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I. INTRODUCTION 

1.1 Goal and itinerary of this study 
The problem we investigate is least squares estimation of a regression function. 
We haven observations (xk,Yd, k = I, · · · ,n, which are assumed to satisfy 

Yk = g(xk) + £k , k = I , · · · ,n, 

where the disturbances £k are independent and all have expectation zero and 
finite variance, and where the xk are vectors in some Euclidean space. The 
function g ( ·) is in part unknown. The least squares method for estimating g is: 
find a g,, such that 

l n 

--;; k~?k -g(xk))
2 

is minimized, where the minimization is over the class g of the regression func­
tions that one considers feasible. The properties of the least squares estimator 
g,, depend on the extent to which extent g is unknown, i.e. on !J. If it is known 
that the regression is linear, then g = {g(x) = xO: 0E0} is the class of linear 
functions and we are in a classical situation. Linear regression has been stu­
died extensively. More recent work in this field focuses e.g. on necessary condi­
tions for consistency (LAI, ROBBINS and WEI (1978)). 

Linear regression is a special case of the situation where g is known up to a 
finite-dimensional parameter. This more general case is called nonlinear regres­
sion. The class g is g = {g=g(-,0) : 0E0}, with 0Clll' . Because of the possi­
ble nonlinearity, the approach to the study of the least squares estimator is 
mostly asymptotic. HARTLEY and BAKER (1965) prove asymptotic normality 
under the assumption of normally distributed errors. As in JENNRICH (1969), 
we shall not specify the distribution of the £k. Jennrich obtains consistency 
and asymptotic normality under regularity conditions on the g( ·,O). Later, 
these conditions have been refined (Wu (1981 )). However, there still remain 
nonlinear models that have only been investigated on an ad hoc basis. As an 
example we present a two-phase regression model in its simplest form. 

EXAMPLE 1.1. 

{

a:< 1
> +£k , if xk ,:;;;;;,_y 

Yk = a.<2) +£k , if xk >y 

Both the a(i>,i = 1,2, and y are unknown parameters. The class g is 

!3 = {g = a(l)~ - oo,y]+a<2\y,oo): a(ll,a(2) ,yEIII}. 

Nonlinear regression , in tum, is a special case of a even more general class 
of models which includes non- and semiparametric regression. In the latter 
cases the regression functions can no longer be indexed by a finite-dimensional 
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parameter. 

ExAMl>LE 1.2. 

Yk = g(xd+£k, 

gE g = {g:R➔IR , g has m derivatives, Jlg<m> 1
2 ..;;K}, 

with K a known constant. 

Another example of nonparametric regression is e.g. the situation where only 
monotonicity of the regression function is assumed. 

We shall take a unified approach in investigating the asymptotic properties 
of the least squares estimator. We regard the function g itself as unknown 
parameter and we shall study how well g can be estimated by the least squares 
method, given that g is a member of a class g of regression functions. It is to 
be expected that the asymptotic behaviour of g,, is primarily determined by the 
properties of fj, the parameter space. In particular, the larger or richer g is, the 
harder it will be to estimate g. Using concepts of empirical process theory, we 
shall give a precise description of the link between the 'size' of g and the 
behaviour of g,, . Empirical process theory is the theory of uniform laws of 
large numbers and uniform central limit theorems. Its topics are limit theorems 
for processes indexed by sets or functions. For instance, let Hn be the empiri­
cal distribution based on n independent observations xk from H. Hn puts mass 
1 / n on each of the xk , k = 1, · · · ,n. The theory supplies us with sufficient 
and - modulo measurability - also necessary conditions such that for a class g 
of H-square integrable functions g 

~~v If ig l2d(Hn-H)I ➔ 0 almost surely, (1.1) 

as n tends to infinity {VAPNIK and CHERVONENKIS (1971 ,1981), POLLARD 

(1984), DUDLEY (1984)). A result like (1.1) is very helpful for proving con­
sistency of g,, . 

We shall now present one more two-phase regression model. This model 
drew our attention to empirical processes indexed by sets because it has sets as 
unknown parameters. 

EXAMPLE 1.3. 

Yk =min(a<1> +xk, 1/J\1> +xk, 2/J~I) , a(2) +xk, I {J\2> +xk, 2/Jf>)+(k, (1.2) 

Here, the measurements Yk> k = 1, · · · ,n are the log-lifetimes of plastic pipes 
for the transportation of fluids. The xk =(xk, 1,xk, 2) are (stress)/(absolute tem­
perature) and ( absolute temperature)- 1 • The idea is that at high stress and 
temperature the pipes become brittle and break due to a mechanism different 
from the one at low stress and temperature. 

Related to ( 1.2) is the model 

{

a(I ) + xk, I /3\1> + xk, 2/J~I ) + (k if xk EA 

Yk = a<2> +xk, 1/Jf) +xk,2/3~2) +£kif xk gA 
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where A = { xk: xk, 1 y 1 + xk, 2 y2 ~I}. The class of regression functions is now 

§ = {g(x1,x2}=(a<1>+x1P\1>+x2P~1>)JA(x1,x2) (1.3) 

+(a<2> + x 1P\1> + x1P~1>)JA,(x 1 ,x2): 

(aU> ,p\i) ,p~>f EIR 3, i = 1,2, A E~}, 

with ~ the collection of half spaces in R2• The only difference between this 
model and (1.2) is that in the latter one imposes the restriction 
y, =(P~1> - PF>) / (a<2> -a<1>), t = 1,2. In both models, the halfspace A is an 
unknown parameter. In (1.2) the the set A is a function of the other unknown 
parameters a<;> ,p<i) and in (1.3) it is a function of the Euclidean parameter y. 
However, in the general two-phase regression model, the class ~ in (1.3) need 
not be indexed by a finite-dimensional parameter. An example is the case 
where ~ is the collection of all monotone sets, i.e. the class of sets A such that 
if (x I ,x2)EA also (x I ,x2}EA for all (x I ,x2) with X 1 ~x I and X2 ~X2-

We shall take two-phase regression models of the form presented in Exam­
ple 1.3 as the major illustration of the theory we develop for general regression 
models. In this way, we hope to provide some insight into the significance of 
our results. Examples concerning other (nonparametric) models occur 
throughout the manuscript and are sometimes not explored in full detail. 

The presentation is organized as follows. Chapter 2 sets the background for 
proving consistency. We give an overview of the history that led to the uniform 
law of large numbers ( 1.1 ), which goes from sets via bounded functions to 
integrable functions. We extend the uniform law of large numbers to the case 
of non-identically distributed variables and allow virtually everything to 
depend on the number of observations (i.e. on then-th experiment). With these 
tools, we prove in Chapter 3 a general consistency theorem, followed by some 
applications to nonlinear and nonparametric regression. We must stress how­
ever that the general theorem should be regarded rather as expressing a general 
viewpoint on regression than as a recipe for checking consistency. One of its 
conditions often does not hold for the original §, but only for a subclass of §, 

c.f. the assumption in parametric maximum likelihood that the parameter 
space is compact. In specific situations one faces the problem of proving that 
eventually g,, lies in this subset, which can be just as difficult as showing con­
sistency directly. We elaborate on this in Section 3.4, where we apply the gen­
eral theorem to the models of Example 1.3. 

Chapter 4 summarizes some results from the literature on uniform central 
limit theorems. We use these in Chapter 5 to prove asymptotic normality of 
the least squares estimator of the aU> and p(il of Example 1.3. In Chapter 6 we 
return to the more general case. We exploit the techniques for proving uni­
form central limit theorems to obtain rates of convergence for g,, . Here, we 
make the distinction between finite-dimensional models and infinite­
dimensional models more explicit. We show to what extent the speed of esti­
mation, i.e. the rate at which the estimation error goes to zero, can be deduced 
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from the entropy of !3. In Section 6.4 the theory is applied to two-phase regres­
sion and the results are compared with those of Chapter 5. 

Because two-phase regression is closely related to change-point models, we 
devote a separate chapter to the latter: Chapter 7 concentrates on tests for a 
change-point. Finally, in Chapter 8 we compute the least squares estimators 
for the model of Example 1.3, using simulated and real data. 

Throughout, we make extensive use of Chapters II and VII from POLLARD 
(1984). In fact, this present study is very much in the spirit of this book. 

We now mention some of our notational conventions: 
-IP is the probability measure underlying either the whole sequence of random 
variables, or the random variables involved in then-th experiment, 
- boldface symbols will always represent random quantities but not vise versa: 

some random quantities are not boldface because of the limited possibilities 
of a word processor, 

- t: (in boldface) is always the disturbance term. Unfortunately, this typo­
graphic distinction is hard to see (c.f. t:), 

- for small numbers we mostly use the greek letter T/, 
- 0 is a finite-dimensional parameter that possibly indexes g, 

13 is usually employed for defining /3-entropy, but it can also be a small 
number such as T/, or the point mass /3(.), 

- x or x is always a row-vector, 
- L 2 is a Hilbert space of real functions on some Euclidean space, but with 

functions not identified with equivalence classes, 
- 11.11 is the norm of a Euclidean vector or of a function in L 2 (in that case it 

is a pseudo-norm), 
Theorems, lemmas and corollaries will be numbered according to the section 

they are part of whereas examples and equations are numbered throughout the 
chapter they are in. 

Although many other models also fit into the theory, we mainly consider 
two-phase regression as an application. For this reason, we shall present a 
brief overview of the literature on this subject in the next section. 

1.2 Multi-phase regression and change-point models 
QUANDT (1958) is one of the earlier workers on two-phase regression. He con­
siders the model 

{

a(ll +xk/Pl +t:k if xk ~'Y 

Yk = a(ll +y/f.ll +(xk -y)ff-2) +t:k if Xk ~'Y ' (1.4) 

with a(ll,ff-1>,ff-2> and the change-point y unknown parameters. The model 
arises in many fields. A famous example (BACON and WA TIS ( 1971)) is the 
relation between stagnant surface layer height and flow rate in an inclined 
channel. The model also describes the influence of warfarin concentration on 
blood factor VII, of nitrogen concentration on the intake of protein, of after-
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tax income on the expenditure on luxury goods, etc .. Recently, IPPEL and 
BEEM (1986) fitted the model to reaction times as function of some measure of 
discrepancy between stimuli. 

Methods for finding the exact solution for the least squares minimization 
problem are discussed in HUDSON (1966) and WILLIAMS (1970) extended these 
techniques to the case of linear three-phase regression. Smooth approxima­
tions to the non-differentiable model are given by BACON and WATTS (1971) 
and TISHLER and ZANG (1981). HINKLEY (1969,1971) studies the asymptotic 
properties of parameter estimators and procedures for obtaining approximate 
confidence intervals. FEDER (1975) establishes asymptotic theory for a con­
tinuous model of the form 

= {gCl)(xk,(J0))+£1< if XJ< :,;;;;;_y 

YI< g<2)(xJ<Jf2>)+£1< if X1<~Y . 

He provides conditions for consistency, and - for the situation with g<i)(x,ffi>) 
linear in (fi>, i = 1,2 - asymptotic normality, assuming that the model is 
identified at the underlying true state of nature. 

A more general model does not impose continuity in the parameters, e.g. 

{

a(l>+x1</fJ>+£1< if xk:,;;;;;.Y 

Yk = a(2)+x1</f.2>+£1< if X1<>Y . 

An example is the model for eruptions of the Old Faithful Geyser in Yellow­
stone National Park (COOK and WEISBER (1982)). I am not aware of any 
asymptotic theory for this model. 

An identification problem comes up if for instance in (1.4) {11> = {12>. For 
testing the constancy of the regression relationship, BROWN, DURBIN and 
EVANS (1975) propose a cusum and cusum of squares test. They assume normal­
ity of the errors, so that their tests can be compared with the likelihood ratio 
test. Asymptotic comparison in the large deviations sense is carried out by 
DESHA YES and PICARD (1982). Many other tests have been developed ( e.g. 
FERREIRA (1975) and MOEN and e "Broemeling" (1984) propose Bayesian test 
procedures). In Chapter 7 we shall give our contribution to this discussion. 

Example 1.3 of the previous section deals with another extension of (1 .4). 
Here, the regressors are in higher-dimensional Euclidean space Rd, and one 
can no longer speak of a change-point. The general linear two-phase regression 
model - with obvious extension to p-phase regression - assumes functions of 
the form 

{

g(l>(x,iJ(1)) if X EA 

g(x) = g<2>(x,o<2>) if x flA 

where g<i) :Rd X e-R is linear in the parameter, i = 1,2, 0 c R' and where A 
varies in a class cP, of subsets of Rd. In Section 3.4 we shall formulate condi­
tions on cP, that can lead to consistency of the least squares estimators of tJ(iJ, 
i = 1,2 and A and Chapter 5 presents conditions for asymptotic normality of 
the estimators of the Euclidean parameters. In cluster analysis (see e.g. 
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POLLARD (1981) and two-lines least squares (LENSTRA et al. (1982)) Ct is the 
collection of all subsets of Rd. In that case the least squares estimator of g will 
generally be inconsistent. However, the aim in cluster analysis and two-lines 
least squares is not to estimate the regression but some other quantity of 
interest. 

Let us return for a moment to the model in Example (1.1). It is widely used, 
e.g. in ROYSTON and ABRAMS (1980) it describes the shift in basal body tem­
perature of a woman. It can be written in the more conventional form 

{

a(I ) +£k k = I · · · -r 
' ' 

Yk = a<2) +£k ,k =-r+ I , .. . ,n . (1.4) 

In a general change-point model , one has observations y1, · · · ,YT from disti­
bution p(I) and YT+ 1, · · · ,Yn from p<2>, where -r as well as p(I) and p(Z) are in 
whole or in part unknown. In HINKLEY ( 1970) and HINKLEY and HINKLEY 
(1970), this model is considered for the normal and the binomial distribution 
respectively. WORSLEY (1985) studies the model for a one-parameter exponen­
tial family. Of special interest is testing p(l) = p(Z) . Worsley considers the exact 
distribution of the likelihood ratio test and confidence intervals for the 
change-point -r. The asymptotic null-distibution is given in HAccou et al. 
(1985) in the case of exponential distributions, and in Chapter 7 in the case of 
normal errors. In Chapter 7 also Bahadur efficiency in the situation of a one­
parameter exponential family is obtained and contrasted with efficiency at 
local alternatives. 

WOLFE and SCHECHTMAN (1984) establish nonparametric confidence inter­
vals for -r. PETTITT ( 1979) investigates a nonparametric procedure for testing 
p(I) = p(Z) . His statistic is an extension of the Mann-Whitney test for the two­
sample problem. PICARD and DESHAYES (1983) propose a Kolmogorov­
Smirnov type of test. In PRAAGMAN ( 1986), the asymptotic efficiencies of a 
broad class of linear rank statistics are compared. 

Change-points can occur anywhere, for instance in hazard rates (see e.g. 
NGUYEN, ROGERS and WALKER (1984)) and in time-series (PICARD (1983)). We 
shall only investigate changes in parameters in a sequence of independent ran­
dom variables, i.e. two-phase regression type of models. We also point out that 
in the literature mentioned above, the sample size is nonrandom. The problem 
is to be distinguished from what one could call 'alarm detection', where a pro­
cess is followed in time and the aim is to react as quickly as possible when it is 
likely enough that a change has occurred (see e.g. SHIRYAYEV (1963)). 
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Let us reconsider the multi-dimensional two-phase regression model of Exam­
ple 1.3: 

{

ex<') +xkff-l) +£k if xk y..;; 1 

Yk = a(2) +xk/f-2) +£k if XkY> 1 ' 

with x1, · · · ,Xn i.i.d. (row-)vectors in Rd with distribution H, and 
(f.i) = ( a<il, ff-ilT)7 and y unknown ( colurnn-)vectors. Example 1.3 is about the 
case d = 2. In the more simple situation with d = 1, the subsets A = { x: xy..;; 1} 
are half-lines, and the model can be written as 

{

a(I) +"<_k)/f-1) +£ck) if k..;;T 

Y(k) = a<2l+"<_k)ff-2l+f(k) if k>T 

with "<_I)..;; · · · ..;;"<_n) the order statistics, and Y(k) and f(k) the regressor and 
disturbance term corresponding to "<_k), respectively. The least squares estima­
tors are obtained in the following way. For each /, compute (if possible) ordi­
nary least squares estimators ~i), i = 1, 2 of (/.il, i = 1, 2, and the residual sum 
of squares (S~il)2, i = 1, 2, given that the change-poin} is at /. Let T be the value 
of I where (SPl)2 +(Sfl)2 has its minimum. Then O; =O~l, i = 1,2 is the least 
squares estimator in the two-phase regression model (without the continuity 
restriction a(ll+yff-1l=a(2)+y/f-2>). The subsets of the form {xy..;;l} of the 
data are 

{"<_1)}, {"<_l), "<_2)}, · · · , {"<_1) , · · · ,"<_n)} 

and complements. Hence, the number of times one has to do ordinary least 
squares is at most 2(n - 3)+ 1, since it suffices to consider only those partitions 
where both (I.I) and (/.2) are identified. If all xk 's are different, I can take the 
values {2,3, · · · ,n -2} and n. 

In the case d> 1, the xk can no longer be ordered. Still, it is not difficult to 
generate all different subsets of the form { x: xy..;; I} of the data (see also 
STEINER (1826), ScHLAFLI (1901), COVER (1965), HARDING (1967) and WAT­
SON (1969) for combinatorial results). Let x1,, · · · ,x,, be a d-tuple from 
{x1, · · · ,xn}- Write Xt ,, ... ,1,=(x[, · · · ,x[)7 and let e be the d-dimensional 
vector (1, · · · , 1). For X1,, ... ,1, non-singular, we can take as the partition 
corresponding to X1,, ... ,1,: {A,, , ... ,,, ={x: xy1,, . .. ,1, ..;;I} , Af, , .. . ,1,}, with 

v 1 ... 1 = x,- 1 ... 1 e. Since these are at most (nd\ d-tuples for which X1 . . . 1 is 
l,1, ,d 1, "' 'J i, ' " 

non-singular, the number of times one has to do ordinary least squares is 
0(nd). The computation of the least squares estimator can be done in polyno­
mial time. 

As we shall see, the fact that the number of different partitions is polyno­
mial in n can also be used to derive some asymptotic properties of the least 
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squares estimator. So-called empirical process theory provides the theoretical 
background. 

Let it be a class of measurable subsets of Rd, and let ~&(x1, • • • ,xn) be the 
number of different partitions of {x1, · • • ,xn} of the form A n{x1, • • • ,xn}, 
Acn{x1, · · · ,xn}, AEtf.. Then ~&(x1, • · • ,xn) is always at most 2n. We have 
seen that for 

it= { {x: xy:e;;;;l}: yEIRd} 

~&(x1, • • • ,xn)=0(nd). Let Hn=l/nL~=J«5X. be the empirical measure based 
on x1, • • · ,xn. The Glivenko-Cantelli Theorem states that if it is the collection 
of lower-orthants { (- oo,x ): x Ellld}, then 

lim suolHn(A)-H(A)I =O almost surely. (2.1) 
n➔oo AEtl 

VAPNIK and CHERVONENKIS (1971) extended this to more general classes of 
subsets it than lower orthants. They show that if ~&(x1, • • • ,xn) does not grow 
exponentially fast, then (2.1) holds for it - provided some conditions on 
measurability are fulfilled. 

We have to impose measurability conditions, because the supremum of an 
uncountable set of measurable functions need not be measurable. We shall 
assume that it is permissible in the sense of POLLARD (1984). The definition of 
permissibility is given in Section 2.4. At this stage, it is only necessary to know 
that for a permissible class ct, sup A E& IHn(A )-H (A )I is measurable. 

Also, quantities like ~~(x1, · • • ,xn) need not be measurable, even if it is per­
missible. However, it turns out that if probability statements about 
~&(x1, • • • ,xn) are replaced by statements in terms of outer-probabilities and 
upper-expectations, the theory goes through. For definiteness, let (Q, 0,1?) be 
the underlying probability space, and write IE( · ) for taking expectations under 
P. Define for A C Q, 

I?* (A) = inf{P(B): B :JA, BE&} 

and for a real function f on n and the Borel CJ-algebra 'iB on IR, 

IE*(f) = inf{IE(g): g?;I,j, g 0/'!B-measurable}. 

THEOREM 2.1.1. For a permissible class it the following statements are equivalent 

(i) E*(J_ log~~(X1, · · · ,Xn))-o, 
n P 

(ii) sup IHn(A)-H(A)I - 0, 
A Eel 
1 p• 

(iii) - log~&(X1, · · · ,Xn) - 0, 
n 

(iv) sup I Hn(A)- H(A) I - 0 almost surely. 
A E'!t 

PROOF. See VAPNIK and CHERVONENKIS (1971), and for measurability issues 
and (iv) STEELE (1978) and POLLARD (1981). D 
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Results of this type can be used in two-phase regression to obtain strong con­
sistency. But there are also results available that are even more directly appli­
cable. 

Let § be a class of measurable real functions on Rd. Suppose that the func­
tions in § are uniformly bounded, i.e. 

SUP lg I ~ M, 
getl 

for some constant M. Endow § with L 00 (1Rd,Hn ) semi-norm II· 11 00,n: 

Ilg/l oo n = max lg(xk)I , 
' l ..:k ..:n 

For each 8>0, let N 00 (8, Hn , §) be the minimum value of m, such that there 
exist functions g1 , · · · , &n , in §, such that for each g E § 

. min llg - g)l oo,n < 8. 
1 = l , · · · ,m 

For example, if § is a class l:i of indicator functions, then (identify sets with 
their indicators) N 00 (8,Hn, <£)=~1t(x1 , · · · ,xn), 8< 1. 

We call N 00 (8, Hn, §) the (8-)covering number of § with respect to the 
L 00 (1Rd, Hn)-norm. This terminology is also used by POLLARD (1984), but he 
does not require that the covering set {g1, j = l, · · · ,m} is a subset of §. Note 
that if g1 , • · · , &n form a 8-covering set, not necessarily in §, one can always 
construct a 2<5-covering set g1, • • • ,~ with g1 E§. 

In the following theorem, we assume permissibility of §. In fact this concept 
is defined for classes of functions, with a collection of sets as special case. Per­
missibility of § implies measurability of 

SUP I f gd(Hn - H) 1-
g etl 

Again, permissibility need not result in measurable covering numbers 
N 00 (8, Hn, §) (see Section 2.4). 

THEOREM 2.1.2. For a permissible class § of uniformly bounded functions, the fol­
lowing statements are equivalent 

(i) E*(.l logN 00 (8, Hn,§))- 0foralU3>0, 
n P 

(ii) SUf I f gd(Hn - H) I - 0, 
~ E p• 

(iii) - logN 00 (8, Hn, §) - 0 for a/18>0, 
n 

(iv) sup I f gd(Hn - H) I - 0 almost surely. 
getl 

PROOF. VAPNIK and CHERVONENKIS (1981) obtained the uniform weak law of 
large numbers, and STEELE (1978) shows that convergence in probability 
implies almost sure convergence, by noting that 
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is a subadditive process. Statement (iv) of Theorem 2.1.1 is a special case of 
this. D 

In two-phase regression, least squares estimators can be obtained in polyno­
mial time, if the covering number of the class of feasible partitions does not 
grow exponentially fast. This property also leads to a uniform law of large 
numbers, as Theorems 2.1.1 and 2.1.2 assert. We shall briefly indicate why. 

For bounded random variables (such as lA(x) or g(x), g bounded), one has 
exponential probability inequalities (see e.g. BERNSTEIN (1924, 1927), HOEFFD­
ING (1963)). For instance, for lgl ~M, Berstein's inequality says that 

P(I fgd(Hn-H)I >t) ~ 2exp [ -n;
2 

l• 
2a2 + 3 Mt 

where a2=1E(g(x)-1Eg(x))2. Now if the covering number of§ does not grow 
exponentially fast, there are only m =exp(o(n)) essentially different gs in §. 

Moreover, if card (§)=m 

?(sup If gd(Hn- H) I >t) ~ m max P( If gd(Hn - H) I >t). 
gE~ gE§ 

These observations, and a randomization device (which is necessary because 
N 00 (8, Hn, §) is random) are the major ingredients of the proof of the 
sufficiency part of Theorem 2.1 .2 (2.1.1 ). 

2.2. Pollard's law of large numbers 
For l~s<oo and for Q some probability measure on Rd, we denote by 
Ls (Rd, Q) the space of measurable real functions g on Rd with 
( f I g Is dQ) 11 s < oo. In most of what follows, Q will be the empirical measure 
Hn or the (theoretical) measure H. We denote the V(IRd, Hn)-(pseudo)norm by 

1/ · //s,n = (j I · I dHn) 11s 

and we sometimes call this the empirical norm. The theoretical counterpart is 

I/. lls = (j I . lsdH)l ls_ 

For§ a class of functions, the envelope G of§ is defined as 

G = SUP lgl. 
gEf3 

Moreover, for §CV(Rd, Q), we define the covering number Ns(8, Q, §) as the 
smallest value of m such that there exist g1, • • • ,&n in § such that for all g E§ 

1=F-- ,m (j lg-gj lsdQ)l/s < 8. 

The logarithm of Ns(8, Q, §) is called the 8-entropy of § for the metric 
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(j I· lsdQ)lls_ 
In the previous subsection, we considered a class of uniformly bounded 

functions, i.e. GEL 00 (Rd, Q) for all Q. In that case L 00 (Rd, Hn)-covering 
numbers are useful. For a class of possibly unbounded functions, with 
GEV(Rd, H), 1:,;;;;;s<oo, it is more appropriate to work with the Ns(/3, Hn, §)­
covering number of § equipped with 11 • lls,n-norm. We shall first treat the case 
s = 1 and afterwards extend this to arbitrary s ~ 1. 

THEOREM 2.2.1. Suppose § is a permissible class with envelope G. Then 

SUP I j gd(Hn - H) I ➔ 0 
gE!3 

almost surely if and only if both GEL 1 (Rd, H) and 

1 p• 

- logN 1 (/3, Rn,§) ➔ 0 
n 

for all 13>0. 

(2.2) 

(2.3) 

PROOF. POLLARD (1981) shows that if GEL 1(Rd, H), (2.3) implies (2.2), and 
GINE and ZINN (1984) prove necessity of (2.3) and of the envelope condition 
GEL 1(Rd, H). □ 

Remember that for bounded random variables, exponential probability ine­
qualities are available, whereas this need not be the case for unbounded ran­
dom variables. Therefore, one might have expected that in the unbounded case 
a more stringent condition than (2.3) on the covering numbers is needed, in 
order to arrive at the uniform law of large numbers (2.2). The following 
theorem shows that if N 1 (/3, Hn, §) does not grow exponentially fast, it does not 
grow at all. This result is due to V APNIK and CHERVONENKIS ( 1981) and GINE 
and ZINN (1984). Because the result is somewhat hidden in literature, we give a 
full proof. 

THEOREM 2.2.2. Suppose § is a permissible class with envelope GEL 1(1Rd, H). 
Then 

1 p• 
- logN 1 (/3, Rn,§) ➔ 0 
n 

(2.4) 

for all 13>0 implies that the theoretical covering number N 1 (/3, H, §) is finite, i.e. 

Ti(/3) = Ni(/3,H,§) 

is a finite function of ~>0. Furthermore 

l?*(lim sup N 1(/3, Rn, §)>T1(8-71)) = 0, 0<11<13, 13>0. (2.5) 
n--+oo 

PROOF. Consider the class §' = { I g - g I : g, g E §}. This class has envelope 
2GEL 1(Rd, H), and moreover (2.4) implies that also 
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1 p• 
- logN 1 (8, Hn, §') ➔ 0 for all 8>0. 
n 

Hence, we can apply Theorem 2.2.1 to §', provided it is permissible. Indeed, 
this follows easily from the permissibility of §, as we show in Section 2.4. It 
follows that 

Sl!P I / I g - g I d(Hn - H) I 
g,g E!, 

is measurable, and that 

s1:1p I / I g - g I d(Hn - H) I ➔ 0 almost surely. 
g,g E(i 

Or, using the notation in L 1 (111 4 , · )-norms 

Let 

Sl!P I Ilg -gll 1,n - Ilg - g ll 1 I ➔ 0 almost surely. 
g.gE!l 

r, - - 8 An = {w E~~ : Sl!P ll lg - gll1 ,n- llg - gll1 l(w),;;;;2 }. 
g,g E(i 

(2.6) 

(2.7) 

Note that An ES, i.e. An is measurable. Moreover, the almost sure convergence 
(2.7) implies convergence in probability. So, for n-;;;;.n 0 '( = n0 '(8)), n0' 

sufficiently large 

l?(An) > 1-8. 

Let {g1, · ··,gm} be a 8/2-covering set of § endowed with 11· 111,n-norm. On 
the set An, we have 

J =F~-)lg-gj ll1,;;;; J =Fn __ }g - gjl l1,n+ ~ <8. 

Hence, for wEAn , N 1(8, H, §),;;;;N 1 (8/2, Hn, §)(w). 
Condition (2.4) means by definition that there exists a Bn ES such that 

l?(Bn)>l - 8, and l/nlogN 1(812,Hn, §)(w),;;;;8 · for wEBn and for all 
n-;;;;.no"( = n0"(8)). It follows that for n0 =max(n 0 ' , n0" ) 

l?(An, n Bn, ) > 1-W. 

But for wEAn, nBn, 

N 1 (8 , H, §) ,;;;; exp(n08). (2.8) 

Since (2.8) does not depend on wE!J, this proves that N 1 (8 , H, §) is finite for 
all 8>0. 

The almost sure convergence (2.7) means that for some A ES with l?(A) = 1, 
and all 0<71<8 

sup! llg - gll1 ,n- llg-gll1 l(w),;;;; 11 
g,g 

for all n-;;;;.n 0(w)(=n 0 (8, 11, w)) and all wEA . Thus 



N1(8, Hn, §)(w).;;;;N1(8-71, H, §) = T1(8-71). 

for all n~n0(w), wEA . This shows that 

IP'*(lim sup N1(8, Hn, §)>T1(8-71)) = 0. D 
n----> oo 

13 

VAPNIK and CHERVONENKIS (1981) proved that for a uniformly bounded 
class §, 

l p• 
- logN 00 (8, Hn, §) ➔ 0 for all 8>0 
n 

implies that N 1 (8, H, §) is finite, for all 8>0, and that this in turn implies that 
N 1 (8, Hn, §) remains finite in probability, for all 8>0. They do not concern 
themselves with measurability problems. 

The situation with unbounded functions is treated in GINE and ZINN (1984). 
Their approach to measurability issues differs somewhat from ours. Modulo 
measurability, their Remark 8.9 asserts that for a class § with GEL 1 (Rd , H) 
and for §c={glc..; c : gE §}, C>0, 

(2.9) 

implies that there exists a finite function T(f>) such that 

lim p* (N 1 (8, Hn, §)> T(fJ)) = 0, for all 8>0. 
n---->OO 

It is easy to see that if GEL 1 (Rd, H), than (2.9) and (2.4) are equivalent. 
We call a class § equipped with some metric totally bounded if for all 8>0, 

the number of elements of a minimal fl-covering set is finite. Since (2.4) is a 
necessary condition for the uniform law of large numbers over a permissible §, 

a reformulation of one of the results of Theorem 2.2.2 says that a necessary 
condition for the uniform law of large numbers, is that § is totally bounded for 
II · 11 1. In other words, the closure of§ should be compact. 

We shall now investigate the relation between L 00 (Rd, Hn)-, L 1(Rd, Hn)- and 
other U(Rd , Hn)-covering numbers, and what consequences conditions like 
(2.3) on these covering numbers have if G EU(Rd, H). Note first of all, that 
combination of Theorems 2.1.2 and 2.2.1 yields that for a permissible class § of 
uniformly bounded functions 

iff 

1 p• 
- logN1(8, Hn, §) ➔ 0 
n 

1 p• 
- logN 00 (8, Hn, §) ➔ 0. 
n 

For classes of unbounded functions, it is often easier to employ a truncation 
device. GINE and ZINN ( 1984) use truncation at { G > C} and work with 
!3c={glc ..;c: gE§}, C>0. For reasons that will become clear in Section 2.3, 
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we introduce an other way of truncation. Define for all C>0 

{ 

C if g>C 
(g)c = g if -C:;;;;;g:;;;;;C. 

-C if g<-C 

Let (§)c={(g)c: gE§}. 

LEMMA 2.2.3. IJGEU(Rd,H), }:;;;;;s<oo, then for all 8>0 there exists a C>0 
such that 

Ns(8, H, §):;;;;; Ns( ~, H, (§)c), 

and with probability 1 for n sufficiently large 

Ns(8, Hn, §):;;;;; Ns( ~ , Hn, (§)c). 

Moreover,Jor J:;;;;;s<oo and arbitrary probability measure Q 8>0, C>0 

(2.10) 

(2.11) 

N5 (8, Q, (§)c) :;;;;; N5 (8, Q, §) (2.12) 

N1(8,Q,(§)c):;;;;; Ns(8,Q,(§)c):;;;;;N1((
2
C)s-l • Q,(§)c) (2.13) 

and, if we denote by ff 

ff= { lgls: gE§} 

N 1 (8, Q, {ff)c) :;;;;; N 1 ( 
8
.£::..!_ , Q, (§)c"' ). 

(2C) s 

PROOF. Let g, gE§ be arbitrary. If GEU(Rd, H), then 

fun IIG-(G)clls = O 
C-+oo 

as well as 

fun fun sup IIG-(G)clls,n = 0 almost surely. 
C-+oo n-.+oo 

Since for arbitrary Q 

(2.14) 

(/ lg -g lsdQ)l/s :;;;;; (j I (g)c-{g)c lsdQ)l ls +2(/ I G-(G)c I sdQ)lls' 

this implies (2.10) and (2.11 ). 
Of course, l(g)c-{g)cl:;;;;;lg-gl, so (2.12) follows easily. Furthermore, 

for arbitrary Q, 

/l(g)c-{g)cldQ:;;;;; (jl(g)c-(g)clsdQ)l ls 

:;;;;; ((2C)s -1 f I (g)c-{g)c I dQ)lls' 
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which yields (2.13). 
Finally, (2. I 4) follows from 

s-1 

f I ( I g I 5 )c -( I g nc I dQ ~ (2C)_s_ f I ( I g I k 11• -( I g I )c"' I dQ 
s-1 

~ (2C)_5_/l(g)c11'- (g)c11• ldQ. D 

The following theorem is the analogue of Theorem 2.2.1, albeit that we do not 
present necessary conditions. 

THEOREM 2.2.4. Suppose § is a permissible class with envelope GEU(!Rd, H), 
l~s<oo. Then 

implies 

I p• 
- logNs(8, Hn, &) - 0 for all 8>0 
n 

sup I llglls,n - llglls I - 0 almost surely. 
gE!i 

(2.15) 

PROOF. We show in Section 2.4 that also gs is permissible. Thus, the theorem 
is proved if (2.15) implies 

I p• 
- logN 1 (8, Hn, gs ) - 0 for all 8>0, 
n 

(2. 16) 

because then, we can apply Theorem 2.2.1 to gs. But application of (2.11) and 
(2. I 2) with s = 1 to gs, shows that it suffices to prove that (2. I 6) holds for the 
truncated class, i.e. that 

I p• 
- logN 1 (8, Hn, (§'S)c) - 0 for all 8>0, C>0. 
n 

And this follows immediatly from (2.13) and (2.14): 

N1(8,Hn,{§-S}c} ~ N1(--
8
-
5
-_-

1 
, Hn , (§}c11• } 

(2C) s 

8 
~ Ns(--

5
-_

1
-, Hn,(§>c11•). D 

(2C) s 

Of course, it also follows from Lemma 2.2.3 that it doesn' t really matter 
which covering numbers are used. This is made explicit in Lemma 2.2.5 
below, where we show the analogue of Theorem 2.2.2. 

LEMMA 2.2.5. Suppose that § is a permissible class with envelope G EU(Rd, H), 
1 ~s < oo. Then 

I p• 
- logN 1 (8, Hn, §) - 0 for all 8>0 
n 

(2.17) 
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implies that § is totally bounded for II · lls, i.e. 

Ts(8) = Ns(8, H, §) 

is a finite function of 8>0. Furthermore 

P•(lim sup Ns(8, H,,, §)>Ts(8-11)) = 0, 0<11<8, 8>0. (2.18) 
n ..... oo 

PROOF. We have seen in Theorem 2.2.2 that (2.17) implies that 
T 1(8)=N1(8, H, §) is a finite function of 8. In view of (2.12) and (2.13), for all 
C>0 

Ns(8,H,(§)c).;;;; N1((
2
;; _ 1 , H, (§)c)o;;;;T((

2
:;-t) 

and moreover, by (2.10) 

Ns(8, H, §) .;;;; Ns( ~ , H, (§)c) 

for C sufficiently large. This gives that Ts(8)=Ns(8, H, §) is a finite function of 
8. 

Using again (2.12), (2.13), we see that (2.17) also implies that for all C>0, 
8>0 

p· 
1 

- logNs(8, Hn,(§)c) - 0 
n 

and from (2.11), for all 8>0 
p· 

1 
- logNs(8, Hn, §) - 0. 
n 

Hence, in view of Theorem 2.2.4 

sup j llglls,n - llglls I - 0 almost surely. 
g Efl 

But this means that for 8 arbitrary, 0<11<8, a (8-11)-covering set of § for 11 · lls 
is for n sufficiently large a 8-covering set of § for II· lls,n, almost surely. Thus, 
by the same argument as in the proof of Theorem 2.2.2 

P•(lim sup Ns(8, Hn, §)>Ts(8-11)) = 0. D 
n ..... oo 

We conclude that if (2.17) holds and GEV(Rd, H), lo;;;;s<oo then § is totally 
bounded for 11 · lls- If s=oo, (2.17) is equivalent to 

1 p• 
- logN 00 (8, Hn , §) - 0, for all 8>0, 
n 

in particular, if GEV(Rd, H), (2.17) is equivalent to 

1 p• 
- logN 00 (8, Hn,(§)c) - 0, for all 8>0, C>0. 
n 
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This observation is useful because L 00 (Rd, Hn )-covering numbers are often 
easier to compute. 

