l) and Kt_l(a+1) have opposite signs. In order not to be forced to
distinguish between two completely similar cases, we introduce the number

8 ¢ {1,-1} as the sign of K at+l). Then GKt_l(u—l) < 0 and 6K__,(a+l) > O.

t—l( t-1
Kt—l cannot have any zeros in (o~1,a+l) other than o, since otherwise
by the interlacing property of the zeros of orthogonal polynomials, Kt

would have two (integral) zeros in (o-1,0+1), contradicting lemma 4.1.

Hence eKt_ is increasing in a.

1

Again since the zeros of K and Kt aré interlaced, and since K

t-1 (V)

and Kt(O) are both positive, GKt(a) is positive.

t-1

By lemma 2.5:

K (a=1) = K (a) + K _;(a-1) + (@~DK__,(a),
SO

eKt(a—l) < SKt(a).

We also claim that eKt(a—Z) < BKt(a). Suppose on the contrary that
eKt(a—Z) > GKt(u). Since SKt(a—Z) - GKt(a—l) > 0 and GKt(a—l) - eKt(a) < 0,
there is a B e (a~1,a) so that Kt(B—l) - Kt(B) = 0. Now
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K. (B=1) + (@=DK__ (8) = K (8=1) = K_(8) = 0,

s0 Kt_l(B—l) and Kt_l(B) have opposite signs, so there is a
vy € [B~1,B1 ¢ (a—2,a) with K4
§ € (v,0) ¢ (a—-2,0). But eKt(a-Z) and eKt(a) are both positive, so Kt

(y) = 0. Hence K_ must have a zero

must have yet another (integral) zero in (0-2,a), contradicting lemma 4.1.
This proves our claim that eKt(a—Z) < SKt(u).
Our next claim is that OL{(a-2) < BL(a). This follows from

zo-1 ‘ fa-1
_ (q'—l)za _ (q-—l)2 _
L2 = ey ThntarDT e G Tt T M@
lo-1
N ' D LA €1 DH €. ol OE _
T Go=) IUn-fa+])! Dl L(a)
o—1

= =1 (a=arTy OL(®) = 6L(a),

since o~-1 S-gilvn. From this it follows that there is a B € {a-1,a} so that

6L(B-1) < BL(B).

On the other hand we know that

K. (a) = K, (o+1) + K_ (@) + (¢=DK__ (a+1),
SO

eKt(a) > eKt(u+1).

We distinguish between two cases:

i) Kt has a zero in between o and v+2, Let B be the smallest such zero.
Then obviously L(B) = 0 and 6L(f~1) = 0, so BL(B~1) = 6L(B).

ii) Kt has no zeros in between o and v+2, We then claim that
6Kt(v) P SKt(v+2). Suppose on the contrary that eKt(v) < eKt(v+2).
Then there is a B ¢ {v,v+1} such that GKt(B) > 9Kt(8+1).
Hence there is a v € (a,B8) < (a,v+l) so that‘Kt(y) = Kt(y+l). Now

K1)+ (¢=-DK__, (y+1) = K (y) - K (y+1) =0,
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so there is a § € [y,y+1] ¢ (a,v+2) with Kt_1(6) = 0, Hence K, must have
a zero in between o and §, contradicting our assumption, This proves our
clain that 6K_(v) > 6K _(v+2). ¢

Now the corresponding inequality for L follows using the same argument

as above:

v+1
(m-v-1)

oL(v) > ) BL(v+2) > OL(v+2),

since v+l 2 ﬂél-n.

This implies that there is a B € {v+1,v+2} such that 8L(B~1) = OL(R).

Thus we have proved that 6L(B-1) - 6L(B) assumes (weakly) positive as
well as negative values on [o-1,v+2], So a B ¢ (v-t+i,v+2] exists for which

L(B~1) = L(B). This proves the lemma, O

We choose in this section

=a !
X, n Ve

where vy has been defined in lemma 1 above. Then indeed

Now
M(xy-2) = M(xy*1).
In this section we define F by

F(y) = 5ﬂ%§§§¥7 ,

— + 1), provided

and vy, to be the smallest zero of F in the interval (O,
0 2gv/t

. . . m
such zeros exist; otherwise, we define Yo = E—7= + 1.
ovt

Note that the zeros of F are simple and have mutual distance at

least 2 (cf. lemma 4.1), and that
F(-3) = F(3) = 1.

Moreover, by the definition of A and lemma 5.5, F satisfies the difference

equation
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F(y+l) - A(y)F(y) + F(y-1) = 0.

LEMMA 2. F(y) << cos(oy/t) for y e 5 A0 P

T
< — + 1
70 2oVt

and
Y, 18 the smallest positive zero of F.

