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Abstract. Collaboration between financial institutions helps to improve
detection of fraud. However, exchange of relevant data between these
institutions is often not possible due to privacy constraints and data con-
fidentiality. An important example of relevant data for fraud detection is
given by a transaction graph, where the nodes represent bank accounts
and the links consist of the transactions between these accounts. Previous
works show that features derived from such graphs, like PageRank, can
be used to improve fraud detection. However, each institution can only
see a part of the whole transaction graph, corresponding to the accounts
of its own customers. In this research a new method is described, mak-
ing use of secure multiparty computation (MPC) techniques, allowing
multiple parties to jointly compute the PageRank values of their com-
bined transaction graphs securely, while guaranteeing that each party
only learns the PageRank values of its own accounts and nothing about
the other transaction graphs. In our experiments this method is applied
to graphs containing up to tens of thousands of nodes. The execution
time scales linearly with the number of nodes, and the method is highly
parallelizable. Secure multiparty PageRank is feasible in a realistic set-
ting with millions of nodes per party by extrapolating the results from
our experiments.

Keywords: Multiparty computation · PageRank · Fraud detection ·
Collaborative computation

1 Introduction

Cyber security, anti-fraud and other anti-crime activities benefit from cooper-
ation amongst involved parties like financial institutions, governments and law
enforcement agencies. The public and private sectors are actually stimulated
by regulators to perform joint activities and share threat intelligence and other
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data as they have a common goal to battle this type of crime. Examples of
such data are lists of known criminals, confirmed money mules and known mali-
cious IP addresses. Sharing benign operational data on customers, transactions
and events between different organizations would be beneficial as well. However,
sharing benign data between organizations has always been strongly limited due
to competition and privacy regulations, especially if it concerns personal data
of customers and employees. The risks of sharing data for companies as well
as public services are loss of trust in services, integrity, financial losses, societal
damage and damaged reputation.

1.1 The Financial Sector

The financial sector continuously fights the misuse of the financial infrastructure
for criminal activities like fraud and money laundering. An example of such a
criminal activity is the following.

Example 1 (‘Carousel’). Loan applications are based on income of the client
that requests the loan. A criminal may try to feign income by creating repeated
transactions to his account, or node, coming from another node pretending to be
a company - just as legitimate salary payments. To keep the needed funds for a
criminal low, the money is often drained from the account and placed back on
the node of the fake company where the process is repeated.

By looking at the whole network, we may quickly realize that while the feigned
salary payments look similar to other salary payments, the node pretending to be
a company lacks the structure we see of nodes known to be companies.

Protected by privacy regulations such as the recent GDPR, these bank-
transcending fraud and money laundering cases can be challenging to detect.
In fact, even malign transaction sequences moving through different departments
or channels within a bank may be troublesome to detect, due to the confidentiality
of the involved data.

Financial crime detection is an example of a situation in which different
parties share a common interest, but confidentiality and privacy regulations pre-
vent collaboration. In a payment transaction a financial institution typically only
knows one of the parties involved in the payment. Financial institutions would
greatly benefit from accessing information from other organizations.

1.2 Secure Multiparty Computation

Secure multiparty computation (MPC) provides a cryptographic solution to the
described dilemma above. MPC protocols are cryptographic techniques that
allow multiple parties to collaboratively evaluate a function on private input
data in such a way that only the output of the function is revealed, i.e. pri-
vate input remains private. MPC could be explained as the implementation of
a trusted third party that collects all relevant input data, evaluates the desired
function and reveals its output. However, using an actual trusted third party,
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such as a consultancy agency, to collect and analyse all private information is
often not allowed by regulations and usually expensive.

Already in the 1980s it was shown that any computable function can be
evaluated securely, i.e. in an MPC fashion [3,9,14,27,28]. However, early MPC
protocols came at a cost as they introduced a significant computation and/or
communication overhead. Over the years progress has been made and research
interests have shifted towards practical applicability making MPC ready for
deployment [4,12,17,19,22].

MPC has been applied to various use cases ranging from sugar-beet auc-
tions [5] to key-management systems [25]. Moreover, applications in the financial
domain include confidential benchmarking [10] and off-exchange trading [24]. All
these use cases fall under the MPC paradigm in which multiple parties aim to
collaboratively evaluate some function without revealing its private input values.