We shall illustrate the results of this subsection with an example. In a sub­
stantial number of applications the conditions on the covering numbers can be 
checked without imposing distributional assumptions, apart from a moment 
condition on the envelope G. An important special case occurs when a collec­
tion ci', of sets satisfies 

sup b.ll(x 1, • • • ,xn) ..;;; n', 
(x, , · · · ,x,) 

(2.19) 

for some r and all n, b.ll(x 1, • • • ,xn) being defined in Section 2.1. Recall for 
instance that if ci',={ {x: x-y..;;;l}, -yERd} 

sup b.ll(x 1, · · · ,xn) .,;;; (~).,;;;nd. 
(x, , · · · ,x,) 

An ci', satisfying (2.19) is called a VC-class (V APNIK and CHERVONENKIS 
(1971)). 

For classes of functions, POLLARD (1984) introduces the related concept of 
VC-graph classes. Let g: Rd-R be some function and define the graph of gas 
the subset 

{(x,t): O.;;;t.,;;;g(x) or g(x)..;;;t..;;;O} 

of Rd+ 1• A class § is a VC-graph class if the collection of graphs of functions 
in § from a VC-class. 

THEOREM 2.2.6. Let Q be some probability measure on Rd, and let § be a VC­

graph class with envelope f GdQ = CQ say. Then 

N 1 (8, Q, §) .,;;; A I C~8-,' for all 8>0, 

where A I and r' are constants independent of Q. 

PROOF. See POLLARD (1984). □ 

It is easy to see that if § is a VC-graph class, then so is (§)c. Thus, then 

N 1 (8, Q, (§)c) ..;;; A IC'' 8-,' for all 8>0, C>O 

and from Lemma 2.2.3, 1-.;;;s < oo 

i' Q n ) C''( 8s )-,' - A csr'i' -sr' i' 0 C 0 Ns(u, , (~)c .,;;; Al 1 - s u , u> , > . 
(2cy-

Note that if ci', is a VC-class, then {IA: A Eci'.} is a VC-graph class. Since the 
envelope of a collection of indicator functions is bounded by 1, this gives for ci', 

a VC-class 

Ns(8, Q, it) .;;; As8-r's for all 8>0, l ..;;;s < 00 

for some As and r', and by (2.19) 
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for some r. 

ExAMPLE 1.3 continued. In this two-phase regression model, § is a class of 
regression functions of the form 

§ = {g(x)=(a(l) + xf1>)1{xy.;;;l)(x) 

+(a<2> + xf2>)1{xy>l)(x): 

a<il ER D(i) ERd i = I 2 yERd} 
' JJ ' ' ' ' . 

The graph of a gE§ is the union of two intersections of three halfspaces. Now, 
the class of halfspaces forms a VC-class. And it is easy to see that the VC­
property is preserved under talcing finite unions and intersections. Hence, § is 
a VC-graph class. 

2.3. Extensions 
In many regression models, the class of feasible regression functions is allowed 
to vary with the number of observations. Also, the independent variables and 
disturbances are often not identically distributed, and their distributions might 
vary with n too. To handle these situations, we generalize some of the results 
of the previous sections. 

Let for each n = 1,2, · · · , Xn, 1, • • • ,xn,n be independent random vectors in 
Rd, Xn,k having distribution Hn,k · Furthermore, let for each n EN, §n be a class 
of functions on Rd with envelope Gn = supg E!a, I g I -Define 

n 

n(n) = 1/n L Hn,k 
k = I 

and let Hn be the empirical measure generated by Xn, 1 , • • • , Xn,n. 
To establish a uniform law of large numbers, we make use of Hoeffding's 

inequality. 

LEMMA 2.3.1 (Hoetfding's inequality). Let y1, · • · ,Yn be independent random 
variables with zero means and bounded ranges: ae,;:.ye,;;;,bk. Then for each 71>0 

I n I n 
P(- L Yk~11):,;;;; exp[-2n712 / - L (bk-ak)2). 

nk =I nk=I 

PROOF. HOEFFDING {1963). 0 

We have seen that in the i.i.d. case with §n = § (Section 2.2), necessary con­
ditions for the uniform law of large numbers are that the covering numbers 
N 1 ( 8, Hn, §) remain bounded in probability, and that the envelope of § is in 
L 1(Rd, H). In general however, the covering numbers are allowed to grow 
with n. Furthermore, the L 1 (Rd, n<n>)-norm of the envelope of §n is allowed 
to grow with n too, but the faster N 1 (8, Hn, §n) grows, the more stringent the 
envelope conditions become. This result is stated in Theorem 2.3.2 below. We 
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shall also show that for the case of i.i.d. random variables and §n not depend­
ing on n, the conditions of Theorem 2.3.2 reduce to those of Theorem 2.2. l. 

In the general set up, with triangular arrays, it is not possible to obtain a 
strong uniform law of large numbers: all results only concern convergence in 
probability. The assumption of permissibility is needed again to guard against 
measurability difficulties (see Section 2.4). We shall prove the uniform law of 
large numbers exactly according to the recipe Pollard supplies for the i.i.d. case 
(POLLARD (1984), Ch. II). This illustrates the power of the techniques Pollard 
proposes. 

THEOREM 2.3.2. Let { §n} be a sequence of permissible classes with envelopes 
Gn = SUPg e!I. I g J. Suppose that for some sequence Cn ~ 1, Cn = e(_n) 

lim sup f GndH(n) = 0, 
n-->oo G. >c. 

(2.20) 

lim sup _I f G~dH<n) = 0, 
n--+oo Cn G • .;;c. 

(2.21) 

and that (cnln) logN 1 (8, Hn, !3n) remains bounded in probability, i.e. 

(2.22) 

for all 8>0. Then 

(2.23) 

PROOF. First, we shall show that it suffices to prove a uniform law of large 
numbers for the truncated class {glG • .;;c.: gE§n}- Let 0<8~1 be arbitrary. 
In view of (2.20) 

f G dH<nl < .f_ 
n 4 

G.>c. 

for all n sufficiently large. Apply Chebyshev's inequality to see that 

Hence 

f GndH(n) 

P( f GndHn > ! ) ~ G.>c. 
814 

<8. 
G. >c. 

P(:~r. If gd(Hn - n<n)) I >8) 

~ IP'(:~r. I f gd(Hn - n<n)) I > ~ ) + P( f GndHn > ! ) 
~,;;~ ~>~ 

8 
~P(sur.J f gd(Hn-H(nl)J>2 )+8. 

g e • G • .;;c. 

(2.24) 
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Next, we symmetrize the process. For this purpose, we use that for arbitrary 
1J>O, and for all n sufficiently large 

_l f G~dn<n> <1/ 
Cn G.,s;;;c. 

by assumption (2.21). Application of Chebyshev's inequality gives that for each 
gE§n 

_!_ f gidn<n> 

I?( I f gd(Hn - n<n>) I>!) :,;;;; _n_G"-·~~;-/4_)2 __ 
G.,s;;;c. 

(2.25) 

for 1J sufficiently small, and all n sufficiently large. For the symmetrization, we 
introduce an independent copy {x'n, 1, · · · ,x'n,n} of {xn, 1, · · · ,Xn,n}, i.e. 
Xn,l, ... ,Xn,n,X'n,l, ... ,X'n,n are independent and x'n,k has distribution Hn,k· 
Let H' n be the empirical distribution, based on x' n, 1 , • • • , x' n,n. Since (2.25) 
holds, we have for all g E §n 

I?( I f gd(Hn - n<n)) I:,;;;;!) ~ ~. (2.26) 
G,.~c,. 

The assumption of permissibility of §n ensures that for some random g• E§n, 
independent of H'n 

I f g*d(Hn-H(nl)j > ~ 
G.,s;;;c, 

on the set 

(see Section 2.4). Because (2.26) holds for g• too, 

I f 8 2P(sur I gd(Hn-H(n)) I >2) 
ge " G,.E;;;c,. 

(2.27) 

:,;;;; I?( I f g· d(Hn - n<n)) I > ~ ' I f g· d(Hn'- n<n)) I:,;;;;!) 
~,s;;;~ ~,s;;;~ 

:,;;;; I?( I f g· d(Hn - Hn') I>! ):,;;;;l?(sur I f gd(Hn - Hn') I>!). 
G.,s;;;c. g E " G.,s;;;c. 

We shall now describe the randomization device. Let u1, • • • ,un be indepen­
dent random variables, independent of {xn, 1, · · · ,xn,n, x'n, 1, · • • ,x'n,n}, with 

I 
l?(uk = 1) = l?(uk = -1) = 2 . 



Write H~ for the signed measure that puts mass 1/n uk at Xn,k, e.g. 

1 n f gdH~ = - ~ ukg(xn,k)l(G,,;;;c,)(xn,k )-
G,,;;;c, n k=I 

Then 
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=IP'(:~f.1 ! Uk(! ~(g(xn,k)l(G,,;;;c,)(xn,k)-g(x'n,k)l(G,,;;;c,)(x'n,k)) I>!) 

1 n 8 ~IP'(sup I - ~ ukg(xn,dl(G,,;;;c,)(xn,k) I >-
8

) 
gE~. n k = I 

(2.28) 

Let g1, • • • , ~, m = N 1 ( 1
8
6 

, Hn, §n) be a minimal 8/16-covering set of §n · 

Observe that if 

J I g - gj I dHn < 1
8
6 

' 

also 

I f I g - gj I dH~ I < 186 . 
G,,;;;c, 

Now, given (xn, I, ... , Xn ,n)=(xn, I, ... ,Xn,n), with Xn, I, ... ,Xn,n satisfying 

1 n 82 
- ~ G~(Xn k)l(G E;;c j(Xn k) ~ -T ' 
ncn k = I ' • • ' 



22 

Therefore, by Fubini's theorem 

f o 8 nT • P(suf.l gdHn I >
8

),;;;; 2exp[-
1024 

]+P(An)+I? (Bn) 
KE • G.,s;;,c. c,, 

(2.29) 

with 

and 

c,, 8 
B,, = {-;;- logN 1 ( 16, H,,, §,,)>TI 1024 }. 

We shall now show that l?(A,,) and P(B,,) can be made arbitrarily small. 
Using (2.21), we see that 

_1 f G~dH<"> < £ 
c"G .... c. T 

for all n sufficiently large. Again by Chebyshev's inequality, this implies 

P(A )< 83/T = 8. 
" 82/T 

Moreover 

P*(B,,)<8 

for T large enough and all n large enough, because of assumption (2.22). 
Returning to (2.29), we see that 

f o 8 nT 
l?(sur I gdHn I >8)<2exp[- 1024 ]+28 :s;;; 38 

KE " G.,s;;,c, Cn 

for T sufficiently large and all n sufficiently large. In view of the truncation, 
symmetrization and randomization inequalities ((2.24), (2.27) and (2.28) 
respectively), this completes the proof. □ 

We present a weaker version of Theorem 2.3.2 for two reasons. First, this 
clarifies that Theorem 2.3.2 is a generalization of the sufficiency part of 
Theorem 2.2.1 and secondly, the weaker version will be used in Chapter 3 to 
prove consistency of the least squares estimators. 

LEMMA 2.3.3. Suppose {§,,} is a sequence of permissible classes with envelopes 

Gn . Assume that for some sequence b,,;;.. 1, b,, = o(n 112 ) 

and 

b2 p• 

__!!._ logN 1(8, H,,, §,,) -o for all 8>0. 
n 

(2.30) 

(2.31) 
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Then 
p :~r. I f gd(Hn - H(n)) I - 0. 

PROOF. Since 

is nondecreasing in 8, (2.31) ensures the existence of sequences 'IJnJ0 and 8nJ0 
such that 

P *(su0Zn(8)>1Jn)=P*(Zn(8n)>1Jn)-0. 
/l ;;.3_ 

This implies that there exists a sequence bn;;;,,l with bnlbn-oo , bn = o(n ½), 
such that 

(2.32) 

By (2.30) we have 

f GndH(n) :,;;;; f GndH(n) - 0. (2.33) 
G.>b~ G. > b. 

Moreover, also 

_12 j G~dH(n) = -¼ j G~dH(n ) + _\ j indH(n) (2.34) 
bn G.,;;;;~ bn G • .;;;b. bn b.<G • .;;b: 

b2 
:,;;;; _; + f GndH(n ) - 0. 

bn G. > b. 

Together, (2.32), (2.33) and (2.34) ensure that the conditions of Theorem 2.3.2 
are fulfilled with Cn =b: . □ 

Recall that in the i.i.d. case with §n = §, a necessary condition for the uni­
form law of large numbers is that the envelope G is integrable. This 
corresponds to imposing (2.30) with { bn} any sequence tending to infinity. Let­
ting bn grow slowly enough, we see that (2.31) reduces to condition (2.3) of 
Theorem 2.2.1 : 

I p• 
- logN 1 (8, Hn , §) - 0. 
n 

Moreover, we showed in Theorem 2.2.2 that under the conditions of 
Theorem 2.2.1 the covering numbers in fact remain bounded. Obviously, if §n 
varies with n the uniform law of large numbers no longer implies that 
N1(8,Hn, §n) does not grow with n. 

EXAMPLE 2.1. Let § be a permissible VC-graph class with envelope not 
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necessarily in L 1(1Rd,H<n>). As in Section 2.2 we define (§)c as the class of 
functions truncated at C: 

((J)c = {sign(g)[lgl AC]: gE§}. 

The class (§)c is still a VC-graph class (with envelope the constant function C). 
Application of Theorem 2.2.6 yields that for all 8>0 

N1(8, Hn , (§)c)..;; AC8- , 

for some constants A and r. Also, if § is permissible, then so is (§)c for all 
C>0. 

Let 71>0 be arbitrary and take en =n(logn)- 1, then (2.20) and (2.21) hold 
for ((J)n"(lognr•-· 

suol(g)n"(logn)-.-, I ..;; n ½(logn) -½- 11 .,;;cn for n sufficiently large 
g EtJ 

suol(g)n"(logn)_._' l2 .,;;n(logn)_ 1_ 211 = o(cn)­
g Etl 

Also, (2.23) is met for ((J)n"(Iogn)_._,: 

~ l 
- logN 1 (8, Hn, (§)n"(logn)_._') = -

1
-e(logn)= 0(1). 

n ~n 

Hence, for a permissible VC-graph class 

The remainder of this section is devoted to the situation where higher order 
moments of the envelopes exist: 

Gn EU(IRd, n<n>), 1 ..;;s < oo. 

As before, we write 

llglls,n = (j lg lsdHn)115 

for the empirical norm of g. The theoretical norm now also depends on n, and 
is denoted by 

llglls,(n) = <f lglsdn(n))lls_ 

Define 

§~ = { I g Is: g E §n }. 

Because in general the U('Rd , n<n>) norm will be allowed to grow with n, it 
is no longer possible to replace conditions on L 1('Rd, Hn)-covering numbers by 
conditions on U(IRd, Hn)-covering numbers. We present a lemma to clarify 
this. 

LEMMA 2.3.4. For J ..;;s < oo and all 8>0 
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NI (8, Hn, /3~) ,,;;;; Ns(8/(s(2 suollglls,nY- l ), Hn, 13n), (2.35) 
ge~. 

PROOF. For a;;.b;;.0 as-bs,,;;;;s(a-b)as-l for all },s;;s<oo. Using this and 
Holder's inequality, we obtain that for all g,gE!3n 

f jlgls -lglsjdHn ,s;; Sf jlgl-lilj[max(lgl, lgl)f - l dHn 

,,;;;;s /lg-gl[lgl + lglf - 1dHn ,,;;;;sllg-glls,n lllgl + lilll~,;;- 1 

,,;;;;s llg-glls,n(2suollglls,nY - 1
• □ 

ge~. 

Hence, if supgeil. Ilg lls,n remains bounded, say 

suollglls,n ,,;;;; K 
ge!t 

(2.36) 

with arbitrary large probability for all n sufficiently large, then N 1 (8,Hn,13~) 
and Ns(8,Hn, 13n) are of the same order of magnitude. 

THEOREM 2.3.5. Let { gn} be a sequence of permissible classes with envelopes Gn 
satisfying 

lim sup IIGnlls,(n) < oo, },,;;;;s<oo 
n-HX> 

I 

Suppose that for some sequence Cn;;. I, Cn = e(n s ) 

and 

Then 

lim sup j G~dH<n> =0 
n-+oo G,. >c,. 

lim sup-1 j G'l,:dH<n> =0 
n--+oo ~ G _ ,. -c,. 

c! p• 
_n logNs(8, Hn, 13n) - 0, for all 8>0 
n 

p 

suolllglls,n -llglls.<n>I -o. ge~. 

PROOF. Conditions (2.38) and (2.39) imply that 
p 

IIIGnlls,n -IIGnlls,(n)I - 0. 

It now follows from (2.37) that for some K < oo 

suollglls,n ,s;; IIGn lls,n ,s;;K 
ge~. 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 
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with arbitrary large probability for all n sufficiently large. Apply Lemma 2.3.4 
to see that (2.40) implies 

(2.42) 

The conclusion of the theorem now follows easily from Theorem 2.3.2. □ 

If (2.37) is not fulfilled, one can check uniform convergence of llglls,n to 
llglls,<n> by verifying (2.42) directly. 

2.4 Measurability I 
Let x1 ,x2,... be independent, identically distributed random variables, with 
distribution Hon Rd. As underlying probability space, we take the product 
space 

(!l, &i, P') = ((Rd)oo, '!Boo, Hoo)©(M, ~ Q)) 

where (M, ~ Q) is some probability space on which some auxiliary random 
variables live (we need some additional space for randomization). Without loss 
of generality, (!l, &, P') is assumed to be complete. We observed that 

w 1-+ SUP f gd(Hn - H)(w) 
gEl'J 

need not be measurable. Of course if § is a countable class of measurable func­
tions, there are no problems. Suppose now that there exists a countable 0 § 

such that 

Ill [sup I/ gd(Hn - H)I =I= sup I/ gd(Hn - H)ll = 0, n;;.,, 1. (2.43) 
gEl'l g E~ 

Then application of Theorem 2.2.1 to 0 § yields 

sup I/ gd(Hn - H)I ➔O almost surely 
gEl'l 

iff both 

I P 
- logN 1(8, Hn,o§> ➔ 0 for all 8>0. 
n 

(2.44) 

Now, suppose § is separable. The process g 1-+ f gd(Hn - H) is called stochgsti­
cally separable if there exists a countable 0§c§ such that for all closed §C§ 

and open B c R 

fgd(Hn-H)EB forall gE§no§ 

implies 
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with probability one (GIRMAN and SKOROHOD (1974)). If g f-> f gd(Hn - H) is 
stochastically separable, (2.43) holds. 

Stochastic separability suffices for most practical purposes (DUDLEY (1984), 
Section 11.3). Note that it implies measurability of 

SUP I/ gd(Hn - H)I, (2.45) 
gE~ 

However, the proof of a uniform law of large numbers needs measurability of 
other quantities too. If one assumes that § is nearly linearly supremum measur­
able (ALEXANDER (1984), GINE and ZINN (1984)), measurability difficulties are 
overcome without the assumption of stochastic separability. 

POLLARD (1984) introduces the concept of permissibility. A permissible class 
§ is also nearly linearly supremum measurable, but need not result in stochas­
tic separability of the process. We shall now copy the definition of permissibil­
ity - of a class of functions on IRd - from Pollard's book (POLLARD (1984), 
Appendix C). We say that§ can be indexed by T if§= {g(·, t):t ET} . 

DEFINITION: § is permissible if § can be indexed by a separable metric space T 
such that 
(i) g( ·, ·) is <ffi®<ffi(T) - measurable on Rd® T -R (<ffi is the Borel a-algebra 

on Rd, <ffi(T) the Borel a-algebra on 1), 
(ii) T is an analytic subset of a compact metric space T (from which it inher­

its its metric and Borel a-field). 

POLLARD (1984) eleborates on the merits of assuming permissibility. He shows 
that (among other things) permissibility of§ implies measurability of (2.45). 

Note that if§ is permissible, then so is {lg-gl: g, gE§} (see (2.6)) and 

~ = {Jgjs: gE§} , }o;;;;s<oo, 

and also the class of truncated functions 

(§)c = {sign(g)(jgJAC): gE§}, C>O. 

The quantities Ns(8,H,,,§) still need not be measurable even if§ is permissi­
ble. However, the use of outer-probabilities for statements about the possibly 
non-measurable covering numbers does not interfere with proving laws of large 
numbers. 

Suppose now that Xn, 1, · · · ,xn,n are independent random variables, Xn,k 
having distribution Hn,k, k = 1, · · · ,n, n ~ 1. For each n, we denote the 
underlying probability space by (On, &n, Pn), and we shall assume that it is 
complete. Let { §n} be a sequence of classes of measurable functions on Rd. In 
order to handle measurability for the non i.i.d. case and triangular arrays, it 
suffices to assume permissibility of each §n· To see this, recall the proof of 
Theorem 2.3.2. Note that all probability statements are for fixed (sufficiently 
large, but nonrandom) n. For each n, 

:~P. I/ gd(Hn - n<n))I 
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is measurable, provided suollgll 1,(n)<oo. POLLARD (1984) shows that for fixed 
gEg• 

n, the symmetrization device 

f gd(Hn - H(n))f--+ f gd(Hn - H'n) 

is valid. Of course, if §n is permissible, then {g(x )a: g E §n} is a permissible 
class of functions on Rd+ 1 • This makes it possible to randomize the process. 
The use of Fubini's Theorem in (2.30) is thus legitimate. 
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3. CONSISTENT LEAST SQUARES ESTIMATION 

3.1. L 2 -consistency 
Consider the regression model 

y = g(x)+E 

where x is a Rd-valued random vector with distribution H, E is independent of 
x and has expectation zero and finite variance, and g is a member of a class g 
of regression functions on Rd. For an estimator of the unknown g to be sta­
tistically meaningful, it should at least be consistent in some sense. In the 
least squares context the most natural requirement is L 2 -consistency. In this 
chapter we show that entropy conditions on a (rescaled and truncated version 
of) g imply this type of consistency. The results from Chapter 2 are used to 
prove this. 

Let L 2(Rd, H) be the Hilbert space of H-s<juare integrable functions on Rd. 
Writing K for the distribution of E, let L 2(R XR, P) be the Hilbert space of 
measurable P = H X K-square integrable functions on Rd X R with norm II · Iii. 
For convenience, we omit the subscript 2, i.e. we write II · II. Confusion is not 
likely, because from now on V-norms with s-=/=2 will only appear sporadically 
and then we shall use our old notation. 

Denote by x and £ the first and second coordinate projections into Rd and 
R respectively, and write g =g(x), g0 =g0(x), y =g0 +£, where we assume that 
g 0 , the true state of nature, is in L 2(Rd, H). We have for gEL2(Rd, H) 

llY -gll 2 = IE(y-g(x))2 = 11£11 2 +Ilg-go 11 2
, 

since x and E independent. 
Let (x1, E1 ), (x2 , E2}, · · · be independent copies of (x, E) with 

yk=g0(xk}+Ek. Write Pn for the empirical distribution based on 
(x1, E1 ), · · · ,(xn, En) and Hn for the marginal empirical distribution generated 
by x1, • • • ,xn. Suppressing the subscript 2, we write 11 · lln for the correspond­
ing L2(RdXR, Pn)-norm: 

I n 
llgll~ = - ~g(xk)2, 

n k = I 

l n 
llY -gll~ = - ~ (yk-g(xk)}2 = 11£-(g-go)ll~-

n k=I 

The least squares estimator g,, is - not necessarily uniquely - defined by 

l[y-g,,11~ = infl[y-gll~. 
gEg 

The estimator g,, is strongly L 2(Rd, H)-consistent if 

Ilg,, -go II ➔ 0 almost surely. (3.1) 

Strong L 2(Rd, Hn)-consistency is defined in a similar manner. We concentrate 
on convergence with respect to these metrics because the information on the 
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regression function is determined by the distribution of the data. The addi­
tional knowledge that g,, is in a class of regression functions § can sometimes 
be used to prove consistency in, for instance, the sup-norm. 

Observe that g0 is the essentially unique minimizer of l[y -gll, whereas g,, 
minimizes the empirical counter part l[y - g lln. By the strong law, l[y - g lln 
converges for each fixed gEL2(Rd, H) to l[y-gll almost surely, and if this 
convergence is uniform, consistency in both II ·II- and II· lln-norm follows 
almost immediately. The almost sure convergence, uniformly over a class of 
functions §, was studied in the previous chapter. Recall Theorem 2.2.4. For 
the case s = 2, it states that, for § a permissible class with envelope G, 

suojllglln - llgllj ➔ 0 almost surely 
geW 

if the envelope condition 

f G2dH < oo 

and the entropy condition 
1 p· 

- logN i(8, Hn, §) ➔ 0 for all 8>0 
n 

(3.2) 

(3.3) 

(3.4) 

are fulfilled. Remember that log N 2 ( 8, Hn , §) is called the entropy of § for 
11 · lln-

PROPOSITION 3.1.1. Suppose that § is a permissible class with g0 E§ and that (3.3) 
and (3.4) are fulfilled, then 

Ilg,, -gn II ➔ 0 almost surely, 

as well as 

Ilg,, -gn lln ➔ 0 almost surely. 

PROOF. Obviously, conditions (3.3) and (3.4) ensure that we can apply 
Theorem 2.2.4 to the class {y-g : gE \J}, so 

suojlly - glln - /[y -g /1 1 ➔ 0 almost surely. 
geW 

Now, l[y - gll2=1kll2 +llg-goll2
, and since g 0 E§, l[y-g,,ll~~llt:11~. Hence, 

for arbitrary 11>0, and for all n sufficiently large 

llt:11 2 + Ilg,, -go 11 2 ~ l[y -g,, II~ +11~ llt:11~ +11~ llt:11 2 +211 

almost surely. Or 

Ilg,, - go 112 ~ 211 almost surely. 

Thus llg,, -goll➔O almost surely, and since llg -g0 1 1n➔ llg -g0 1 1 almost surely, 
uniformly in g E§, this implies that also llg,, -g0 11n➔O almost surely. D 
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The uniform convergence (3.2) is certainly not necessary for consistency and it 
is clear that condition (3.3) and (3.4) from empirical process theory will hardly 
ever be satisfied for a class of regression functions §. For example, for 
§= {g(x,O)=x0=01x 1 + · · · +Odxd: OE Rd} (3.3) and (3.4) do not hold. This 
partly due to the fact that § is a cone (i.e. if gE§ also agE§ for all a>O). 
Therefore, we consider a class scaled functions 

<j = {f= 1 +11gll : gE§}. 

Then 11/11:,;;;; I for all f E6J, and <j is often essentially smaller that §, e.g. if § is a 
cone. In smooth enough models, (3.3) and (3.4) will hold for '!f. This is for 
instance the case in linear regression. However, the envelope condition on <j 

still seems to rule out many interesting models. Therefore, we propose to 
weaken (3.3) to uniform square integrability of <j and to impose the entropy 
condition on a class of truncated functions. 

A class <j is uniformly square integrable if 

lim sul? j f2 dH = 0. (3.5) 
c ..... oo /etlfl>C 

The class of truncated versions of functions in <j is defined as before: i.e. let C 
be a positive number and denote 

{ 

C if f>C 
(f)c = f if lfl:,;;;;C, 

-Ciff<-C 

and (<j)c={(f)c: fECff}. 

THEOREM 3.1.2. Suppose that§ is a permissible class with g0 E§, that <j is uni­
formly square integrable and that for each C >0 

I ~ 
- logN2(8, Hn, (§)c) - 0 for all 8>0. (3.6) 
n 

Then ~ is strongly L 2 (Rd, H)-consistent. 

PROOF. We shall first construct a covering set of the class 

~ = { [ ;::;II L-[ 1+11gll L gc@} 

Let ~. j = 1,2, · · · ,N2(8, Hn, (<j)c) be a covering set of (<j)c, 1.e. for each 
f =g/(1 + llgll)E/jthere exists an~ such that 

ll(f)c-f111n<8. (3.7) 

For all)= I, · · · ,N2(8, Hn(§)c), define 
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hJ,k = (k8(£+g0))c-f1, k =0, 1, · · · ,[l/8]. 

Then for all n sufficiently large, {hJ,k: j = 1, · · · ,N 2(8, Hn,(§)c), 
k =0, 1, · · · ,[l/8]} is a covering set of Xe. To see this, choose f =g/(1 + llgll), 
~ as in (3.7) and k =[1/(8(1 + llgll))]. Then 

II [ ;:::11 L- [ I +11gll LhJ.' 11" 

.;II [ I+lllgll -kB](,+go)ll.+11 [ 1+11gll L-~11. 
<811£+ golln +8..;;811£-goll +28 

almost surely, for n sufficiently large. Thus, we can apply Theorem 2.2.4 to 
Xe, which yields that 

[ £+go l l g l s~\> II I+ II II - 1 + II II II -
g g C g C 

(3.8) 

[ £+go l l g l II I+llgll c - I+llgll clln - o 

almost surely, for all C>0. 
Let 11>0 be arbitrary. Then from (3.8) we have that for all gE§, C>0 and 

n sufficiently large 

II [ ;::;11 L- [ I +11gll LIi' (3.9) 

..;;II [ 1£:1f;11 L-[ l+ilgll Lll~+11 almost surely. 

To get rid of the truncation in (3.9), we argue as follows. Obviously, 

II [ 1£:1f:11 L- [ 1 +ilgll L11 ~ ..;; II £(:~;ilg 11 ~-

For the lefthand side of (3.9), we have 

II [ 1£:1f;11 L- [ I +ilgll L11 (3.10) 

£+go-g [ g l g [ £+go l £+go 
;;;, II 1 + II II II - II 1 + II II - 1 + II II II - II 1 + II II - 1 + II II II. g gc g gc g 

Because of the assumed uniform square integrability, 
ll(g!(I+llgll))c-g/(l+llgll)II can be made arbitrary small by taking C 
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sufficiently large. Moreover, llt:+g0 II is finite, so {(£+g0)/(l+llgll: gE §'} 1s 
also unif orrnly square integrable. Hence, for C large enough 

11 [1£::
0

11] -[1+11 11] 11
2 ~ 11 £::~~t 112

- 11· g C g C g 

Thus, (3.9) implies that for n sufficiently large 

£+go-g 2 £+go-g 2 
II I+llgll II ~ II I+llgll 11n+211 almost surely. 

Since£ and x are independent, this can be written as 

11£11 2 + Ilg-go 11 2 

~ llt:+go - gll~+211(I+llgll)2 almost surely, 

for all gE §'. 
For g,, , we have 

llt:+go - g,,11 ~ ~ llt:11~, 

because g0 E§'. Hence (3.11) implies that for all n sufficiently large 

llt:11 2 + Ilg,, -go 11 2 ~ llt:11~ + 211(1 + Ilg,, 11)2 

~ llt:11 2 + 311(1 + Ilg,, 11)2 almost surely, 

or 

g,. - go 
11-~~112 ~311 almost surely. 

I+ Ilg,, II 

(3 .11) 

Since 11 was arbitrary we can take 311< I. But then 
((llg0 -g,, 11)/(1 + Ilg,, 11))2 < I for all n sufficiently large implies that for some 
constant K < oo 

llg,,11 ~ K 

for all n sufficiently large. 
This yields 

llg0 -g,, 11 2 ~ 311(1 + K)2 almost surely, 

which completes the proof. D 

It is easy to see that the conditions of Theorem 3.1.2 are implied bl. those of 
Proposition 3.1.1, but that in general they do not imply L (Rd, Hn)­
consistency. Consistency properties of regression estimators for more specific 
models have been studied by other authors. In nonlinear regression, §' is a class 
of functions of the form {g(x, fJ): fJE0} with 0 some metric space and g(x, fJ) 
continuous is fJ for H-almost all x. It is shown in Section 3.2 that condition 
(3.6) is fulfilled for this §' if 0 is compact. JENNRICH ( 1969) proves consistency 
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under the assumption that 0 is compact and that the envelope condition on § 

holds: 

f sup Jg(x, O)J2dH(x) < oo. 
oEe 

HUBER (1967) imposes an envelope condition on a rescaled version of §. He 
allows for more general scale transformations, but there appears to be not 
much loss of generality if we restrict ourselves to the choice of 'i If the 
envelope F of §"belongs to L 2(1Rd, H), then it can be shown that if (3.6) holds, 
g,, is also strongly L 2(1Rd, Hn)-consistent. Moreover, the truncation device 
becomes redundant. 

In nonparametric regression, there is usually no parametrization such that 
the regression functions are continuous in the parameter for H-almost all x. In 
Theorem 3.2, this continuity assumption is not required. The relation with the 
assumption of compactness of parameter space is made clear in the following 
lemma. Remember that a class §" is called totally bounded for II · II if for all 
8>0 the 8-entropy logN2(8, H,<ff) with respect to the L 2(1Rd, H)-norm, is finite. 
The closure of a totally bounded §" is compact. 

LEMMA 3.1.3 The conditions of Theorem 3.1.2 imply that §" is totally bounded for 
II· II. Moreover, if§" is totally bounded for 11 · II, then §" is uniformly square integr­
able. 

PROOF. In view of condition (3.6), application of Lemma 2.2.5 to (<ff>c yields 
that (<ff>c is totally bounded for II· II. The uniform square integrability now 
gives that §" is also totally bounded. This proves the first assertion. 

Suppose now that §" is totally bounded for II· II. Let 8 be arbitrary and let 
/ 1 , • • • .fm, m = 1, ... , Ni( 8, H, <ff), be a 8-covering set of 'i Then for C 
sufficiently large 

_ max ll(fj)c-.ljll .,,;; 8. 
J-l, . . . ,m 

Furthermore, for /EGJ, 11/-.ljll.,,;;8 

ll(f)c-jll.,,;; ll(f)c-(fj)cll+ll(fj)c-.ljll 

+ 11.lj - .fll .,,;;211/-Jj II+ 11(/j )c - Jj II .,,;; 38. 

It follows that 

lim sup 11(/)c - jll = 0. 
C➔ao / Efff 

This is equivalent to uniform square integrability. D 

So far we did not consider classes of regression functions depending on n, §n 

say. Such a situation arises for instance in spline regression, nearest neighbour 
regression and some other nonparametric regression models. The situation with 
gn depending on n will be treated in detail in Section 3.3. Here, we maintain 
the assumption of i.i.d. random variables, but because of the practical 



35 

importance we consider a simple application of Lemma 2.3.3. Suppose {§n} is 
a permissible sequence, then Lemma 2.3.3 asserts that 

I ~ 
- logN2(8, Hn, (§n)c) ➔ 0 for all «5>0 (3.12) 
n 

implies 
p :~f. I ll(g )c lln - ll(g )c 111 ➔ o. 

Note that the convergence is now in probability (almost sure results can only 
be obtained if the entropy remains small). It is now not difficult to adjust 
Theorem 3.1.2 to this situation, assuming uniform square integrability of 
U<J,., <J,. = {g/(1 + llgll): gE§n}, together with (3.12) for (<J,.)c, C>0. 

3.2 Applications 
In this section we shall concentrate on conditions for the entropy condition 
(3.6) on (§)c to hold. The technique to prove the lemmas is construction of a 
covering set and some combinatorics to count the number of elements. The 
uniform square integrability of <§ imposes requirements on the (unknown) H. 
Often, it has to be shown by separate means that g,,/(1 + Ilg,, II) is eventually in 
a totally bounded subset of <§ (see e.g. HUBER (1967)). To avoid digressions, 
we shall not elaborate on the uniform square integrability condition for 
specific situations, but only highlight that (3.6) is a common feature of regres­
sion models. 

An important special class of functions, that appears in several applications, 
is the collection of indicator functions of VC-classes of sets. A minor 
modification of Theorem 2.2.6 says that for a VC-class of sets, and more gen­
erally, for a VC-graph class <§ of functions 

N2(8, Q,(§)c) o;;;; AC'8-, for all «5>0 

where A and r are constants not depending on Q. Examples of VC-graph 
classes will be given below. 

3.2.1. Nonlinear regression. If the functions in § form a (subset of a )finite­
dimensional vector space, then both § and <§ are VC-graph classes (see POL­

LARD (1984, Ch. II, Lemma 28), DUDLEY (1984)). This is a consequence of the 
fact that the collection of half-spaces is a VC-class. Here is one more example 
where the regression functions form a VC-graph class. 

ExAMPLE. A model considered in BARD (1974) is 

y = exp(-61x1e -B,x,)+t:, 0;;?e0, x;;?e0, i = 1,2. 

The graphs are of the form 

{(x1,X2,t): Oo;;;;to;;;;exp(01x 1e-8'x'), 0;;?e0, x;;?eO, i = 1,2} 

={(x 1,x2,t): loglogl.;?elog01 +log01 -02x 2 , 0;;?e0, x;;?eO, i = 1,2}. 
t 
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Thus (use Theorem 9.2.2 of DUDLEY (1984)) § is a VC-graph class and since§ 
is uniformly bounded, this implies that '!I' satisfies (3.6). 