PROOF. We first note that Yo s T+ 1 < 2 .
Zo‘ft cn/E
If G(y+1) - 2 cos(oVt)G(y) + G(y-1) = 0, G(-}) = G(}) =1, then
G(y) = Lo8OWD) e o 74y,
cos(}o/t)

The first assertion of the lemma now follows from lemma 1.2 with

a=1%,b-= [yo—éj+%, lemma 6.1, and o/t = 0 for t - o,

T — il
If = + 1, then cos(oy’t) = 0 for v = + i 4+ 1
YO 20_‘/-{: ? y y I_ 20 y—-—t 2_' 23
T ..
uod non. Hence < + 1, so is indeed a zero of F. B}
¢ 70 " e 0 %70

Now we define G (again only in this section) by
G(y) = F(-y),

and z, to be the smallest zero of G in the interval (O,y0+1) provided such
zeros exist; otherwise we define zy = y0+1.
Then

c-4) = ed) = 1,

and, by the definition of B, G satisfies the difference equation
G(y+1) - B(y)G(y) + G(y-1) = 0.

LEMMA 3. G(y) < F(y) forye [%,zO]Z,

and

zg 18 the smallest positive zero of G.
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PROOF. Similar to the proof of lemma 1, we start noting that
5
< < —
zo_yo-i»l_.m/_f.,

The first assertion of the lemma now follows from lemma 1.2 with
a=14, b= ]_zo—%_]+% and lemma 6.3. If zg = yg+l, then F([yo+%J+%) > 0,
which contradicts lemma 2. Hence zy < y0+1, 50 2 is indeed a zero of G, [

. * . %

Define y, by y, = [yo—§_|+%.

Yo Y0 *
LEMMA 4. F(y) = ~ for y € [%,yojz.
70

PROOF. By lemma 7.2, F is positive on [%,ygjz. If v ¢ [%,yé] then

Z’

lyl < ;—5‘/—?— , so it follows from lemma 6.1 that A(y) < 2. Hence, by the

. . . . *
difference equation for F derived above, F is concave on [%,yo]

over, F({) = 1 and F(yS) 2 0. 0

7" More-—

The following estimates hold in lemma 1.1 with a =}, b = y;-1:

a(k) << oIVE cos(ok/t) < VE k- for k € [%,yg-—l]z,
3 3 N
B(k) << o/t ) 1 <0/t k for k e (z,yo-llz,
ie[%,k)zz
2
3/ci "
[¢) t],y 3
0 3 * 1 *
Y(k) << z <g /E yo <<'E be k e [%’yO—ljzr

ic(§,kl, (y-1) (y=i*1)

*
Hence y(y) < 1, so G(y) > 0 for y € [%,yo-l]z.
*
Consequently, zg > yO—l > yO—Z, so
LEMMA 5. yO-Z < zg < y0+1.‘ O

Recapitulating, we know that M has zeros in X0ty and X0"2 with
2.

3 il

- 5<x,<t, 0<y,<——=+1,2z,>0, and =1 <y, = 2z, <

2 % < F 0 Sz %7 0™ %o
Now define x(') and y(’) by

Xy = X + %(yo—zo),

yo - %(Y0+ZO)-
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Then -2 < x} < t+l, 0 < y}! < Ll

0 0 E—?i +-%, and M has zeros in x'+y6 and
o

0

L

1
XO yo.

8. THE DISTANCE BETWEEN TWO CONSECUTIVE ZEROS

We return to the general case that t may be even as wvell as odd. If

= ! = <! 1
0 = %o and Yo = Yoo where X, and

yb have been defined at the end of section 7. For t odd, X is defined by

t is even, theﬁ we define o and Yo by x
il
X P n - Vg,

where v has been defined in lemma 3.3 with k = t, and Yo by Yo = 0.

Now by the end of section 7, respectively lemma 2.4:
LEMMA 1. M(X0+y0) = M(XO—yO) = 0,

-2 < x, < t+l,

0

and y, to be the smallest zero of F in the interval (yo,yO+L;5§J+l) provided

such zeros exist; otherwise we define vy = y0+[—E—J+1.
o

Note that the zeros of F are simple and that their mutual distances

are integers and at least 2 (cf. lemma 4.1). In particular

Yy € ZHyqy
and

Y > y0+2.

Moreover
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M(x.ty.)
PO T aay ey T
%00
*0™Y0
and
. M(x,tyatl)
- 0-°0 _
F(YO'”) = W =1,

Finally, due to the definition of A and lemma 5.5, F satisies the difference

equation

F(y+1) - A(y)F(y) + F(y-1) = 0.