Secure graph algorithmic has been another particular area of interest. Short-
est path and max-flow algorithms, for example, find their applicability in many
situations and a natural question to ask is whether these algorithms can be eval-
uated in a privacy-preserving manner. In [8], a secure shortest path algorithm is
constructed for the 2-party setting. In [1], the shortest path and max-flow algo-
rithm are considered in the general multi-party setting. However, the complexity
of these algorithms renders them only applicable to small graphs.

In 2015, Nayak et al. [21] developed a framework for securely computing
graph algorithms like PageRank. The main difference is that they outsource the
secure graph algorithm to two parties, who execute a garbled circuit. In our
solution, the partial graph owners jointly perform the algorithm by means of
additively homomorphic encryption. Their solution has complexity O(M log M),
where M = |V |+ |E|, because edges and nodes need to be obliviously sorted. We
exploit the fact that in our setting each party knows its own transaction graph,
because then additively homomorphic encryption allows for local computations
with private values, and sorting is not necessary, which leads to an overall O(M)
complexity. Both solutions can easily be parallellised.

MPC delivers the mechanisms needed to collaborate and safeguard data secu-
rity and privacy without the need for a trusted third party, which would be highly
beneficial for the financial industry.

The rest of this paper is structured as follows. The PageRank algorithm
is explained in Sect. 2. Secure multiparty PageRank is described in Sect. 3. In
Sect. 4 the performance results are presented and the conclusions are presented
in Sect. 5.

2 PageRank for Fraud Detection

In a transaction graph, nodes represent bank accounts, and edges consist of the
unique transactions between accounts. Several graph-based features can be used
in machine-learning algorithms to improve existing fraud detection algorithms, by
reducing the false positives of existing techniques [20]. Namely, after the graph-
based features are computed, new transactions that are classified as fraudulent by
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an existing fraud-detection technique can be re-evaluated by an algorithm that
uses these features.

One of these graph-based features is PageRank, developed by Google to
return a ranking of websites when searching on the web. In essence, PageRank
is a centrality measure for all nodes in the directed graph, and can be used
for other purposes as well. Together with other features, PageRank and reverse
PageRank (PageRank on the reversed directed graph) have shown their value in
discriminating between fraudulent and non-fraudulent transactions [20].

2.1 Requirements for PageRank Application for Fraud Detection

Financial institutions could compute the PageRank values of bank accounts with
their observation of the transaction graph. However, in that case they would use
only a part of the whole transaction graph. The PageRank values would be much
more accurate if the PageRank algorithm were securely applied on transaction
data of multiple financial institutions.

In order to apply secure multiparty PageRank in the fraud detection of a
bank, the PageRank values need to be available as a feature for machine learning
models that use PageRank as input feature. They need to be calculated based
on the transaction graph for a predefined period, which is typically one or two
months, and need to be updated regularly, e.g. on a monthly basis.

This requires the PageRank and the reverse PageRank computations to take
place within ∼15 days each. For practical application, however, it would be
preferable to compute the PageRank values within ∼1 day. This process spans
from the starting point where all participants have their graph for the given
period ready, to the moment when the PageRank values for all nodes of the
participants have been computed and can be used. Furthermore, a reasonable
bandwidth for each participant is required, e.g., 100 Mbit/s.

In terms of information, it is not allowed for any participant to learn anything
about the graph of another participant, other than what can be learned from
the final private PageRank values.

2.2 PageRank and the Power Method

The original goal of the PageRank algorithm is to compute a scalable centrality
measure for websites using the hyperlink structure of the web. Intuitively, imag-
ine an Internet user that randomly follows hyperlinks on websites, goes to the
next website, etc. As soon as it encounters a website without hyperlinks (a so-
called dangling website), a new website is chosen at random. In addition to this
behavior of following hyperlinks, the Internet user will ‘teleport’ to any random
website with a known probability 1−p. The resulting probability distribution of
visiting frequencies of the Internet user on the websites represents the PageRank
value of each website.

Inspired by [20], this idea can easily be translated to transaction graphs.
Similarly as with the websites, as soon as a dangling node is encountered, a
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new node is chosen at random, and there is a teleport probability 1 − p. The
PageRank values of the transaction graph is the probability distribution based
on the visiting frequency of an imaginary coin on the bank accounts.