EXAMPLE. The p-compartment model 

y = ±a;/'-,x+£, a;~0, A;~0, i=l, · · · ,p, x~0. 
i=I 

If p = 1, the class of regression functions § forms a VC-graph class, so then we 
have for some A and r 

N2(8, Hn,(§)c) ~ AC'8-', 0<8< I. 

This yields for the case p=fal (apply the triangle inequality) 

N,(S, H,,,(<J)c) ,;; [AC'(! )-,r. 
and since§ is a cone, the same holds for the (§)c. 

In general, let § = {g( · , 8): fJ E 0}, with ( 0, 11 • 11) some metric space. If '!I' is 
not a VC-graph class, one can handle the entropy condition by assuming com­
pactness of the parameter space. 

LEMMA 3.2.1. Suppose that g(x,8) is continuous in (J for H-a/most all x, and that 
(0, II· II) is compact. Then for all C >0, 8>0 

as well as 

p· 
1 

- logN 2(8, Hn,(§)c - 0 
n 

PROOF. The proof shows that for all 8>0 there exists a finite 8-bracketing 
-set, i.e. a set of functions {g<L> ,gy>} such that for each g E§ there exists a pair 
[gf>,gy>J withgf>~(g)c~gt> and llgf>-gt>ll<8 (see DEHARDT (1971)). 

Define for all X E Rd' (J Ee 

Then 

w(x,8,p) = _ .'>UP i(g(x, fJ))c-(g(x,fJ))ci. 
(8: 118-bll ,r;;;p) 

lim w(x, 8,p) = 0 
p-+0 

for every fJ and H-almost all x. Since (g(x,fJ))c~C for all x, dominated con­
vergence implies that also 

limllw( · ,fJ,p)ll2 = o. 
p-+0 

Hence for arbitrary 8>0 there exists a finite covering set of 0 by balls with 



radius P; and centres 8;, such that 

llw( · ,8;, p;)ll2 < ½s2. 

For all n sufficiently large, also 

llw( · ,8;, p;)II~ < 82. 

But then {(g( · ,8;))c} is a finite covering set of (§)c with L 2(Rd, Hn)-norm: 

ll(g(- ,8))c-(g( ·, 8;))c11n ~ llw(-, 8;, P;)lln <S, 

for all 118-8;ll<p;. 
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In the same way, one can construct a finite covering ser of§; since the class 
{ag: aE[O,l], gE§} also satisfies the assumptions of Lemma 3.2.l. D 

If the regression functions are not continuous in 8, one can often split them up 
into continuous parts. An example is multi-phase regression, which is treated 
in detail in Section 3.4. 

In the next three applications § is always a cone. Thus, to check the entropy 
condition for the (§)c it certainly suffices to verify the entropy condition for 
the (Q)c. In the proofs, the order symbol 0( · ) holds for n-HXJ. 

3.2.2. Monotone functions (isotonic regression). 

LEMMA 3.2.2. Let§= {g: R➔R, g is increasing}, then for all S>O, C>O 
p· 

I 
- logN2(S, Hn,(§>c) ➔ 0. 
n 

PROOF. For gE§, define k=[C/8] and A(i)={x: iS~(g(x))c<(i+l)S}, for 
i=-(k+l), -k, · · · ,k. Take gO>=iS and approximate (g)c by ~;g<i)IA<,1. 
The {A(i)} form a partition of R with T=2(k + I) elements. As g varies, the 
A <1> are in a class ~i) of intervals, for which 

(i') - 2 
I::,. (x1, · · · ,Xn) - 0(n ). 

Thus, we have 0(n 2T) functions of the type ~;g<i)IA('). Also, 

supj(g(x))c- »<;>(x)IA<11j < S. 
X 

Thus, 

The result can be extended to functions of bounded variation and unimodal 
functions. If d> 1, further conditions are in general necessary to make sure 
that the entropy condition is fulfilled, e.g. assumptions on H or the condition 
that § is a class of distribution functions of bounded Stieltjes-Lebesgue meas­
ures. 
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3. 2. 3. Smooth functions. Let §n, n ;;;;,, 1, be a sequence of classes such that the 
elements of U §n have all partial derivatives of order s ,,,;;m, m ;;;;,,Q_ 

LEMMA 3.2.3. For x EIRd, let llx II denote the Euclidean norm of x. Suppose there 
exists an a,,,;; 1 and 

m+a 
Ln = o(_n d ) 

such that 

lg(ml(x)-g<ml(.x)I,,,;; Lnllx -x11a 

for all x, x, gE §n· Therefor all 8>0, C>O 
1 p" 

- logN 2(8, Hn,(§)c) ➔ 0. 
n 

PROOF. Without loss of generality we can assume that H has compact support 
K. If this is not the case, take a Kwith H(K)>l-82 /C2 . Then for any g 

ll(glK)c-(g)clln ,,,;;_ C(l-Hn(K)) 1 1 2➔C(l-H(K)) 1 1 2 <8 , 

almost surely. Let {B(il } be a covering of K by balls with centres x(il and 
radius m!(S!Ln)11m+a _ The number of balls needed is f!(_Ln!Sl' m+a . 
Construct from the { B(i)} a partition { A (i) } of K, e.g. take 
A(i)={xEB(il , x~BU> , j<i} . 

Let g E §n be arbitrary, and expand g (x) for x EA (i ) in a Taylor series 
around x<il, 

g(x) = g<il(x)+R(il (x), xEA(i) , 

where g<il(x) is the m-th order Taylor expansion. The Lipschitz condition tells 
us that 

IR(il(x)I ,,,;; Lnlm!llx -x(i)llm+a<S. 

Thus we have that 

As g varies in §n, the g<il form a class of polynomials of fixed degree, § say. 
This class is a finite-dimensional vector space, so there exist constants A and r 
such the for arbitrary measure Q 

N2(8, Q,(§)c) ,,,;; AC'S- ' . 

For each i with Hn(A (il)=t,O we make the following choice for Q 

Q = Q(il = Hn . ' on A (il. 
n Hn(A(')) 

This shows that there is a covering set {gyl} of (!3)c with at most AC' s-r 



elements, such that for arbitrary g<i) E§ there is a g5:l with 

ll(g(i))c IA <'> -g):> }Am II~ = Jl(g<i))c-g}:)l2dHn 
A<'> 

=Hn(A (i)) /l(g(i))c-g):l l2dQ~)<Hn(A (i))S2, Hn(A (i))=t=O. 

But then 
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ll~(g(i))c}A<•>-~g5:llA<1>II~ = ~ Hn(A(i))jl(g(i))c-g}:)l2dQ~)<82 
i i i : H,.(A <'>'Fo 

and 

ll(g)c - ~g}:) IA <'> lln < 28. 
i 

Hence, the functions {~g):) IA <•>} form a 28-covering set of (§n)c. The number 
i 

of different functions in this covering set is 

e [(AC'6-,(8 ,.:. l 
i.e. 

d 

J_ logN2(8, Hn,(§n)c) = f)(l_Lnm+a )=o(l). D 
n n 

If the functions in §n are uniformly bounded and H has compact support, 
then §n is totally bounded with respect to the sup-norm (see KOLMOGOROV 

and TIKHOMIROV (1959)). In our situation, §n need not be uniformly bounded. 
The functions in (§n)c no longer have m derivatives, except in the case m =O. 

The result of Lemma 3.2.3 can be applied in penalized least squares. Let 
d = 1 and let the penalized least squares estimator g,, be obtained by minimiz­
ing 

l[y-gll~ +>.~J(g), 

where J (g) is the penalty 

J(g) = j(g<m+ll(x))2dx, m~O 

(see e.g. WAHBA (1984)). We use Lemma 3.2.3 with d=l and a=l to estab­
lish the following. 

LEMMA 3.2.4. Suppose J (g0)< oo and nm+ 1 >-n-oo, then there exists a sequence 
§n such that g,, E§n almost surely for all n sufficiently large, and such that for all 
8>0, C>O 
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PROOF. The penalized least squares estimator g,, has 2m continuous deriva­
tives (see WAHBA (1984)). We have 

1tm>(x)-g~m>(x)I ~ l 112(g,,)llx -xii 

(see IBRAGIMOV and HAS'MINSK.11 (1981, page 81)). Also 

l[y-g,,11~+>.~J(g,,) ~ llt:11~+>.~J(go), 

which implies that for all n sufficiently large, 

J 112(g,,) ~ 2 't" +, 112(go) 
n 

almost surely. Take 

§n = {g: supllg<m>(x)-g<m>(x)ll~Lnllx-xll} 
x,x 

with Ln = 2llt:II /An+ J 112(g0 ) = o(nm + 1) and apply Lemma 3.2.3 with a= l and 
d=l. □ 

3.2.4. Nearest neighbour regression. We consider the nearest neighbour regres­
sion estimator of the form 

p. 

g,, = ~ g~> IA~' 
i=l 

where the g~l are polynomials of fixed degree and A~>, i = 1, · · · ,Pn forms a 
random partition of Rd. For instance, one may take the A~> as the set con­
taining the N = [ n Ip n] nearest neighbours of some xk . In general, let 

p. 
§n = { ~gU>tA;': g<i)E§, A~)Ecl', 

i = l 

(3.13) 

In a sense, this is an extension of a p-phase regression model to Pn-phase 
regression. 

LEMMA 3.2.5. Suppose that in (3.13) § is a VC-graph class and a a VC-class, 
and that Pn = o(n /log n ), then for all 8>0, C >0 

1 p· 

- logN 2(8, Hn,(§n)c) ➔ 0. 
n 

PROOF. Since § is a VC-graph class, we have 

Ni{--~-' Hn,(§)c) ~ AC' [J_l -, 
Pn Pn 

for some constants A and r. 
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Let {g1} be a (8/pn)-covering class of (§)c, such that for arbitrary gU> E§ 

there is a g1 E {g1} such that 

li(g<;>)c - g1, lln < ~ · 

Then 
p. p. p. 

II ~ (g(i))c IA ''' - ~ gj, IA ''' lln ,;;;; ~ llg<i))c -gj, lln <8. 
i=I i=I i=I 

For a fixed partition A(I>, · · · ,A(p.>, there are at most (AC'(81pn) - 'f" 

different functions of the type ~f·= 1 g1, I Ac,, . Since ct is a VC-class, 

~ l!l(X1, · · · ,Xn) = e(ns) 

for some s~O. Thus the number of L 00 (1Rd, Hn)-different partitions is e(nsp,). 
The total number of L 00 (Rd, Hn )-different functions ~f·= 1 g1, IA"' is thus 

[AC'(}. )-r ()(n"·). 

And 1/n IogNi(8, Hn ,(§n)c)=e(l/n Pn log(npn))=o(l). D 

3.3. The non-i.i.d. case and triangular arrays 
In this section, we assume that for each n, Xn, 1, • • • ,xn,n are independent ran­
dom vectors in Rd, xn,k having distribution Hn,k· Furthermore, £n, 1, · · · ,£n,n 
are independent random variables with distribution Kn,k, E£n,k =O, 
k=I, . .. ,n, and {£n, I, ... ,£n,n} is independent of {xn, I, ... ,Xn,n}- We 
observe (xn ,k .Yn,k ), k = I, · · · ,n, where 

Yn,k = go,n(Xn,k)+£n,k, k = I, . . . ,n 

and where go,n is a member of a class §n of regression functions. The least 
squares estimator g,, is defined as a solution of the minimization problem 

inf J_ ± (Yn,k-g(xn,k))2 . 
g EfJ, n k = 1 

As in Section 3.1 , Pn denotes the empirical measure based on 
(xn, 1,£n, 1), · · · ,(xn,n,£n,n) and Hn is the empirical measure generated by 
Xn, I' . .. ,Xn,n· Moreover, we write 

H(n) = J_ ± H k 
n k=I n, ' 

l n I n 
p(n) = - ""Pk=- ""H k X K k ~ n, ~ n, n, 

n k=I n k=I 

K(n) =J_ ± Kn k· 
n k=I • 
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The theoretical norm on L2(RdXR, p(nl) 1s denoted by II· llcn), 1.e. for 
gEL2(Rd, n<nl) 

llgllrn> = /lgl2dH<n>, 

and for g, go,n EL2(Rd, H(n)) and Jlt:12dK<n>(t:)<oo 

l[y-gllrn) = /lt:+go,n(x)-g(x)l2dP(n)(x,t:) 

= l!t:llrn> + Ilg -go,n llfn>· 

The empirical norm on L2(RdXR, Pn) is denoted again by II· !In, e.g. 

llgll~ = /lgl2dHn, 

l[y-gll~ = /lt:+go,n(x)-g(x)l2dPn(X,t:)= llt:+go,n-gll~. 

Finally, the class 'j,, of rescaled functions is defined as 

'j,, = {g/(1 + llgll(n)): gE §n }. 

Throughout this section, we assume that llt:llcn) as well as llgo,n lien) remain 
bounded. Moreover, we shall impose conditions that ensure that lllt:llcn) - llt:llnl 
and lllgo,n11cn)-llgo,n11nl converge to zero in probability. We impose an entropy 
condition on the class of truncated functions ('j,, )c_ , Cn = -/b:, bn ~ 1, 

bn =o(n 112), endowed with L 2(Rd, Hn)-norm, as well as on 
(<:fn)t = {f /\ C~: /E<:f,,} endowed with L 1(Rd , Hn)-norm. Recall Lemma 
2.3.4, where a relation between these covering numbers is presented. 

THEOREM 3.3.1. Suppose that { §n} is a sequence of permissible classes with 

go,n E§n, n ~ 1. Assume that for some sequence { bn }, bn ~ l , bn =o(n 112) 
b2 p· 

.....!!.... logN2(15, Hn,('j,,)b!" ) ➔ 0 for all 15>0, (3.15) 
n 

b2 p· 

.....!!.... logN 1(15, Hn,(<:f,,)t112 ) ➔ 0 for all 15>0, (3.16) n • 

and 

lim sup sup f [/i2 dH(n > = 0. 
n--H~J / E~ l/l'>b. 

(3.17) 

Moreover, assume that 

(3.18) 

and 

lim sup llt:llcn> < oo, lim sup llgo,n lien>< oo. 
n~oo n~oo 

(3.19) 

Then~ is L 2(Rd, H(n))-consistent, i.e. 
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Ilg,, -go,n ll(n) ➔ 0. 
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PROOF. The proof is very similar to the proof for the i.i.d. case. Define 
Cn = -Jb,:. We construct a covering set of the class 

Xe. = { [ 1 ~~~~i:,L_- [ 1+ 1&11,., L.: gE~"} 
as before: let f1, j = l, · · · ,N2(13, H,,,(§'n)c.) be a covering set of ('!f,,)c_, take 
for f =(g!(l + llgll(n)))E'!f,,, f1 the corresponding neighbour of (f)c_ (as in 
(3.7)) and take 

hJ,k = (kl3(£+go,n)k. -~, k =[l//3(1 + llgll<n>)]. 

Then 

II [ l~l~~i;., L.- [ l+l&II,., L.-hi,11" < 611<+go,.II.H 
Use Lemma 2.3.3 to see that conditions (3.17), (3.18) and (3.19) imply that 
11£+go,nlln=0t>(l). Thus from (3.15) 

b2 P• 
_n logN 2(13, Hn, :J<c) ➔ 0 for all 13>0. (3.20) n . 

If we apply Lemma 2.3.3 to (§'n)t, we obtain that 
p 

J~f. lll(f)c_ 11~ - ll(f)c_ llfn>I ➔ 0. 

Therefore 

sup llh lln ~ 11£+ go,n lln + suoll(f)c_lln = 0p(l). 
h E'.X;,. / E~ 

Application of Lemma 2.3.4 now gives that (3.20) implies 

b2 p· 

_!!..._ logN 1(/3, Hn , '.JQ,) ➔ 0 for all 13>0. n • 

Use Lemma 2.3.3 now for '.JQ-. to get 
p 

h~~.lllhll~-llhllfn)I ➔ 0. 

In other words, for arbitrary 11>0 

:~r [11 [ 1 ~1~~i;.,L.- [ 1 + 1&11,., L. 111., -
P l > l -11 

II [ 1 ~~~~i;., L. - [ 1+ 1&11,., L. II~ """ 
(3.21) 
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for all n sufficiently large. 
Using inequality (3.10) and assumptions (3.17) and (3.18), we get that for all 

n sufficiently large 

II [ I ~~l~~i;., L.- [ I+ 1&11,., L. II~ (3.22) 

~ 11£11fn)+llgo,n-gll[n) 
,,__ 2 -71, 

(I+ llgll<n>) 

for all g E §n· The fact that go,n E§n for all n gives that 

I A 2 2 1£+go,n-g.,11n ~ 11£11n-

Combine (3.21), (3.22) and (3.23) and use (3.18) and (3.19) for 11£11~, to obtain 
that for all n sufficiently large 

P [11 1~ ~:I~~:> lltn>~311] > 1- 271. 

Since llgo,n ll(n) is assumed to remain bounded, we can complete the proof as 
before. □ 

We can now establish consistency in the empirical metric 11 · lln using two 
approaches which depart from apparently different sets of assumptions. The 
first approach resembles the one for the i.i.d. case: assume that the envelope 
Fn of 'J,, is square integrable. The second approach is to work conditionally 
on Xn, 1, · · · ,xn,n · We summarize the result in two lemmas. 

LEMMA 3.3.2. Suppose that { gn} is a sequence of permissible classes, that 

go,n E§n for all n and that for some bn;;;,, 1, bn = o(n 112
) 

b2 p· 

_n logN2(8, Hn, 'J,,) ➔ 0, for all 8>0. (3.24) 
n 

b2 p · 

_!!__ logN 1(8, Hn, ~) ➔ 0, for all 8>0. (3.25) 
n 

and 

lim sup f F~dH(n) = 0. 
n->oo F;; > b, 

(3.26) 

Moreover, suppose that (3.18) and (3.19) hold for this {bn}- Then llg,,-go,nll(n) 
as well as Ilg,, -go,n lln converge to zero in probability. 

PROOF. Of course (3.26) implies (3.17). It is also obvious under (3.26), (3.25) 
and (3.16) are equivalent, and that (3.24) and (3.15) are equivalent too. So 

p 

llg,,-go,nll(n) ➔ 0 
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In other words, for all 11>0, llgn -go)l(n) <11 with large probability for all n 
sufficiently large. It now suffices to show that 

p 

sup lllg-go,nlln-llg-go,nll<nil - o. 
llg-go . .TI,.><11 

g E@. 

Now, application of Lemma 2.3.3 to ~ yields 
p 

SUD lllflln -IIJll(n)I - 0, 
/ E1_ 

which easily leads to (3.27). D 

Recall that under (3.24) 

lirn sup IIFn ll<nl < oo 
n__.co 

implies (3.25). 

(3.27) 

We now discuss the alternative approach. Conditioning on Xn,k =xn,k 
k = I, ... , n, n = I, 2, · · · can be seen as assuming nonstochastic regressors. 
Therefore, we take Hn,k =8x •. , in the following theorem. 

LEMMA 3.3.3. Suppose { §n} is a sequence of permissible classes, go,n E§n, n;;;;,, I. 
Suppose Hn,k =8x •. ,, k =I, ... , n, n = 1,2, · · · . ff for some bn;;;;,, I, bn =o(n 112

) 

lim sup SUD f [Ji2dHn = 0 
n__.co / E1• lfl'>b. 

and (3.18) and (3.19) are met, then 
p 

Ilg,, -go,n lln - 0. 

(3.28) 

(3.29) 

PROOF. Conditions (3.28) and (3.29) correspond to (3.15) and (3.17) respec­
tively, with Hn,k =8x •. ,, k = I, ... , n (under (3.29), truncation becomes redun­
dant). Also (3.16) holds, since Lemma 2.3.4 can be applied: 

SUD llflln = SUD llglln ,,;;; 1 D 
/ E1,. gE~. I+ llglln · 

If the xn.k are actually stochastic, condition (3.29) is to be replaced by 

lim sup ?(suD f lfl2 dHn >11)=0 for all 11>0. 
n__.co / E~ l/1' >b. 

Then, provided (3.28) holds in P* -probability, consistency in empirical norm 
follows. Lemma 3.3.3 does not give any clue on consistency in theoretical 
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norm and (3.28) and (3.29) seem to be substantially weaker than the condi­
tions of Lemma 3.3.2. We shall consider the particular case of i.i.d. xk and 
§n = §, where nevertheless the assumptions of Lemma 3.3.3 imply those of 
Lemma 3.3.2. 

LEMMA 3.3.4 Suppose that x1 ,x2 , · · · are i.i.d. with distribution Hand that <J is 
a permissible class with envelope F. If 

I p· 
- logN2(8, Hn, '!J) ➔ 0 for all 8>0 
n 

and if for all 11>0 

lim sup P(sup f lfi2dHn >11) = 0, 
n-+oo j EfJJ l/l'>b. 

for all bn tending to infinity arbitrarily slowly then 

FEL2(Rd, H). 

(3.30) 

PROOF. As in the proof of Lemma 2.3.3, we can choose sequences £nt0, 8nt0 
such that 

It now follows from application of Lemma 2.3.4 that for some sequences 

bn➔OO, bn =o(n 112
), 

b2 p· 

_n logN 1 (8, Hn, (<§)E!" ) ➔ 0 for all 8>0. 
n 

Let u1 ,u2, • • · be independent random 
P(uk = l)=l?(uk = -1)= 1/2. It follows from (3.31) that 

1 n p 
sup I- L uk(f(xk))E!" I ➔ 0. 
J EfJJ n k = I 

Hence by (3.30) 

Since 

1 n 
sup I-~ ukf2(xk)I~ 
JE&f nk = I 

1 n p 

SUD J- L uk(f(xk))E!" I +2 SUJ? f lfl2dHn ➔ 0. 
JE&f nk=l f E'J l/l' >b. 

variables 

is a reversed submartingale (see e.g. POLLARD (1984)) this implies 

1 n 
sul? I- L ukf2(xdl ➔ 0 almost surely. 
f E'J nk = I 

(3.31) 

with 
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But by the Borel Cantelli Lemma, the strong uniform law of large numbers 
implies that the envelope is integrable 

f suoj2dH < oo 
/ Elff 

(see GINE and ZINN (1984)). □ 

It turns out that in case of stochastic xn,k (i .e. Hn,k does not degenerate at 
Xn ,k =xn,k) it is often difficult to verify whether the entropy condition (3.28) 
holds in p• -probability, unless the envelope condition (3.26) holds. For obtain­
ing consistency in both II · ll(n) - and II · lln-norm, our approach indeed needs the 
envelope condition (3.26). 

EXAMPLE 3.1. Suppose (for simplicity) that (x1,£1),(x2 ,£2), · · · are i.i.d. and 
that g 0 is fixed. Suppose that §cL2(Rd,H) is a permissible VC-graph class 

with go E §. Let bn-oo , bn = o(n 112(logn )- 112) and define 

§n = {(g)b:'2: g E§}. 

Let g,, be the function in §n which minimizes lly - g lln. Then one can prove 
that 

as well as 

p 

llg,,-goll - o 

p 

Ilg,, - go lln - o. 

To see this, recall Theorem 2.2.6, which says that for all C>0, 8>0, n;;.. I and 
for some constants A and r 

N1(8, Hn, (§)c) ~ AC'8-'. 

Let 1/fn = {g/(1 + llgll): gE §n }. By straightforward computation 

N 2(8, Hn, 1/fn) ~ A 'b~ + 112 , 8- 2r - i, 8>0 

for some A', and 

N1(8,Hn,~) ~ 4A'b: +18- 2r - i, 8>0. 

Thus, the conditions of Lemma 3.3.2 are met, except that g 0 need not be §n 

for all n, i.e. (3.23) need not hold. However, we can replace (3.23) by 

l[y - g,, lln ~ llt:lln + ll(go -(go)b;" )llgol'>b. lln ~ llt:lln +11 

almost surely, since ll(g0 - (g0k 2 )l1g. l'>b. lln-o almost surely. 
We end this section with the following observation. Since everything may 

depend on n, one can define a new class §~ = { ang: g E §n} , with {an} some 
sequence converging to infinity, and use the uniform laws of large numbers of 
the previous chapter to prove that llan(g,, -go,n)lln converges to zero. In other 
words, in this way one obtains a rate of convergence. However, the resulting 
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rate will not always be the best possible. Note that so far, we only assumed 
existence of second order moments of the En,k · We shall show in Chapter 6 
how the existence of higher order moments of disturbances can lead to optimal 
rates and laws of large deviations. 

Nevertheless, consistency of llan(g,, -g0,n)11n can be concern in certain 
parametric models, where 

§ = {go: 0E0} 

with 0CR'. 

EXAMPLE 3.2. In linear regression 

go(x) = xO 

with x a row-vector in Rd and (J a column vector. Let Hn x =8x and let 
' ff ,lc 

Xn , I 

Xn,n 

(3.32) 

be the desrv matrix. Denote by ;\1,n and ;\2,n the smallest and largest eigen­
value of Xn Xn respectively. It is easy to see that if 

;\ /;\ = N n 112<1-cl ) for some 0<c..;;l 2,n l ,n V\ , 

then conditions (3.29) and (3.30) of Lemma 3.3.3. are fulfilled with 
bn=n 112<1-c)_ It follows that 

p 

Ilg,, -go,n lln - 0, 

provided that the regularity conditions (3.18) and (3.19) are met. If 

Jim inf _l;\I n > 0, 
n➔ OO n ' 

this in turn implies 
A p 

118n -Oo,nll - 0, 

g,, = gi,_ ,go,n =go... However, if Xn' Xn is ill-conditioned, i.e. if n - I Al,n goes to 
zero, consistency of g,, in II· II-norm no longer implies consistency of 8n. 

The following lemma presents a direct proof of consistency of the least 
squares estimator of a finite-dimensional parameter. It is a straightforward 
application of Theorem 2.3.2. To arrive at the same result as in Wu (1981), we 
assume compactness of parameter space. By a simple argument, this assump­
tion can be dropped at the cost of strengthening (3.33) (see also Section 6.2). 
Moreover, we assume nonstochastic Xn,k. 

LEMMA 3.3.5. Let §= {g0 : 0E0}, with 0 a compact subset of Rd, g0 =g00, 



80 E0, and let Hn,k =8x •. ,, k = 1, . .. , n, n = 1,2, · · · . Suppose 

llg11-g11
0
lln;,. K1,nll8-8oll 

for all 8E0, where K 1,n>O, 

lg11(x)-g11,(x)I ,,;;;; A2,n(x)ll8-8'II 

for al/ 8,8'E0, and where IIA2,nlln =K2,n =(9(1) and 

Kl+c + = (9(n 112(1 - c)) 

K1,n 

for some O<c..; 1. Moreover, impose the regularity conditions 
p 

lim sup llt:lln < oo, I llt:lln - llt:ll(n) I - 0. 
n--+oo 

Then 
A p 

118n_Ooll - 0. 

PROOF. Since 

l[y-g,,lln ..;llt:lln, or 

2 ~ A A 2 
-;k"':'lt:n,k(g,,(xn,d-go(Xn,d);,. llg,,-goll2, 

it suffices to show that for all 11>0 

1 n 
- ~ fn,k(g11(Xn,k)-g11

0
(Xn,k)) 

nk=I p 
sup ---------- - 0. 

1111 - 11,11>11 llg11 -g11
0 

II~ 

Define 

t:(ge{x)-g11
0
(x)) 

%, = {h(t:,x) = 2 : II0-8011>11, 8E0} 
llg11-g11,lln 
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(3.33) 

and cn=n 1-c12 • It is now easy to see that Theorem 2.3.2 can be applied to%,. 
Thus 

and the proof is complete. D 
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3.4. Two-phase regression in detail: identified case 
We noted already in Example 1.3 that the class§ of functions of the form 

I a< 1
> + xff-1> if xy~ I . [ (i)l 

g(x) = l"'''+xfl"' ii xy>l' (/,•)= f,;, ERd+I, ;=J,2, yeR' (3.34) 

is a VC-graph class. Thus there exist constants A and r such that for arbitrary 
probability measure Q 

N 1(8,Q,(!J)c) ~ A8-rC', for all C>O, 8>0. (3.35) 

Since, § is a cone, the same holds for any rescaled version of §, e.g. 
§;, = {g/(1 + llgll(n)): gE§}. In other words, no distributional assumptions are 
needed to verify the entropy conditions (3.6) (or (3.15) and (3.16)) of the previ­
ous sections. To investigate consistency, we now have to check some uniform 
square integrability condition. Here, we do need to specify the distributional 
assumptions. 

By making use of the results of Section 3.3, one can study the general setup 
with possibly non-i.i.d. random variables. However, to simplify the exposition 
we mainly restrict ourselves to the i.i.d. case and only briefly address the 
non-i.i.d. case at the end of this section. We assume that x 1, x2 , · · · are i.i.d. 
with distribution H , and t: 1 ,t:2, · · · are i.i.d. with expectation zero and finite 
variance and independent of the xk , k = 1,2, · · · . Also g0 is assumed to be 
fixed. We consider the class of regression functions 

§ = {g(x)= ~ (a(i) + x/f-i))}A v> (x): (ji) = [~:~] ERd+ 1, A (i) CRd, i = 1,2, 
I= 1,2 /J ' 

A (I) UA <2> = Rd, A (I) nA <2> = 0, A =A (I) Elt} (3.36) 

where It is a permissible class of subsets of Rd. For convenience, we often write 
~

1> =it and ~ 2> ={Ac: A Elt}. We do not restrict It to be the class of halfspaces 
{{x: xy~l}, yERd}. Moreover, the regression functions are allowed to be 
discontinuous. The least squares estimator is defined by 

l[y-g,,lln = inf l[y-glln, 
gE§ 

where § is given in (3.36). 
Theorem 3.1.2 asserts that g,, is L 2(Rd, H)-consistent if both 

I p· 

- · logN2(8, Hn, &) ➔ 0 
n 

and <!f= {g/(1 + llgll): gE§} uniformly (H-)square integrable. However, it turns 
out that even if the regression functions are of the form (3.34), <!f is in general 
not uniformly square integrable. Here are three examples. 
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EXAMPLE 3.3. Take d = I and consider the class §5 defined by 

§5 = {al( -oo;y]: a:EIR, yER}. 

Note that §5 is a subclass of § in case ct is the collection of halfspaces. Define 
H(y)=H(-oo,y]. Suppose there exists a sequence {Ym}~=J, with H(ym)>0, 
m =1,2, · · · and 

lirn H(ym) = 0. 
m ..... oo 

since lgm I> 2C for m sufficiently large. 

Ym ♦1 Ym 

FIGURE 3.1. H is the uniform distribution on (0, I) 

EXAMPLE 3.4. Let d = I and 

§5 = {gp(x)=min(,83 + /h,0): ,8>0}. 

I 
Let H(x)=--3 , -oo<x~l. Then llgpll= 1, gpE§s and 

X 

lirn f [ gp ]

2

dH = J_ 
p ..... °k,11(1 +llg,ll)>C I+ Ilg .B II 4 . 

11 
g~ g/1 

FIGURE 3.2. ,81 <,82 
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EXAMPLE 3.5. Let d = 1 and 

§s = {g..,(x)= ~1(-oo,y](x): y>O}. 

I I I 
Let H(x)= 2 x+ 2 , Q,s;;;x<l, H({0})= 2 . 
Then Ilg.., II= I for all g.., E§s and 

lim j [ g.., ]
2

=! 
"(-+00 lg,I1(1 + llg,ll)>C I+ Ilg.., II . 

g..,, 

FIGURE 3.3. YI <y2 

Our conclusion is that Theorem 3.1.2 cannot be applied under fairly general 
conditions on H. We shall now take the following approach. We first show 
that for a subclass §R of§, <!fR={g/(l+llgll): gE§R} is uniformly square 
integrable, provided of course that 

1Ex7 x < oo. (3.37) 

In the sequel, we assume throughout that (3.37) is fulfilled. Next, we show 
that under certain conditions on g0 and H, &i automatically belongs to this 
subclass §R for all n sufficiently large (see Lemma 3.4.2). 

As before, write lldi) II for the norm of the Euclidean vector (J(i). Define 

g,., (x) = ,;.;i + x/f.il =(l,x )1/J', /1il = [~'.:], ; = 1,2. (3.38) 

Define for A C Rd 

~(A)= j [
1 

7 x T ]dH(x). 
A X X X 

If H(A)=pO we denote by AA the smallest non-zero eigenvalue of ~(A), and 
otherwise we take AA = I. Note that in all three examples 3.3, 3.4 and 3.5, we 
constructed a sequence of functions g = gqo IA with >--A-o. The following 
lemma asserts that if one prevents AA from becoming arbitrarily small this 
results in uniform square integrability. 

LEMMA 3.4.1. For 1J >0, consider the restricted class of regression functions 



The class 

§R = {g= ~ gu:o }A c;i : gE §, AA <;l >71, i = 1,2}. 
i=l,2 

<!fR = {g/(l+llgll): gE§R} 

is uniformly square integrable. 

PROOF. 

I+ llg,i;i l, co II 
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(3.39) 

For ,j cRd, H(A)=,==O, let AA be the diagonal matrix of eigenvalues of ~(A), 
and PA the matrix of eigenvectors: 

- - -T - -T -T-
~(A) = PAA-APA , PAPA = PAPA =I. 

The diagonal matrix of non-zero eigenvalues is denoted by AA, and the 
corresponding matrix of eigenvectors by PA : 

~(A) = PAAAPf 
-

So PA =(PA , Po,A), with Po,A the eigenvectors corresponding to the eigen-
values equal to zero. 

We have 

j(l,x)Po,A P6,A(I,x)7 dH(x) = 0. 
A 

Hence 

. [ (l,x)PAP{fl.i) ]
2 

dH(x) 
1( 1 )P plOl I 1 + llgu:1> IA II 

,x A A A >C 
l+llg,i;i l, 11 

[ 

Tri') ]2 
f 

(I,x)PAP_ Au'' 
,s;;;; ---- dH(x). 

l(l ,x)P,P~d;)I >C 1 + llgu•> IA II 
l +llg,iol,II 

If i\A >11, then 

llgu:;>IAII = (ff.i)T~(A)fl.i))½>11½IIPAPifl.i)11. 
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Therefore 

But the class 

{gµ<1> /(1 +11½ llµ(i) II): µ<il ERd+ 1} 

is uniformly square integrable. □ 

Write 

go = ~ g11~>lA~> 
i=l,2 

and 

g., = ~ g'i,;l IA;). 
i=l,2 

Moreover, let for A C Rd, 

A \ A = A nA\ AAA = (A \ A)U(A \ A). 

To show that eventually g,, E§R, with §R the restricted class defined in (3.39), 
we first of all need an entropy condition on Cf.. Secondly, we require that g0 is 
actually a two-phase regression function, not a one-phase regression function. 
This can be seen as an identifiability condition, since if g0 consists of only one 
phase one cannot identify the AH> or equivalently, one of the og>. However, 
this type of identifiability is not a necessary condition for II· II-consistency, as 
we shall see in Chapter 6. 

Thirdly, we impose a regularity condition on H . For this purpose, we intro­
duce the class e of all hyperplanes in Rd, i.e. 

e = {C={x : (l,x)7 =PPT(I,x)7}: PE0>} 

were 0l is the class of (d+l)Xs matrices P, l~s~d+I, pTp=J. As in the 
proof of the previous lemma, let PA denote the eigenvectors correspondin9' to 
non-zero eigenvalues of ~(A), A cRd, H(A)=faO. Then CA ={x: x=PAPAx} 
is an element of e with positive mass. Such hyperplanes will play an 
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important role in Lemma 3.4.2 below. We shall assume that the probability in 
Hausdorff-neighbourhoods of each C Ee - neighbourhoods not including C 
itself - is uniformly small (see (3.42)). This assumption is e.g. fulfilled if H has 
a uniformly bounded density with respect to Lebesgue measure at all x in such 
neighbourhoods. The Hausdorff-distance is denoted by 

d(x,C) = infllx-xll, CcRd, 
.ieC 

where llx - x II is the Euclidean distance between x and .x. 

LEMMA 3.4.2. Suppose that the entropy condition: 
1 p· 

-logN2(«'>, Hn, (f) ➔ 0 for all ~>0, 
n 

the identifiability condition: 

(3.40) 

llgo-gkll ➔ 0 for some sequence gk= ~ gu;>IAt•E§ (3.41) 

implies AA~) ➔o, i = 1, 2, 

and the regularity condition: 

lim sup H({x : 0<d(x, C)~71}) = 0 
11l0 Ce'e 

i=l,2 

(3.42) 

are fulfilled. Then there exists an 1J >0 such that eventually AA,'0 >71 almost surely. 

PROOF. Define 

l:n(A) = f [1 
T X T ldHn(x), A cRd. 