E 2, .
LEMA 2 sin(o(y-yy)vt)
F(y) << e for y € [yo,yllz,
sin(20(y-y,) /t) .
F(y) >> — for y e lygsygt —=1 ,
oVt 26Vt Z
il 3w 5
< y, < + =,
207t Voos/e 2
and .
Y, 18 the smallest zero of F that exceeds Yo
PROOF. We first note that vy S Yo * LIS 3n £ 2 < = .
o/t 20Vt 2 O'JE

If G(y+1) = 2 cos(ovDIG(y) + G(y=1) = 0, G(yy) = 0, G(yy+1) = 1, then

sin(o(y-y,) /t)

G(y) = for y e Z + Yo

sin(ovt)

The first assertion of the lemma now follows from lemma 1.2 with

a=ygtl, b =y, lemma 6.1, and o/t - 0 for t » ». The second assertion
follows similarly. Obviously ‘
T

T T
— <y o~y £ —— < |—]+1.
20Vt 170 7 4% ovt
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So v, is indeed a zero of F and the third assertion follows from lemma 1. [J

Now define G by

and z to be the smallest zero of G in the interval (yo,yl) if such zeros

exist; otherwise define Zy = yy- Then
G(YO) = O:

and

z, € Z+y0.

Moreover, by the definition of B, G satisifes the difference equation

G(y+1) - B(y)G(y) + G(y-1) = 0.

LEMMA 3. G(y) < F(y) fory e (y0+1’21]ZP

21 5 7
and
z, 18 the smallest zero of G that exceeds Yo
PROOF. As in the proof of lemma 2 we start noting that 2y £y; S —5-.= .

ovt

The first assertion of the lemma now follows from lemma 1.2 with a Yotls

b = zys and lemma 6.3. The second one is obvious, so z, is indeed a zero

of G. [

Define n by n = YO+L%(Y1‘Y0)J~

LEMMA 4. F(y) >> Y Yq for y € [yo,n]z,
F(y) >> ¥,y for y e [n,yllz.
PROOF. The first assertion follows from lemma 2. Particularly, F(n) >> Y1 Yo

Moreover, F(yl) = 0 and F 1s concave on [n,yl]z because ¥y £ ==, so

ovt
A(y) £ 2 for y ¢ [n,y]] (cf. lemma 6.1), ]

Now the following estimates hold in lemma 1.1 with a = y0+1 and b = yl—l:
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sin’ (o (k-y,) /E)

3 : 3 2
a(k) << "Vt 7Z; << o/t (k—yo) fork e [y0+1,y1—1)z,
3 2 3 3
B(k) << o /t Z (k=y,) " <<0o ‘/—E(k—y ) for k e(yy+l,y,~11,
iely +1,k) 0 0 0 ! Z
p 0 b4 Z
; o3VEli-y > o 3/E(iy 3
Y(k) <L . ra —-l + _ _.+1 S
Jelygrtonl, OGO (g, 0T (D
< 203/5 (yl—yo)3 << 03/— y? <<-% for ke [y0+1,y1—1]2r
Hence v(y) < 1 so G(y) > 0 for y ¢ [yo+l,y1—1]zr

Consequently, z, > yl-l, so
LEMMA 5. y,;-1 <z, <y,. O

However, lemma 5 contradicts ¥ € Z+y0 and z, € Z+y0. Hence our

assumptions are contradictory.
9. CONCLUSION

In the previous sections we made several assumptions, which turned out

to be contradictory. This proves

LEMMA 1. Let q, n, t € N, t sufficiently large, q > 2, n =2 t. Then K, has

at least one non—integral zero. [

We may combine this lemma with the famous theorem of LLOYD (lemma 2),
for arbitrary alphabets proved by J. DELSARTE and H.W. LENSTRA jr. (cf.
[61, [2] and [3]), with a theorem found recently by E., BANNAI (lemma 3, cf.
£11), and with the results‘of J.H. van LINT and A, TIETAVAINEN & A. PERKO

on binary perfect codes (lemma 4, cf. [4], section 7.6 or [8]).

LEMMA 2. If a t-perfect code of length n+l over an alphabet of q symbols

exists, then K. has only integral zeros. [

LEMMA 3. For given t 2 3, only finitely many t-perfect codes exist. [

&
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LEMMA 4, The only binary perfect codes correcting at least two errors are

the 3-perfect Golay code of length 23 and the repetition codes of odd length. [
We get

THEOREM 1. Besides the trivial codes and the binary repetition codes of odd
length, only finitely many perfect codes correcting at least three errors

exist.,

PROOF, From lemma ! and 2 follows that for sufficiently large t, no t-
perfect codes of length n+! over an alphabet of q symbols exist, unless
g=2o0r t >n, But ¢ = 2 corresponds to binary codes, and t > n to trivial

codes, Hence combination with lemma 3 and 4 yields the desired result, 0
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