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1. In this report we consider the·asymptotic behaviour of the 

solution of a differential.;.difference equation which arose in a problem 

of number theory considered by·the·pure mathematics department. 

Let g(m) be the largest·prime factor of a natural number m and 

let G (n) denote the number of integers m 5,_ n, for which g(m) 5,_ma., a. 
where a. is a real number. Then a:ccording to VAN DE LUNE and WATTEL [8] 
the frequency G(a.) is defined as 

G(a.) = lim G (n)/n. a. ·. 
n-+<x> 

In their report the following differential-difference equation 

for H(x) = G(1/x) is derived 

( 1 • 1 ) xH'(x) = -H(x-1), _co< X < 00 0 

The function H(x) has to satisfy the condition 

( 1. 2) H(x) = 1, 0 < X < 1. 

It follows from these equations that 

(1.3) H(x) = O, X < 0. 

In this report we shall investigate the asymptotic behaviour of 

H(x) for large values of x. 

2. We apply a Laplace transformation to (1.1) with respect to x and 

define 

( 2. 1 ) h(s) e-sx H(x)d.x = Jooo 

for Res> s 0• 

The existence of s 0 follows from the boundedness of H(x). 

Integration by parts of the integral in 

fx {~H'(~) + H(~ ·~ 1)}d~ = 0 
x-1 

gives the recurrence relation 
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Ix Jx-1 
H(~ )d~ - xH(x) = H(~ )d~ - (x-1) H(x-1), 

x-1 x-2 

from which follows, since H(x) < 0 if x < O, that 

Ix H(~)d~ = x H(x). 
x-1 

Therefore, the assumption that there is a point x0 > 0 for which 

H(x0 ) = 0 leads to a contradiction, so that H(x) > 0 for x > o. 

From (1.1) follows that for x > 1 H(x) is· a monotonously decreasing 

function of x, so that H(x) < 1. 

Hence 

(2.2) 0 < H(x) < 1 

and a s 0 exists. 

We remark that from its definition follows that H(x) in the 

original number theory problem can be interpreted as a probability 

and therefore trivially satisfies (2.2). 

With the aid of the transformation the differential-difference 

equation is transformed into the following simple ordinary differential 

equation 

(2.3) sh' (s) = (e-s - 1) h(s ), 

Since H(x) + 1 as x +Owe obtain the boundary condition sh(s) + 1 as 

s + oo. 

(2.4) 

where 

The general solution of (2.3) is 

h(s) =~exp - E1(s), 

E (s) d~f Joo e-cr dcr. 
1 s rJ 

The boundary condition gives at once c = 1. 

From (2.4) follows that h(s) is an entire function. Hence (2.1) 

is valid in the wholes-plane, 

We note in passing that by substitution of s = 0 into (2.1) and 
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(2.4) the following curious relation is obtained 

(2.5) JooO H(x)dx = exp y, 

where y is Euler's constant. 

Applying the inverse Laplace transformation to (2.1), we get 

(2.6) H(x) = 2;i JL exp(sx - E1(s) - ln s)ds, 

where L denotes a vertical path in the s-plane. 

The asymptotic behaviour of H(x) as x + 00 is determined by apply­

ing the saddle point method. Since 

(2.7) 1 
J(s, x) = s - x(E1(s) + ln s) 

is an entire function of s, there are no further singularities. The 

saddle points are found from a~/as = 0 which gives 

(2.8) 

(2.9) 

1 -s 
- e ---- = x. s 

In order to facilitate the computations, we write (2.8) as 

t 
e - 1 

t = x, 

wheres= -t. This equation can be brought in the following more sym­

metrical form by making the substitution 

This gives 

(2.10) 

1 
t = w - -. 

X 

- --W 1 X 
we = - e 

X 

which is of the form of an equation considered by WRIGHT [9]. There 

are two real roots and an infinity of complex roots. The trivial root 
-1 . . . w = x is of no importance to us but there exists a non-trivial one 

for which, however, no explicit analytical expression is available. 
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Hence there exists only one real saddle point. 

It will be shown later on that only the real saddle point contri­

butes to the asymptotic behaviour of H(x). 

The value t 0 oft at the real saddle point 

ximated by means of an it~rative method such as 

With t = t we can write (2.8) in the form 

can be easily appro­

gi ven in DE BRUIJN [3] • 

0 

(2.11) 
-t 

t 0 = ln x + ln t 0 -·ln(1 - e 0 ) 

and proceed in the following way. From the rough estimate 

ln X < t 0 < 2 ln x 

obtained from (2.9) fort= t 0 , we derive 

ln t 0 = O(ln ln x), X -+ oo, 

which is substituted into the right-hand side of (2.11). This will 

give a better estimate for ln t 0 , viz. 