A commonly used iterative solution method to compute the PageRank is the
so-called power method. A useful variant thereof has been presented in [18], where
only the PageRank values of non-dangling nodes have to be computed during the
power method iterations, while correcting for the contribution of dangling nodes.
Moreover, this variant has the added benefit of closely matching the intuition
given at the beginning of this subsection. The set of dangling nodes is denoted
by D and the set of non-dangling nodes is denoted by U . The PageRank value
of node j at the k-th iteration is denoted as xj

k. Equation (1) describes the
initialization and iterations of the power method variant of [18] to compute the
PageRank values of the non-dangling nodes.

xj
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1
n

, ∀j ∈ U.

xj
k+1 =

1 − p

n
+ p ·

∑

i∈S(j)

xi
k

ci
+

p

n
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∑

i∈U

xi
k), ∀j ∈ U,

=
1
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+ p ·
∑

i∈S(j)
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∑

i∈U

xi
k, ∀j ∈ U,

(1)

where p is a fixed probability, n the total number of nodes, ci the out-degree
of node i, S(j) is the set of incoming edges of node j intersected with U . Note
that ci ≥ 1 for ∀i ∈ S(j). Equation (2) describes how the PageRank values of
the dangling nodes can be computed after convergence of the power method
iterations in Eq. (1).

xj =
1
n

+ p ·
∑

i∈S(j)

xi

ci
− p

n

∑

i∈U

xi, ∀j ∈ D. (2)

Under mild conditions that are satisfied by transaction graphs, the convergence
rate of the power method equals p [15] (and is thus independent of the size of the
graph). For the commonly used p = 0.85, the power method converges within
50 to 100 iterations.

3 A Secure Multiparty PageRank Algorithm

Several factors make securely implementing an algorithm a non-trivial task. The
overhead introduced by MPC is significant, requiring a careful analysis of the
PageRank algorithm in order to select the optimal MPC protocol. Moreover,
most cryptographic protocols work over finite groups, rings or fields and not
over the real or complex numbers. This requires a specific representation of the
PageRank algorithm, which is originally defined over the real numbers.
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3.1 Additively Homomorphic Encryption

A key observation is that the PageRank algorithm consists of mainly linear
operations, i.e. additions and multiplications by constants. It is assumed that
the total number of nodes n (bank accounts) and the PageRank probability p
are publicly known constants, and therefore the only non-linearity in Eq. (1)
is division by the private value ci. The variable ci represents the number of
outgoing edges of node i ∈ V , is fixed throughout the algorithm and is known
by the associated party, for which this division can thus be seen as a linear
operation.

A crucial observation is that all nodes i are owned by one of the parties
participating in the protocol. In practice, this does not have to be the case as
there might be transactions to accounts owned by other banks. To take into
account these nodes, other approaches, that are out-of-scope for this paper, are
required.

An approach to utilize the linear properties of the PageRank algorithm is
additively homomorphic encryption. A homomorphic encryption scheme allows
the evaluation of certain functions on encrypted input values while remaining
oblivious to the actual input values.

Any of the parties could play the evaluator role and perform the compu-
tations, as long as the other parties deliver their encrypted input values. The
computations can also be distributed amongst the parties so that they share the
computational effort. By distributing the computations in such a way that the
division by the private value ci is executed by the party that knows this value,
all computations become linear, i.e. ciphertexts do not have to be multiplied by
other ciphertexts. Because of this linearity the encryption scheme only has to be
additively homomorphic and there is no need to use the more sophisticated but
far less efficient fully homomorphic encryption (FHE) schemes. For this reason,
the additively homomorphic Damg̊ard-Jurik encryption scheme [11], which is a
generalization of the Paillier encryption scheme [23], has been adapted.

Damg̊ard-Jurik is a public-key encryption scheme that takes plaintexts from
ZNs and maps them to ciphertexts in Z

∗
Ns+1 , for some s ∈ Z>0,

Encpk : ZNs → Z
∗
Ns+1 ,

where N is an RSA-modulus and pk is the public key with the associated pri-
vate key sk. The Damg̊ard-Jurik encryption function is probabilistic; it takes as
additional input a random argument r ∈R ZNs+1\{0} for each invocation, which
we omit in our notation. The additive homomorphic property means that for all
a, b ∈ ZN ,

Decsk (Encpk (a) · Encpk (b)) = Decsk (Encpk (a + b)) = a + b mod Ns,

and, as a consequence, for all c ∈ Z,

Decsk (Encpk (a)c) = Decsk (Encpk (c · a)) = c · a mod Ns.