A X X X 

We have 

l[y-g..11~ ~ llt:11~, 

which implies 

Ilg,. lln ~ 2llt:11n + llgo lln­
Hence for some constant K < oo 

llg,.11~ ~K 

for all sufficiently large n. Write this as 

~ o~>T l:n(A~))O~) ~ K. (3.43) 
i=l ,2 

Now, let AA1;1 ;;;;,: • • • ;;;;,:AA10 be the eigenvalues of ~(A~)) in decreasing order, 
11. I 11.d+l 

and define AA. 1;1 = 1 and >..A· 1;1 =0 i = 1 2. In other words >..A·v, =AA•1;1 for some 
11',0 11,d +l ' ' ' " "•'i 

O~s;~d+I and AA~!, =0 for s>s;. For each infinite subsequence {n'}C{n} 
one can construct a further infinite subsequence { n •} c { n'} such that for some 
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0<s;~d+2 and some 1/;>0, AA<'! -o and AA<'! _ >11;, i=I,2. In view of 
assumption (3.40), l:n(A (i)) - ~(A fo) almost s~~~l~, uniformly in A 0) E ~ .i), 

i = 1,2. 
() () A (i) 

If we denote by A;, 1 ~ • • • ~A;,d + 1 the eigenvalues of l:n(An ) and define 
A~_} 1 = 1 and A~.~+ 2 = 0, it follows that A <~1 .s, -o and for n * sufficiently large, 

A n · ,s, - I > ½71;, i = 1, 2. 
L~t p~) be the matrix of eigenvectors corresponding to the eigenvalues of 

l:n(A~)) that are larger than ½11; , with the convention p~) = 0 if all eigenvalues 

are smaller than ½11;. Then (3.43) implies 

Ill-'~> II ..;;; i_ K, 
1/i 

where u<i) =P(i)p(i)T9(i) i = l 2 Define rn n n n , , • 

C~) = {x: (l ,x)7 = P~)p~lT(l,x}7}, i = 1,2. 

Because for the subsequence, A<~l .s, -o, we have that for each 71>0 

A (i) d( c<i).) }) H(An· n {x: X1 , n >11 ➔ 0. 

But then from (3.43) 

H(A~J \ c<~l)..;;; H(A~Jn{x, d(x 1,c<~l )>11}) 

+ H({x : 0<d(x, c<:,>- )..;;;71}) - 0, as 11-0, 

or equivalently 

H(A~J \ B(~).) - 0, 

( "). A (i) ( "). 
where B ~ =An· nC ~ , i = 1,2. 

The class 

satisfies 
p· 

.l 1ogN2 (8, H,, , rf.il ) - 0 for all 8>0, 
n 

because (3.40) holds. Moreover, the envelope of !f.i ) is in L 2(Rd, H). Thus 

(3.44) 

l;fti [11(t:+go-g,.:Q )ls:Q II~· - ll(t:+go-gJ:~)Is:Q l12]1 - 0 almost surely. 

Furthermore 

~ ll(t:+ go -g,.:Q )ls:Q II~· = ~ ll(t:+ go - ge;'.> )ls.'Q 11~· 
i = l ,2 i = l ,2 

~ ~ ll(t:+go-ge;? )lA,'Q II~· = llt:+go-g,,·ll~· ~llt: ll ~·-
; = 1,2 



This yields that 

Ii~ sup [ ~ ll(g0-g,._1,.,)18::'ll2- ~ lldA.1'.\ u.11112] ~ 0 almost surely. 
n --->OO i = 1,2 i = 1,2 

From (3.44) it now follows that 

or 

~ ll(g0 -g,._11)lA.1'.1 11
2 - 0 almost surely, 

i = l,2 

llgo - ~ g,.:·! IA:? 11 2 - 0 almost surely. 
i=l,2 

But then by (3.41), AA:'.' - 0, i = 1,2. 

57 

Summarizing, we have that for each infinite subsequence { n'} C { n} there 
exists a further infinite subsequence { n •} c { n '} such that >..A:·.1 does not con­
verge to 0, i = 1,2. This shows that there exists an 71>0 such that AA~' >71 for 
all n sufficiently large. D 

It requires virtually no additional effort to conclude from the proof of 
Lemma 3.4.2 that under assumptions (3.40), (3.41) and (3.42), gn is II· 11-
consistent. However, we alternatively use Theorem 3.12 to show this. 

PROPOSITION 3.4.3. Suppose (3.40), (3.41) and (3.42) are met, then 

II g,, - go II - 0 almost surely. 

PROOF. By Lemma 3.4.2 there exists an 71>0 such that AA~' >11, i = 1,2, almost 
surely for all n sufficiently large. Thus it suffices to show that the conditions of 
Theorem 3.1.2 are fulfilled for the restricted class 

§R = {g= ~ g1r1A1;,, ()(i>Ellld+ 1, A<;>Eci~J>, AA 1;1>71, i=l,2}. 
i=l ,2 

The entropy condition follows from (3.40): 

1 ~ 
- logN2(8, Hn,('FR)c) - 0 for all C>O, 8>0. 
n 

Furthermore, we have shown in Lemma 3.4.1 that 'FR is uniformly square 
integrable. D 

For consistency of the estimators of the parameters 88> and A8>, i = 1,2, we of 
course need a further identifiability condition. If AO is known, 88> is identified 
if ~(A8>) is of full rank. In the situation with A O unknown, this is no longer 
true, even when 1188> - 8Y> II *O. 
EXAMPLE 3.6. Let d = 2 and suppose H puts all its mass on 8 points 
x\1>, · · · ,x~1>, x\2>, · · · ,xf>, H(x~1>)>0, t = 1, · · · ,4, i = 1,2. Let 
Ab1> = { x\1> ,x~1> ,x~1> ,x~1>} and A <1> = {x\1> ,x~1> ,x\2> ,x~2>} (see Figure 3.4). 
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Then there exists a 00 such that 110b1l -0b2> ll=FO, and a O such that 
110-00 11=F0, with 

II ~ g,t• IA'° - go II = 0. 
i = l ,2 

FIGURE 3.4. 

Obviously, the roles of (ff.I), A <1>) and (ff..2l, A <2>) can often be interchanged. 
Identifiability should be understood in the wide sense, i.e. modulo a possible 
re-indexing of the {(Uil,A<il): i=l,2}. A sufficient condition for identifiability 
that can easily be verified, is given in Lemma 3.4.4. Let 

T = {x, H({x: llx-XII<")) > O for all ">o} 
be the su_pport of H. We assume below that there are sufficiently many points 
in TnA8J, i = 1,2, in order to identify 0. 

LEMMA 3.4.4. Suppose that 110b1>-0b2>11=F0 and that there are 2(d + 1)-1 points 
{x~i): t = 1, · · · ,2(d + 1)-1} CA8) n T, with no d + 1 x~i) on a (d- I)­
dimensional Ahyperplane, i = 1,2. Suppose furthermore that (3.40) and (3.42) are 
met. Then 116n - Ool l-O almost surely. If moreover 

H({x: gu.1•(x)=g11;•(x)}) = 0, (3.45) 
A 

then also H(And-4 o)-O almost surelv. (These converuence results should be 
A(i) ✓ . A(j) A (j)o 

understood modulo replacement of (On , A~>) by (On , An ), i=F)). 

PROOF. We shall first show that the identifiability condition (3.41) is fulfilled. 
Let gk=~; =1,2 g11:, IA~>Eg be some sequence with llgk-goll-O. Either A~1> or 
A~2> contains at least 2(d + 1)-1 points from 
{x~i): t=l, · · · ,2(d+I)-l, i=l,2}. Therefore, at least (d+l) of the x~i) in 
one of the A~>, say A~1>, must all be xP>'s or xF>'s. Without loss of generality, 
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we can therefore assume that at least (d + l) x~1>'s are in A~1) for all k. This 
implies that A~; stays away from zero. Moreover, it implies that 0~1 >➔ob1 >. 
This in turn yields that A~1) cannot contain more than d xF>'s, since 
110b1>-ob2>11*0. So Af> must contain more than (d + 1) xF>'s and thus A'}; 
stays away from zero and of>➔ob2>. In other words (3.41) holds. 

Conditions (3.40) and A(3.42) yield consistency of g,,, and obviously this now 
results in consistency of On. 

Since 

llg,,-goll2 = }: {<ot>-o8>f~(.t>nA8>)(6t>-o8>) 
i'FJ E{l ,2) 

+(ot> -o~>f~(At> \ A~>)(ot> -o~>)} 

the consistency of g,, and On implies that 

(0b1) -0b2>)7~(AnAAo)(Ob1) _0b2)) ➔ 0. (3.46) 

Now, let AA.AA,,!~ · · · ~AA.AA,,d+I be the eigenvalues of ~(AnAAo), and take 
A.&..AA ,,o = I and AA.AA,,d +2 =O. Construct an infinite subsequence { n •} c { n} 
such that for some 0<s~d +2 and some 110 >0, AA.-AA, ,s➔0 and 
AA.·AA,,s - I >110 • Let PA.AA, be the matrix of eigenvectors corresponding to the 
eigenvalues larger than 1Jo, with PA.AA,= 0 if all eigenvalues are smaller than 

1Jo- Define 

BA.AA, = {x: (1,xf =PA.AA,PI.AA,(1,xf} 

and 

Co = {x: go:,11(x)=go:,21(x)}. 

It follows from (3.46) that 

(Ob1>-ob2>f PA.·AA,PlAA, (061>-of>) ➔ o. 
Therefore for each 11>0 

H(B A.·AA, n {x: d(x,C0 )>11}) ➔ 0. 

Assumptions (3.42) and (3.45) now yield 

H(BA.·AA , ) ~ H({x: d(x, Co)=O})+ H({x: 0<d(x,Co)~11}) 

+ H(BA.·AA , n{x : d(x,C0 )>11}) ➔ 0. 

Again by (3.42) this implies that also H (An· AA o)➔O. D 

Here is an example where (3.45) is not fulfilled. 

EXAMPLE 3.7. Take d = 1 and g0(x)=min(ao + x,80 ,0). Suppose that ,80*0 
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and that there is positive mass m concentrated at the change point - ao I /30 • 

Let AH>=(- oo, -ao/ /3o] and A~>=(- oo, -an/ f3n) with an/ /3n some sequence 
converging from above to ao I f3o. Then 

-ao 
/3o 

[ ~ r 
Thus the limiting matrix is singular and has [~] in its null-space. 

In the non-i.i.d. case, consistency of g,, and of the parameter estimates can 
be proved using e.g. Theorem 3.3.1. We shall not do this, but only investigate 
one particular case for later reference (Examples 6.6 and 6.7). We take 
£1 , · · · ,tn i.i.d. and Xn, 1, · · · ,xn,n fixed points on a uniform lattice in the d­
dimensional unit cube. Furthermore, we let ct= { { x: xy..;;; 1 }, yERd} be the 
class of half spaces. Finally, we take g0 = ~; = 1,2gu;>1A~) fixed. Define 
Hn = lln~Z =18x,., and 

~n(A) = J [x\ x~x]dHn(X). 

The conditions of Proposition 3.4.3 and of the lemma following it all have 
their counterpart for the non-i.i.d. case. In the particular situation we have 
now, we have introduced so much regularity that the only additional assump­
tion we need is some kind identifiability. 

PROPOSITION 3.4.5. Suppose that the AH>, i = 1,2, have positive Lebesgue meas­
ure and that 118b1

) -of> 11::/=0, then 
A p A p 

118n -80 II - 0 and Hn(AnliA o) - 0. 

PROOF. We have as before that for some constant K 

~ iJ~>' ~n<A~>)iJ~> ..;;; K 
i = l ,2 

We can without loss of generality assume that for all n the eigenvalues of one 
of the ~n(A~\ say of ~n(A~2

>), are all bounded away from zero. This implies 
A(2) 

that On remains bounded. But then by Theorem 2.3.5 
p 

jll(t:+go-g,,)lA;'1 II~ -ll(t: + go-g,,)1A:'1 llfn>I - 0, 
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which yields 
p 

lim sup(ll(go-g,,)I,4.:" ll[n)-11£1;_:'' llfn)) ~ 0. 
n-->OO 

The identifiab~ti at g0 now implies that H(A.~
1
>) is bounded away from zero. 

But then also 6~
1 

remains bounded. Application of Theorem 2.3.5 gives 
p 

!Igo -g,, ll(n) ➔ 0. 
A(i) A 

The consistency of ()n , i = 1,2, and An now follows easily. D 
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4. EMPIRICAL PROCESS THEORY II 

4.1 . Introduction 
Just as a uniform law of large numbers can be a tool to prove consistency of 
the least squares estimator, a uniform central limit theorem can be applied to 
obtain rates of convergence and asymptotic distributions. First, we briefly dis­
cuss the idea which led to Proposition 3.1.1 of the previous chapter. Let g be 
a class of measurable functions in L2(Rd, H), let y=g(x)+t:, gEg be a regres­
sion model, where it is assumed that IEt: = 0, IE lt:1 2 < oo and that x and t: are 
independent, and let (x1 ,t: 1 ), (x2 ,t:2), · · · be independent copies of (x,t:). 

If we define -<c,g>-n as · 

-<.t:,g'>-n = f t:gdPn 

then we can write 

l[y-gll~ = llt:ll~-2-<t:,g-go>-n+llg - goll~­

Since l[y-g.,11~ .,;;; llt:11~, 
A 2 A 

llg.,-golln.,;;; 2-<c,g.,-go>-n- (4.1) 

The uniform law of large numbers says that if g is a yermissible class satisfying 
some entropy condition and with envelope GEL2(R , H), then 

suol-<t:,g-go>-nl ➔ 0 almost surely. 
gel'l 

This implies by (4.1) that llg,,-g0 11n➔0 almost surely (see Proposition 3.1.1). 
By the central limit theorem, we have that for each gEg with llg-g0 11=¥=0 

Vn-<c,g - go>-n e 
----=c---=---- ➔ m(0,llt:112). (4.2) 

llg-golln 

Thus 

-<t: g-g >-
' O n = 0p(n - 112). 

llg-golln 
(4.3) 

Suppose now that (4.3) also holds for g,,, then (4.1) shows that 
llg.,-g0 11n =e.»(n - 112 ). Indeed under entropy conditions on !j, (4.3) holds for 
g.,. We shall establish this in Chapters 5 and 6. The present chapter provides 
the theoretical background. Uniform central limit theorems will be used 
directly in Chapter 5. The techniques for proving uniform central limit 
theorems are adjusted for proving rates of convergence in Chapter 6. 

Let us return to (4.1) for a moment. Obviously, for each g Eg 
e 

Vn -<t:,g-go>-n ➔ m(0, llcll 2 llg-goll2). (4.4) 

Now, think of Vn-< t:,g - g O >- n as a process indexed by functions g E g, and 
suppose this process converges to some limiting process with uniformly 
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continuous sample paths for II· II (we shall make this more precise in the next 
section). In view of the II· II consistency of g,,, this would imply 

-<t:,g,,-go>-n = op(n- 112 ) 

and by ( 4.1 ), one obtains 

Ilg,, -go lln = op(n - 114
) . 

In Chapter 6, we shall also encounter this rate, and in fact all rates ranging 
from Op(n- 112 ) to op(n- 114). 

4.2. Uniform central limit theorems 
Define '.JC= {t:(g(x)-g0(x)): gE§} and 

Vn(h) = Vn f hdPn, h E'X 

The process vn( ·) is an element of some space 'X of real valued functions on '.JC, 
'X be!;fig equipped with supr~mum norm. A function y E'X is continuous if 
llh -hll-0 implies [y(h)-y(h)J-o. We introduce a Gaussian process GP on 
'.JC with mean zero and covariance structure 

cov(Gp(h), Gp(h)) = fhhdP, 

where we assume that '.JC is GPBUC (or P-pregaussian), i.e. '.JC is such that Gp 
admits a version with bounded and uniformly continuous sample paths. A 
sufficient condition for '.JC to be GpBUC is the entropy-integrability condition 

I 

/(IogN 2(x, P, '.JC)) 112dx < oo 
0 

(see DUDLEY (1967)). 

(4.5) 

We first present the definition of a functional Donsker class. The word func­
tional refers to the fact that convergence in law is strengthened to convergence 
in probability. This makes it possible to postpone some measurability con­
siderations. 

DEFINITION. '.JC is called a functional Donsker class if 
(i) '.JC is GPBUC, 
(ii) there exist independent copies Yk(h, w) of GP such that h 1-+ Yk(h, w) is 

bounded and uniformly continuous on '.JC for all k, and such that for all 
71>0 

Here is a characterization of a functional Donsker class. 

THEOREM 4.2.1. '.JC is a functional Donsker class iff '.JC is totally bounded for II · II 
and for all 1J >0 there exists a 8>0 such that 



p• [ sup lvn(h) - vn(h)l>11] <11 
h,hsS'X 

llh - hll < c5 
for all n sufficiently large. 

PROOF. See DUDLEY (1984). D 

Condition ( 4.6) is called the asymptotic equicontinuity criterion. 
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(4.6) 

In the literature on empirical processes, there are several results available 
which make it feasible to check whether a particular '.JC is a Donsker class. We 
present one of these results. Let S be a finite collection of points in !Rd + 1 and 
denote by Ps the empirical distribution based on S. Write II · II} = f ( · )2 dPs . 

Define for H = suolh I 
h E'JC 

D2(8, X) = s~N2(8IIHlls, Ps, X). (4.7) 

THEOREM 4.2.2. Suppose that H EL 2(1Rd + 1, P), that '.JC is permissible, and that 
the entropy integrability condition 

I 

j(logD2(x, X))112dx < oo 
0 

holds. Then '.JC is a functional Donsker class. 

PROOF. POLLARD (1982). □ 

(4.8) 

Recall that '.JC= {t:(g(x)-g0(x)): gE g}. We use Theorem 4.2.2 to show that 
under entropy conditions on g, '.JC is a functional Donsker class, provided a 
higher order moment of t: exists. Observe that ( 4.8) is met if 

(4.9) 

for some constants Mand O<v<2 and for all 8. In the following theorem, we 
impose (4.9) on g_ 

THEOREM 4.2.3. Suppose that g is a permissible class with envelope 
GEL2(1Rd, H), and with 

logD 2(8, g) ~ M8 - • (4.10) 

for some constants M and 0<v<2 and for all 8>0. Moreover, suppose that 
1Elt:14'<oo for some p>21(2-v). Then '.JC={t:(g(x)-go(x)): gE g} is a func­
tional Donsker class. 

PROOF. If D 2(8, g)< oo for all 8>0, then g is totally bounded for II· II (see 
DUDLEY (1984)). Since t: and x are independent, this yields that '.JC is totally 
bounded for II· II too. Thus, the theorem is proved if we show that the 
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asymptotic equicontmmty cntenon ( 4.6) holds. In fact, the envelope and 
entropy condition on § imply that 11 · lln - II· II almost surely uniformly on §, so 
it is also sufficient to show that for all 17>0 there exists a 8>0 such that 

P( sup In 112 -<,, g - g>-n I >317)<517. (4.11) 
llg - gll. < 8 

g,gEg 

Without loss of generality, we may assume that < is symmetric about zero (see 
the symmetrization device in Section 2.3). Let a 1, · · · ,an be independent ran­
dom variables, independent of (x1, <1),· ··, (xn,<n), with l?(ak=l)= 
P(ak = - 1)= 1/2. Write 

-<,,g-g>-~ = .1.. .± (J'k£k(g(xk) - g(xk)). 
n k = I 

- ..iP... 
For each j EN, let <1Jl be a minimal (2 2 8)-covering set of § endowed with 

L2 (Rd, Hn)-norm. Then 

Card(<1J>) ..;; exp(M8- v2ipvt2 11 G II~) 

for all j EN and 8>0. Define g(i) = gU> 11,1..::t"s-''', gU> E<1J> . We have 

I?( St!P In 112 -<,,g - g>-~1 >317)..;;2P(sueln l/2 <,,g -g(0) >~1>11) 
llg-,&11<8 g E 

g,gEg 

+P( S}IP In 112 -<,,g(O) -g(0) >-~I >11)=2P() ) + p(2) , 
Ilg'°> - g,0>11. < 38 

where g(0) = g<0> 11,1..:8-"', g<0> = g<0>(g)E §<O), llg<0> -glln <8. 
Let r = r(n) be the smallest integer such that 2rp;;.:n and write 

, - 1 

-<,,g - g (o)>-~ = -<,,g - g(,)>-~+ ~-<£,g(j + l) -g(j)>-~, (4.12) 
j=O 

g(j) =g<i> 11,1 ..: 2'''8-"' , gU> = g<i>(g)E <1J), j =O, 1, · · · ,r. Now, 

llg(j + l)-g(j)Jln ,.;; ll(g(j + l) _g(jl)l1,1..; i "8-11' lln + IIGl l•l>i "8-"' lln , 

and 

IIGll 21?(1£1 >2i12 8- 11P) ,.;; ,.;;-----

(j + 1)2riP82log .l..11Gll21El<l2p 
8 

Thus 

(j + 1)2 log J_ 
8 

P [11G11, 1>,,,,,~,,, II( ;.. U + 1)'2-1P82log ~ IIGll2El•l"'for some jEN] 

,.;; f l < ½11, 
J = O (j + 1)2log J_ 

8 
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for 8 sufficiently small. Hence, with probability > 1 -½11 

llg(j+l)-g(j)lln :,;;;; 2.TiP128+(j + l)TiP' 28(log ! )112 IIGll(1Elt:12p)112 (4.13) 

.;;;;C0(j + 1)TiP128(1og ! )112 , 

for some constant C0 • 
, - 1 l , -1 

Take E = "-' --- and 11 = 11 · Then "-' 11 = !]_ and by (4.13) j:'0 (j + 1)2 1 2E(j + 1)2 1-:'0 
1 2 

(4.14) 

, - 1 
:,;;;; ~p 

j=O 
sup ln 1' 2-<t:,g(J +l)-g(J)>-~1>111 +½11-
g Eti 

gUl =gui(g) 
Ku•••=gu .. ,(g) 

llgu.,, - gu,11 • ..:C0(j + l)r' 128(log f )1
" 

By Hoeffding's inequality (Lemma 2.3.1 ), for 

llgu + 1) -g(j) lln .;;;;Co(i + 1)T iP 128(1og ! )112, 

P(ln 112 -<t:,g(j + l)-g(j)>-~1>111l(x1,£1), · · · ,(Xn,t:n)) 

.;;;;2exp 
2 

2(2/ + 18 -P )(C5(j + 1)2 T iP821og _!_) 
8 

for some constant C I and with pv<f3<2p - 2. Thus, on the set with 
IIG11n.;;;;2!1GII, 

P [ sup -;" 1 )n 112 -<t:,g(j+l)-g(j)>-~1>111l(x1,£1), · · · ,(xn,t:n)l 
llgu+11-gu,ll • ..:C0(/+l)2 8(log8 ) 

:,;;;; N~ (2-u + 1>P 128, Hn, 13)2exp(-C11122!P12s-P1P) 

.;;;;exp(4M8-•2/P"' 2 IIGll")2 exp(- C 111221P12s - P1P).;;;;2 exp( - C 31j22/P•12s - ·), 

for some C2, C3 and all 8>0 sufficiently small. Insert this in (4.14) to see that 
for n sufficiently large 
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, - 1 - I 
,;;;; ~ 2 exp( - C 3r,22fP'128- •) + 2 r,<r,, 

j = O 

for 8 sufficiently small. 
Representation ( 4.12) now shows that 

l 
p(I) ,;;;; P(s~pln 112-<£,g -g(,)(g)>-~I >2r,)+r,. 

But 

ln 112 -<£,g - g(,)(g)>-~1,;;;; n 112 11£11nllg - g(r)(g)11n 

+ n 112-< 1£11 1,1>2'".s-"', G >- ~-

Since 2'P;;;,,n and llg - g(r)(g)lln,;;;;2 - 'P128, 

n 112 lk lln Ilg - g<' >(g)lln ,;;;;2'P12r'P1281k11n,;;;; ! T/, 

for 8< ! T/ and all n sufficiently large. Also, 

n 1/2IElt:I 11,1>2'".s -"' E( G(x)),;;;;n 112 2,12 s - 11pr,p t;21Elt:12plE(G(x)),;;;;tT/, 

( 4.15) 

(4.16) 

(4.17) 

for 8 small. Thus for the second term on the right hand side of ( 4.16) we have 

p (n 112 I-< 1£11 1,1 >2'"6-"', G >-~I > ! T/) ( 4.18) 

,;;;;(4/r,}22r(l - p)t,2- 21P1E lt:12p IIG 11 2 <r,, 

for 8 small enough. Combination of (4.16), (4.17) and (4.18) gives 

l 
P(s~pln 112 -<£,g - g<'>(g)>-~1 > 2r,)<r,, 

and it follows from (4.15) that pP><2r,. 
It remains to show that p<2> ,;;;;T/, where 

p<2> = P( s~p ln 112 -<£,g(o) - g(o)>-~l > ri). 
llg,0,-g,0,11. <36 

Again by Hoeffding's inequality , we have that on the set IIGl ln ,;;;;2I IGII , 

P( s~p ln 112 <£,g(O) - g(o)>~l>ril(x1,£1), · · · ,(xn ,£n)) 
llg,.,-g,0,11. <36 

2 -112 
,;;;;N2 (8,Hn ,§)2exp( 

28
_21P982 

) 



2 

~exp(4M8 - 'IIGliv)2exp( -./1
21 

)~2exp(-C48- ,)~1J, 
188 - P 

with C4 some constant and with 8 sufficiently small. D 

4.3. Measurability II 
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We have specified Pn( ·) as an element of some space 'X of functions on '.JC. The 
problem is that the supremum metric generally makes 'X into a nonseparable 
space. As a consequence , Pn( · ) is not Borel measurable. Now, denote by Gj/' 

the a-algebra on 'X that makes all finite-dimensional projections measurable 
and that contains all closed balls with centres y E'X that are uniformly continu­
ous. E.g. in D(O, I], the space of functions on (0, I] that are right-continuous 
and have left hand limits, the a-algebra generated by closed balls coincides 
with the smallest a -algebra that makes all coordinate projections measurable. 
Denote by (fi,0, 1?) the underlying probability space. If '.JC is permissible and 
separable for II· II , then P( · ) is 0 /Gj/' - measurable ( POLLARD (1984)). Then by 
definition the random process Pn converges in law to some limiting process 
P(·) if 

IJl(g(Pn))➔IJl(g(P)) 

for all real continuous measurable functions g on 'X . 
If the limiting process P( ·) concentrates on a separable set, then some 

important theorems for the Euclidean case (the Continuous mapping theorem 
and the Almost sure representation theorem) go through for the situation with 
more general 'X . A separable set in 'X is for instance the set of bounded con­
tinuous functions. Now, the limiting distribution of Pn ( · ), if it exists, must be 
some Gaussian process on '.JC. If '.JC is GPBUC, then the limiting distribution of 
Pn( ·) concentrates on a separable set. 

DEFINITION. A permissible class '.JC is a Donsker class if 
(i) '.JC is Gr!'BUC 

(ii) Pn( ·)➔Gp(·). 

In Theorem 4.2.2 we have presented sufficient conditions for '.JC to be a func­
tional Donsker class. POLLARD (1982) assumed stochastic separability of the 
process i,n( · ) (see Section 2.4) and only proved the Donsker property (not the 
functional Donsker property). Using the results of POLLARD (1984) and Duo­
LEY and PHILIPP (1983), one sees that stochastic separability of Pn( ·) can be 
replaced by permissibility of '.JC , and that the word functional can be added. 





5. ASYMPTOTIC THEORY IN TWO-PHASE REGRESSION: IDENTIFIED CASE 

5.1. Introduction 
In this chapter, we study the model 

y = g(x)+t 

with 

g = ~ g<il}Ao, 
i=l ,2 
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(5.1) 

where §Ci) is in the class of linear functions, i.e. g<i)(x)=gu••(x)=a<il+xff-il , 

Uil=(p:'.~)ERd+I, i=l,2, and where {A<il); = i,2 forms a partition of Rd. We 
fl.I ) 

write O=(fl.2)) and A =A<1l. The set A is an unknown parameter and it is 

assumed to be an element of a class ct of subsets of Rd. As in Section 3.4, we 
sometimes write ~I) = Ct and ~ 2) = {Ac: A E Ct}. 

We are interested in conditions for asymptotic normality of the least squares 
estimator of 0, based on n copies of (x,y). First, the continuous model is 
investigated. In this model, 

Ct= {A(y)={x : xy,;;;;l}: yERd} 

and the class of regression functions is 

. [ (i)l 
§ = {go,c(x)=min(a(ll+x/f-1l, a<2l +x/f-2l): fl.1l= ffi) ERd+t, i=l ,2}. (5.2) 

Thus, in this model the least squares estimator of A (y) is a function of the esti­
mator of 0. Also, a discontinuous model is considered, where 

§ = {go,A(x)= . ~ (a(i) + x/f-il)IA 1;1 (x), fl.i) = [~:~] ERd + l, (5.3) 
1=1,2 P ' 

A (i) E~i) i = 1 2} 
' ' 

and where Ctis e.g. {A(y)={x: xy,;;;;I}: yERd}, but also more general classes 
are allowed. Note that in this model, the sets A are actually unknown parame­
ters. We also derive the asymptotic distribution of the estimator of A. 

Let 

go = ~ g;~, IAt1 

i = l,2 

be the true underlying regression function. Throughout, the identifiability con­
dition 110b1l -0b2l ll=FO is imposed. Moreover, for model (5.3) it is assumed that 
g0 is discontinuous in some sense. Chapter 6 treats the situation where d = I, 
110b1l-Ob2l1J = O and also the case where d=l and g0 continuous, but the con­
tinuity is not taken into account in the estimation procedure. 
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5.2. The continuous model 
The regression function is assumed to be of the form 

go,c(x) = min(a<I)+xf3<1), a<2>+xf3<2)), ()= [:~~], ()(i)= [t:;j. 
Define 

Ao = A~1) ={x : a<l)+x/11)~a<2)+xf3<2>} 

andA<2)=Ac WriteA<;>=A<i) andA(i)=A 1i) i=l 2 B 8· 0 80 n fl .. , , • ,.. 

Theorem 5.2.1 below asserts that the asymptotic distribution of On does not 
differ from the asymptotic distribution of the least squares estimator for the 
case AY> known but without continuity restriction. In the latter situation the of 
regression functions are of the form 

}: (a(i) + xf3<il)lA ~> (x) (5.4) 
i = l ,2 

with <%:;), i = 1,2 unknown parameters, i.e. the regression functions are not 

necessarily continuous. The conditions of Theorem 5.2.1 are those of Lemma 
3.4.4 plus the assumption that an arbitrary higher order moment of lt:12 exists. 

THEOREM 5.2.1. Suppose that the conditions of Lemma 3.4.4 are met: 

(i) lim supH({x: O<d(x,C)~'l'l}) = 0 
11!0 C E'e 

(5.5) 

where e is the class of hyperplanes in Rd and d( ·,·)is the Hausdorff distance, 

(ii) there exist 

{xV>: t = 1, · · · ,2(d + I)- I} cAY> n T, (5.6) 

where Tis the support of H, such that nod+ 1 xV> lie on a (d - })-dimensional 
hyperplane, i = 1,2, 

(iii) H({x : gu,'> (x) = gir. }) = O (5.7) 

and 

(iv) (5.8) 

Assume that IE lt:12p < oo for some p > 1. Then 8~1
> and 8~2

) are asymptotically 
independent, with limiting distribution 

Vn(O~) - ()Y>) _: 0i(0, llt:11 2}:- l(AY>)), i = 1,2. (5.9) 

PROOF. The functions g8,c(x)=min(gu•> (x), g 02>(x)) are Lipschitz continuous 
in () for every x , i.e. at 80 

lgu,c(x )-gu,,c(x)I ~ J(x)ll8-()oll , 
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where J(x)=I+Jzd+ · · · +JzdJ, with z 1, · · · ,zd the coordinates of xERd. 
Consider the functions 

{

go,c(x)-go.,c(x) if 118-0oll=faO 
118-0oll 

J 11(x) = I otherwise. 

These functions form a VC-graph class i=U11 : 8EIR2(d+I)} with envelope 
J EL 2(Rd, H). Thus (Theorem 2.2.4) 

supJll}olln -IIJollJ ➔ 0 almost surely. (5.10) 
II 

But 

llgo.,c -g110,cli2 ~ (6~> -88>)7~(~~> nA8> )(6~> -88>) , 
1110.11

2 
= A ~ "" ~ 

116n-8oll2 
i=l,2 11 6n -8oll2 

and since ~(A~> nA8>) ➔ ~(A8>) and ~(A8>) is of full rank, this implies that 

IIJ0.lln~K1 (5.11) 

for some constant K 1 >0. 
Write 

O~llY-~11~ -11£11~ = - 2-<£, ~ - go>-n+ll~-goll~ (5.12) 

= -2116n-8oll-<£, Jo. >-n + 116n-Ooll2 11Jo.11~-

Because i is a VC-graph class 

D2(«SJ) = stp'Ni(ISIIJlls, Hs, i).;;;;exp(M«S-v) 

for all v>0 and some M (see Theorem 2.2.6). Take v<2-2lp and conclude 
from Theorem 4.2.3 (take (]=i and g0 0 in this theorem) that 
{£}o(x): 8ER2(d + I)} is a (functional) Donsker class, which implies 

-<£,Jo. >-n = 0p(n -½ ). (5.13) 

Insert (5.13) in (5.12) to obtain that 

-211 6n -8oll0p(n-½)+11 6n - 80 112 11}o.ll~.;;;; 0, 

or 

116n -8011 IIJo.ll~ = 0p(n -½ ). 

Hence by (5.11) 

11 6n -8011 = 0p(n -½ ). 

Let on be a \In-consistent estimator and define A}i) =Ai:>, i = 1,2. By (5.7), 



74 

- p 
we have H(AntlA.o) ➔ 0. Thus, again because of the VC-graph property of all 
classes of functions involved 

ll(gii.,c -go)lA~> II~ 

= (iJ~> -08>f~n(A~> nA8) )(8~) -08>) + 118n -Oo 11 2 IIJii. lA~\ Ag> II~ 

= (8~> -08>f~(A8>)(8~> -08>)+op(.l), i = 1,2. 
n 

Similarly, since the Donsker property implies asymptotic equicontinuity 

-<t:,(gii.,c -go)lA:•> >-n 

[ 
1 1- (i) . - [ 1 l -;; -* ,/k(l,xd (On -08>)+ IIOn-Ooll -;; J ,/k}ii.(xd 

x, e A, nA 0 x, e A, \ Ao 

= - ~ t:k(l,xk) (On -Bo )+op(-), 1 = 1,2. 
[ 

1 1-(i) (i) 1 . 
n x, e A~' n 

Thus, if we write III:½(A8>)all2 =aTI:(A8>)a, a EIRd+ 1, and 

[
.l ~ t:k(l,xdr] = N~>ERd+I, i=l,2, 
n x, eAg> 

l[y-gii,,cll~ -llt:11~ 

= ~ {-2N~>7 (8~) -08>)+ ll~½(A8>)(8~) -(JH))II} +op(.l). (5.14) 
i = l,2 n 

In particular (5.14) holds for On=On , so that 

O~ l[y-g,, II~ - llt:11~ 

= ~ {ll~½(A8>)(9~>-08>)-~-½(A8>)N~>112 (5.15) 
i=l,2 

If we take 8}i) =08) +~- 1(A8>)N~), i = 1,2, we get from (5.14) 

l[y-gii,,clln-llt:11~ = - ~ 11~-½ N~>11 2 +op(.l). (5.16) 
i = l,2 n 

Since lly -g,, lln:,;;;;; l[y -gii,,clln combination of (5.15) and (5.16) yields 

~ {ll~½(A8>)(6~)-08))-~-½(AH))N~)ll 2 } = op(.l), 
i=l,2 n 

or 
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~½(A8>)(e~> -08>) = ~-½(A8>)N~> +op(n -½), i = 1,2. 
e 

Because Vn N~> - 'Dt(O, llt:11 2 ~(A8> )), i = 1,2, this proves the required result. 
D 

Condition (5.7) ensures that 0-00 implies H (A 11 LlA 0)-0. If it is not 
fulfilled, then a large fraction of observations is concentrated at 
{x: g11,1>(x)=gi,.;1>(x)}, and the 9~) will no longer be asymptotically indepen­
dent. This situation can be compared with the case A O known, where because 
of the continuity restriction, the least squares estimators of ffl) and fl2) are 
also not independent. 

The object of study in FEDER (1975) is a continuous model with one­
dimensional change-point, i.e. d = I and 

y = g111>(x)l(- oo,y](x)+g112>(x}l[y,oo)(x}+t:, 

where the g111> are linear in fli}, i = 1,2, and satisfy g111>(y)=g112>(y). Feder 
obtains asymptotic normality of the least squares estimators, under 
identifiability conditions. His method of proof makes extensive use of the spe­
cial structure of the class <t={(-oo,y]: yEIR} of subsets of R. Extension of 
Feder's method to two-phase regression models with sets in higher-dimensional 
Euclidean space as unknown parameters appears to be cumbersome. 

5.3. The discontinuous model 
In this section, we deal with two-phase regression functions of the form 

{

g11n(x) if XEA 

g11,Ax) = g11'>(x) if x~A (5.17) 

with g111>(x)=a<i)+x/f-i), ffi)=<J)'.~) and with A Eci'.. The class l:f may be the 

class {A(y)={x: xy:,;;;;I}: yER }, but we shall not require this because it turns 
out that also other classes can be handled without too much increase of com-
plexity. A A 

We assume again that the conditions for consistency of On and An are 
fulfilled, i.e. it is a permissible class satisfying the entropy condition 

I p• 
- logN2 (15, H,,, (?) - 0 for all 15>0, (5.18) 
n 

and moreover 

lirn sup H({x: O<d(x,C):,;;;;11}) = 0 
'l!O C E'e 

and there exist 

{x\i): t = I, · · · ,2(d + 1)-1} cA&> n T, i = 1,2, 

with nod+ I xf> on a (d-1)-dimensional hyperplane, 

110b1> -of>11 =I= 0, H({x: g~!>(x)=g~;>(x)}) = 0. 

(5.19) 

(5.20) 

(5.21) 
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Here is a description of discontinuity at the true parameter value. 