O(ln ln x) ln to= ln ln X +. ln X , X -+ co• 

By making a further step in the iterative procedure we obtain the more 

precise result 

ln t = l l + ln ln x _ 1(ln ln x)2 + O(ln ln x) 
O n n x ln x 2 ln x l 2 ' 

n X 

X -+ 00• 

Hence the position of the saddle point is determined by 

= ln x + ln l + ln ln x ,(ln ln x)2 + O(ln ln X) x-+ oo. 
to n x ln x - 2 ln x 2 ' 

ln X 

According to ~ 1 the path of steepest descent is given by 

S =SQ+ iT, -oo < T < oo, 

where s0 = -t0• If we are satisfied with the first few terms of the 

asymptotic expansion it is of course permissible to use the slightly 

displaced line 

-00 < T < 00, 

passing through the point 

s1 = -ln x - ln ln x - lnl;nxx + !(lnl~nxx)2, 
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as the path of integration L, see [5]. 

In the neighbourhood of s = s 1 the approximation 

2 2 
(2.12) ~(s, x) ~ ~(s 1, x) _.!....a ~(s, x)I 

2 2 
as s=s, 

can still be used. 

From [6] we get for large negative values of s the following 

asymptotic behaviour of the exponential integral 

-s 
E1 ( s) + ln s = 7 ( 1 + O( s-1 ) ) • 

Further we need the following asymptotic relations 

( ) ln ln x ,(ln ln x)2 
~ s 1 , x ,-.., -ln x - ln ln x - 1 + l! 1 + 1 n x n x 

and 

a2~(s, x) I 
2 ~ 1 - I'ri'x 

as s=s, 

Thus in the vicinity of s = s 1, ~(s, x) is asymptotically equal 

to the following expression 

~,(T, x) = -ln x - ln ln x - ln ln x + l(ln ln x)2 + 1 - T2(1 - _!_) 
ln x G ln x 2 ln x • 

This expression is substituted in~-~ which gives 

H(x),.,.., 2: J:co exp{x~1(T, x)}d, 

__ ex1.?{xf(x)} Jco 1 x,2( 1 )} -- - -co expl - 2 1 - y--- d T' 
2rr(x ln x)x n x 

where 

(2.13) f(x) = 1 _ ln ln x + ~(ln ln x)2. 
. ln X ln X 

Finally, 

(2.14) H(x)~ ex;e{xf(x)} ( 1 + 1 ) 
\&;:: 2 ln X' y21rx(x ln x)x 

which is in very good agreement with the numerical calculations of 

VAN DE LUNE and WATTEL. 
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If we calculate the situation of the saddle point with greater 

accuracy this will result in the addition of a few small terms to the 

sum between the brackets and in the addition to f(x) of the further 

terms from the expansion of 

~(s 0 , x) + ln x + ln ln x = 

= s - l{E (s ) + ln s 0l + ln x + ln ln x. 0 X 1 0 J 

3. We consider next the possible contributions from the complex 

saddle points. The geometry of these points is given in a paper by 

LAUWERnm [r]. He considers the conformal map z = we -w and shows that 

the z-plane is mapped upon an infinite number of regions in thew-plane, 

which are designated 1n fig. 1 by I, II, III, IV, •••• If w = u + iv, 
2 2· 2 2u 

then the curves u + v = r e in the complex w-plane correspond to 

circles I z I 1 = r 1n the z-plane. For large x we haver= - e 
X 

1 
X -1 

< e 

1 X so that the curve corresponding to the circle with radius r = - e 
X 

consists of two parts, a small closed curve around the origin and a 

parabolical branch. 

The roots of eq_uat ion ( 2. 1 0) 

-W X 
we = - e 

X 

are marked by crosses 1n fig. 1. 
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V 

.----- - - - -. 
41T 

;;;=--:.-::._ -_ --
cp. = 21T ,· 

-;;;;;;::_-=..::., -. 

1T 

Fig. 1. Conformal mapping 

icp -w z = re = we ; w = u + iv. 

w = u + iv 

III 

2 2u =re -

II 

The s-plane with the path of integration Land the line corres­

ponding to the parabolical line containing the saddle-points in the 

w-plane are given in fig. 2. 

u 
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-----" 0 

I 
rL 

I I 

fig, 2o 

2 2 2 2u 
It is easy to deduce from u + v = r e that the complex 

saddle points in the s-plane are all situated on the left-hand side 

of the vertical through the real saddle point. Therefore the asympto­

tic beha-viour of H(x) is determined only by the real saddle point. 

Since,however, the complex saddle points are rather near to the verti­

cal line through s 0 their contributions to the remainder term can still 

be consiclerableo These contributions are studied in great detail by 

BEENAKKEH [2] who also gives explicit estimates. 
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