The parameter s influences the size of the plaintexts, the size of the ciphertexts
and the ratio of the former two. In Sect. 3.6 we will see that, in our case, s = 1
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results in a sufficiently large plaintext space. For this reason we will fix s = 1
from now on.

It must also be noted that this approach of distributing the computations
does introduce a communication overhead in contrast to using, for example, a
fully homomorphic encryption scheme. This trade-off between computation and
communication complexity is typical for applying MPC. As we will see later in
Sect. 4, the communication overhead of our solution is acceptable.

3.2 PageRank Algorithm over ZN

The PageRank algorithm is defined over the real numbers, whereas the Damg̊ard-
Jurik encryption scheme assumes plaintexts in the finite ring ZN . To solve this
discordance the PageRank algorithm has to be defined over ZN such that the
outcome (approximately) coincides with the outcome of the original PageRank
algorithm.

An integer representative y of the real number x can be found by applying a
scaling factor fx ∈ Z+,

y = �fx · x� ∈ Z.

The fixed scaling factor fx determines the precision of the computations, in fact,
the real number x can be approximated by y

fx
and

∣∣∣∣x − y
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∣∣∣∣ ≤ 1
2fx

.

The scaling factor fc is applied to find an integer representation of the fraction
p
ci

. Multiplying both sides of Eq. (1) with the factor (fc)k+1fx then results in
the following recurrence relation:
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k :=

⌊
(fc)kfxxj

k

⌉
, φk :=

⌊
(fc)

k+1fx

n

⌉
, ρi :=

⌊
pfc

ci

⌉
and ψ :=

⌊
pfc

n

⌉
for

all nodes i and iterations k yields the following approximation:

ỹj
k+1 ≈ φk +
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ρiỹ
i
k − ψ

∑

i∈U

ỹi
k.

From this the recurrence relation of Eq. (3) is deduced, which is defined
over the integers and can be used to approximate the PageRank values of the
non-dangling nodes.

yj
k+1 = φk +

∑

i∈S(j)

ρiy
i
k − ψ

∑

i∈U

yi
k with yj

0 =
⌊
fxxj

0

⌉
, ∀j ∈ V. (3)
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The same scaling approach is applied to Eq. (2) in which the PageRank values for
the dangling nodes are computed. The PageRank values xi

k can be approximated
by yi

k/((fc)kfx) with a precision that can be modified by changing the scaling
factors fx and fc.

It is now straightforward to define the PageRank algorithm over ZN , where
the RSA-modulus N should be chosen such that we avoid modular reductions
(or overflows) during the evaluation of the PageRank algorithm. It is easy to see
that more precision, or larger scaling factors, requires N to be larger as well. In
Sect. 3.6 the exact parameter choices will be presented.

3.3 PageRank Algorithm in the Encrypted Domain

The encryption function Encpk maps Eq. (3) to the following recursive relation
over Z

∗
N2 ,

zj
k+1 = Φk ·

∏

i∈S(j)

(
zi
k

)ρi ·
(

∏

i∈U

zi
k

)−ψ

mod N2 ∀k,

zj
0 = Encpk

(
yj
0

)
∀j ∈ V.

Here ρi, ψ ∈ Z are as in Sect. 3.2, Φk := Encpk (φk) ∈ Z
∗
N2 and zj

k ∈ Z
∗
N2 for

all j, k. Since the encryption scheme is additively homomorphic it follows that
Decsk

(
zj
k

)
= yj

k for all j, k.
Note that the value ρi is derived from the out-degree of node i ∈ V , and

therefore contains private information. For this reason, the terms
(
zi
k

)ρi should
be computed by the party owning node i. Similarly, the sets S(j) and U contain
private information, hence summing over these sets can only be done collabo-
ratively. More precisely, the product

∏
i∈S(j)

(
zi
k

)ρi should be computed by the
party owning node j, and the product

∏
i∈U zi

k should be computed as the pro-
duct of all privately computed products

∏
i∈UP zi

k, for all parties P ∈ P. Here
UP is the set of non-dangling nodes belonging to party P and P is the set of all
parties.