DISCONTINUITY ASSUMPTION. There exists an 11>0 such that 

inf E(g~!l (x)-g~;>(x)lxEA dA o)>O. 
A Ell: O<H(AAA 0 )< TJ 

(5.22) 

ExAMPLE 5.1. Take d=l and ct={(-oo,y]: yER}. If 
ab1> +y0,Bb1l=Fab2l + y0,Bb2l, and if H puts positive mass on some interval 
around Yo, then the discontinuity assumption is satisfied. 

In the discontinuous model, with discontinuity assumption, the least squares 
. ,Pl d ,Pl . ll . d d d . ll estrmators un an un are asymptotlca y m epen ent an asymptotlca y 

equivalent to the least squares estimators of the flil,i = 1,2 in the case Ao 
known. This is asserted in Theorem 5.3.2, and the result is called adaptation : 
the fact that A O is unknown has asymptotically no influence on the estimators 
of the rfi>,i = 1,2. 

THEOREM 5.3.2. Suppose that the conditions (5.19), .. , (5.21) and the discon­
tinuity assumption are fulfilled, and that (5.18) can be strengthened to 

(5.23) 

for some constants Mand 0<v<2. Assume that xlAAA
0
(x) is bounded uniformly 

in A E~ A in a neighbourhood of A 0, i.e. there exists a constant K 0 <oo such 
that for some 110 >0 

H({x : sup Ix lAAA
0
(x)l>Ko}) = 0. (5 .24) 

A Ell: H(AhA 0)<TJo 

Finally, assume that 1Elt:12f><oo for some p>2!(2-v). Then 8~1
) and iJ~l are 

asymptotically independent with limiting distribution 

Vn(8~) -08l) ~ 'Di(0, 11£11 2~ - 1(A8l)), i = 1,2. (5.25) 

PROOF. We shall first show that H(AndAo)=0p(n -½ ). Of course, for A =Ao 
fixed the class 

{ t:(g ,r - g 1tt ) 1 A~> : fl.i) in a neighbourhood of OHl} 

is a Donsker class, i = 1,2. Since iJ~l -ogl this implies that 

1-<t:,(ge_(o -gi,;>)lA~) >-nl = op(n -½ ), i = 1,2. 

By (5.23) and (5.24) and using the assumption that 1Elt:12f><oo, we see that also 
the class 

{ t:(gqi) - gut> )lAAA o: fl-i) in a neighbourhood of O~l , A Ect', 

H(A dA 0)<110} 



is a Donsker class, i, JE{l,2}. Hence, since H(AnAAo)-+0, 

l-<£,(g9_10 -g11~>) I Ag> \ A~> >-n I = op(n - ½), i = 1,2, 

as well as 

l-<£,(g9~> -gir,0 )IA~\ Ag> >-nl = op(n -½), i=jC=j E {1,2}. 

But then also 

1-<£,g,, - go >-n I ~ ~ l-<£,(g9~> -g11~>) IA~> >-n I 
i = l,2 

+ ~ 1-<£,(ge~> -u~>)IA~) \ A~) >-nl 
i = l,2 

+ ~ l-<£,(g9~> -ge::>)IA~\ A~>>-nl = op(n - '/2). 
i9"j E{ 1,2) 

This shows that 
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ll(g,,-go)IA.llA
0
11~~11g,,-goll~~21-<£,g,, -go>-nl = op(n - ½). (5.26) 

Assumptions (5.23) and (5.24) also imply that the class 

{ (g 11•> - g t;,1> )2 I A llA 
O 

: 8 in a neighbourhood of 80 , A E cP. 

H(AAA0)<110}, i,)E{l,2} 

is Donsker, so from (5.26) 

ll(g,, -go)IA.ll.4
0

112 = ll(g,, - go) IA.ll.4
0 
II~+ 0p(n - ½) = 0p(n - ½). (5.27) 

We shall now utilize the discontinuity assumption. In view of (5.24), for all 
n sufficiently large, 

lge~>(x)-go<~>(x)IIA.ll.4.(x) ~ K5 ll6~)-88)112
. 

Thus, for arbitrary 1/1 >0 

ll(g,, -go)IA.llAo 11 2 = ll(gir,1> -gu_» )IA.llA, 11 2 
-1/1 H(AnAA o), 

for all n sufficiently large. Combine this with (5.22) to obtain that for some 
constant K 1 >0 

ll(g,, - go)IA_ll.4
0

11 2 ~ K 1 H(AnAA o) 

for all n sufficiently large. In view of (5.27), we thus obtain 

H(AnAAo) = 0p(n-½). 

Since l:n(A~J)-+ l:(A8l) almost surely, we see by explicitly writing down the 
expression for the least squares estimator 

(6~) -88)) = (~:- 1(A8l )+ o(l)){_l "" t:k(l ,xk)7 
n .,,:;,i c;> 

X,t E A" 
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- .l -~ . (i.i-go)(l,xkf), i = 1,2. 
n x, EA/ \ A~1 

By (5.24) and (5.26) 

_l ~ (i.i-go)(l,xkf ~ lli.i-go llnKoH~(AnM o) 
n x, EA~\A~1 

= (n - 114)H½(A M ) op n n O· 

(5.28) 

But Athe Donsker-property for {AM 0: A Ea} and H(AnMo)=0p(n-½) imply 
Hn(AnMo)=(:)p(n -½). Therefore, we can write (5.28) as 

(On-e&>) = c~:- 1(A8>)+o(l)){ ~ 4(/k(l,xdT +op(n-½)l 
X, EA. 

because {E(l,xflAa.4
0
(x): A Etf, H(AM0)<110} is also a Donsker class. □ 

We shall derive an expression fof the limiting distribution of An. This limiting 
distribution does not depend on 8~>, i = 1,2. 

LEMMA 5.3.3. Under the conditions of Theorem 5.3.2 

with 

R.i(A) (5.29) 

PROOF. It is easy to see that for {An} ca some sequence of subsets in Rd and 
7.(1) 

'1'=(12>) 

n(lldA~1nA~1 II~ -ll(Y -g(8.+n-".-),A)IA~1nAr II~) 

= 2 _ ~ ~ £k(l,xk)/i) -/i)T~(A~> nA&>)/0, i = 1,2. 
V n x, EArnA~) 

Thus, using the Donsker-property 

n(lldA~' nA~' II~ - ll(Y - g(80 +n -".-),A)IA~' nA~' II~) 

= 2 _ ~ ~ £k(l,xd-fil-/i)T~(A~>)/i) +op(l), i = 1,2, 
v n x, EA~' 
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uniformly in 11-rll~L and {An} C(P, H(AnMo)~T/n - 0. Furthermore 

n(llt:IA~' \ At' 11~- ll(Y - g(ll0 +n-"T),A.)1A~'\At' II~) 

=2 ;fr, ,/k(g(tr~'+ .,.0'J Vn)(xd-gir~' (xk)) 
x, EA: \ A~ 

- ;fr, ,,, {g<tr~• +.,.';' !Vn)(xk)-gf1-i' (xk))2 = 2 ;fr, ,/k(gir~i (xd - gtri• (xd) 
x, EA. \ A0 x, EA: \ A~ 

i¥=JE{l,2}, uniformly in 11-rll~L, {An}C<P, H(AnM)~T/n -Ao. 
We have seen that with arbitrary larg_e probability, Vnl19n - 0oll~L for L 

and n sufficiently large. Moreover , H(AnM 0)-0 implies Athat there exists a 
sequence 1/ntO such that with arbitrary large probability H(AnMo)~T/n for all 
n sufficiently large. Thus with arbitrary large probability 

n( llt:11~ - l[y - g., II~)= sup n(lltll~ - l[y - g(ll
0
+n-"-r) A II~) 

11 -r ll <:L ' 
A Eli 

EXAMPLE 5.2. Take d = 1, <t= {( - oo,y] : yER} and gir'' =a<i)_ Then for y>y0 

Rn((-oo,y]) = 2 ~ <k(ab1) -ab2>)-(ab1) -af>)2nHn(yo,YJ. 
'Yo<x, .;;;y 

Apply the law of the iterated logarithm for partial sums to see that condition­
ally on x1,x2, · · • =x 1,x2 • · · 

~ <k(ab1> - ab2>) = l9((nHn(Yo, rlt log log(nHn(Yo, rlt), 
'Yo<x, .;;; y 

uniformly in nHn((y0 , y]) -o. Hence 

supRn((-oo,y]) = 0p(l), 
'Y 

and 

H.((-oo,Y.JLl(-oo,y,D = 0p [ ! l 
This result is comparable with HINKLEY (1970), who assumes normality of the 
(k, k = 1,2, · · ·. 

In Example 5.2, we showed that supA EliRn(A)= 0p(l), and this in tum 
implies that n(llt:ll~-lly-g.,ll~)= 0p(l) and llg.,-golln= 0p(n - ½). Here is an 
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example where supaEifRn(A) does not remain bounded in probability. 

EXAMPLE 5.3. Take d=2, tr={A(y)={x: xy:s;;;l}, yER2 } and g,r=aU>, 
i = 1,2.Let Ab1l = {x =(z 1 ,z 2): (z 1 +2)2 +d :s;;; I} and let H be the uniform dis­
tribution on Ab1l UAb2l, where Ab2l ={x=(z 1,z 2): (z 1 -2)2+z~ :s;;;I}. Observe 
that if ab1l:~afl, the discontinuity assumption is fulfilled. Also all further con­
ditions of Theorem 5.3.2 hold, provided El<lq, < oo for some p > I. 

Now, consider the convex hull of the data {x1, • • • ,xn} in Ab1l and Ab2l 
respectively. To every point Xr. on the convex hull, which lies between x~~i 
and x~~h, there corresponds an A(yn)=Ab1) \ {x.y.}. 

Obviously 

~ui Rn(A)~sup Rn(A(yn)) = max 2<y. (ab1) -ab2>)-(ab1) -ab2l)2. (5.30) 
E 'Y. 'Y. 

As n tends to infinity, the number of points Xr. also tends to infinity, so the 
maximum in (5.30) will be taken over an increasing number of independent 
copies of <. This maximum will not remain bounded. 
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6. RATES OF CONVERGENCE 

6.1. Introduction 
This chapter is inspired by LECAM ( 1973) and BIRGE (1983). We shall first 
sketch some of their results. 

Let g be an index set and {Pg: g E~} a collection of probability measures on 
a Euclidean space. One can equip ~ with the Hellinger-metric, defined as 

h(g,g) = {+ /l(dPg)½ - (dP;f' l2 fi'. 
Let g~L be the maximum likelihood estimator of g based on n independent 
observations from Pg

0
• LECAM ( 1973) shows that if !-'; satisfies certain dimen­

sionality restrictions 

h(g~L , go) = (';p(n -v, ). 

These dimensionality restrictions are entropy conditions on ~ endowed with 
the Hellinger-metric. 

BIRGE ( 1983) investigates the minimax risk for estimation. For example, let 
Pg be the probability measure on IR with density g with respect to Lebesgue 
measure and let g be a class of densities on IR. Define 
d(g, g) = /lg(x) - g(x)ldx. The minimax risk is 

Rn(d) = inf sup IEg
0
(d(Tn,go)), 

T,. Ko ... -~-, 

where Tn is any estimator of g0 . Denote by logNd(8, ½) the 8-entropy of ~; for 
d. Birge shows that 

logNd(8, ½) ,,,;; M8- • for all 8>0 

implies 
I 

R,,(d) ,,,;; M'n 2+ , . 

In regression theory, least squares estimators coincide with maximum likeli­
hood estimators if the disturbances are i.i.d. and normally distributed. Thus, 
in that case LeCam's theory can be applied to obtain conditions under which 
g,, converges with rate l'lp(n -v, ) in the Hellinger-metric. We shall prove that if 
the disturbances are not necessarily normally distributed, but satisfy some 
moment conditions, and if certain dimensionality restrictions on ~ endowed 
with II· I In-norm are met, then g,, converges with rate t9p(n - ,;, ) in II· 11,,-norm. 
This result is established in Theorem 6.2.2 while Corollary 6.2.6 contains the 
result as a special case of a partly more general situation, where the parameter 
space may be infinite-dimensional, but stronger moment conditions are 
imposed. 

The relation with Birge's work becomes clear from Corollary 6.2.7. Here, it 
is shown that 
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logN 2{o, Hn, ½)::;;;; Mo- " for all o>O, n~ 1 

and 0<v<2, implies 

I 

Ilg,, -go lln = t'p(n 2+ v ). 

Because the minimax theorem of Birge in the situation of density estimation 
has its obvious counterpart in regression analysis, this means that the least 
squares estimator is minimax in the sense of rates of convergence in II· 11 11 -

norm. 
Theorem 6.2.5 gives the most general result, albeit under fairly strong 

moment conditions on the disturbances. We allow for classes of regression 
functions 9n depending on n and the true underlying g 0_11 E8n may vary with n 
too. In some situations, the rate of convergence can actually depend on g0_11 , 
which generally means that a rate faster than minimax is obtained. We denote 
by 

Bn(P, (1n,go.11) = {gE½/1: llg-go.nll11::;;;;P}, p>O (6.1) 

a ball with radius p around g0_11 , intersected with 8n. The covering number of 
this neighbourhood of go.n is 

Nn(o,p , !=;11, go.11) = N2(8, H" , Bn(P, ½n, go.n)), p~o>O. (6.2) 

In the following section, we prove that the behaviour of N11 (0, p, !';11 , g 0_11 ) as 
function of o, p and n determines the speed of estimation. We call a model 
finite-dimensional if Nn(o, p, ½n, g 0_11 ) remains in some sense small (see (6.3)). 
In Subsection 6.2.1 we obtain rates under moment conditions depending on 
the dimension. Subsection 6.2.2 deals with infinite-dimensional models. Here, 
we impose an entropy-integrability condition on Nn(o, p, 911 , go.n), which is 
similar to condition (4.8) of Theorem 4.2.4 (see (6.21)). 

Now, in general N11 (0, p, Qn, g 0_11 ) is random. However, to simplify the expo­
sition, we assume throughout Section 6.2 that H11.k =ox.,, k = I, · · · ,n, n ~ I. 
If the xn.k are actually stochastic, this is equivalent to working conditionally on 
(x11 • 1, · · · ,x11.n) = (x11. 1, · · · ,x11 .n ). It is not difficult to adjust the results of the 
next section for the case of stochastic xn.k: one simply imposes the condition 
that for each n !3,, is permissible (in order that Fubini's theorem can be 
applied) and assumes that the appropriate entropy-conditions hold in P' -
probability. We elaborate on this in Section 6.3, Corollary 6.3.1, in the situa­
tion of i.i.d. xn.k· Theorem 6.3.2 presents sufficient conditions such that the 
rates of convergence in II · 11 11 - and II · II -norm are the same. 

In Section 6.4 the results are applied to two-phase regression and compared 
with those of Chapter 5. 



6.2. The rate of convergence of the least squares estimator 
Let 

Yn.k = g(xn_d+t:n.k, k = I, · · · ,n, gE gn, n = 1,2, · · ·, 
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where Xn. 1, · · • ,xn.n are vectors in Rd and t:n. 1, • • • ,t:n.n are independent ran­
dom variables with expectation zero and finite variance. The finite-dimensional 
case and the (possibly) infinite-dimensional case are treated separately, because 
in the latter we need more stringent moment conditions on the t:n.k· 

6.2.1. The finite-dimensional case. Call the sequence { 9'n, 11 · lln} of finite metric 
dimension rat {go_n} if there exist constants n0 ,j0 ,80 such that 

Nn(8,218, tJ,n,go_n) 
sup sup suo . :,;;;; A <oo. 
n ;;,, n, j ;;,,J, O< c5,!;;c50 21' 

For instance, suppose 9'n can be indexed by an Ill' -valued parameter: 

!]n = {go: 0E0n}, 0nCR'. 

(6.3) 

Then {9'n, 11 · lln} is of finite metric dimension r at {go,n} if for some 
O<K 1, 11 :,;;;;K 2.n < oo with 

. K2.n 
hm sup -- < oo (6.5) 

n-+ oo K1.n 

the following holds: 

llgo-go,,11,,;,. K1,n110-0o.n11 for all 0E0,,, 

where go,., =go,n, and 

llgo - giill,, :,;;;; K2,n110-011 for all 0, 0E0n, 

(6.6) 

(6.7) 

Observe that if g0(x) is differentiable with respect to 0 for all x, this can be 
exploited to compute K1.n and Ki.n- We also remark that it is of course 
sufficient to consider neighbourhoods of 00.n once consistency is already esta­
blished. We shall see examples of this in Section 6.4. 

To establish a rate of convergence for g,,, we need a probability inequality 
for the random variables 

1 ,, -
-<£, g - g >- n = -;; ~ t:n_k(g(xn,k ) - g(xn,k )). 

k = I 

LEMMA 6.2.1. If for some p;.. 1 

sup max 1Elt:n.kl2
P = y<oo , 

n l,;;;,k ,;;;,n 

then for some C depending only on p and y 

_ Ilg-gilt 
1?(1-<t:, g-g>-nl;,.a):,;;;; C 2p , 

nPa 

(6.8) 
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for all a >0, all g, g and all n;;,, I. 

PROOF. WHITTLE ( 1960) shows that for some CP depending only on p 

1El-<€,g -g>-,,12p ~ l~ [±(g(x,,_,)-i(x,,_,))2(1Elt:,,_1.l2p)11p]P 
n k = I 

Application of Chebyshev's inequality now gives the required result. D 

THEOREM 6.2.2. If {t;,,, 11 · II,,} is of finite metric dimension rat {g0_,,} and (68) 
holds for some p > r, then there exist constants A', L' and n' such that for all 
L;;a,L' and n ;;,, n' 

IP( ll g,, -go_ 11 ll 11 >n - '1' L) ~ A'L - (lp - r)_ (6.9) 

PROOF. Define 011 = n -v,. Remember that g0_,, E~:;,, implies 
' ' 2 2-<(, g,, -go_,,>-,, -C Il g,, - go_,, II,, ;;,, 0. 

Therefore, replacing L by 2L in (6.9), the theorem is proved if we show that for 
all L sufficiently large and n sufficiently large 

IP [ ;UR . 2-<(,g - go,,,>-,,-llg-go_,, ll ~;;,,o]~ A
1
2 - Wp - r)_ 

Ilg - g0_,ll,>2' o. 

In particular, we shall take L;;,, Jo, where Jo is defined in (6.3). 
Clearly, 

ff'[ ;",r '2-<,,g -go.,,> ,, -llg-g0 ,,ll;;;,o] 
llg - g0)1,,>2 o, 

(6.10) 

~ ~IP>[ SUD 2-<(,g - go,11>-11 -llg-go,1111~;;,,o] 
';i, L g· t.,, 1 210, <llg-g,,,.11 • .;; 21

•
10,, 

L { (Ol} b . . I s:, . f B (2i + 1 s:, :- ) . et g e a rrumma u,,-covenng set o 11 · u,,, ~,,,. go_,, , 1.e. 
g EB,,(21 +1011 . ~;11 , g0_,,) there exists a g<0l(g) E {g<O)} such that 

llg - g<0l(g)ll11 < o,,. 
Since {!';11 , II· 11 11 } is of finite metric dimension rat {g0_11 }. 

card ( {g(O)}) ~ A 2U + 1 )r 

say. 

for each 

(6.11) 



for all n and j sufficiently large. We get 

IJ]>j = IP> f ~1-\P ,. 2-<£,g -go_,,>-,,~22io~] 
~ . B,(l! It,, . . ,,.g.,,) 

,,;;; IP> [sun I-<£ g<OJ - go >- I ~22v - I lo2) 
(g""} ' ·" " " 

Since llg<Ol - g0_,, II,, ,,;;; 2/ +20,,, application of Lemma 6.2.1 yields 

ptl) = IP [sunl-<£g(O)_go >- 1~22<J - l)o2) 
j (g'") • ,fl II II 

. <21+28 )2" <2f +20 >2" 
,;::::: d({ (O)} C " ,;:::::A2<J + l)rc 11 
.__, car g ) 2v· 1 l 2 2 .__, 2v· 1 l 2 2 nP(2 - 0

11
)P nP(2 - o,,)P 

for all n sufficiently large. This can tidied up to 
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IJ]>yl,o;;;AC2r +Bp2 - J(2p - rJ_ (6.12) 

Next, we shall use the chaining method to show that the 1Jl>y2l are also small 
(see e.g. POLLARD (1984), Ch. VII). Let for k Ef\:J, {g<"l} be a minimal 2- 1.0,,­
covering set of B,,(2! + 18,,, ~;,,,g0_,,). Then for gEB,,(2f +1o,, ,~,,.g0_,,), 

llg-g(k)(g)ll,, <2-1. 011, k Ef\:J 
'.lC 

g - g(O)(g) = ~g(k)(g) -g(k - l)(g) 
k = I 

pointwise on x,,_ 1, • • • ,x,,_,,. Define 

s = I - (rip) (6.13) 

and £ = '"i.'f = 1 k 2- ks, Y/k = k Tks IE. Then 

The number of pairs {g'"l(g),g<" - 1l(g)} is at most 

N(2 - k~ 2J +I~ , )N(2 - (k - I)~ 2J +I~ 1;' ) 
n Un, u,, , ~n, go.n n On, Un, .;,,, go.n (6.14) 
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for all n sufficiently large. 
Hence, application of Lemma 6.2.1 gives 

oo (r(k - 2>0 )2p 
[P>(2),,:;;; ~(A2V +k+ l)r)2c . n 

J k = I nP(r,1;22() - l)o:,)2p 
(6.15) 

00 
= A 2c22, +8p E2p 2- 2J(2p - rl ~ k - 2p_ 

k = I 

Returning to (6. 10), we see that 

I?[ sup 2-<c,g - go.n>-n - llg - go.nll~;;;;.o] 
g E.,. 

Ilg -g •.• 11 . > 2L.S. 

,,:;;; ~ ([P>y1 l + [P>y2l) 
j ;;,, L 

00 

,,:;;; ~ (AC2' +8p +A 2c22r +8p E2p ~ k - 2p)2 - J<2p-rl,s;;;A'2- (2p - r>L 
J ;;;. L k = I 

for L and n sufficiently large. Thus the proof is complete. D 

In (6.3), where we defined finite-dimensionality, we assumed that the con­
stant A does not depend on n. A weaker version of (6.3) would be 

[ 
Nn(o.2.Jo, §n,go.n) l 

sup sup su . < oo, 
n~n0 J;;;.;0 0<.5£.s. An21' 

(6.16) 

where {An} is some possibly unbounded sequence. One can easily adjust the 
proof of Theorem 6.2.2 to show that under (6.16) the rate becomes 
(9p(n -½ A~1P) (replace on=n -'h by On = n -½ A~1P). 

Now, let us reconsider the case 

(6.17) 

with {sn, 11 · lln} satisfying (6.6) and (6.7), but not necessarily (6.5). Obviously, 
then (6.16) is met with An=(K2.nl K1.nY, and the rate is thus i9p(n - 'hA~1P). 

However, careful inspection of the metric structure of Euclidean space reveals 
that this is not the most refined result: it turns out that it suffices to assume 
p>½ r in (6.8) and that the rate is Elp(n - 'hA~1<2p>). This is shown below. 

LEMMA 6.2.3. Suppose that §n is of the form (6.17) and that for some 
O<K1.n,s;;;K2.n<oo 

- -
llgo-gii lln,,:;;; K2.n 11 8- 811 for all 8,8 E0n. 

If (6.8) is met for some p >½ r, p;;;. I, and if K 2.n I K I.n = o(_nP 1
'), then there exist 

constants A', L' and n' such that for all L;;;;. L' and all n;;;;. n' 

" Kr /(2p) 
[P>(l10n-8o.n11;;;,. n - 'h rl~;)+I L),s;;;A'L - (ip - r) 

K1.n 
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(8,, being defined by g,, = gii,). 

PROOF. Take 

(6.18) 

and consider the set 

bn.1+ 1 = {0=(0,, ... ,Or): max /Os- 80.n.s l,;;;;2! + 1 Ko,, }. 
1.a;;s.;;r l.n 

we have 

B,,(2! +10,,, G,,,go_n) c {go: 8Eb,,_1+1 }. 

The r-dimensional cube b,,_1 + 1 can be covered by 

[ [ 
21 +k + 

1 
2 Vr K 2.n l + J l r 

K1_,, 

small cubes with side of length 2- k(o,,l(Vr K 2_,,)). We have 

[ [ 2i H+~~~K,. l + 1]' ~ C,A.2V+k+ "' 

for some constant C depending only on r. Write 
N~(2 - ko,,,21 +10,, ,G,,,go_,,)= CrAn2(i+k + l)r_ Let {c(k)} be the collection of 
corners with the smallest co-ordinates of the cubes covering b,,_1 + 1• Then 
card({c(k)}),;;;;N~(rko,,, 21+ 10,,, G,,,go_,,). For 0=(0, , · · · ,Or)Ebn.1+1, write 

lk)(go) = V" if max 10s-c~k)I < 2- k(o,,l(VrK2.n)). 
l:s;;;;s~r 

Then 

llgu-g~k)(go)II,,,;;;; K2 _,,11 0-c<k>11<2- ko,,. 

So {V"} forms a 2- ko,,-covering set of B,,(21 +1011 , G,,, g0_,,) with 

card({g,.<" }) ,;;;; N~(2 - ko,,, 21+ 10,,, G,,,go,n), 

The covering sets {gc'"} have as special feature that the number of pairs 
{g,.<"(go), gc•H (go)}, with c<kl=r!::c(k - I), is at most 

(2r - l)N~(rko,,, 2/ + 1011 , !3,, , go, 11 ). 

Now, in the proof Theorem 6.2.2 one can make the following adjustments. 
Take 011 as in (6.18), replace {g(kl) by {V" }, k =O, 1,2, · · · and 
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N(2 - k~ 21 + l~ tJ ) b Nc(2 - k~ 2J+ l~ J ) k - J 2 · · · · "'' n Un, u,i, 7'n , go,n Y n Un, Un , i-1n, go,n , - , , , } E r~ . 

Define in (6.13), s = l - (rl2p) and replace the bound in (6.14) by 
(2' - l)N~(2 - k8n,2J+ l8n ,9n, go.n)- The rate_tlp(8n) for g,, now follows easily 
and this rate implies the tlp(K~~8n)-rate for On . □ 

EXAMPLE 6.1 . In Example 3.2 of Chapter 3, we studied the linear model 

ge(x) = xO, 0E0n, 

with 0n = 0, Oo.n= 00 . The smallest and largest eigenvalue of XIXn, 
Xn = (x[ 1, .• ,x[n)r, are denoted by >-1.n and >-2.n respectively. We showed in 
Lemma 3.3.5 that under regularity conditions on the second moments of the 
ln.k 

• p 

116n - 0oll - 0 

provided that for some c > 0 
f /2(l +c) 

2
.n = L0( I) 
Ai.n 

and provided 0 is compact. 
If (6.8) holds for some p > I, then the regularity conditions on the second 

moments of the tn.k are met. Now, obviously (6.6) and (6.7) are fulfilled , with 

K;,n = ( ! \ .n t, i = 1,2. So, if p >½ r( = +(d + I)), then it follows from Lemma 

6.2.3 that 
• p 

118n - Oo II - 0 

provided 

+ ( I - 1.e....::!:_) >. - 2p +, 
_2_.n ___ = o( I). 

>-1.11 

Compactness of 0 is not needed. 

6.2.2. The infinite-dimensional case. The condition on the jt11.k J2 we need in 
finite-dimensional models is the existence of an absolute moment of order 
larger than the dimension of parameter space. In possibly infinite-dimensional 
models, we assume existence of the moment generating function of jt,,_k 12. Of 
course, this assumption also establishes an improvement of the bound in (6.9) 
(see Corollary 6.2.6). We start off by formulating a pendant of the 
Chebyshev-type inequality which we presented in Lemma 6.2.1. 

LEMMA 6.2.4. If for some /3 > 0 

sup max IE( exp(/Jltn.d)) ,;;;; f < oo . 
n I ,s;; k ,a;; ,, 

(6.19) 
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then there exists an a>O depending only on /3 and f such that 

IJl>(l-<t:,g-g>-nl;;;.a),;;;; exp - _ , - [ ana
2 l 

llg-gll~ 

for all a >0, all g,g and all n;;;. I. 

PROOF. For all h >0 

IJl>(l-<t:, g -g>-11 I ;;;.a) ,;;;; exp(-hna)IE[exp(hn -<t:,g - g >- 11 )] 
n 

,;;;;exp(-hna) IT IE[exp(hlt:n.kllg(xn_d-g(x11.dl )]. 
k = I 

KUELBS (1978) shows that under (6.19) for some A depending only on /3 and r 
hi II - I 2 _ - 2 2 IE[exp( t:n.k g(xn.k)-g(x11_k) )] ,;;;; exp[h (g(x 11_k)-g(x11.d) A ]. 

Thus 

IJl>(l-<t:, g -g>-11 I ;;;.a) ,;;;; exp(-hna)exp(h 2n Ilg -gll~A2). 

Take h =(2aa)/llg-gll~, with a=(4A2) ~ 1• Then 

P(l-<,,g-g>-.1;;,a).; exp [- 2A'l~;~g11; ]exp [ a:~:~;g_~t;I( l 
= exp [- 11;:a;II~ l· □ 

In Theorem 6.2.5 below, the entropy conditions (6.20) and (6.2 1) are 
perhaps at first sight rather unappealing. However, after proving the theorem 
we shall give several clarifying examples. 

THEOREM 6.2.5. Let sn-o be some sequence with lim infn-oon 11' 011>0 and sup­
pose that 

ylogN11 (011 , 2ion, 811, go.11) 
lim sup 'I: . = 0 

J-oo 11;;;.11. n 'on2J 
(6.20) 

. /I VlogNn(uo11 , 21011 , qn, go.n) ,;:: 
hm sup ,;, . du __, M <oo. (6.21) 

J-oo n;;;.n, 0 n ·o/121 

If moreover (6.19) holds for some /3>0, then g,, converges with rate \':'p(o11 ). in 
fact, there exist constants M',L' and n' such that for all L;;;.L' and all n;;,,,n' 

IJl>(llg,,-go.nlln>onL),;;;; exp(-M'L 2 no;,). 

PROOF. As in the proof of Theorem 6.2.2 we replace L by 2L and write 
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IP> [ sup 2-<t:, g -go.n >-n - Ilg - go_,, II~ ;;;;.o] 
g . ·'• 

llg-g0 .ll.>21 8. 

Let, for each kE{0,1,2, ··· }, {g(kJ} be a minimal rk811 -covering set of 
B11 (2J +1811 , s11 ,go_11 ) and let g(kl(g) be defined by 

llg-g(k)(g)II = minl lg-g<k)II . 
II il') II 

As before 

IP>j = IP> r ~µ,o . 2-<t:,g-go.n>-n;;;;.221 8~] 
l_g EB.(2' 8'.,. r, •. go.) 

.;;:; IP> [sunj-<t: g(O) -go >- I;;;;. 22u - 1)82} 
(g'°'} ' .II II II 

+ IP> l, B.(2'WJ.\.g.)-<t:, g-g(O)(g)>-11 I ;;;;.22U - ll8;,] = UJ>y1l + UJ>y2l . 

Application of Lemma 6.2.4 gives 

p(I) = IP> (sunj-<t: g(Ol-go >- 1;;;;.22u - 1i82] 
; (g'°'} , .n n 11 

.;;;; exp(logN11(811 ,2i +1811 , 911 ,go_11 )-a2- 6 22in8~)-

By (6.20), logN11 (811 ,2' +1811 , s11 ,go_11 ).;;:; f(o:2 - 6 22in8;,) for all j and n 

sufficiently large, so 

UJ>y1l.;;:; exp(-o:2 - 722in8;,). 

We use the chaining again to bound UJ>y2l: 

UJ>y2l = IP> Lt B.(2'WJ.\.g.)-<t:,g-g(O)(g)>-11l;;;;.22U - 1)8~] 

.;;;kt IP> L EB.(2'WJ.\.g.)-<t:, g(k)(g)- g(k - l)(g)>-11 I ;;;;.22U - ll8;,71j.k]' 

where {111.df=1 is a sequence satisfying Lf=i'T/J.k.;;;; I. Define E=L'f'=12 - kk ½ 
and take 

Then in view of ( 6.2 I) 

~ .. .;;:; ~ [ [ VlogN 11 (2 - k811 , 2J +l811 , 011 , go.11 ) + [ 2- kk'h l] = I 
~ 11;.k ~ 2M 1;,i;, 2J +k+l(I 2) - 1 2£ 

k = I k = I n 0 11 og 
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for all J?:;;Lo and all n sufficiently large. Use Lemma 6.2.4 again to establish 

1JJ> l2l,;:: ~ exp [21ogN (Tk8 2f +18 g g ) - a2 - 6 24i22kn 2 n82] J ""' ~ n n, n, n, O.n ·11,k 11 
k = I 

Hence for L sufficiently large, n sufficiently large 

~WY)+ IJJ>y2l) 
J;;J, L 

:s:;; ~ [exp(-ar722in8~)+ f exp( - a2 - 724in8~~)] 
p L k = I (2£) 

..;;exp( - M'22Ln8~). D 

The entropy-integrability condition (6.21) makes the chaining method work. 
POLLARD ( 1982) uses this method to establish the uniform central limit 
theorem that was reproduced here as Theorem 4.2.2. We have adopted his 
technique in the proofs of Theorems 6.2.2 and 6.2.5. We also mention 
Pollard's chaining lemma (POLLARD (1984) Ch. VII), which presents the rela­
tion between entropy-integrability and asymptotic equicontinuity in a more 
general context. 

A first corollary of Theorem 6.2.5 concerns the finite-dimensional case. 

COROLLARY 6.2.6. Suppose that (6.16) holds, i.e. 

Nn(8, 218, §n, go.n) 
sup sup suo . < oo 
n;;J, 11 0 J;;J,J0 0 < ,5 t; ,50 An2l' 

for some rand some sequence {An} , Jim inf An > 0. Without loss of generality we 
assume An ?:;;2 for all n, so that logAn > 0. Then for 8,, = n -'l, (logAn)½, (6.20) 
and (6.21) are fulfilled: 

ylogNn(8,, , 2i8n , §n, go,n) :,;:;; C, \l1og2i 
n½8n2i 21 

and 
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f or all n ?:, n0 , j ?:, Jo, On ~o0, where C, and C', on~y depend on r. Thus provided 
(6.19) holds f or some /3 > 0, 

Il g,, - go.n ll n = t'p(/1 - '
1' (logA11t ). 

In particular, if {½11 , II· 11 11 } is of finite metric dimension i.e. lim supA 11 < 'X! 

_!_ logP( ll g,, - go_11 ll 11 > a) ~ - M'a 1 

11 

for all n ?:, n' and a > L'n ' - ,,,_ This is called a law of large deviations f or g,,. 

EXAMPLE 6.1 CONTINUED. In the linear model, application of Corollary 6.2.6 
yields that if (6.19) holds for some /3 > 0, then 

116" - 0" II = t'p( 
- r,;- A.2.11 

log ( v L V ~)/ A 1. 11 ). 
l.n 

The remainder of this section deals with application of Theorem 6.2.5 to 
(truly) infinite-dimensional models. The first example we give, however, shares 
a common feature with finite-dimensional models. Consider the global entropy 
logN2(011 , H11 , ~111 ) of the space ~111 • Provided II· 11 11 remains bounded on r111 , we 
have that if h,, II· 1111 } is of finite metric dimension r. then 

sup suoo' N 2(0, H 11 • ~111 ) ~ A. 
/l ~ ll o Q~ ~o 

This is also true for ~n in Example 6.2. 

EXAMPLE 6.2. Let \:;11 = ½ be a VC-graph class with envelope G, and let { II · 11 11 } 

be such that 

limsup llG ll11 < oo. 
11 ---...'X) 

Then by Theorem 2.2.6 

sup supo' N 2(0, Hn, \:;) ~ A 
ll ~ ll u 8> -'Q 

(6.22) 

for some constants rand A, where A only depends on {II· 11 11 } via the left-hand 
side of (6.22). It is straightforward to see that (6.20) and (6.21) hold with 
on = n -"' (logn)'\ using the bound Nll(o,2io. ~111 , go. 11) ~ N2(0,H11, f•; ). Hence 
under (6.19), Il g,, - go. 11 11 11 = t'p (n - 11

' (log n )';, ) for all sequences {g0_11 } C ~-;. 

Corollary 6.2.7 below clarifies the relation with Birge's results (BIRGE 
(1983)). 

COROLLARY 6.2.7. Suppose that for some constants v> O and M 

sup SUD o"logN2(0, H11 ,l]/I) ~ M. 
II ;,nu O< oJ;;lio 

I 

Take 011 = 11 2+,. Then (6.20) holds, and if v< 2, (6.2 1) holds too. it f ollows 
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that under (6. 19) 

I 

Il g,,• g II = ,c,p(n 2+• ) - 0.n n ' 

for v<2 and for all {go,n }, go.n E!-';n, n ;;.no. 

Here is an application of the previous corollary. 

