
Towards the Design of a Super-language of ALGOL 68 
for the Standard Prelude 

(excerpt) 

by 

Dick Grune 
Mathematical Centre 

Amsterdam 
March 1977 

Abstract. 
The problems concerning SIZETY definitions in an Unabridged 

Machine-Independent Standard Prelude for ALGOL 68 are examined 
and tentative solutions are given. 

Keywords. 
ALGOL 68, language design, standard prelude, portability. 

The SIZETY problem. 
The design of the Mathematical Centre Machine-Independent 

ALGOL 68 Compiler calls for a text containing in some form the 
Unabridged Machine-Independent Standard Prelude. This text must 
include, among other items, definitions for operators and 
identifiers with modes involving SIZETY. When considering the 
form of such a SIZETY definition several approaches come to mind, 
none of which work. All solutions fail because the user may 
write: 

long long sin(leng leng 3.0) 

in an environment in which "real lengths" equals i. 

Some solutions seemed very attractive at first and it is 
useful to show here why they don't work. 

- Proposal: feed values for "real lengths', "int shorths', etc. 
to the compiler and let it generate the appropriate 
declarations. 
Objection: programs like the one above cannot be handled. 

- Proposal: introduce a genuine 

mode Lint = union(int, long int, ...) 

Objection: this would legalize forms like "long sin(3.1)" or 
"long 3.1 + 3.1" and have adverse effects on the run-time 
efficiency. The technique may prove usable in the transput 
section. 

78 



- Proposal: let the first scan of the compiler find out the 
maximum number of long's used in the program under 
consideration. It can then generate all declarations that 
could ever be used in this program. The information necessary 
for this generation could be provided by the standard 
prelude. 
Objection: operator identification has not yet been done when 
the maximum number of long's is going to be determined. This 
makes cases like 

leng if b then x else y fi 

hard to handle (increase all SIZE counters by one?). 

We are forced to make changes to the identification 
mechanism, which must be generalized to comprise SIZETY 
declarations. This immediately raises an important question. 
These changes will no doubt extend the power of the language 
considerably. Should this new facility be made available to the 
user? If so, we can stick to the exact form of the Report and 
allow declarations like 

op * = (L compl a, L real b) L compl: a * L compl(b) 

both in the standard prelude and in user programs. The answer to 
this question will strongly affect the details of the design of 
the extension. 

At first sight the reasonable answer seems to be "yes". The 
user who is developing a matrix-handling package will certainly 
be grateful to us, and in general it is good practice to restrict 
system privileges to a minimum. 

Upon closer inspection, however, some unpleasant phenomena 
come to light. 

- Well-formedness. 
If the user is allowed to define his own L-modes, 

checking well-formedness is awkward and can d~pend on the 
number of long's in the application. Example: 

mode u = union(int, long long int) 
mode L yech = union(u, ref union(u, Lint)) 

Now L yech is well-formed for all numbers of long's except 0 
and 2! T--~e standard prelude itself does not contain such 
monstrosities. 

- Equivalencing. 
New modes will be created during operator identification 

in this scheme. These modes can, in devious ways, be 
equivalent to other modes, and this equivalence may be 
essential for the identification of other operators. So mode 
equivalencing and operator identification must form a single 
integrated block, a prospect we do not relish. 

It can be objected that this situation will occur 
whatever we decide; a construction like 

leng if b then x else y fi 

7g 



will give rise to new modes when the operator leng is 
identified. But the crux lies in the words "in devious 
ways". The user can (and will) concoct examples that need the 
full power of mode equivalencing, by using unions of L-modes. 
However, if the L-modes are restricted to those of the 
standard prelude~ mode equivalencing is almost trivial and 
can easily be handled during operator identification. The 
hardest case is the lengthening and shortening of L compl. 

- Generality. 
Once we give the user the possibility to declare modes 

like the L yech above, we are forced by the spirit of ALGOL 
68 to allow modes that depend on two or more SIZETY 
parameters, e.g., L1 L2 yecchh. This might be useful, but it 
is a bit beyond the scope of this subject. 

- Independence. 
The concept of "independence of properties of 

declarations as used in RR 7.1 becomes unclear. It is hard 
to decide whether or not the following two declarations 
should be dependent. 

(a) op www = (Lint a) Lint: a; 
(b) op www = (Ynt--a) in£: -a; 

If (a) is visible when we try to identify the operator 
www in www I, it should be identified, and likewise for (b); 
t-h-fs mea-n~ that (a) and (b) cannot co-exist in the same range 
and that they must be considered dependent. 

If, however, (a) is in an outer range and (b) in an inner 
range, and we try to identify www in www long i, we find that 
(b) should not render (a) inaccessible, i~--6Ther words, that 
they should be independent. 

The standard-prelude itself does not raise this problem, 
since it does not contain declarations that are equally 
similar as (a) and (b). 

These considerations force us to reject the idea of L-modes 
as a general feature. At the same time they indicate that the use 
of L-modes in the standard prelude is essentially simpler than 
the--normal use of modes, and it would be nice to exploit this 
simplicity. Some minor simplifications have already been given 
under the headings "Well-formedness" (no check necessary), 
"Equivalencing" (trivial for standard prelude modes) and 
"Generality" (one SIZE parameter only), but the great bonus comes 
from analyzing the problem mentioned under "Independence". 

The trouble with declarations (a) and (b) is that the modes 
of their operands are firmly related for some "values" of the 
R-parameter, in which case their properties are "not independent" 
in the sense of the Report. The standard prelude, of course, 
does not contain any pair of declarations that is dependent for 
some value of L . Thus there cannot be an applied occurrence of 
an operator with L-mode operands that would identify one 
declaration for one value of L and the other for another value of 
L . But this means we can afford to completely disregard the 
~umber of long's and short's when doing the identification. If we 
identify a declaration, then either it is the correct one, or 
there is no identification possible. We see that we can use the 
normal operator identification mechanism for the standard prelude 

80 



as well, if we are prepared to do some additional checking. 

Checking is required to catch cases like 

compl z; 
z +:= struct(real re, long real im) (0, long i) 

where the right hand side reduces to struct(real re, real im) 
upon reaching the standard prelude, and consequently t-~operator 
+:= on compl in RR 10.2.3.11.f is identified. 

The problem resembles the "false" operator identification in 

int i; real x; 
if b then x else i fi +:= 3.0 

in a compiler that uses operator identification by H-function as 
described by Hendrik Boom in [i] (which our compiler will). Here 
the representative mode of the left hand side is ref real and the 
operator +:= of RR 10.2.3.11.e is identified. A separate check is 
then necessary to find out that i cannot be coerced to ref real. 
Such a check can profitably be incorporated in the coercion 
mechanism. It can also catch falsely identified L-mode operators. 

Thus the identification of standard prelude operators is 
extremely simple: when reaching the standard prelude discard all 
SIZETY information. The coercion process will then determine the 
value of L from one of the L-mode operands and check coercibility 
as usual. The value of L can be passed to the code generator for 
selecting the appropriate object code. 

Acknowledgement. 
I am very grateful to Lambert Meertens for his ideas and his 

numerous counterexamples. 

References. 
[i] Boom, H. J., Note on Balancing in ALGOL 68, ALGOL 

Bulletin 36.4.1, 1973. 

81 