Algorithm 1 describes the computations that have to be performed by
party P , assuming that the encryption key has already been generated. Except
for the initialization phase all computations take place in Z

∗
N2 , hence modular

reductions are implicit. Each party executes this algorithm and it is evident that
it can only be performed collaboratively.

All values that are broadcast are ciphertexts, hence they do not leak private
information. However, together multiple ciphertexts might leak information. In
particular, we see that ρj could be derived from the two ciphertexts Zj

k and
zj
k. For this reason, every ciphertext is rerandomized before it is broadcast. By

rerandomization we obtain another unlinkable ciphertext that decrypts to the
same value. We therefore maintain the required functionality without leaking
private information. Rerandomization is a standard technique and, in our case,
comes down to multiplying the ciphertext with a fresh encryption of 0.
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Furthermore, the broadcasting introduces unnecessary communication and
even leaks some private information, namely the set UP . Both can be avoided
by only sending the ciphertexts to the parties that require them.

Algorithm 1. Secure PageRank algorithm for party P

Public inputs: pk, n, p, fx, fc

Private input: UP , DP , (cj)j∈V P , (S(j))j∈V P

Output: Encrypted and scaled PageRank values
(
zj

K

)
j∈V P

1: ψ ← ⌊
pfc
n

⌉
� Initialization

2: for j ∈ UP do
3: zj

0 ← Encpk

(⌊
fx
n

⌉)

4: ρj ←
⌊

pfc
cj

⌉

5: for k = 0 to K − 1 do � Non-dangling nodes

6: Φk ← Encpk

(⌊
(fc)

k+1fx
n

⌉)

7: sP
k ← (

∏
i∈UP zi

k)−ψ

8: Rerandomize and broadcast sP
k

9: Upon receiving sQ
k for all Q ∈ P do

10: Sk ← ∏
Q∈P sQ

k

11: for j ∈ UP do
12: Zj

k ← (
zj

k

)ρj

13: Rerandomize and broadcast
(
j, Zj

k

)

14: for j ∈ UP do
15: Upon receiving Zi

k for all i ∈ S(j) do
16: zj

k+1 ← Φk · Sk · ∏
i∈S(j) Zi

k

17: for j ∈ DP do � Dangling nodes
18: zj

K ← ΦK−1 · SK−1 · ∏
i∈S(j) Zi

K−1

3.4 Key Generation and Decryption

In conventional deployments of public key cryptosystems (e.g. securing commu-
nication channels) both the public pk and private key sk are generated by one of
the parties. In our setting, however, giving one of the parties complete knowledge
of the private key would undermine our privacy requirements. For this reason, our
solution requires a distributed implementation of the key generation and decryp-
tion algorithm, ensuring that ciphertexts can only be decrypted collaboratively,
while individually no information can be deduced. Solutions for distributed key-
generation and decryption, allowing up to |P|−1 passive corruptions, are readily
available for some cryptosystems [11,16], including, in particular, the DJ scheme
of our choice.
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3.5 Security Model

The implementation achieves computational security in the semi-honest model
(passive security), i.e. assuming that all parties follow the prescribed protocol.
The number of passive corruptions that can be tolerated is |P| − 1.

It is assumed that the number of nodes n in the entire graph is publicly
known. This can be achieved by each party P sharing their number of nodes nP ,
or by again applying an MPC solution to avoid leaking nP , and only revealing
n. In our solution the values are nP are made public.

3.6 Parameters

An overview of all public parameters and private parameters can be found in
Tables 3 and 4 of Appendix A.

As discussed in Sect. 2, the parameter p and the number of iterations K are
set to 0.85 and 50 respectively. The size of the RSA-modulus N is set to 2048
bit, as is recommended for 112-bit computational security [2], hence N > 22047.
Moreover, the scaling parameters fx and fc are both chosen to be equal to 27n,
where n is the total number of nodes in the graph. In Sect. 4 we will show that
these scaling factors achieve a desirable level of precision.

Each PageRank value xi
k is upper bounded by 1, and the total scaling fac-

tor after 50 iterations equals (fc)
50

fx = 2357n51; the following condition will
therefore guarantee that we do not encounter overflows:

n < 233 =⇒ 2357n51 < N.

In other words, the chosen parameter set returns approximated PageRank values
for all graphs with less than 233 nodes and there is no need to initialize the
Damg̊ard-Jurik cryptosystem with parameter s > 1.