EXAMPLE 6.3. Let 

½ = {g: K -IR, g has m derivatives, (6.23) 

I (ml(x) (111>(.x)I 
supg-~ ~ L. lgl~C}, 

x.x , K llx - x Il a 

with a> O, K is a compact subset of !Rd and where llx - x II is the Euclidean 
distance between x and x. KOLMOGOROV and TIHOMIROY ( 1959) show that 

d 

suoo 111 +a logN 'XJ (o, H,, J;) ~ M. 
o>U 

Thus if d!(m + a) < 2 and (6.19) holds 
m + a 

II • II , ( 2(m +a) +d) g,, -go,n 11 = tp ti 

for all {g0_,,} C½ Similarly, let 

!-'; = {g: K-IR , g has m derivatives, 

/lg(111l(x)l2dx~L. lgl~C} 

(6.24) 

(6.25) 

where K is a compact subset of IR. Given the result ( 6.24) for ~:; defined 111 

(6.23), it is easy to see that the ½ of (6.25) satisfies 

suoomlogN2(o, H,, , !-';) ~ M 
o>U 

so under (6.19), llg,,-g0_,,lln =t'p(n - 111 1(2m+ I>) for all {g0_,,}C ~1. STONE (1982) 
proves that these rates are optimal. 

EXAMPLE 6.4. Let 

½ = {g: ~-IR, g increasing, lg l~C}. (6.26) 

BIRGE ( 1980) shows that the L 1 -entropy of ½ is of order s- 1• It is not clear 
whether the L 2-entropy is also of this order. Lemma 6.2.8 below presents a 
bound for the L 2-covering number that by application of Theorem 6.2.5 leads 
to the rate llg,,-g0_,,1 1n= l0p(n -''(logn t) for all {go_,,}c!-7;. 

LEMMA 6.2.8. For ½ defined in (6.26) 

logN 2(o, Q, \3) ~ Mo- 1log(o - 1) for all o> O, (6.27) 
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where Q is any probability measure on IR and where M only depends on C. 

PROOF. Without loss of generality we assume that O~g~l for all gE /]. 
Define T=(l/82]+1 and let - oo = a 0 < a 1< · · · < aT _ , < aT = oo be such 
that Q(ai _ 1,a;]~82 for i = 1, · · · ,T. Define for each g E~ 

gi(g) = f gdQ ! Q(ai - l ,a;] 
(a, _1,a,] 

and 

ki(g) = [git)] , i=l , · · · ,T. (6.28) 

Then 

f lg-8ki(g)l 2dQ ~ Q(ai - 1,a;]{varQ(g(x)lxE(ai - IAD+82
} 

(a,_1,a,] 

~ Q(a; - 1,a;]{g(ai)2-g(ai- d}+Q(a; - 1,a;]82
, i = l , · · · ,T. 

Hence 
T 

/lg -8 ~ ki(g)l(a,-,.a,Jl2dQ ~ 82(g(an)2-g(ao)2 ) + 82 ~282
. (6.29) 

k = l 

We have that O~k 1(g)~ · · · ~kT(g)~[l/8] and k;(g)El, i = 1, · · · ,T. 
The number of functions of the form 

T 

~kil(a, _,,a,J, O~k,~ · · · ~kT~[l/8], kiEl , i=l, · · · ,T, (6.30) 
i = l 

is equal to 

[
(T + 1)+(1/8]-1] - [(1/8

2
]+[1/8]+ I] 

(1/8] - (1/8] · (6.31) 

Thus 

D 

We end this section with some remarks. First, Theorem 6.2.5 presents a 
fairly general result, but since the calculation of entropies is often quite 
difficult, the merit of the theorem is primarily that it shows that the statistical 
problem can be replaced by a combinatorial one. 

It should secondly be noted that if the rate 8n is slower than n -½ , then the 
probability inequality of Theorem 6.2.5 implies that for some constant Lo 

?(Ilg,, - go,n lln ~Lo8n) - I. (6.32) 
I 

Moreover, if the rate is slow enough - e.g. 8n = n 2+P , v> O- then by Borel­
Cantelli's theorem Ilg,, -go,n lln ~Lo8n almost surely, provided of course that 
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the sequence of disturbances all live on the same probability space. 
Finally, due to the entropy integrability condition (6.21) Theorem 6.2.5 can-

not handle optimal rates slower than op(n - ¼). Such slow rates are the conse­
quence of Jar~ entropies, meaning that §n has so little metric structure that 
the process V n -<£,g -g0 >-n might not be asymptotically equicontinuous (see 
also Chapter 4). 

6.3. Stochastic design 
Let x 1, x2, • • • be independent random vectors with distribution H, and let 
Nn(o, p, Qn, go_n) be defined as in (6.2). The randomness of this covering 
number prohibits direct application of Theorem 6.2.5, but of course by condi­
tioning one can easily adjust this theorem to the case of stochastic design. 
Before doing this, we make some simplifying assumptions to facilitate the 
exposition. We assume that also t: 1, £2, • • • are i.i.d. (of course with expecta­
tion zero, finite variance and independent of the xd and that §n =§ and 
go.n = g0( E!3). This brings us back to the situation of Section 3.1. Finally, we 
restrict ourselves to l9p(n - l/(H v))-rates, 0o;;;v<2. Then the stochastic counter­
part of Theorem 6.2.5 becomes: 

CoROLLAR Y 6.3.1. Suppose Q is a permissible class, satisfying 

. • [ o'logNn(o, 2io, §n, go.n) 
hm sup u:» sup su . 

n-+'XJ )~Jo O<oE.s. 1og21 

for some L>0, M > 0 and 0o;;;v< 2. If 

IE exp(/3lt:1 1
2

) < oo for some /3>0, 

then 
I 

ll g,, -go.nl ln = 0p(n 2+•). 

= 0, (6.30) 

(6.31) 

(6.32) 

It appears to be difficult to check (6.30). However, we have seen examples 
(e.g. Examples 6.3 and 6.4) where covering numbers can be computed even 
when one has virtually no knowledge about the metric used (i .e. II· lln)­
Nevertheless, in general one faces the problem of drawing conclusions about 
the random L 2(11ld, Hn)-covering numbers from the theoretical L 2(11ld, H)­
covering numbers. In other words, one is asking for the order of magnitude of 
the ratio II· lln!ll · 11. We address this problem in Lemma 6.3.4. 

The main aim of this section is to present sufficient conditions such that a 
rate of convergence in 11 · lln -norm implies the same rate in II· II -norm (see 
Theorem 6.3.2). A natural question is whether it is possible to prove rates in 
II · II-norm directly. Recall that the conditions we needed in Section 3.1 for con­
sistency in II· ll n-norm are stronger than those for consistency in II· II -norm : in 
the latter case an envelope condition could be replaced by a uniform square 
integrability condition. Indeed, an envelope condition is implicit in (6.30). 
This is illustrated by Lemma 3.3.4 and also by for instance Examples 6.3 and 
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6.4. It is not clear whether anything can be gained on the assumptions if one 
is only interested in rates in II · II-norm. 

A situation where II· II- and II· lln- norms can in a certain sense be inter­
changed freely, arises when there exist covering sets with bracketing. A o­
bracketing with respect to II · II of a function g EL 2(1Rd , H) is a pair [g 1, g 2] 
such that g 1 .;;;;g.;;;;g2 and llg 1 - g 2 11<o. The minimum number of brackets 
necessary to cover g is denoted by Njl (o, H , (5). Lemma 6.3.4 will show that 
under appropriate conditions on Nl I (o, H , (5) the metrics II · II,, and II · II are 
asymptotically equivalent. 

We already encountered covering sets with bracketing in Application 3.2.1. 
Here, 

(5 = {go: 0E8} 

with g8(x) continuous in O for all x, 8 compact and 

suplgolEL 2(1Rd, H). 
11Ee 

We asserted in Application 3.2. l that N i(o, Hn , 9) remains bounded almost 
surely for all o>0. To prove this, we showed that Njl(o. H, §) is finite. 

Another illustration is given b).' Example 6.4. It is not difficult to see that in 
this example N 2(o, Q, (5) and N,jl(o, Q, @) are of the same order of magnitude 
(in o) for all probability measures Q. 

Now, let B(p, (5, g 0 ) , p>O, be a ball with radius p for II· II around g0 inter­
sected with g and let 

N 11 (o, P, 9, go) = Nl 1(o, H , B(p, (5, go)), O<o.;;;;p. 

THEOREM 6.3.2. Suppose g is a uniformly bounded permissible class with 

o'logNll(o, Lo, 9, g0 ) 
sup SUP .;;;; M, p;;;,,,Q, (6.33) 

L ;;. t , 0< 6.!;;60 log L 
I I - - - -

then llg,,-golln= (9p(n 2+v) implies llg,,-goll= f;p(n 2+, ). 

PROOF. This follows from Lemmas 6.3.3 and 6.3.4 below. □ 

We first present the probability inequality we use and then prove that the 
ratio Ilg- g0 lln ! Ilg - g0 II cannot differ too much from I if Ilg - g0 II is large 
enough. Theorem 6.3.2 then follows immediately. 

LEMMA 6.3.3. If lgl.;;;; I, Iii.;;;; I, then 

P(lllg - gll~ - llg-gll 2 1;;;,,,a).;;;;2exp[ - ~a
2 

8 ] . a > O. 
8 llg - g ll2 +3 a 
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PROOF. If z1, · · · ,Zn are independent random variables with expectation zero, 
variance IEzt=at and with lzkl:,;;;;M, k=l, · · · ,n, then Bernstein's inequality 
(BERNSTEIN (1924, 1927), BENNETT (1962)) says that 

n a2 
IJll(I ~ zkl;;;;.a):,;;;; 2exp -------

-~ n 2 
k-l 2( Laf)+ 3 Ma 

k = l 

Apply this with zk=(g(xk)-g(xk))2-llg-gll2 , lzkl:,;;;;4 and 1Elzd:,;;;;4llg - goll 2, 
k = 1, · · · ,n. □ 

LEMMA 6.3.4. Suppose that G is a uniformly bounded class satisfying (6.33) for 
some v;;;;.O and M. Then for all 11>0 there exists an L'I >0 and'¾ >0 such that 
for all n ;:,no( = Bo{2+P), with Bo defined in (6.33)) 

ll"b' [ I llg-golln 11 u- SUD · - >11 
g cJ; , Ilg - go II 

llg-g0 II ;;.L,n - -,-;-;-

<; ! exp [-a,,L)n ,:, ] . 

I 

PROOF. Define Bn=n 2+v Assume without loss of generality that lgl:,;;;;1 for 
all gE§. Let {[g 1,g2]} be a minimal Bn-bracketing set of B(LBn, §,g0 ), where 
L;;;;, L'I, L'I to be specified later. We shall first show that for all L;;;;, L'I, n;;;;, n 0 

IJll L = IJll [ SUP. Ilg - go II,,>( I+ f11)LBnl (6.35) 
g e B{L8',,, r,.g0 ) 

Let {gi} be the set of left brackets from {[g 1,g2]}. We have 

PL:,;;;; IJll' [ sup llg1 -golln>O+f11)LBnl 
Ilg, -·g0 ll ,;;;;"(L + 1)<5. 

g, <c (g,) 

+ IJll' [ sup Ilg, -g2l ln>f11LBnl = IJll~l+pf>. 
[g,, g,J e (fg,. g,l) 

If we take LTJ sufficiently large, such that ((l+f11)L)2-(L+1)2>f11L 2 for 

all L;;;:.LTJ, then 

IJll~l = IJll' [ sup llg,-golln>(l+f11)LBnl 
Ilg, - g0 ll<(L + 1)<5. 

g, e (g,) 
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From Lemma 6.3.3 we see that for llg 1 - g0 11..;; (L + 1)8,, 

IP> [11g, -goll~-llg, -goll 2 >f1JL 28~] ..;;2exp [- na½'lL 28~] , 

for all L~L,,, L,, sufficiently large and for some constant a½'l depending only 
on 71. Moreover, for L~Lo and n~n 0 =80(2+vl 

logNll(8,,, L8,,, 9, g 0_,,) ..;; M(logl)8,-;", 

and M(log)8;"..;;½na~1lL 28~ for all L~Lri , Lri sufficiently large. Hence 

lfl>~l ..;; Nll(8,,, L8,,, 9,g0 )2exp [-na~1>L28~] 

..;; 2exp [-½a½l)L 2n"1(2+v)]. L~Lri, n~no. 

As for n:»f> , we have that for L~Lri , Lri sufficiently large, n~n 0 

Pf> = IP>* [ sup Ilg 1 - g2 II ,, > f1JL8,,] 
(g,.g, ]e {[g ,.g, ]} 

for some constant a½2>. 
Thus for¾ ~+min(a~I), af>) 

PL..;; n:»~>+pf>..;;4exp [- aril 2n"1(2+ •l], 

for all L~Lri, n~n 0 . This proves (6.35). Assertion (6.35) in turn implies that 
if we take L~Lri , Lri sufficiently large, n ~ n0 

IP>* [ sup Ilg - go II,, > O + 1J)l (6.36) 
(l - l)S.~t~go ll .;; L8. Ilg-gall . 



:,;;;; 4 exp( - a,, L 2 n v/ (2+ v) ). 

Similarly, 

p• [ inf Ilg-go lln ] 
(L - t)S,it~g,11.;;U, Ilg-gall < I -1] 

We already showed that for L~L.,,, n~no 

IJlfl:,;;;; 2exp [-+a¾1lL 2nv(2+v)]. 

If we take L.,, sufficiently large then for L ~ L.,, 
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P2l = p• [ sup Ilg 1 - go 11 2 
- Ilg 1 - go II~ >(L - 2)28~ -( 1-½11)2 L 28~] 

llg1 -g,11,;;;"(L + l)S, 
g1E{gi} 
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for some a½3l, n ~n 0 • Hence for °'i ,;;;;f min (a~2>, a½3>) 

p• [ inf Ilg - go II" > I - 'I'/ (6.37) 
(L - 1)0,.~lg,~ i:u ll .;; U ,. Ilg - go II 

,;;;; 4exp [ - °'iL2n•1(2+•>]. 
Finally, combine (6.36) and (6.37) to obtain that 

p• [ inf llg - gol l11 >1 - 1) ,;;;; ~ 8exp [ - aT/L2nv/(2 +•>] 
llg - i:/ l r l ,o,. llg-goll D L , 

6. 4. Application to two-phase regression 
We consider the models of Chapter 5 and compare the various sets of assump­
tions and outcomes with those of Section 6.2. To avoid digressions, we assume 
throughout that the disturbances t: 1• t:2• • • • form an i.i.d. sequence (t: 1 having 
expection zero and finite variance) and that g0_11 = g0 is fixed. We start with 
the continuous model : 

(6.38) 

LEMMA 6.4.1. Let x 11.k=x1., k=I, · · · .n, with x1,x2, · · · a sequence ofi.i.d. 
random vectors with distribution H. Let ~; be given by (6.38). Then there exists a 
constant K2< oo such that for all n sufficiently large and for all go.c ,ge_, Es 

llgo_, -ge., 11" ,;;;; K2 110 - 011 almost surely. (6.39) 

Define for all Tj>O the restricted class 

~:;R(1J) = {go., er IIO-Oo ll <77}. 

Suppose that there exists a set of points 

{ x\il : t = I, ... '2( d + I) - I } C A 8) n T, (6.40) 

where Tis the support of H, and nod+ I x\il lie on a (d - !)-dimensional h;per­
plane, i = 1,2, and that 

(6.41) 

Then there exists an 71 > 0 and a constant K 1 > 0 such that 



llg11,c-g11
0
.clln ;;;;. K1110-0oll almost surely, 

for all n sufficiently large and all g11_cEfJR(11). 
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(6.42) 

PROOF. Result (6.39) follows from the fact that the functions g 11,c(x) are 
Lipschitz continuous in O for every x: 

lgo.c(x)-gii_c(x)I ,;;; J(x)II0-011 , 

where J(x)= I +izil+ · · · +izdl, x =(z1, · · · ,zd). Since IIJlln-11111 almost 
surely, 

llg11,,.-gii_cll 11 ,;;; 211111110-011 almost surely, 

for all n sufficiently large. 
Inequality (6.42) is of course closely related to (5.11) (see the proof of 

Theorem 5.2.1) which asserts that (6.42) holds for 0= 9n . Condition (6.40) 
implies that if the (j,.i), i = 1,2, in O are appropriately indexed, then there are at 
least (d + I) x(')'s in A~1). This implies that, from a possible re-indexing, the 
smallest eigenvalue of l:11 (A~1l nA8)) is bounded away from zero for all O and 
all n sufficiently large. Hence 

((/,.IJ _ Obl))Tl:n(A~I) nAbll)((/,.IJ_Ob'));;;;.K1.111U'l-Obl)112 (6.43) 

for some constant K1•1 >0, all properly indexed O and all n sufficiently large. 
Moreover, by taking 71 sufficiently small we see that 110-00 11<11 and (6.39) 
imply that A~1) cannot contain more than d xF>'s, because of assumption 
(6.41). Thus, for 71 sufficiently small the eigenvalues of l:n(A~2l nAb2) ), 
110-00 11<71, are eventually also bounded away from zero, and so 

(U2J -Ob2lfl:n(A~2J nAb2) )(U2J -062)) ;;;;. Ki2 11U2l -Ob2l 11 2 

for some constant K2,2 > 0, all 110-00 11<11 and all n sufficiently large. (In fact , 
if 71 is sufficiently small re-indexing of 0, 110-00 11<71, in (6.43) is not needed). 
Thus 

llg11_c- g11 •. ,11~;;;;. ~ (£1i)_08lfl:n(AWl nA8l)((l,.i)_08l) 
i= l.2 

;;;;. t~~~2 Kf,;}110-00 11 2 almost surely 

for all 110-00 !I < 71, 71 sufficiently small, and all n sufficiently large. □ 

In other words, under (6.40) and (6.41) the sequence UBR(11), 11 · lln }, with 
QR(71) defined in Lemma 6.4.1, is for 71 small enough of finite metric dimension 
2(d + I). We can now appJ.y the results of Section 6.2, because jn Lemma 3.4.4 
the strong consistency of 9,, is established, i.e. for every 71>0 9,, EfJR(71) for all 
n sufficiently large. The conditions of Lemma 3.4.4 include (6.40) and (6.41). 
Recall furthermore that in Theorem 5.2.1 we also needed the conditions of 
Lemma 3.4.4. The following proposition collects previous results and those 
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obtained by application of the theory in Section 6.2. 

PROPOSITION 6.4.2. Define g as in (6.8) and let Xn.k = xk , with x 1, X2, · · · i.i.d. 
with distribution H. Suppose that the conditions of Lemma 3.4.4 are fulfilled. We 
have 

A A 

(i) 118n - 0oll-O and H(AnMo)-O, almost surely( 
(ii) if 1Elt11

2P < oo for some p > I, then i('> and 8}> are asymptotically indepen­
dent and 

n ½(iJ~>-08>) _: ~O,ll£112L- 1(A8>)), i = 1,2, 

(iii) if IEJ£ 112p < oo for some p >tr( =d +I), then for all L;;. L', n ;;.n' 

1Jl>( l1 6n - 0o ll > n -1/' L),;;;; A'L -<2p - ,> , 

(iv) if IE exp(/Jlt11
2)<oo for some /J>O, then for all L;;.L', n;;.n' 

IJl>(IIOn -0oll>n-½ L) ,;;;; exp(-M'L 2). 

PROOF. 

(i) This is Lemma 3.4.4. 
(ii) This is Theorem 5.2.1. 
(iii) Combine Lemma 3.4.4, Lemma 6.2.3 and Lemma 6.4.1. 
(iv) Combine Lemma 3.4.4, Theorem 6.2.5 and Lemma 6.4.1. □ 

Note that the (9p (n - If, )-rate for on in (iii) and (iv) of Proposition 6.4.2 fol­
lows from the (9p(n -'/2)-rate for ~- The situation is somewhat different in the 
discontinuous model. Here, the class of regression functions is 

@ = {g11.A(x)= . ~ (oh>+ x /1-il)JA'''(x): 0= [:~:], (6.44) 
, = 1.2 

(fi) = [cx(i)l A (i) EciY> i = I 2} /f') ' ' , . 

We shall first consider a special case with d = I. This will clarify the 
difficulties in higher dimensions. 

LEMMA 6.4.3. Let d = I, Xn.k =xk, k = I, · · · ,n, with x, , X2, · · · i.i.d. with 
distribution function H: IR-IR. Let g be defined in (6.44), with 
~={Ay=( - oo,y] : yEIR}. Definefora/111>O 

GR(11) = {g11,A, Eg: 110-0011<11, H(AyM0)<11} . 

Suppose there exist { x(i): t = I, 2, 3, x\'.> ¥:x\:>, t 1 ¥:t 2 } CA 8) n T, i = 1,2. Furth­

ermore, suppose that the discontinuity assumption (5.22) can be strengthened to: 
for some 11, >0, K>O we have 

H(Yo - 111, Yo +11i] > 0 



and 

lu,"(x)-g11,21 (x)I > K, 

for all x E(Yo -1/1, Yo +'1)1]. Then for 'I) sufficiently small 

Nn(8, 218, QR('IJ), g0) ~ A 2'1, almost surely, 

for all n sufficiently large, where r =2(d + 1)+2=6. 

PROOF. Let go.A, EBn(218, QR('IJ), go): 

llgo.A, -golln ~ 218. 
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Since for 'IJ sufficiently small H (AyM o)<'IJ implies that yE(Yo -'1)1, Yo +'l)i], 
we have 

Also 

(218) ;;;. ll(go.A, -go)IA;' nA~' lln ;;;.K; IIO(i) -08) II , almost surely, i = 1,2 

for some K; >0, 1/ sufficiently small and n sufficiently large. Hence 

Since 

Bn(2/8, GR('IJ), go) C {go.A, E!JR('IJ): ll(J(i) -08) II ~218/ K;, i = 1,2, 

H(AyM o)~(2/8)2 I K}. 

N2(8, Hn ,{Ay: H(AyMo)~(218)2!K}) ~ A221 

for all 0<8< 1, this implies that for 'IJ sufficiently small 

Nn(8, 218, !JR('IJ), go) ~ A 2'1, r = 2(d +I)+ 2. □ 

(6.45) 

Equality (6.45) in the proof of Lemma 6.4.3 is a special feature of the class 
of intervals {(-oo, y]: yER}. If d=2 and cl;={x: xy~l}: yER2 }, then in 
general the number of xk in the set 

LJ {A Eci;: Hn(AMo) ~ (2/n - ½)2} (6.46) 

need not remain bounded (see Example 6.5). It is not clear how to calculate 
the entropy of neighbourhoods like (6.46) for general a. An upper bound is of 
course the global entropy of a. We use this upper bound in (iv) of Proposition 
6.4.4. 

PROPOSITION 6.4.4. Let !3 be defined in (6.44) and let Xn.k =xk, x 1, X2 , · · · i.i.d. 
with distribution !3. Suppose that the conditions of Lemma 3.4.4 are fulfilled. We 
have • • 
(i) 110n -Ooll - 0, H{AnMo) -o almost surely. 
Suppose in addition that H satisfies (5.24). 
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(ii) If the discontinuity assumption (5.22) holds and if 
D2(8,_,<1)~exp(M8 - •) and 1Elt:i12P < oo, p >21(2-v), 0< v< 2, 
and On are asymptotically independent, and 

Vn(iJ~>-08)) ~ 91{O,lkll2L - l(A8))), i = 1,2. 

moreover 
"(I) 

then On 

(iii) If d = I and the conditions of Lemma 6.4.3 hold (i.e. if (5.22) is replaced 
by the stronger assumption), then IE lt:n f P < oo for some p > 6 implies that 

llg,,-golln = l9p(n -½ ). 

(iv) If D2(8, lf)~A8 - ', r>0, and IEexp(,Blt: 1 l
2)<oo for some ,8>0, then 

llg,,-golln = l9p(n - 'h. (]ogn/'). 

PROOF. 

If D 2(8, lf)~exp(M8-'), 0<v<2 and 1Eexp(,81t:i12)<oo for some ,8>0, 
then 

I 

llg,,-golln = l9p(n 2+, ). 

(i) This is Lemma 3.4.4. 
(ii) This is Lemma 5.3. I . 
(iii) Combine Lemma 3.4.4, Theorem 6.2.2 and Lemma 6.4.3. 
(iv) For 710 defined in (5.24), the class 

gR(1/o) = {go.A Eg: 110-0011~110, H(AilA 0)<110} 

satisfies 

N 2(8, Hn , gR(1/o)) ~ A 15 - 2<d + I) D2(8, cf). 

Insert this in conditions (6.20) and (6.21) of Theorem 6.2.5, with 
8n=n - '/2 (1ogn)½ and 8n=n - l/(2+v) respectively. D 

EXAMPLE 6.5. Let d=2, ci={A(y) = {x: xy ~I}. yE IR 2 } , grr=aY>, i=l,2, 
ab'>=l=ab2> (i.e. we assume for simplicity that /3~' = O. i = 1,2 is known), and let 
H be the uniform distribution on A6' > UA62

' . \,here A61
' and A62l are the two 

disjoint discs defined in Example 5.3. Since d' i~ a VC-class, it follows from 
Proposition 6.4.3 (iii) that if 1Eexp(,81t:i1 2)<oo, then 
llg,,-g011n =l9p(n-'/2 (log n)',,, ). This implies the rate t'p (n -½ (logn/2) for the 
estimator of a8>, i = 1,2, but from (ii) of Proposition 6.4. 3 we know that in fact 
la~):-a8>l=l9p(n -½ ), i = l.2. T he rate f()r g,, also implies that 
Hn(AnMo)= l9p(n - 11ogn), i.e. t'i,,(logn) ohservati,m s are assigned to the 
wrong sample. This rate cannot be improved. in the sense that if e.g. 
t: 1, t:2 , · · · are normally distributed , then one can show that for some a >0 

lim inf IP>(Hn(AnM o)>a~) > 0. 
n~oo n 



105 

In the following three examples, we again restrict ourselves to the case d = I 
and tt= {( - oo,y]: yEIR} . We take nonrandom Xn ,k , with the particular choice 
Xn,k = k In. Speeds of estimation are investigated in the discontinuous model, 
with the assumption of discontinuity of the underlying true regression function 
(Example 6.6), the assumption of continuity and identifiability of the underly­
ing regression (Example 6.7) or without identifiability at g0 (Example 6.8). 
The first example treats virtually the same situation as the one in Lemma 6.4.3. 
We present it to facilitate the comparison with Example 6.7. 

k 
EXAMPLE 6.6. Let d = I, Xn k = -, k = - [(n - 1)/2], · · · , [n/2], 

. n 

go.A ,(x) = ~ (a<il+xf3<il)IA ,,i (x), 0EIR4, A <1l=(-oo,y], 
i = l,2 

and 

go(x) = ~ (a&l + xf38l)IA~' (x), ab1l::f=ab2l ,A61l = (- oo , Yo], Yo =O. 
i = l.2 

A p p 

Application of Proposition 3.4.5 yields that 110n -Ool l - 0 and IYn -yo! - 0. 
Moreover, for 1/ sufficiently small the class 

gR(1/) = {go.A: 110 - 0ol l.-;;;;71, IY - Yol<11} 

satisfies for some constant A 

Nn(f112!8, \JR(1/), go) 
sup sup suo ----

6
--~ .-;;;; A 

j ';;>J 0 n ';;> n0 /l .;;;3, 2 '.i 

Hence if 1Ejtil2p < oo for some p >6 

llg,, - go lln = 0p(n - ½) 

which implies 

118n-0oll = (9p(n -½ ), lrn - Yol = (9p(_l). 
n 

'(I) '(2) , 
It is now not difficult to prove that On , On and Yn are asymptotically 
independent, with limiting distributions 

Vn(8~1
l-0b1l) ~ ~O,llt:112

( f [1 \]dx)-1
), 

-½ XX 

Vn(8~2l - 062l) ~ ~O, llt:112 <[ [ ~ :2] dx )- 1 ), 
i: I 

n(yn - yo) - arg suo2(ab1l-a62l) ~ tk - (ab1l -a62l)2/ 
/ -;;,t) k = O 

(compare with Example 5.2). 
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k 
EXAMPLE 6.7. Let d = 1, Xn k =-, k = -[(n -1)/2], · · · ,[n/2], . n 

go,A,(x) = ~ (aUl+x,B<il)lA'' 1(X), 0ER4. A(l)=(-oo,y], 
i=l.2 

and 

g0(x) = min(0,x,Bo), .Bo>0(Ao=( -oo,yo], yo=0). 

- p p 
From Proposition 3.4.5 we obtain that 116n -0o II - 0 and IIYn -yol - 0. For 
11 sufficiently small, the class 

!5R(11) = {go.A: II0-0oll..;;11, 111-1101,,,;;11} 

satisfies for some constant A 

Nn({j,2){), !5R(11), go) 
J~f. ns~r, f!If ---2(-4+-2-, 3-)J-. ---"-- ,,,;; A 

Hence if 1Elt1 l2p < oo for some p >4+ f 
Ilg,, - go lln = (')p (n -

1h
) 

which implies 

116n-Ooll = (:)p (n -½ ), lrn-Yol = (')p(n -Vi ). 

It can be shown that 6~2
) and Yn are asymptotically independent, with limiting 

distributions 

I: µ 

n v. (yn-Yo) - arg sup(2,8olkll/xdW(x)-,85µ3 /3) 
/ ;;.t) 0 

where W( ·) is standard Brownian motion. So the difference with Example 6.6 
lies in the slower rate for Yn . 

EXAMPLE 6.8. Let d = 1, Xn .k =kin, k = 1, · · · ,n, 

ga,A, = al( -oo.y], a>0, Ay =(- 00, y], y;;;.0 

and 

go 0. 

Then for !5 = {ga,A ,: a ER, y;;;e0} 

Nn({),2){), !5R(11), go) 
sup sup sup ..;; A < oo. 
J;;.J, n;;.n, 8.;;3, 23i1ogn 

(6.47) 



and 

s 
a; = - C k; 

VY; 

k, = [ •f] 
Then (l-T 2i):s;;;y;I Hn(y):s;;; I. Furthermore 

Oa>a,-a;. [ •f -1] Jr: -a= - Jr:· 
It follows that 

llga,A , -g;lln = (o:-o:;)2y;+o:2(Hn(Y)-y;) 

..;;; s2 +22Js2(1-y;I Hn(Y)):s;;;2o2 . 

We have 

0>.k, = [ •f] « [ ~~ v'½i] «V 

The number of functions of the form 

s 
k _ c 1( - oo. r,l 

VY; 

with kEZ, O:s;;;k..;;;2i, and with 

Y; = n - 1(1-T 2i) - i, iEl O:s;;;i,s;;; r logn · l ' l log(l-T21) 

is equal to 

(V+l) [ logn_
2

. ]..;;; a (logn)23i . 
log(l-2 l) 

It follows that if IE(exp(,Blt:11
2))<00 for some /3>0, then 

llg,,-golln = 0p(n -½ (loglogn)"'') 
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(see Corollary 6.2.6). In fact, DARLING and ERDOS (1956) prove that if 
IElt:113 < oo, then 

Ilg,, - go lln . r::: 
lim sup _ ½ ½ ..;;; v 2 almost surely 

n-+oo n (loglog n) 
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and 

. [ A a + 2loglog n + ½ logloglog n - ½ log77 l 
hm P llg,,-golln ,,;;;; 'h ,;, 

n-oo n ·(2loglogn) 

= exp(-2e - a), -oo<a<oo 

(see also Chapter 7.4 for related results). 

REMARK. In the continuous model without identification at g0 , the same rates 
as in Example 6.8 can occur, i.e. the continuity restriction cannot prevent 
n '/2 Ilg,, - go lln from exploding. 

We conclude that the application of the theory of Section 6.2 to two-phase 
regression problems can lead to some extent to more refined results than the 
ones obtained by the direct methods of Chapter 5. It shows that the continu­
ous model - with identification at g0 - is of finite metric dimension, whereas 
for d> 1 the discontinuous model can be infinite-dimensional. Example 6.5 
illustrates this. However, Proposition 6.4.4 reveals a mAajor shortcoming: the 
rate for g,, does not always determine the rate for the On>. Since Section 6.2 
concentrates on rt}es for g,,, the techniques there cannot produce possible fas­
ter rates for the On . 

In Examples 6.6 and 6.7, where d = 1, the models are again finite­
dimensional. These examples only differ as regards the assumptions on g0 . In 
Example 6.6 the rate 0p(n - 'I, ) for g,, implies that lr,,-Yol= 0p(n- 1), whereas 
in Example 6.7 we have that llg,,-go11n= l9p(n -½ ) leads to lrn-Yol= l9p(n -1/' ). 
If in Example 6.7 the continuity of g0 were known and a continuity restriction 
were super imposed on the estimated model, then the rate for Yn would of 
course have been 0p(n -½ ). It is important to note that in Chapter 5 we could 
not handle the model of Examples 6.6 and 6.7 without restricting g0 to satisfy 
the discontinuity assumption (5.22). Example 6.7 now treats a situation where 
(5.22) (or rather its counterpart for the non- i.i.d. case) is violated. 

Given the rate of convergence, the asymptotic distributions in Examples 6.6 
and 6.7 are relatively easy to find. We remark that in e.g. LECAM (1970), the 
rate l'Jp(n -½ ) for the Euclidean parameters indexing a parametric model is 
taken as a starting point. Then asymptotic normality can be proved without 
assuming the existence of first and second derivatives almost everywhere: 
essentially only differentiability in quadratic mean is required. The continuous 
model of Section 5.2 can be viewed in this light, since there the estimator of 0 
indexing ge., converges with l9p(n - ';, )-rate and it can be shown that ge.c is 
differentiable in quadratic mean II· II at 00 . Also for other non-linear regression 
models, it may be convenient to prove the 0p(n - ,;, )-rate for the Euclidean 
parameters first, using the results of Section 6.2 (more specifically, Lemma 
6.2.3), and then establishing asymptotic normality given this rate. 

If the rate for g,, is 0p(n -½ ) but the rate for some of the Euclidean parame­
ters indexing g differs from 0p(n - ';, ), then ad hoc methods are necessary in 
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order to obtain asymptotic distributions. Yet, Examples 6.6 and 6. 7 suggest 
that they can again be found more easily, once the rates hAave already been 
established. Observe that the limiting distributions of the O~J that we have 

d f I f h ki d 
. ()A ( I) d ()A (2) . 

encountere so ar were a w~xs O t e same n , 1.e. n an n asymptot1-
cally independent and Vn(O;> - 0&>) converges to a normal law with covari­
ance matrix 11£112L - 1(A8>), i = 1,2. 

In Example 6.8, the model is again as in Examples 6.6 and 6.7, but g0 is 
now assumed to be a one-phase function. The example shows that the rate for 
g,, can qepend on g0 • It illustrates the merit of concentrating on g,, instead of 
On and A11 : the latter are not identifiable at g0 . We already elaborated on this 
in Section 3.4. However, even though we did not assume identifiability of all 
(/Jl , we did need condition (3.41), which can be seen as an identifiability condi­
tion on A. Example 6.8 now suggests that if (3.41) is not imposed, then tech­
niques that g0 beyond uniform laws of large numbers are needed to prove con­
sistency of g,,. To find the limiting distribution of g,, in this example, we used 
the fact that the expression for Ilg,, -g0 lln coincides with the maximum of the 
absolute value of weighted partial sums. The question arises whether in general 
the knowledge of the rate of convergence - possibly slower than 0p(n -'!' )- for 
g,, can substantially facilitate the investigation of its asymptotic distributional 
behaviour. 
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7. TESTS FOR A CHANGE-POINT 

7.1 Introduction 
Example (1.1) deals with the change-point model 

{

A (I ) + {k k = I . . . 'T , , , (') . 
Yk = \(2) + k = + I . . . , A I E ~ , I = 1,2. 

I\ fk , 'T , ,n 

In Section 6.4, Examples 6.6 and 6.8, entropy considerations led to the conclu­
sion that if there is no a priori knowledge about "AU> , i = 1,2 or -r then 

llgn - golln = l9p(n -½ ), if "Ab'\;e:"Ab2) 

whereas 

llgn-golln = (9p (n -½ (loglogn)½), if "Ab' >="Ab2>, 

provided that the proper moment conditions on tk hold. 
In this Chapter, we shall study the model where y1, • • • .Yn are independent 

random variables, y1, ···,YT having distribution Fx"' and YT +!,· ·· ,Yn having 
distribution FA,,,_ {FA: °A EA} is a set of probability measures, with probability 
densities /A with respect to some a-finite measure µ,. We are interested in the 
testing problem Ho : "11.< 1> = "11.<2> against H1: "A<'>*"l\<2>. 

The (log)likelihood ratio test statistic is 

where 

+ suP. 2log 
A71' E A 

The rate 0p(n -½ (loglogn )'h) that we encountered in Example 6.8 suggests 
that under Ho, Tn = 0p(loglogn ). In fact, if FA is the normal distribution with 
variance I, then this is a straightforward consequence of Example 6.8. In other 
words, Tn behaves in a non-standard way. 

We shall consider two approaches for investigating the asymptotic efficiency 
of Tn: efficiency in the sense of Bahadur and efficiency at local alternatives. 
We show in Section 7.2 that if {Fx : A.EA} is e.g. a one-parameter exponential 
family, then Tn is optimal in the sense of Bahadur. Section 7.3 compares the 
Bahadur slope of Tn with the slopes of some alternative tests. We shall how­
ever also give evidence that T/s optimality in Bahadur's sense is for practical 
purposes not very relevant. In Section 7.4 we show that if FA is the normal 
distribution or the exponential distribution, then at local alternatives Tn has 
asymptotic power equal to its asJmptotic significance level. Local alternatives 
will be those alternatives with I A I) - "11.<2> I =(9(n -½ )_ 
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Section 7.5 deals with the testing problem for a regression model with 
change-point. There is an obvious analogue of Tn in a regression model with 
possibly unknown error distribution. However, the theory developed in Sec­
tions 7.3 and 7.4 indicates that this analogue has too many unfavourable pro­
perties. Therefore, we shall propose several alternative test statistics, also bear­
ing in mind that a more user-friendly test is desirable. 