For larger graphs a larger RSA-modulus N can be chosen or the Damg̊ard-
Jurik cryptosystem can be initialized with a larger exponent s. Another approach
is the implementation of a secure division protocol, see for example [26], by which
the size of the accumulated scaling factor, (fc)

k
fx, can be reduced after some

iterations.

4 Results

In this section, our secure multiparty PageRank solution is evaluated, both in
terms of accuracy and in terms of computational and communication complex-
ity. Firstly, the securely-computed PageRank values are compared to the stan-
dard PageRank values. Secondly, the running time of the algorithm is evaluated
for various randomly-generated transaction graphs. Thirdly, the communication
complexity of the protocol is analyzed, and finally, the results of the experiment
are extrapolated to large-scale transaction graphs.

Our solution has been implemented in Python 3.5 using the General Multi-
Precision library gmpy2 and the Partially Homomorphic Encryption library phe.
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All experiments were run in a single virtual machine with 48 CPU cores (2.4 GHz
Intel Xeon E5-2680v4) and 16 GB RAM. The multiparty setting is emulated by
assigning every core to exactly one party. The parties communicate by reading and
writing data in a given folder on the virtual machine, which means the communi-
cation between the parties is performed instantly in this experimental set-up.

4.1 Accuracy of the Secure Multiparty PageRank Algorithm

According to Sect. 3.2 the results of the secure multiparty PageRank algorithm
should be approximations of the standard PageRank values. For i ∈ V let s(i)
be the standard PageRank value of node i and let x(i) be the associated approx-
imation computed by the secure multiparty PageRank algorithm. The accuracy
of our solution can be quantified by various metrics. For the application in fraud
detection, we are interested in point-wise comparison on the accuracy of secure
PageRank. The maximum relative error satisfies this requirement and is com-
puted as follows:

max
i∈V

|s(i) − x(i)|
|s(i)| .

To evaluate the accuracy of our algorithm, we randomly sampled directed graphs
G, with n nodes and average out-degree d. To be more precise, for distinct nodes
i, j ∈ V we draw an edge from i to j with probability d/n. The nodes of this
graph are distributed equally amongst 3 parties to represent the multiparty
setting. Figure 1 displays the maximum relative error for randomly generated
graphs with n ranging from 3 × 256 to 3 × 4096 and d ranging from 10 to 160.

The values x(i) are computed by our implementation of the secure multi-
party PageRank algorithm and the values s(i) are computed with the PageRank
functionality of the Python3 package NetworkX. These results show that the
maximum relative error is between 0.0057 and 0.0064, meaning that our imple-
mentation indeed gives an accurate approximation of the standard PageRank
values. For realistic graphs, it is more likely that large transaction graphs will
approximate a scale-free graph [6]. Experiments on more realistic scale-free large
graphs, with resulting PageRank values ranging from 10−6 to 10−2, show that
the maximum relative error stays under 0.006.

The accuracy of our algorithm is actually independent of the number of
parties. To further increase it, the number of iterations K and/or the scaling
factors fx and fc could be increased.

4.2 Performance of the Secure Multiparty PageRank Algorithm

To benchmark the computational complexity of our algorithm, we again consider
randomly generated graphs with a total number of nodes n ranging from |P|×256
to |P| × 4096 and an average out-degree d ranging from 10 to 160. Recall that
P is the set of parties. In our first experiment, we fixed the number of parties
to 3 and consider the computation time for various graph sizes. In our second
experiment, we fix the average out-degree to 80 and vary the number of parties.
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Fig. 1. Maximum relative error with increasing number of nodes and edges.

Note that the final step of our protocol, the decryption, is executed collabo-
ratively, and therefore the computation times for each party are approximately
equal. For this reason, only the computation time for party 1 is considered.

Graph Size. Figure 2 shows the results of our first experiment, in which the
number of parties is fixed at 3 and each party runs their part of the protocol
on a single core of the virtual machine. The computation time of the algorithm
scales linearly in the number of nodes and in the average out-degree.

Fig. 2. Computation time for increasing
numbers of nodes and edges.

Fig. 3. Computation time for increas-
ing numbers of parties.