7.2 Bahadur efficiency of likelihood ratio tests 
For a description of the concepts of Bahadur slope and efficiency, we refer to 
BAHADUR (1967,1971) and GROENEBOOM and OOSTERH0FF (1977). Bahadur 
looks at probabilities of large deviations, i.e. probabilities which are exponen­
tially small as n -HX>. We shall first review some general results. 

Let {P8 :0r::00 U0i} be a set of probability measures dominated by a a­
finite measureµ.. Let p 8 =dP 8 / dµ. and let {Tn} be a sequence of test statistics, 
based on n i.i.d. observations from P 8 , for testing Ho: Or::00 against H 1: 

Or::01• Define for all t >0 

Gn(t)=P1-1,.(Tn;;..t)=sup l?o(Tn;;..t). 
8E8 o 

The sequence {Tn} has (exact) Bahadur slope c(O) at Or::01 if 

I P, 
-logGn(Tn)- - ½c(O). 
n 

The word 'exact' refers to the fact that one uses the exact null-distribution of 
Tn , as opposed to its asymptotic null-distribution. 

For the evaluation of the Bahadur slope, the following theorem is useful. 

THEOREM 7.2.1. Suppose that 

1 P, 
-Tn- c(O), Or::01 
n 

and that for all a >0 in a neighbourhood of c(O) 

1 
-logP1-1o(Tn;;..na) = -/(a), 
n 

where /(a) is a nonnegative function, continuous at c(O), then the Bahadur slope 
of {Tn} is equal to 21 (c(O)). 

PROOF. See BAHADUR (1967,1971). 0 

An upper bound for the Bahadur slope is twice the Kullback-Leibler infor­
mation J(O), defined as 

J (0) = jnf K(O,O), 
8E0 o 

with 
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_ {j polog(po I pu)dµ if Po<<Po 
K(8 8) = h . ' oo ot erw1se 

THEOREM 7.2.2. For each 8 

Po [ ! logGn(Tn).-;;;; - ](8) - 11] - 0 for all 11>0. 

PROOF. See BAHADUR (1971). D 

The following lemma is a minor modification of Corollary 5 in BAHADUR and 
RAGHAVACHARI (1972). 

LEMMA 7.2.3. Suppose that 

Jim IP>o(_.!_Tn.-;;;;21(8)-11) = 0 for all 11 >0, 
n--+00 n 

Jim sup _.!_loglP>1--1.(Tn;;;.na) .-;;;; - 1/za for all a>0, 
n--+00 n 

(7.1) 

(7.2) 

then {Tn} is optimal in the sense of Bahadur, i.e. its Bahadur slope is equal to 
21 (8). 

PROOF. Let 11>0 be arbitrary. Then 

Jim sup IP>o(_.!_logG11(Tn);;,. - J(8)+11) 
n~oo n 

.-;;;; Jim sup IP>o(_.!_logGn(Tn);;;. - ](8)+11, _.!_Tn>21(8)-11) 
n--+00 n n 

+ lim sup IP>o(_.!_Tn.-;;;;21(8) - 11) 
n--->OO n 

= Jim sup IP>o(_.!_logGn(Tn);;,. - J(8)+11, _.!_Tn>21(8)-11). 
n --->oo n n 

If n - 1 Tn > 21 (8)-11, then 

1 1 
-logGn(Tn).-;;;;-logGn(n (21 (8)-11)), 
n n 

and application of (7.2) with a = 21(8) - 11 gives that for all n sufficiently large 

I 3 
-;;IogGn(n(21(8)-11)) .-;;;; - ](8)+ 411. 

Thus 

lim sup IP>o(_!_logGn(Tn);;;. -](8)-11) 
n~oo n 

I 
.-;;;; lim sup IP>u(-logGn(Tn);;;.-](8)+11, 

n --->OO n 
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I 3 
--;IogGn(Tn)~ -J (0)+ 4 11) 

= 0. 

Since according to Theorem 7.2.2 we have 

lim Pe(_llogGn(Tn)~-J(0)-71) = 0, 
n-+OO n 

this completes the proof. D 

Lemma 7.2.3 is the basic tool for proving optimality in Bahadur's sense of 
the statistic 

We shall first describe the change-point model in an i.i.d. setting to enable us 
to use the previous results. Let O=(A(l),A(2),y), and let (xk,Yk), i = 1, · · · ,n, be 
independent observations from the probability distribution 

_ {xF">-11 ,(y) if x~y 
Pe(xI ~x, YI ~y) = yF">-'"(y)+(x-y)F">.12,(y ) if x>y 

In the sequel, we shall assume that Yr, =yk, where rk is the rank of xk in the 

ordered sequence ~I)~··· ~~n)· Then given (xI, · · · ,xn)=(xi, · · · ,xn) we 
have that YI , ···,YT, are i.i.d. with distribution function F">-"' and 

YT,+I, · · · ,Yn are i.i.d. with distribution function F">-"', where 'Tn='Tn(y)= 
{ number of xk ~y, I ~k ~n }. We shall regard Tn as the unconditional likeli­
hood. 

The parameter space is 

0 = {O=(A(ll,A(2),y): AU> EA, i = 1,2, yE(O, I)}. 

For J(O), O=(A(l),A(2),y), we find the following expression: 

J(O) = }~{ [r f f">.i»log(/">-'" / /">.)dµ,+(1-y) f f">.i 21 log(/">-"' / f">-)dµ]. 

Lemmas 7.2.4 and 7.2.5 below present sufficient conditions such that the 
assumptions (7.1) and (7.2) of Lemma 7.2.3 hold for {Tn}-

LEMMA 7.2.4. Suppose that for 8=(A(l>,A(2),y), 

I - Tn(Y) 
lim lfl>e(-Tn(--)~21(8)-71) = 0 for all 71>0. 

n-+oo n n 
(7.3) 

Then also 

lim lfl>e(Tn ~21 (0) - 71) = 0 for all 71>0. 
n-+OO 

PROOF. This follows immediately from the fact that 
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If we define 

t<1l("A 'T) = suP. 2log 
n ' ·J,.T11 EA 

and 

n 

t<2l("A 'T) = suP. 2log 
n ' >?" EA 

IT f>,,m(yk) 
k = T+I 

then 

LEMMA 7.2.5. Suppose that for every sequence {kn}, 1 .;;;kn .;;;;n - 1, n = 1,2, · · · 

Jim sup _!_log [sup l?>,.(l~l("A,knF"'na)] .;;;; - ½a, a > 0, i = 1,2. (7.4) 
n--> oo n AEJI. 

Then also 

fun sup _llogl?Ho (Tn ~na) .;;;; - ½a. 
n--> 00 n 

PROOF. For each .\oEA 

- k 
Tn(-n) = }nf [1~1l("A,kn)+Ifl("A,kn)] 

n f\ EA 

Hence 

Let '1}>0 be arbitrary. Then for all .\o EA 

!?Ao (1~1)(.\o,kn) + 1~2)(.\o,kn)~na) 

[aJ,.TJ] 
.;;;; ~ l?Ao(I~1>(.\o,kn)E[ni1J,n(i+l)1J), 1~2l(.\o,kn)~na-n(i+l)71) 

i = O 
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+ P.\,(1~2>(.\o,kn);;;.na). 

From (7.4) we know that for arbitrary c5>0 and for n sufficiently large 

sup P>-.,(1~1>(.\o,kn);;;.ni'IJ) ,;;;; exp(-n(..£]_
2 

-c5)) 
A,, E )\ 

and 

<2> . a (i + l)'IJ sup ?.\,(In (.\o,kn);;;.na-n(1 + l)'IJ) ,;;;; exp(-n(-
2 

-
2 

-c5)), 
A,, E )\ 

which implies 

sup ?Ao (1~1>(.\o,kn) + 1~2)(.\o ,kn);;;.na) 
A,, E )\ 

[aj_,11] a n a 
,;;;; ,2; exp(-n(--...:.L-2c5))+exp(-n(--c5)) 

i=O 2 2 2 

.; [([; ]+ l)e"' /2 +I] exp(-n(; -28)). 

Since 'IJ and c5 are arbitrary, this implies 

Jim sup sup _!_logP.\,(1~1>(.\o,kn)+l~2>(.\o,kn);;;.na),;;;; -Via. 
n---->OO A,, E )\ n 

From (7.5) it follows that also 

- kn 
Jim sup log?Ho(Tn(-);;;.na),;;;; -½a. 

n--+oo n 

And since this is true for all sequences {kn}, also 

Jim sup_!_lll>Ho(Tn ;;;.na) 
11-H)O n 

I { - k } ,;;;; lim sup -log n max ffl>tt.(Tn(-);;;.na) 
n----> co n J ,s;,k ,;;,n n 

,.;;Jim sup _!_Iogn - ½a = - ½a. □ 
n---->00 n 

Now, KALLENBERG (1978) shows that (7.3) holds for {F,\: AEA} an 
exponential family in standard representation and ,\<il, i = 1,2, in the interior 
of parameter space. Moreover, he proves that (7.4) also holds if { F ,\: ,\EA} is 
a one-parameter exponential family. Thus, we arrive at the following theorem. 

THEOREM 7.2.6. For {F,\: AEA} a one-parameter exponential family in standard 
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representation, {Tn} is optimal in the sense of Bahadur at all alternatives 
0=(A.< 1>).<2l,y), "}..U l, i = 1,2, in the interior of A, y E(O, I). 0 

Note that for k-parameter exponential families (k > I), Bahadur-optimality of 
{Tn} follows if (7.4) holds. 

Related results have been obtained by DESHA YES and PICARD ( 1982). They 
consider the normal distribution and derive large deviations results both at Ho 
and H 1. 

7.3. Bahadur efficiency in the normal and exponential case 
Examples of one-parameter exponential families are the normal distribution 
with known variance and the exponential distribution. We shall treat these in 
some more detail. In Subsection 7.3.1 we compute the slopes for Tn and some 
alternative tests that are easier to use in practice. Furthermore, the fact that 
these alternative tests are '9p(I) under Ho might also be considered as a 
theoretical advantage. To explain why, we actually need the results of Section 
7.4, which imply that the alternative tests always behave better than Tn at local 
alternatives. 

Subsection 7.3.2 presents a test statistic which is asymptotically equivalent to 
Tn under Ho, but which has Bahadur slope zero. 

7.3.1. The normal case 
For F-,,, = <I>(· - "}..), AEIR, <I> the standard normal distribution, we have 

- k 
Tn = max Tn(-), 

l ..;k ,;;;n - l n 
- -2 

with Tn(k / n)=tn(k / n), 

tn(l_) = "" ~[_!_ ±Yi __ !_ ± Yi]· (7.6) 
n v---;;--- k i=l n -k i =k +l 

The exact null-distribution of Tn is quite cumbersome and it turns out that 
the limiting null-distibution of the appropriately normalized Tn is not a good 
approximation for finite sample sizes. 

We propose statistics of the form 

k - k 
Tn.,t, = max 1/;(-)Tn(-), 

l ,;;;k ,;;;n - I n n 

where 1/;(.) is a function that diminishes the weights in the tails. For practical 
purposes it is convenient to take 1/;(s)=s(l-s), because then the approximate 
significance level can be found in standard tables: under Ho 

t: 
Tn.,t, - sup B2(s), for 1/;(s)=s(l -s), 

O<s <: I 

where B(.) is a standard Brownian bridge. 
Other relatively easy to use tests statistics are 
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and more generally 

It!,,,, I = In.fit,½(!. )tn( !. ) 1-
k = 1 n n 

The superscript 'S' refers to sum-statistic, as in PRAAGMAN (1986). Under Ho 

lt!I ~ l':)i(O,(!w2-2))1 

and 

e l 
lt!,tl - l':)i(0, 12)1, fori/i(s)=s(l-s). 

Let c(T,,,,O) and c( I tJ 1,0) denote the Bahadur slope at 0=(),_(1},>,_(2),y) of 
{Tn,1/,} and { It!,,,, I } respectively. 

LEMMA 7.3.l. If F>. =~(- ->..), 

c(T,0) = y(l -y)(>,_(IJ _ >,,<2>)2, 

c(lt-51,0) 

<f'"- Vy(l -y) -(1-y)arcsin v1t=y - yarcsin Vy)2 

.lw2 - 2 
4 

and for i/i(s)=s (1-s) 

c(T,,_,O) = 4y2(1 - y)2(>,_(l l ->,,<2>)2 , 

c( I tJ 1,0) = 3y2(1 - y)2(>..<1>->..<2>): 

PROOF. The Kullback-Leibler information number is 

J(O) = fy(l -y)(>,_(ll->_<2J)2. 

Hence c(T,O)=y(l -y)(>..(1) ->..<2>)2 . 
We apply Theorem 7.2.1 to calculate the slopes of the other statistics. It is 

easy to see that for a sequence of normally distributed random variables Nn , 
with expectation zero and variance a~-o2 

lim _lloglfD(INn I ~n v' a) = -½~ 
n-+OO n a2 . 

Straightforward calculation now gives 

1 a 2 
lim -loglfDHo( l t! l~n ½a) = -½ 

1 
, 

n-+ oo n -.,? - 2 
4 
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Moreover 

_,;,- l!!tl P, {(s / (1- s )t (l - y) I >..<1l- >..<2J I if s,;;;;. y 
n · tn( n )- ((l - s) / s)"'' ylA(l )_ >,_(2) 1 if s ;;;;.y 

uniformly in s E(O, I). Thus 
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n - '11 ltJI: [(1 - y)j ... ~ds+yf ... ~ds] l,\(I J_ ,\(2l l 
o Vt=;· y V~· 

= (t'l7'- V y(l-y) - (l-y)arcsin~ - yarcsinVy)l>._(I J_ >._(2l I, 

P, 
n - 1Tn,,J, - ¥'(y)y(l - y)(A(l)_ ,\(2l)2 = y2(1 - y)2 (,\(l )_ >,_(2) )2 

and 

P, [ y l l n - 'h l t~.,i,I - (1 - y)[sds + y£(1 -s )ds l>,_(l )_ ,\(2>1 

= +y(l - y)IA(l )_ ,\(2) 1· □ 

As is to be expected, the loss of Bahadur efficiency for the alternative tests is 
always the most substantial for values of y near O or I . 

7.3.2. The exponential case 
Suppose F>,.(y) = 1-exp( - >..y ), >.. > O, y ;;;;.O. Then 

- k 
Tn = max Tn(-), 

J,;;;; k ,;;;; n n 

with 

T (~) = - 2kl [ /3n(Yn,k) ] - 2( - k)l [ l - /3n(Yn,k) l (7.7) 
n n og k / n n og I - k / n ' 

k 

~Yi 
i= I 

/3n(Yn ,k) = -n-, k = 1, · · · ,n. 

~Yi 
i = I 

At 0 = (>._(ll ,,\<2l, y) we have 

_J__l=.1_ 1 1 
J(O) = log( >,_(I) + ,\<2l )-ylog >,_(IJ - (I - y)log >..<2l 
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and the Bahadur slope of {Tn} is 2/(8). 
The second order Taylor expansion of the right-hand side of (7.7) at 

Pn(Yn ,k)=k / n is equal to 

n k 2 
-• k (,-,n(Yn,k) - -;;) 

Tn(-;;) = n (k I nXI - k I n) 

Define 

T* = n 

It is shown in HAccou et al (1985) that after the appropriate normalization, 
Tn and T: have the same limiting null-distribution. Moreover, 

T"' T: = __ n __ 

( ! it?;)2 

where 

T~ = max k(n -k) [l. f y; - - 1- f Y;l
2 

J ,s;;k ,s;;n n k i = I n -k i = k + I 

is the likelihood ratio test for the case of normally distributed random vari­
ables (see equation (7.6)). 

LEMMA 7.3.2. If F;>..(y)= l -exp(-,\y) then T: has Bahadur slope zero. 

PROOF. It is easy to prove that T: converges in ? 8-probability for each 8. 
Thus, it remains to show that for all a >0 

lim l.1og?tt.,(T:;;..na) = O. 
n--> OO n 

Now, under Ho, /Jn(Yn,k) has the same distribution as the k-th order statistic 
Vn(k) from a sample of size n - l from the uniform distribution. Hence, if we 
take n sufficiently large 

• -• l 
Pl-fo(Tn;;..na);;;,. Ptt.,(Tn(-);;..na) 

n 

~p n ~ ½ 

[ 

Un(l) - J.. l 
,,_ ((l/n)(l - 1/n))½ ,,_a 

;;;,. IJl(Un(l);;;,.(!l..)½ +l.);;;,. IJl(Un(l);;..2(..ll..)", ) 
n n n 

[J -2(:)f I 
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Thus, 

I • n - 1 [ a •1, ] -loglP1-1.,(Tn ;;;,, na) ;;a, --log 1- 2(-) - 0. 
n n n 

D 

In the same way it can be shown that T~ also has Bahadur slope zero. In 
Section 7.5, we shall introduce the residuals-test, based on the least squares 
estimators of the parameters in a two-phase regression model. The residuals­
test has the same appearance as the likelihood ratio test for normally distri­
buted random variables. The result of this subsection therefore indicates that 
from the point of view of Bahadur efficiency it is not sensible to use the residu­
als test. Furthermore, the following section implies that also its Pitman 
efficiency is zero. 

7.4. Efficiency of the likelihood ratio test at local alternatives 
We study the behaviour of Tn at alternatives On = (.\~1>,.>..\,2>,-rn / n) for which 
the following holds: for some {.\n }, 

I .\\,' i - .\n I = l9(-r; 1/, ), (7.8) 

I .\~2> - .x.,, I = l9((n - -r,,) - ½). 

Again, we shall only consider the normal case with known variance and the 
exponential case. Then, condition (7.8) defines exactly the alternatives which 
are contiguous to the null-hypothesis and it is equivalent to the condition that 
the Hellinger distance between (F>,.;" f ' (F>,.;" r-T, and (F>,.] remains bounded 
(see e.g. OOSTERH0FF and VAN ZwET (1975)). We shall only study the situa­
tion where 11 < (-r,, / n )< l - 17 for some 17>0 and for all n sufficiently large. 
Then we can assume without loss of generality that 'Tn / n-y E(0, I) and (7.8) 
reduces to 

7.4.1. The normal case. Let F>,. =<I>(· - ,\). The limiting null-distribution of Tn 
is given in Lemma 7.4.1.1 below. Since Tn = l9p(loglogn) under Ho we need to 
renormalize it. Define for 0<11n < 1- ~n < I, 

I [ ( I - 11,, )( I - ~n) l 
P(1/n ,~n) = 2log ~ . 

1/n n 

Furthermore, write 
I I 

b(x) = 2logx +2 loglogx - 2 log-rr, (7.9) 

a (x) = 2(logx )'h, 

b,, = b(logn ), 

a,, = a(iogn ). 
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Let tn(k / n), k = I, · · · ,n -1 be defined as in (7.6). 

LEMMA 7.4.1.1. 

lim P1-1o [ max ltn(!_)I ~ s+b(p(1!n,l3n))) = exp( - 2e - 5 ) , 

n-+ oo 11. <k / n<l- 6. n a(p(1!n ,l3n)) 

-oo<s<oo. 

PROOF. A minor extension of Corollary 1.9.1 , page 57 in CsoRGO and REvESZ 
(1981) says that for B(x) a standard Brownian bridge 

1. .-. [ I B(x) I ,;;: S +b(p(T/n,l3n))] ( 2 -s ) 1m ir- sup .__,, = exp - e , 
n-+ oo 11, <x<6. Vx(I-x) a(p(11nl3n)) 

-oo<s <oo. 

Now, tn(k / n), k = I, · · · ,n -1 , is under Ho in distribution equal to 

B(!_) 
n 

, k=I , · · · ,n-1. 

) 
n 

The increments of B satisfy 

1. IB(u + x) - B(u)I = 1 (7.I0) 1m sup SUP v' 
n-+ oo O.;;;u,;;;J-1 / n O<x<'l / n 2(1ogn) / n 

almost surely ( CsORGO and REVESZ (1981 ), Theorem 1.4.1, page 42). For sim­
plicity, we only consider the interval (0, ½]. Take ~n =a (P(1ln,l3n))(logn )2 / n, 
then 

a(p(11n,l3n)) [- max 
1/,,;;;k j n ,;;;½ 

su I B(x) _ B(k I n) I] - 0 
k / n<x,;;;R +l) / n Vx{l - x) V(k / n)(I-k / n) ' 

almost surely, in view of (7.10). On the remaining subinterval (11n, ~n) we have 

P [ max IB(k /n)J ;-;,: s+b(p(11n,l3n))) 
11, <k / n<~, V(k / n)(I-k / n) a(p(1ln,l3n)) 

[ 

J B(x) I S + b(p(1!n,l3n)) l 
~ P sup ---;==:c===!== ;-;,:----- - 0, 

11,<x<~, Vx(I-x) a(p(11nl3n)) 

since P(1ln , I - ~n)= o(a(p(1!n,l3n)). D 

It follows that 

P11, [T" ,a;(' :"b" )'] - exp( - 2,- '), - oo<s < oo. 
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We can also use Lemma 7.4.1.1 to draw conclusions about the behaviour of 
the maximum likelihood estimator of the change-point. Let :;.n be defined by 

~ -T k Tn = arg max n(-). 
l,;;;k ,;;; n- l n 

It follows from Lemma 7.4.1.2 below that :;.n / n- 0 or I in IP'i--i., -probability, 

so under Ho :;.n / n is in a sense a consistent estimator of the change-point. 
However, at contiguous alternatives On also :;.n / n- 0 or I in IP'0" -probability, 

so in general :;.n is inconsistent. 

LEMMA 7.4.1.2. 

A n • n 
Jim IP'i--i.,('l"n~-

1
- or Tn??-n - -

1
-) 

n-+OO ogn ogn 
. • n • n = hm IP'o(Tn~-

1
-or-rn??-n - -

1
-)= I , 

n-+oo " ogn ogn 

for all contiguous alternatives On = (W> ,,\~2
), Tn / n). 

PROOF. We have that 

IP'i--i., [ max 
n n - <k<n- -

logn logn 

[ 

- k s(pn) + b(pn) 
= IP'i--i., max I tn(-) I > ( ) , 

_n_ <k<n __ n_ n a Pn 
logn log,, 

where s(pn) = (a(pn) / an)(s + bn) - b(pn) and Pn = log{logn(l - I / logn )] . Since 
s(pn)-oo as n - oo, application of Lemma 7.4.1.1 now implies that under Ho, 
:;. n ~ n / logn or :;. n ??- n - n / logn with probability tending to l. 

Because (F"A;" f°(F"A;'l r - T, is assumed to be contiguous to (F"A"t , the same is 

true in IP'o, -probability, on= (,\~I) ,,\~2), Tn / n ). □ 

Define y~~l = y n,k - IEo, y n.k, k = I , · · · , n, and let 

70J k 2 T~O) = max I tn (-) I 
J.;;k,s;;;n- l n 

be the likelihood ratio evaluated at y~~>i, · · · ,y~~~- Then under IP'0" 

[
t;.°>(!.)+(-k_ n -T,, tcn)

2 

if k ~Tn 
n n - k Tn 

[
t;,°>(!.)+( n - k _T_n -)½cn] 2 

if k??-T,, 
n k n - T,, 

(7.11) 

where 
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en = (n --rn)½A~1>--r~A~2>. 

In view of (7.11), we have at contiguous alternatives with (-rn / n)-y 

/tn(!.) I ~ it°\!.) I +0(-1-)'I, 
n n logn 

uniformly in k ~n / logn or k ~n - n / logn. Thus the extra term added to 
/t,0>(k / n) / is small. The consequence is that Tn has asymptotic power equal 
to its significance level at alternatives 0 =(A(t) A<2> y) IA<1>-A<2> / =iClln - '/2 ) n n , n , , n n V\ • 

THEOREM 7.4.1.3. 

I"•· [T" >( s :"b" )' l ~ p ... [T" >( s :"b" )' l I- 0, 

- oo<s<oo, 

for all contiguous alternatives On =(A~1
> ,A~2

> ,'Tn / n) with (-rn / n )-yE(O, 1). 

PROOF. For n sufficiently large, 

Po [ max 
" n n 

t ,;;,k ,;;, - orn - -,;;,k,;;,n - l 
logn logn 

/tO)(!_) / > s +qn +bn] 
n On 

~ Po [ max 
" n n 

( ,r;;, k ,r;;, - orn - - ,;;, k ,;;,n - l 
logn logn 

- k S +bn l /tn(-)/ > --
n an 

/t,°\!.) / > s-qn +bn l • 
n an 

~ Po [ max 
" n n 

( ,;;,k ,;;, - or n- - ,;;,k ,r;;,n - l 
logn logn 

where 

The theorem now follows from: 

Jim Po [ max 
n-H'$J " l ~ k ~ -n-orn - -n- ~ k ~ n - 1 

logn logn 

- k s +b l /tn(-)/ >--n 
n an 

= Jim Po. [Tn>(s+bn )2] 
n->OO Qn 

and 

Jim Pe [ max 
n-too " n n (,;;,k,;;, - orn--,;;,k,;;,n - l 

logn logn 
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= Jim sup lfl>tt,, [ max 
n--+oo n n 

l <;;; k <;;; - or n- - <;;; k ,;;; 11 - I 
logn logn 

I - exp( - 2e - 5
), 

for all Cf n -o. □ 

In Theorem 7.4.1.3 we excluded the cases (-rn / n)-O or I. One can however 
also show that if (-rn / n) converges to zero very fast ( e.g. 

Tn = o(logn / Ioglogn )), then Tn has again asymptotic power equal to its asymp­
totic significance level at contiguous alternatives (.\~1> , .\~2>, Tn / n ). On the other 
hand, at contiguous alternatives with e.g. Tn = l9((1oglogn )logn ), Jim inf 
Tn / logn >0, Tn does have some nontrivial power. 

7.4.2. The exponential case 
Let F >- (Y) = 1 - exp( - .\y ), y ;;,.Q,.\>0. Most of the results of the previous sub­
section also hold for the case of exponentially distributed random variables. 
We shall again only consider contiguous alternatives On= (.\~1l,.\~2

), Tn / n) with 
(-rn / n)-yE(O, 1), so that 

l.\\,'>-,x.~2> I = (9(n - '/2 ). 0.12) 

Let an and bn be defined as in (7.9). 

THEOREM 7.4.2.1. 

[ 
s+bn 2] lim lfl>tt,, Tn >(--) 

n-+OO Qn 
= exp(-2e- 5

), -oo<s<oo. 

PROOF. See HACCOU et al. (1985). □ 

Define y~~k = yn,k / IE11, (Yn,k), k = 1, · · · ,n. Let 

T (O) = T-(0)( k ) 
n max n -

J,;;;k<;;;n - 1 n 

be the likelihood ratio evaluated at (y~~>i, · · · ,y~~~)- We compare Tn(k / n) 
and T~O)(k / n) at contiguous alternatives of the type (7.12). For simplicity, we 
only consider the case k;;,.-r,,. 

LEMMA 7.4.2.2. At contiguous alternatives 0,, =(.\~1>,.\);>,-rn / n) with 
(-rn / n)-y E(O, 1) 

,\(2) 
n 

T, 

~y(O) 
£..J n,l 

i = I 

I " - ~y(O) 
~ n.1 

ni = I 

T, 

~y(O) 
"'1,J n.1 

i = l 
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uniformly in k ~'Tn . 

PROOF. We have 

;In(-)= 2nlog - ~Yn.i k [ l n l 
n n; = 1 

[
l k l [ l n l - 2klog -k ~Yn.i - 2(n -k)log -=-k . ~ Yn,; , 

1=1 n 1=k+ I 

so fork ~'Tn, 

- k -<0> k 
Tn(-)-Tn (-) = -2klog 

n n 

_I ___ I_ ~ <0l 
(A(l) A(2))~Yn,i 

I+ n n 1- I 

I k 

;\.~2> ;~/n.i 

_l _ _ _ l_) ~ <0l 
( ;\.(I) ;\.(2) ~Yn.i 

+ 2nlog 1 + n n 
1 

- I 
I n 

;\.~2> ;~?n.; 

-2klog(l +xk) + 2nlog(l +xn) say. 

(7.13) 

Note that xk= 0p,.(n -½ ) uniformly in k~'Tn. Expand the two terms on the 
right-hand side of (7.13) in a second order Taylor series around xk and Xn 
respectively, to obtain that uniformly in k ~'Tn 

T• 

~y(0) 
4'.J n,1 

i = I 

l_ ~y(O) 
,'1,J n,1 

ni = l 

'T,, T,, 

~y(0) ~y(0) 
~ n ,1 ~ n ,1 

k(i = l )2-nc = l )2 
k n 
~y(0) ~y(0) 
~ n,1 ~ n.1 

i = l i = l 

T• 

~y(0) 
~ n,l 

i = l 
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I 1 T, T, 

2( ,\(I) - ,\(2)) 
LY(O) LY(O) n.1 n.1 

n n i = I i = I 

1 _!_ f y<O) 1 ± <Ol 
,\(2) n.1 k Yn.1 

n ni = l i = I 

1 1 2 
( ,\(]) - ,\(2)) 

T~ n -k 
+ n n + l9p (n -½ ). □ 

1 2 n k ,, 
( ,\ (2) ) 

n 

We proceed by showing that the maximum likelihood estimator 1'n / n is 
inconsistent under contiguous alternatives, i.e. the pendant of Lemma 7.4.1.2 
for exponentially distributed random variables. 

LEMMA 7.4.2.3. 

n A n 
P1-1o(-

1
-<T,,<n --

1
-) - 0 

ogn ogn 

as well as 

n A n 
Po (-

1
-<Tn<n --

1
-)- 0 

' ogn ogn 

for a// ()n of the type (7.12). 

- - k-1 k 
PROOF. Let Tn(x)=Tn(k / n), x E( n _ 

1
, n _ 

1 
], and 

k 

LYn,i 
i = l k-1 k 

Vn(x) = --, XE(--
1
,--

1
]. 

n n - n -
LYn,i 

i = l 

From HAccou et al. ( 1985), we have that under H0 

I
- n(Vn(x)- x)2 I 

sup Tn(x)------
(loglogn)' <x < 1 _ (loglogn)' X (I - X) 

n n 

(7.14) 

= o(loglogn ), almost surely. 

On a rich enough probability space, one can define a sequence of Brownian 
bridges {Bn(x ): O,,;;x ,,;; 1} such that 

sup I n½(Un(x)-x)-Bn(x) I 
~ < x < I - ~ 

n n 

= l9(n -½ Jogn), almost surely 
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under Ho (see CsoRGO and REvESZ ( 1981 )). Thus under Ho 

I 
n½(Vn(x)- x) Bn(x) I 

sup 'h 'h 
-'-<x<I--'- (x(l -x)) (x(l -x )) 
Iogn Iogn 

(logn)31 2 
= (9( ,; ) almost surely. n , 

Combination of (7.14) and (7.15) yields that under Ho 
- ½ 

sup [an Tn (x)-bn] 
- 1- <x< I --1-
logn logn 

j Bn(x) j 
sup [an ½ -bn]+o(l), almost surely. 

-'-<x<I - -'- (x(l-x)) 
Iogn logn 

Define a(pn) and b(pn) as in (7.9). From CSORGO and REVESZ (1981) 

[ 

!Bn(x)j ] 
P sup [a(pn) 'h -b(pn)J:,;;;;s 

-'-<x<I--'- (x(l-x))-
logn Iogn 

- exp(-2e- 5
), - oo<s<oo. 

In view of (7.16), this gives that under Ho 
sup I Tn(x) I 'h = l9(logloglogn t, almost surely. 

- 1- <x< I --1-
Iogn Iogn 

(7.15) 

(7.16) 

Theorem 7.4.2.1 now implies that under Ho , 1'11 / n:,;;;; 1 / logn or 
1'n / n ~ 1 -1 / logn with probability tending to one. 

This is also true under Po. because 0n is contiguous to Ho- D 

Finally, we show that Tn has asymptotic power equal to its asymptotic 
significance level at contiguous alternatives of the type (7.12). 

THEOREM 7.4.2.4. For all contiguous alternatives 0n = (.\~1l ,.\~2l, -r11 / n) with 
(-rn / n)-yE(O, 1) 

IPoJan I Tn I½ - bn>s)-?1-1.Jan I Tn I 'h -bn >s)/ - 0, -oo<s<oo. 

PROOF. Application of Lemma 7.4.2.2 gives that 

sup 1Tn(i_) - T~
0
l(i_)I = l"p, (-

1
-
1-t. 

l <a; k ,,;;_n_ or n __ n_ ,,;;k<a;n - I n n " ogn 
logn logn 

The same line of reasoning as in the proof of Theorem 7.4. l.3 now leads to the 
required result. D 
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Of course, the results of this section can be extended to other families of dis­
tributions. Now, consider the statistic 

-
T = n 

- k 
max Tn(-), 

l). < ~ < l - 1). n 
n 

where 0< 11n < ½. If no a priori know!edge about T 11 is available, it is desirable 
to let 1/n tend to zero. But then Tn still cannot detect local alternatives 
8n =(>..~1>, >..~2>, Tn / n) with (Tn / n)- y E(O, I). The order of magnitude of1'n for 
the case of normally distributed random variables is given in Lemma 7.4.1.1. 

7.5. Hypothesis testing in a regression model with a change-point 
The two-phase regression model we study in this section is 

_ {g(xk)lf-1) + (k if xk ,;;;; y 

Yk - g(xk)lf-2) +£k if xk > y 

where £ 1, £2 , · · · are i.i.d. random variables with variance o2 , x 1,x2 , · · · are 
i.i.d. random variables, independent of £ 1 , £2 , · · · , with distribution H :R-R, 
and where g :R-R' is a known function, with 

00 

G = f g(xf g(x)dH(x) < oo. 
-ao 

The lf-il, i = 1,2, are unknown elements of IR' and y is the unknown change­
point. The continuous version of this model, where it is assumed that 
g(y)d 1>=g(y)d2>, is studied in FEDER (1975) (see also Section 5.2) and the 
discontinuous model is a special case of the one considered in Section 5.3. 
Also Section 6.4 treats models of this form. 

We showed that under regularity conditions, the least squares estimators of 
(/-i l, i = I, 2, are asymptotically normal, as long as the true underlying regres­
sion function actually obeys two different regimes. Example 6.8 clarifies what 
goes wrong if there is only one phase instead of two, and Section 7.3.1 and 
7.4.1 give some more precise results for the case with £ 1 normally distributed 
and g I (i.e. r = I). We shall now provide some heuristics for the testing 
problem f-Io: lf- 1

> = lf-2> against H1: lf- 1l-=ftclf-2l. 
L a< i > a<2i d A b h I . . h . . et un , un ';!n 'Yn e t e east squares estimators wit out contmmty res-

triction and let 8n, Ho be the least squares estimator given that H0 is true. The 
residuals test statistic is 

n A 

Tn = ~ (Yk -g(xd8n.H,,)2 
k = I 

Example 6.8 shows that T11 generally explodes at rate l9p(loglogn ). Section 
7.4.1 establishes its local inefficiency. Therefore, we shall consider other test 
statistics, which are the counterparts of the tests T n.,i, and I tJ.,i, I introduced in 
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Section 7.3.1, and for the situation_ with a priori knowledge about the change­
point, we present the analogue of Tn which was mentioned at the end of Sec­
tion 7.4. 

We shall first write Tn in a convenient form. Let Tn(Y) be the residuals test 
statistic given that the change-point is at y : 

_ n A 

Tn(Y) = ~ (Yk - g(xk )On, Ho )2 
k = I 

A( l) 
~ (Yk - g(xk)On_y)2 -

x,>y. 1..;k ..;n 

with il\, i~ 1,2, the least squares estimators given y. Of course Tn(y);;;.O. We 
shall write Tn(Y) in the form 

- -T -
Tn(Y) = tn (y)tn(Y), 

_ _!_n(y) defined below, and we shall consider test statistics that are functions of 
tn(y). 

Let Hn be the empirical distribution function based on x 1, • · · ,xn and 
define Tn(y)=nHn(y). Let Xci J,;;;; · · · ,;;;;Xcn) be the order statistics and write 

X,,., g("( l))I • Yn,y Y(l) 

g(XcT.(y)) Y(T.(y)) 

where Y(k) corresponds to the k-th order statistic Xck J, k = I, · · · n. Write 

Gn,r = XI, r Xn,r , Gn = Gn,oo, Xn = Xn ,oo, Yn = Yn ,oo· 

Then tn(Y) is defined for Gn,r and Gn -Gn, y non-singular: 

tn(Y) = Q;;,y½ An,y, 

with 

A - I xT Y G G- i T n, y - ----;;;-( n, y n, y - n, y n Xn Y n ). 
n 

Given (x1, · · · ,xn) = (x1 , · · · ,Xn), 
n ½µ-n(Y,Yo)(Ob1l-Ob2>), where 

has expectation 

µn(Y ,Yo) = Q;y½Qn(Y,Yo), 

and 



Now, define 
y 

Gy f gT(x)g(x)dH(x), Qr= GyG - 1(G-Gy), 
-co 

and let W be a standard Brownian motion. Then 
I: 

tn(y)-n 'h µn(Y , Yo)(Ob') - 0b2l) -4 Q;½ B(y) 

as process in yE{y: Gy and G-Gy have all eigenvalues >11}, 11>0. Here 
y 00 

B(y) = a f g(x)dW(H(x)) -GyG- 1a f g(x)dW(H(x)). 
-oo - co 

We also have that for O<v:o;:;;½ 
I: 

Q~_yin(y)- n ½ Q~. y/tn(Y, Yo)(Ob1) -0b2l) -4 Q; ½ +v B(y) 

as process in yEIR. 
This suggests test statistics of the form 

- -T -
Tn = sup tn (y)tn(Y) 

(y: G, and G- G, hav all eigenvalues >1)} 

which has limiting null-distribution 

sup BT(y)Q; 1 B(y) 
(y: G, and G-G, have all eigenvalues > 1)} 

and 
-T -

Tn,,j, = sup tn (y)Q~\tn(Y) 
-oo<y<oo 

with limiting null-distribution 

sup BT(y)Q; I +2v B(y). 
-oo<y<oo 
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Moreover, one can construct uniform asymptotic confidence intervals for 
µn(Y,Yo)(Ob'l-Ob2l),y, YoE{y: Gy and G - Gy have all eigenvalues >11} and 
for Q~_y/.Ln(Y,Yo)(Ob1) -0b2l), v>O, yEIR. 

It will be clear however, that the asymptotic distributions are hardly of any 
practical use. One could alternatively approximate the level of the tests pro­
posed so far, by simulating from the null-distribution. However, in general the 
distribution of €1 will be unknown. One could start up a simulation Rrocedure 
with the disturbances normally distributed with variance u~, where u~ is some 
consistent estimator of a2, and with (x 1, · • · ,xn)=(x 1, • • • ,xn)- Two draw­
backs are of course the computer time needed and the assumption of normal­
ity. 

A more simple test statistic is 
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TI, ~ [ 700 Q;, ,~(y)dy r c. [ I Q;,;t.(y)dy l' o.;,,;; ½, 

where en is some positive (semi-)definite matrix depending on _(x 1, • • • ,xn) 
and where the integral is taken over those values of y where tn(Y) is well­
defined. Note that under Ho 

00 I: 00 

f Qn,yln(y)dy - f Q;½+•B(y)dy, Q,;;;,,,;;;½, 
- oo - oo 

i.e. the limiting null-distribution is multi-dimensionl!l normal, with covariance 
matrix V say. One can estimate V consistently by Vn say, using (xn , · · · ,xn) 

A2 
and a u n. If one chooses for en 

A - I 
en = Vn 

then the limiting null-distribution of T~.,i, is chi-squared with r degrees of free­
dom. 

The Pitman efficiency of T~.,i, at some alternative (06'l ,062l, y0 ), with 
I 06'l - 062> I = n - 'lz ll, can be approximated by 

oo T oo 

llT j Qn,y /.Ln(Y ,Yo)dy en j Qn,y/.Ln(Y,Yo)dy ll 
-oo -oo 

A -½ A -½ 
(sum eigenvalues V n Cn V n ) 

In the case of normally distributed errors with known variance, this is also an 
approximation of the Bahadur slope (see Section 7.3.1, where the Bahadur 
slopes for a special case are computed). 

Test statistics of the type T~.,i, could be called sum-type statistics and the 
tests based on the supremum over y max-type statistics. PRAAGMAN (I 986) 
shows for a related problem (i.e. linear rank tests for a change-point) that for 
every sum-type statistic there exists a max-type statistic that is at least as 
efficient in Bahadur's sense. This indicates that our sum-type statistics T{,i, are 
not efficient in the sense of Bahadur. However, the practical significance of this 
may be exponentially small. 

The sum-type statistics we !,11entioned above are easier to use in practice 
than the max-type statistics Tn and Tn,,J,· BROWN, DURBIN and WATSON 
(1975) propose the CUSUM test statistic, a max-type statistic that is also easy 
to use in practice. This test statistic is 

CUSUM = sup t:(r) 
y 

where 
• __ 1 _ fr Y(.-.(sJ + I) -g(~1.(s) + 1i)G;} X;Ys 

tn(Y) - -½ _ 1 T ½ ds. 
n - oo (I+ g(~.-.(s) + l))Gn,s g(~1.(s)+ I)) ) 

The limiting null-distribution of t:(r) is 
e 

t:(r) - aW*(H(y)), 

as process in y, with w• a standard Brownian motion. 
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8. COMPUTATION OF LEAST SQUARES ESTIMATES IN A MULTI-DIMENSIONAL TWO­

PHASE REGRESSION MODEL 

8.1 Description of the algorithm 
We calculate estimates for the two-dimensional version of the two-phase 
regression model of Section 5.2: 

y = min(aP l +x/J(ll ,a<2> +x,B(2l)+t:, 

with x = (z1 ,z2 )ER2
. This model is used to describe the lifetimes of plastic 

pipes for transportation of fluids as function of temperature and stress. The 
class a is of the form 

if= {{x:xy:s;;l}: yER2}. 

Estimates are obtained from realizations { (xk ,Yk ), k = 1, · · · ,n} by the 
method of least squares. We mentioned already in Section 2.1 that the compu­
tation can be done in polynomial time. At each partition it takes (9(n) time to 
find the least squares estimates given this partition. Since there are (9(n 2) 

different partitions of the data { x 1, • • • ,xn }, the total computation takes l9(n 3) 

time. We shall present an algorithm that reduces this to l9(n 2). The algorithm 
needs constant time to find the estimates at a given partition. Our experience 
however is that although asymptotically this is an improvement, the constant 
time needed at each partition is still substantial, i.e. of the same order of mag­
nitude as n for moderate sample sizes (n c:::::70). Some numerical results are 
given in the next section (Tables 3 and 4). 

The main idea of the algorithm is to exploit the fact that estimates 
corresponding to one partition can be easily calculated from those at another 
partition, provided these partitions differ with respect to a limited number of 
points. The complexity of the calculations increases as a function of the 
number of points at which two partitions differ. Therefore, we aim at a 
sequence of partitions such that successive partitions differ in onl(i one point. 

Denote the partitions of { x 1 , • • • , Xn } by P1 = { J; l ,Jy2l}, with 
Jl1l = A n{x 1 • • • x} and 1<2>= Acn{x 1 • • • x} for some A Ect For sim-J , , n J , , n · 

plicity, we assume that no three points of { x 1, • • • ,xn} are on a line. In Sec­
tion 8.2 we shall elaborate on the case with some points in {x 1, • • • ,Xn} coin­
ciding. Other violations of the assumption that there are no three points on a 
line necessitate only minor adjustments in the algorithm. There are now 

exactly M = (~) different partitions P1. Here, we do not include the partition 

{ {x 1, • • • ,Xn }, 0} because the least squares estimate will not consider this 
partition as feasible. _ _ 

The M partitions P1 are represented as vertices in a graph G = (0', f), where 
0'={Pi., · ··,PM} (we identify vertices with the partitions they represent) and 
where r _denotes the collection of edges. Two partitions are connected by an 
edge in r iff they differ in only one point. We shall now describe a method to 
recognize some (not all) of the adjacent vertices with little effort. The method 
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~ ~ 
defines a subgraph G = (13', f) of G with r c r. 

Let xk =(zk. 1,zk_2), k = I, · · · ,n. We assume that the first co-ordinates 
z 1, 1 :,;;;;; · · · :,;;;;;zn, 1 are in increasing order and that if zk. 1 = z,. 1 for some k=f-l, 
then zk. 2 <z1,2. Consider the line Lk.l through xk and x1. Denote by Xk.l the 
2 X 2-matrix 

Write 

and 

[x
xk,l = [z1,1 z,.2]. 

Zk, I Zk. 2 

x- _ [ Zk,2 
k,/ - -zk, l 

cu= x,;, DJ , 
dk.l = det(Xk,1). 

-zu] 
Z/, I 

Then Lk.l = { x : xck.l =du}. We define P k.l = {JVJ ,JF)} as the partition with 
x,EJ~'.L xkEJ~~) and for m=f-k,I, XmEl~'.) iff Xmck.l<dk,1 (see Figure 8.1) . 

• 

FIGURE 8.1. Pk.I and some other partitions Pk.m 

In this way, we have defined a one-to-one correspondence between all pairs 
{(xk ,x1): k</E{l, · · · ,n}} and all partitions {P/J=l, · · · ,M}. 

The slope of Lk,t is 

Z -z C _ k. 2 /, 2 _ k,/, I k < / 
Sk/ - - - --, , 

' Z -z C k, I /. I k,l, 2 

with sk,1=00 if zk, 1 =z,. 1• We put the slopes in increasing order: s 1 :,;;;;; • • · :,;;;;;sM 
(equal slopes are ordered arbitrarily in this sequence). Let P1 be the partition 
corresponding to the )-th slope in the ordered sequence. Define a graph 
G=('!P, f), with two partitions P1, and P1,, ) 1 <)2, adjacent iff one of the fol­
lowing conditions holds: 



(i) Pi, = Pk,1, Pi , = Pk.m and for )1 <j<Ji , Pi =Pq., where q=/=k, r=/=k , 
(ii) Pi, = Pu, P1, = Pk,m and for ) 1 <j <Ji, Pi= Pq., where q=/=I, r=j=I. 

EXAMPLE 8.1. Let n be equal to 5 (see Figure 8.2) . 

• 

FIGURE 8.2. n = 5 

FIGURE 8.3. Ordered slopes 

The ordered slopes and the corresponding partitions are 

slope partition 
3,4 I 2 413 5 
1,2 211 4 3 5 
3,5 2 1 4 513 
1,4 2411 5 3 
1,5 245113 
1,3 2 4 5 311 
4,5 2 514 3 1 
2,5 512 4 3 1 
2,4 5 412 3 1 
2,3 5 4 312 1 
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The graph G = (0>, f) is given in Figure 8.4. 

2,4 

3,5 

2,5 

FIGURE 8.4. (0>, f) corresponding to the data of Figure 8.2 

Lemma 8.1.1 asserts that two adjacent partitions in G = (0>, f) differ with 
respect to only one point. 

FIGURE 8.5. P 1.5 = {{2,4,5}, {1 ,3}} is connected with e.g. P 1.3 = { {2,4,3,5 }, {l}} 

LEMMA 8.1.1. 

rcr 

PROOF. Let P1, and P1, , j 1 <Ji , be adjacent in f, with P1, = Pu and 

P1, = Pk.m· Then there are no data-points x 0 such that the slope between x 0 

and xk is larger than su and smaller than sk.m· Hence, the only point at which 
P1, and P1, differ is Xm- Similarly, if P1, = Pu and P1, = Pm.I are adjacent, they 
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can only differ in Xm- □ 

We shall show that G = (0', f) is a connected graph, i.e. there is a path from 
each vertex to any other vertex. This is a desirable property because given esti­
mates at one partition, one can follow the path to obtain estimates at any 
other partition. Let 

f(P1) = { all vertices adjacent in G to P1, including P1 itself}. 

LEMMA 8.1.2. G = (0', f) is a connected graph. 

PROOF. This can be shown by induction. Let Gn =(0'n.fn) be the graph 
representing the partitions and edges for a data set of size n. Obviously, the 
lemma holds for n = 2. 

Now, let Gn _ 1 be the graph corresponding to { x 1, • • • ,xn - d and suppose 
that Gn - I is connected. All vertices in 0'n \ 0>n - I are of the form 
P1 =Pa_n: aE{l, · · · ,n - 1}. Let P1, and P1,,J 1<Ji, be two vertices in 0>n - l 

which were adjacent in Gn - l, i.e. P1, Efn-i(P1, ). Define 

B = {{a:_ Pa.n = PJ for s~me j 1 <j <Ji}= { a 1, • • • ,aT} say 

0 1f no such a exists · 

We consider four cases: 
(i) If P1, =Pk.I and P1, = Pk,m, kriB, then P1, Efn(P1,), i.e. the edge between 

P1, and P1, remains in Gn. 
(ii) Similarly, if P1, =Pu and P1, =Pm.1, lriB, then P1, Efn(P1, ). 
(iii) If P1, =Pk.I and P1, =Pk.m, kEB, then there is a path Pk.1-Pk.n-Pk.m· 
(iv) If P1, = Pu and P1, = P m.l, IE B, then the situation is as in Figure 8.6. 

Assume without loss of generality that x1=(0,0). 

Then su<s1.n is equivalent to 

zk 2 Zn 2 - '-<-'-
zk, I Zn. I 

This implies 

Xm 

FIGURE 8.6. 
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or, since Zn, I >0 and Zn, 2 - zk, 2 >0, 

Zk,2 Zn , 2 -zk,2 
sk,1=--< =sk,n· 

zk, I Zn, I -zk. I 

In the same way, one can show that sk,n <s,,n, s,,n <sm.n and Sm,n <sm,I· Thus, 
one obtains a path 

Pk.l➔Pk,n➔P1, n➔P m,n ➔Pm,/· 

In all four cases, we found that the edge between P1, and P1, remained in 
Gn or was replaced by a path. Clearly, all of the (n - 1) vertices added to <!Pn - I 

are adjacent to at least one vertex of <!Pn _ 1. Since by induction Gn - I is con-
nected, the lemma follows. D 

The connected graph G = (0', f) has a connected subgraph 
GT= (0', r T ), r Tc r with the minimum number (M - 1) of edges. Such a sub­
graph is called a generating tree. 

3,4 

3,5 

FIGURE 8.7. Generating tree for Figure 8.4 

One can supply each branch in r T with an orientation such that for some ver­
tex - called the root of the directed graph - there is a directed path from this 
vertex to all other vertices. 

The tree GT endowed with orientations will define a path through the parti­
tions. Starting in the root, one follows the directed branches until one reaches 
a vertex where there is no way out. Then one follows back the same path 
against the stream, until a vertex is entered from whence one can take a 
directed edge to a not previously visited vertex. The formal description of this 
walk is given below. We create for the original graph G a generating tree GT 

including root and orientations. 



(I) ALGORITHM FOR FINDING A GENERATING TREE 

(1) Start in an arbitrary p<1>E <!J. 
(2) Given the vertices p< 1>, · · • ,p<s): 
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(a) find r =max{t: I,;:;;t,;:;;s, f(pU)) not a subset of {P(l> , · · · , p<s)}} , 
(b) choose a p(s+ I)Ef(p(rl) \ {P(l>, • • • , P<sl}, 
(c) take the orientation from p<r> to p<s +1>. 

(3) Stop if all vertices have been visited. 

While creating the generating tree, we simultaneously compute estimates. 
Thus, estimates corresponding to partitions are found according to the order­
ing p(l>, · · · ,p<M) of the tree. We postpone the exact formulas for the esti­
mates to the next section. Here, we only present a more or less verbal descrip­
tion. 

The least squares estimates without continuity restriction at partition PJ are 
denoted by OJ and the residual sum of squares at OJ is denoted by SJ. For con­
venience, and to stress the fact that these estimates need not respect the con­
tinuity restriction, we sometimes write OJ=OJ,O and SJ =SJ, 0 . The issue of con­
tinuity follows now. 

Define for each OJ 

Y . = a(IJ _ a(2) 8 =£xt2) _ 0,(I) 
J /Jj /J; , J J J . 

Since OJ does not take the continuity restriction into account, partitions of the 
form 

need not coincide with PJ. Therefore, we consider at PJ three types of res­
tricted estimates. Suppose PJ =Pk.I. We let OJ. 1 be the least squares estimate at 
PJ under the restriction 

clll + x a(Il = a:(21 + x a(2l ;.1 k/J;, l ;,1 k/J;,1, (8.1) 

where (a;,1L/J;.'f,afLfJf\T>=8J 1• Similarly, Oj,2 is the least squares estimate at 
PJ under the restriction 

a(ll + x a(!~ = a:(21 + x a(2\ . }, 2 //J;. }, 2 //J;. 2 (8.2) 

Furthermore, OJ.3 will be the estimate at PJ under both restrictions (8.1) and 
(8.2). Obviously, the continuity restriction is always fulfilled at OJ. 3• Denote by 
SJ.q the residual sum of squares at OJ.q, q = 1,2,3. 

Now, let OJ.opt be the optimal solution at PJ under the continuity restriction 
that some partition of the form 

{ { Xk: Xk Yj.opt ,;:;;8j,opt }, { Xk: Xk Yj,opt ';;38j,opt}} 

is the same as PJ. Here, YJ,opt and SJ.opt are defined by 

Yj,opt = /J;,16pt - fJfJp, , 8j.op1 = ay~pt - ay_16pt· 

Note that OJ,opt need not be one of the OJ.q , q =0, 1,2,3. H9wever, the algorithm 
is such that nevertheless the overall optimal solution 8 will be found (see 



140 

Lemma 8.1.3). 

(II) ALGORITHM FOR FINDING THE LEAST SQUARES ESTIMATE 0 
(1) At the root p(I) of the tree, the least squares estimates without continuity 

restriction are calculated, using a standard least squares program. These 
estimates - and some auxiliary variables - are stored. 

(2) Given estimates and auxiliary variables at p(t) , · · · ,p<s), we choose an r 
as in step (2) of algorithm (I). The least squares estimates without con­
tinuity restriction at p<s + I) are computed from those at p(r) according to 
the formulas given in Section 8.2. 

(3) Let Jo= ~rg minl S}: j E {1, · · · ,M} }. If at 010 the continuity restriction is 

fulfilled, 0 = 010, S = SJ
0 

and the algorithm stops. 
( 4) If at 01, the continuity restriction is not fulfilled, this necessitates the cal­

culation of OJ,.q and SJ
0
,q, q = 1,2. This can be done using the formulas of 

Section 8.2. The algorithm replaces SJ
0 

by min{SJ,.q, q = 1,2} and 
searches anew for j 1 = arg min { SJ: j E {I, · · · , M}}. Continuing this pro­
cedure, one ends up with a sequence of indices Jo,) 1, • • • ,), say. 

(5) If SJ, has already been replaced by an SJ,.q, q = 1,2, the algorithm calcu­

lates 01,.3 and SJ,, 3 and replaces sJ,.q, q = 1,2, by sJ,.3 . 

Algorithm (II) results in an estimate 01,,,,.q,,,, corresponding to 
SJ.,,,, .q,,,, =min{S}_q: JE{l , · · · ,M}, qE{0,1 ,2,3}}. Note that algorithm (II) 

does not Acompute all SJ.q , q = 1,2,3. That 01,,,,.q,,,, is actually the overall optimal 
solution O is shown in the following lemma. 

LEMMA 8.1.3. 

A 

PROOF. Clearly, if at each partition OJ.opt were calculated, then 0=01,,,,,opt, where 
01,,,,.opt is the estimate corresponding to 

S},,.,,opt=min{S}_ 0pt:)E{I , · · · ,M}}. 

Thus, we only need to s~ow that the OJ.opt that are not considered are not the 
overall optimal solution 0. 

Let P1=Pk.l. If OJ.optfi{01.q: q=0,1,2,3} then there is an x0 , a=f=-k,l on the 
line { x: XYJ, opt =BJ.opt}. Suppose there is exactly one x0 , a=f=-k,I on this line. 
Consider the partition Ph generated by the line through x0 and some other 
point xb say. If 0h satisfies the continuity restriction, then S~<S~_q, q = 1,2, so 
then OJ.opt is not the overall optimum. If alternatively Oh does not satisfy the 
continuity restriction, then OJ,opt=Oh.q for some qE{l,2}, so then OJ. opt is con­
sidered. 

Suppose there are two points x0 and xb, a=f=-k,l, b=f=-k,l on the line 
{ x: XYJ.opt =BJ.opt}. Let Ph now be the partition generated by this x 0 and xb. 
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The same line of reasonjng shows that either OJ.opt is not the overall optimal 
solution, and/or OJ.opt = Oh. 3. D 

8.2 Numerical results 
We shall first present the formulas for the OJ.q and S}.q· Let P1, = P(r ) and 
P1, = p (s + 1> be two successive partitions in the tree that differ in one single 

. S P - {J(I) J (2)} . h j (l) Th point Xm say. uppose J, - 1 , , 1 , , wit Xm E 1 , . en 
p(2l :<:: {f1l \ {x } ](2> U {x }}. Let z (il be the matrix of design-points }, }, m , Jo m }, 

zk = (l,xk) with xk El;'.>, i = 1,2. When the algorithm arrives at P1, the follow-
ing quantities are in store at P1, : 

I) 

2) 

3) 

B(i> = [z(i>Tzu>] -
1 

i = 1 2 
}1 J, J, ' , ' 

the parameter estimates 0;'.>, i = 1,2, 

the residual sum of squares SJ,. 

From these the B;:>, o;:> and SJ, can be calculated: 

1) 

2) 

3) 

B(l lz zT B(') 
B(I ) = B ( I) - }, m m }, 

h J' I + z B(I) z T ' 
m }, m 

B(2) Z Z T B(2) 
B(2) = B (2) + }, m m }, 

h J' I - Z B(2) Z T , 
m }, m 

O(I) = o(l >+ B(l )zT(y -z o(I >) 
}, }, }, m m m }, , 

0(2) = 0(2) - B(2) z T(y - z 0(2)) 
}, }, }, m m m J, , 

(y - z 0(1>)2 (y - z 0(2l)2 
s2 = s2 + m m }, m m }, 

1, 1' I +z B(1lzT I-z B(2lzT · 
m }, m m }, m 

(8.3) 

(8.4) 

(8.5) 

Given the unrestricted estimates 01 at some partition P1 = Pk.I say, one can 
also calculate the restricted estimates 01.q , q = 1,2,3. Let 

and 

_ [BY) 0 l 
CJ - 0 Bf> 

rj. I = (zk, -zk), Zk = (I ,xk), 

rp = (z1, -z1), z1=(I,x1). 

Calculate for q = 1,2 
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I) 

2) 

3) 

Given Ci,q• 0i ,q and S},q for some q E { 1,2}, say for q = I, we have 

I) 

2) 

3) 

no need for further matrices 

C 1r - 2r T 2 0 1 0 3 - 0 - }, }, }, }, 
J - i, l T ' 
, ri, 2 CJ. I rJ. 2 

0T,rT2 r 20 I 
S2 3 = 5 2 + /· /· /· /· 

J J. I T . 
. ri ,2Ci, ,rJ.2 

We now describe how equal points in { x 1, • • • ,xn} are handled. Slopes sk.l 
are computed for the subset {xk,, · · · ,xk,. } of different points. At the root of 
GT the initial estimates at p <Il are calculated using the complete data set 
{(xk ,Yk), k = I , .. · ,n}. Estimates at Pi , = p <s + l) are found from those at 
Pi , = p (r) using the following transformation . Let Xm E {xk ,, · · · ,xk,. } be the 
point at which Pi , and Pi, differ and suppose that there are p observations 
y~l , · · · ,y~l at Xm, i.e. there is a group of the form {(xm ,Y~l), t = I, · · · ,p} 
in {(xk ,yk) : k = I, · · · ,n }. In the expressions (8.3), (8.4) and (8.5) we replace 

- - - 'I, - - - '!, -i-, (1) Zm -(1 ,xm) by Zm - p Zm and Ym by Ym - p 2.,Ym • 
1= ! 

For the algorithm of Section 8.1 the computer program NE WP was written 
in Pascal by M. Voors. A full description of NEWP can be found in VAN DE 
GEER and VoORS (1986). We first present the result of a simulation, with 
n = 20 and low noise level (Table I). 

a(l l /J\' l /J~l ) 0'.(2) p\2> p~2) 

0o 3 5 4 I 2 

0 1.03 3.00 5.00 4.14 0.98 2.00 

TABLE 1. Simulation results, n = 20, S2 
= 1.13 

Real data were supplied by a firm for the production of plastic pipes: 

y = log(life-time of a pipe) 

stress z, = 
absolute temperature 
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Z2 = --------
absolute temperature 

There are n = 295 observations. We first used the program NON LINWOOD 
(see DANIEL and Wooo (1980)). This is a program for computation of least 
squares estimates in a general nonlinear regression model. To obtain starting 
values for NONLINWOOD, F. Burger wrote a special program for life-times­
of-pipes-data, which calculates estimates at a hopefully representative subset of 
all possible partitions. The program NONLINWOOD was run several times 
with varying starting values and step sizes. From the outcomes we took the 
one with the smallest residual sum of squares. The result is given in the first 
row of Table 2. 

The program NEWP is too costly to handle the complete data set on the 
interactive system to which we had access, even though after grouping equal xk 

there remained only n'=71 observations (see Table 3 and 4). Therefore, we 
simply threw away 11 observations. The data turned out to be more or less 
ordered with respect to temperature: in the second row of Table 2 high tem­
peratures are disregarded whereas in the fourth row low temperatures are omit­
ted. Note that throwing away observations from the reduced data set means 
not using more than four times as many observations from the original data 
set. 

nor n' a(l) Pl ,8~1) a<2) ,8\2) ,8~2) s2 
(I) 295 -45.13 -50.19 21.82 -26.79 -22.55 12.21 47.20 
(2) 60 -56.20 -62.63 27.19 -41.93 -25.95 12.21 10.12 
(3) 60 -51.45 -69.99 26.74 -44.08 -27.09 18.47 10.45 
(4) 60 -41.20 -51.27 20.78 -39.11 -26.13 16.72 10.88 

TABLE 2. (l)NONLINWOOD, (2)NEWP I -60, 
(3)NEWP 6-65, (4)NEWP 12-71 

Table 3 and Table 4 present an overview of the relative cost of NEWP as 
function of n'. 

n' SIMP NEWP TREE 
20 3.69 4.31 4.27 
30 6.32 8.01 9.04 
40 13.27 17.89 21.05 
50 29.86 73.33 82.24 
60 65.80 199.93 2 I 8.31 
71 *** *** *** 

TABLE 3. NP-costs, *** insufficient field length for load 
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n' SIMP NEWP TREE 

20 41735 43157 42401 
30 62724 64204 63376 
40 112567 114105 113277 
50 151306 152662 152054 
60 216733 220313 217505 
71 *** *** *** 

TABLE 4. CM-costs, *** insufficient field length for load 

The program SIMP uses straightforward calculations, i.e. no generating tree 
is created and at each partition the estimates are computed directly without 
making use of previously obtained estimates at other partitions. TREE does 
create the generating tree but it does not use it: estimates are computed as in 
SIMP. As to be expected, NEWP is cheaper than TREE as regards NP-costs 
(normal priority costs) but less economical with CM-costs (central memory 
costs). Roughly speaking, the difference between TREE and SIMP represents 
the time needed for creating a generating tree. This turns out to be very costly. 
In order to decide which partition will be next in the generating tree, the pro­
gram has to make about 20 comparisons at each partition. This may be sub­
stantial, but we did not expect it to outweigh the 0(n) effort needed for recal­
culating estimates at each partition. 
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Samenvatting 

Regressieanalyse en empirische processen 

De k:lasse van regressiemodellen die in <lit proefschrift wordt bestudeerd is 

Yk = g(xd+tk, k = 1, · · · ,n, 

met t 1, • • • ,tn onderling onafhankelijke stocbastiscbe grootbeden met ver­
wachting nul en eindige variantie, en x1, · • • ,xn vectoren in Rd. De funktie g 
wordt verondersteld een element te zijn van een collectie § van regres­
siefunkties. V oorbeelden zijn niet-lineaire regressie, waarbij § een klasse is van 
funkties gei:ndexeerd door een Euclidiscbe parameter, en niet-parametrische 
regressie met bijvoorbeeld § een k:lasse van gladde funkties. 

We onderzoeken de relatie tussen de 'grootte' van § en het asymptotisch 
gedrag van de kleinste-kwadratenschatter g,,. Zij g O E § de ware onderliggende 
regressie. Des te minder men van g0 bekend veronderstelt, des te groter is § en 
des le moeilijker zal bet zijn g0 te schatten. We preciseren <lit door de entropie 
van § te bescbouwen en maken daarbij gebruik van de tbeorie over empirische 
processen. Ter illustratie gaan we in op het twee-fasen regressiemodel. 

In (lineaire) twee-fasen regressie, de klasse § is de verzameling van funkties 
van de vorm 

g = g(l)}A + g<2>}A,, 

met g<1> en g<2> lineair en de verzameling A varierend in een k:lasse Ct van 
deelverzamelingen van !Rd. Hoofdstuk I geeft een aantal voorbeelden van klas­
sieke twee-fasen regressie, waar d = 1 en waar de funkties g een knik of sprong 
hebben. In k:lassieke twee-fasen regressie is Ct de collectie van halfrecbten; in 
bet algemeen kan men ook andere klassen Ct beschouwen. 

Empirische proces-tbeorie betreft met name de uitbreiding van de Glivenko­
Cantelli-stelling naar algemene uniforme wetten van grote aantallen en 
uniforme centrale-lirnietstellingen. Hoofdstuk 2 geeft een overzicbt van de 
literatuur over uniforme wetten van grote aantallen en generaliseert de theorie 
naar bet geval van niet-identiek verdeelde stochastische grootheden. In 
Hoofdstuk 3 worden deze resultaten toegepast op regressie. Er wordt 
beschreven in hoeverre entropievoorwaarden op § leiden tot consistentie van de 
kleinste-kwadratenscbatter g,, . 

Hoofdstuk 4 behandelt de uniforme centrale-limietstellingen die in de 
navolgende hoofdstukken als referentiekader zullen dienen. In Hoofdstuk 5 
wordt ingegaan op het twee-fasen regressiemodel. Het blijkt relatief eenvoudig 
om - gegeven consistentie en de theorie van Hoofdstuk 4 - asymptotiscbe 
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normaliteit van de kleinste-kwadratenschatters van de Euclidische parameters 
af te leiden. 

In Hoofdstuk 6 keren we terug naar het algemene regressiemodel. Hier 
wordt op een wat subtielere manier gebruik gemaakt van de entropie van §, 

waardoor het mogelijk wordt de convergentiesnelheid voor &i te bepalen. De 
entropievoorwaarden in dit hoofdstuk gelden echter vaak alleen lokaal, d.w.z. 
in een omgeving van g0 • Met behulp van de resultaten in Hoofdstuk 3 kan 
men nagaan of &i op den duur in zo'n omgeving belandt. Naast niet­
parametrische regressie dient het twee-fasen model weer ter illustratie. 

Twee-fasen regressie is sterk verwant met de situatie waarbij men een 
abrupte verandering modelleert in de verdelingsfunkties van een rij van onaf­
hankelijke stochastische grootheden. In Hoofdstuk 7 besteden we aandacht aan 
dit laatste geval. We onderzoeken de asymptotische efficientie van de 
likelihood-ratio toets voor de aanwezigheid van een verandering. 

Tenslotte presenteert Hoofdstuk 8 een algoritme voor het berekenen van de 
kleinste-kwadratenschatter van een twee-fasen regressiemodel. 
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- I -
Het bewijs van Stelling 2.3.2 in dit proefschrif t kan eenvoudig getransformeerd 
worden om de volgende unif orme wet van de grote aantallen, uniform over een 
klasse '.JC van verdelingen op Rd, af te leiden: Zij H" de empirische maat geba­
seerd op n o.o. waarnemingen met verdeling H E '.JC en zi j '?I" een klasse van reele 
funkties op Rd met F =sup/E" If J. Stel dat limc .... 00 supHE'JC fr>cFdH = 0 
en dat voor alle c5>0, (l / n)logN 1(c5,H,,,'J) ➔PH 0, uniform in HE'X, waarbij 
logN 1 ( c5, H,,, CJ) de c5-en tropie van '?I" is voor de (pseudo-)metriek f I · I dH". Dan 
geldt ( onder meetbaarheidsvoorwaarden) 

}~i If fd(Hn -H)I ➔PH 0, 

uniform in H E'JC. 

- 2 -
Zij §" een klasse van reele uniform begrensde funkties op Rd en laat voor alle 
c5>0, ~ een overdekking in supremum-norm van §" zijn. Zij &., de collectie van 
graphs van funkties in~ en zij ~&.(x 1, • • • ,xn) het aantal verschillende ver­
zamelingen van de vorm A6 n{x 1, • • • ,xn}, A6E&.,. Als ~ 26 gekozen kan 
worden dat 

voor zekere constanten Wen P~O en alle n ~ I, dan geldt voor de c5-entropie 
logN 2(c5,Q, CJ) behorende bij de (pseudo-)metriek (f I· I 2dQl': 

logN 2(c5, Q, CJ) ,:;;;; Mc5-• Iog( ! ), c5>0, 

voor zekere constante M die alleen van de maat Q afhangt. Als '?I een VC­
graph klasse is, kan men ~ ='?I" en p=0 kiezen en komt dit resultaat overeen 
met het Approximation Lemma in [I]. 
[l]PoLI.ARD, D. (1984). Convergence of Stochastic Processes. Springer Series 

in Statistics, Springer Verlag, New York. 

- 3 -
Laat {P8 : 8ER'} een collectie kansmaten zijn met dichtheid p 8 =dPs / dµ ten 
opzichte van een a-finiete maat µ. Zij 811 de meest aannemelijke schatter geba­
seerd op n o.o. waarnemingen Xie, k = I, · · · ,n, met verdeling P8 . Stel dater 
een oneingige verzameling 0CR' is met dimensie kleiner dan r, zodanig dc!t 
V 8E0 3 8# met P8 =P'i,, en zodanig dat V 8fl0, Pfl=P'i, d.e.s.d. als 8=8. 
Dan is in het algemeen voor n ➔ oc de logaritme van het 
aannemeli jkheidsquotien t · 

n n 

~ logpil.(xk)- ~ Iogp9(xk) 
~ = • Ir = I 



niet begrensd in P8-kans. Voorbeelden zijn het twee-fasen regressiemodel en 
bet twee-compartimentenmodel. 

- 4 -
De beperking tot n -½ -omgevinkjes van de oneindig-dimensionale component 
van de onbekende parameter, zoals in [2] gebeurt, verdient te worden gerecht­
vaardigd. 
[2]BEGUN, J.M., W.J. HALL, W.M. HUANG en J. WELLNER ( 1983). Information 

and asymptotic efficiency in parameteric-nonparametric models. Ann. Sta­
tist. 1 J, 435-452 

- 5 -
Grote-afwijkingen en lokale asy mptotiek zijn twee wiskundige technieken ter 
benadering van een experiment &' = {P3: 0E0} voor grote waarden van n. 
Aangezien deze benaderingen tot tegengestelde conclusies kunnen leiden, is ten 
minste een ervan alleen statistisch zinvol onder extra regulariteitsvoorwaarden. 

- 6 -
Bij een model met abrupte verandering in de parameters van orde n -½ voor 
n➔ oo kan de lokatie de verandering niet geschat worden maar het bestaan 
ervan kan wel worden getoetst. 

- 7 -
Een inkomenspolitiek die rekening houdt met een subjectief oordeel van het 
indi\-i du over de subjectieve waarde van het inkomen, kan in abstracto bestu­
deerd worden (zie [3]), maar is in praktijk onuitvoerbaar. 
[3]KAPTEYN, A. , S. VAN DE GEER en H. VAN DE STADT (1985). The impact of 

changes in income and family composition on subjective measures of well­
being. In: Horizontal Equity, Uncertainty, and Economic Well-Being. Studies 
in Income and Wealth, Vol. 50, 35-67, The University of Chicago Press 

- 8 -
Aangezien 'commerciele kunst' een contradictio in terrrurus 1s, betekent de 
afschaffing van de BKR dat hedendaagse beeldende kunst als overbodig wordt 
gezien. 

- 9 -
In [4] wordt het volgende knapzakprobleem onderzocht: 

max{fc1x1: ±aux1~nb;, i = l , · · · ,m, x1E{0,l },j= l , · · · ,n} , 
j= l j= I 

met c1,c2 , · · · en a; 1,a;2 , · · ·, i = 1, · · · ,m, onafhankelijke identiek 
verdeelde stochastische grootheden met waarden in [O, 1 ]. De Lagrange­
relaxatie van bet continue probleem is 

Im 1 n m . i 
L,,(;\) = max ~ A·b +- ""(c - "";\ a )x · O~x ~ 1 J = 1 · · · n -',J I I >t ~ j ~ I I) . j" j > , > • 



Laat A:;;.i.o een oplossing van de Lagrange-relaxatie zijn. Zij L(A)=EL,.(A) en 
stel dat L(A) een uniek minimum A• beeft. Dan geldt voor n ➔ oo 

( n ),;, IL,.(A •)-L(A•)1 = €(1) 
loglogn n 

met kans 1. 
[4]VAN DE GEER, S. en L. STOUGIE (1987). A note on the rate of convergence 

of the multi-knapsack value function. To appear 

- IO -
Bescbouwt men de statistiscbe consultaties waar ik mee te maken beb gebad 
als representatieve steekproef uit bet universum van statistiscbe consultaties, 
dan leidt dit tot de conclusie dat proeven met muizen een onaanvaardbaar 
groot bestanddeel van bet wetenscbappelijk onderzoek vormen. 

- II -
Het sex-gedrag van de Chlamydomonas engametos kan worden beschreven 
door middel van een statistiscb model door de overgangswaarschijnlijkheden 
van vrije, ongebonden eel naar geexciteerde of gebonden eel, te relateren aan 
bet aantal ongebonden cellen van bet andere geslacbt. In de limiet levert dit 
model een aantal differentiaalvergelijkingen op die analoog zijn aan de 
Boltzmann-vergelijking. 
[5)DEMETS, R., A.M. TOMSON, S VAN DE GEER en A. TIP (1987). A statistical 

description of sexual cell interaction in Chlamydomonas engametos. Pre­
print, FOM-institute for Atomic and Molecular Physics 

- 12 -
Een vertolking van Das Woh/temperierte Klavier op piano kan deze muziek een 
dynamische dimensie geven, maar doet tekort aan het karakter van de verschil­
lende toonsoorten. 