Number of Parties. Figure 3 shows the results of our second experiment, in
which the average out-degree is fixed to 80 and the number of parties is varied
between 1 and 4. In the setting of our instantiations, each party is assigned the
same number of nodes. Hence, the size of the total graph increases with the
number of parties. The results show that increasing the number of parties only
has a minor effect on the computational complexity of the protocol.
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4.3 Parallelization

The secure multiparty PageRank algorithm is well-suited for distributed com-
puting, an effect that we already observed when varying the number of parties.
In our third experiment, the number of parties is fixed to 3 and each party owns
4096 nodes of a randomly-generated graph with an average out-degree of 80.
Figure 4 shows the computation time of our algorithm when increasing the num-
ber of CPU cores per party. For this relatively small graph, a speed-up of factor
3.4 can be achieved by using 12 cores per party (instead of 1). By inspecting
our algorithm, it is easily seen that larger graphs will benefit even more from
distributing the computations over several CPU cores. Note that the upload
respectively download communication times are excluded from this experiment
(using 1 machine), but are expected to be within 5 respectively 9 s based on
Table 1.

Fig. 4. Computation time for increasing numbers of cores.

4.4 Communication

The experiments of the above section were all run on a single machine, and the
communication between the parties thus amounted to reading and writing data
in a given folder. In real-life scenarios, the parties would be physically separated,
and this data has to be communicated over some network. It is therefore impor-
tant to measure the communication complexity of the protocol, both in terms
of communication rounds and in terms of communicated data.

The number of communication rounds of our secure multiparty PageRank
algorithm, excluding the key generation phase, equals K + 1, where K is the
number of PageRank iterations. Table 1 displays the number of ciphertexts that
have to be communicated in our protocol, under the assumption that the graph
is randomly generated with average out-degree d � |P|. Recall that |P| is the
number of parties, n is the total number of nodes and nP is the number of nodes
of party P .
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Table 1. The number of cipher texts that each party P uploads and downloads during
the secure multiparty PageRank algorithm.

Phase Number of uploaded

cipher texts

Number of downloaded

cipher texts

PageRank computation K(nP + 1) K(|P| + n − nP − 1)

Decryption n n − 2nP + nP |P|

Thus for a realistic-size 3-party setting with 10 million nodes per party and 50
PageRank iterations, Table 1 amounts to 530 million and 1040 million 2048-bit
cipher texts that have to be uploaded and downloaded, respectively. Assuming
a bandwidth of 100 Mbit/s, this results in 2.8 h upload time and 5.5 h download
time.

The communication complexity is thus significant. However, it is currently
not the main bottleneck as our experiments have shown that the required com-
putation times are even larger. For this reason, we have not focused on improving
the communication complexity. A first improvement could be made by noting
that parties are not required to download the encrypted PageRank contributions
of the entire graph for every iteration. Alternatively, another MPC paradigm
with a much smaller communication complexity, such as fully homomorphic
encryption [13], could be used. However, this would negatively impact the com-
putation complexity.

4.5 Realistic Transaction Graphs

Based on experiments with scale-free graphs [6], it was shown that the maximum
relative error of secure PageRank stays under 0.006.

The performance of our solution was evaluated on relatively small graphs,
while in practice, transaction graphs contain millions of nodes. The first column
of Table 2 shows the expected computation time for a 3-party setting in which
each party has 10 million bank accounts with 80 transaction per bank account on
average. Moreover, we assume a very conservative performance gain of a factor
3.4 by distributing the computation over 12 cores instead of using a single core
per party; in practice, this gain will likely be much closer to a factor 12 for large
graphs.

A significant improvement can be expected by judiciously implementing the
algorithm in C++. In particular, 2048-bit modular multiplications have been
reported to take only 3.012 ms on a Xeon X64 processor [7]. Modular multipli-
cations take up a significant part of the computation time and can be accelerated
up to a factor 17 compared to our Python implementation. The estimates in the
second column of Table 2 show such an implementation would enable a running
time of less than 1 day for a large-scale graph as described above.
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Table 2. The estimated runtime for the application of the secure multiparty PageRank
algorithm to a graph with 30 million nodes and average out-degree 80 in the 3-party
setting.

Python
implementation

C++
implementation

Computation time (days) 10.62 ∼0.62

Communication time (days) 0.35 0.35

Total time (days) 10.97 ∼0.97

5 Conclusions and Future Research

Existing techniques for fraud detection would highly benefit from collaboration
between financial institutes. However, the exchange of relevant information is
often limited, or not even possible, due to privacy restrictions or commercial
confidentiality. This paper illustrated that secure multiparty computation can
help tackle this challenge.

It was previously shown that fraud detection techniques can be improved
by taking into account features, such as PageRank values, derived from trans-
action graphs [20]. Transaction graphs of multiple financial institutes are cou-
pled through interbank transactions and analyzing a combined transaction graph
leads to a more complete picture and, possibly, to more effective fraud detection.

An innovative solution has been described for multiple financial institutes
to securely and collaboratively compute the PageRank values of a combined
transaction graph without revealing private and/or confidential information to
each other or to any other party. Each financial institute learns the PageRank
values of its own bank accounts that are derived from the joint network. To
achieve the desired security properties an additively homomorphic encryption
scheme has been used.

The feasibility of this secure multiparty PageRank algorithm has been shown
by implementing it in Python and applying it successfully on randomly gener-
ated test networks while simulating up to four different parties. Furthermore,
the results show that the secure multiparty PageRank algorithm is scalable and
can handle transaction graphs of realistic size in reasonable time, while remain-
ing sufficiently accurate. In particular, this allows financial institutes to update
PageRank scores at reasonable intervals, e.g. over a month, and use these as
features for their own fraud detection methods.

Planned future work includes developing, in contrast to the current passively
secure protocol, an actively secure solution. In addition, other homomorphic
encryption schemes, in particular ones that can withstand the attack of a quan-
tum computer, will be considered.

Moreover, our MPC solution is tailor made to evaluate the PageRank algo-
rithm securely as it specifically utilizes the linearity of this algorithm. However,
this linearity applies to many other algorithms and an analysis of the broader
applicability of this MPC approach would be of interest. In particular since
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PageRank is only one of many graph-based features that may be extracted from
transaction graphs as input for fraud detection methods. In addition, there are
other application domains in the financial sector that could benefit from the
secure analysis of transaction graphs, such as commercial banking and anti-
money laundering. Further important future work is testing the algorithm on
actual combined transaction graphs and analyzing its effect on the resulting
PageRank values and its effectiveness in improving fraud detection.

In conclusion, the feasibility of securely analyzing features of a large-scale
network that is distributed over multiple parties has been demonstrated, thus
paving the way for several collaboration initiatives that were previously not
possible.
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A Parameters

The following public and private parameters are considered in the secure
PageRank algorithm, Algorithm 1.

Table 3. Public parameters of the secure multiparty PageRank algorithm

Parameter Description

P Set of parties

n Number of nodes

N RSA modulus

K Number of PageRank iterations

p PageRank probability

fc Scaling factor for all p
ci

fx Scaling factor for all xi
k

φk Integer PageRank constant of iteration k

Φk Encrypted PageRank constant of iteration k

ψ Integer PageRank constant

pk Public Damg̊ard-Jurik encryption key

zi
k Encrypted and scaled PageRank value of node i at iteration k
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Table 4. Private parameters of the secure multiparty PageRank algorithm

Parameter Description

V P Set of all nodes belonging to party P

UP Set of non-dangling nodes belonging to party P

DP Set of dangling nodes belonging to party P

S(i) Set of incoming nodes at node i ∈ V

ci The out-degree of node i ∈ V

References

1. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving
simple combinatorial graph problems. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS,
vol. 7859, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39884-1 21

2. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M., Zieglar, L.: Recommendation
for key management - part 1: General (revision 4). National Institute of Standards
and Technology - Special Publication 800(57), 1–156 (2015)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, 2–4 May 1988, Chicago, Illinois, USA, pp. 1–10. ACM (1988). https://
doi.org/10.1145/62212.62213

4. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

5. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

6. Bollobás, B., Borgs, C., Chayes, J., Riordan, O.: Directed scale-free graphs. In:
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2003, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, pp. 132–139 (2003). http://dl.acm.org/citation.cfm?id=644108.644133

7. Bos, J.W., Montgomery, P.L., Shumow, D., Zaverucha, G.M.: Montgomery multi-
plication using vector instructions. IACR Cryptology ePrint Archive, vol. 2013, p.
519 (2013). http://eprint.iacr.org/2013/519

8. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-
honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 13
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