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1. INTRODUCTION

1.1 Goal and itinerary of this study
The problem we investigate is least squares estimation of a regression function.
We have n observations (x,yx), Kk =1, - - - ,n, which are assumed to satisfy

Ye = g(xk) t & , k=1, ,n,

where the disturbances ¢, are independent and all have expectation zero and
finite variance, and where the x; are vectors in some Euclidean space. The
function g(-) is in part unknown. The least squares method for estimating g is:
find a g, such that

n

+ 3 e —gP

R =i
is minimized, where the minimization is over the class § of the regression func-
tions that one considers feasible. The properties of the least squares estimator
é,, depend on the extent to which extent g is unknown, i.e. on §. If it is known
that the regression is linear, then § = {g(x)=x0: §€®} is the class of linear
functions and we are in a classical situation. Linear regression has been stu-
died extensively. More recent work in this field focuses e.g. on necessary condi-
tions for consistency (LA1, ROBBINS and WEI (1978)).

Linear regression is a special case of the situation where g is known up to a
finite-dimensional parameter. This more general case is called nonlinear regres-
sion. The class §is § = {g =g(-,0): 00O}, with ® CR’. Because of the possi-
ble nonlinearity, the approach to the study of the least squares estimator is
mostly asymptotic. HARTLEY and BAKER (1965) prove asymptotic normality
under the assumption of normally distributed errors. As in JENNRICH (1969),
we shall not specify the distribution of the €. Jennrich obtains consistency
and asymptotic normality under regularity conditions on the g(-,#). Later,
these conditions have been refined (Wu (1981)). However, there still remain
nonlinear models that have only been investigated on an ad hoc basis. As an
example we present a two-phase regression model in its simplest form.

ExampLE 1.1.
aV+e , if x, <y
Ye = 1a® +¢ | if x>y

Both the o”,i =1,2, and y are unknown parameters. The class § is
8 = (g=aMl_ 4 +a®l, ) aV,a® yeR).

Nonlinear regression , in turn, is a special case of a even more general class
of models which includes non- and semiparametric regression. In the latter
cases the regression functions can no longer be indexed by a finite-dimensional
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parameter.

EXAMPLE 1.2.
Ye = g(xx)t e,
g8 = {g:R—R, g has m derivatives, [|g™|?><K]},

with K a known constant.

Another example of nonparametric regression is e.g. the situation where only
monotonicity of the regression function is assumed.

We shall take a unified approach in investigating the asymptotic properties
of the least squares estimator. We regard the function g itself as unknown
parameter and we shall study how well g can be estimated by the least squares
method, given that g is a member of a class § of regression functions. It is to
be expected that the asymptotic behaviour of g, is primarily determined by the
properties of §, the parameter space. In particular, the larger or richer § is, the
harder it will be to estimate g. Using concepts of empirical process theory, we
shall give a precise description of the link between the ’size’ of § and the
behaviour of g,. Empirical process theory is the theory of uniform laws of
large numbers and uniform central limit theorems. Its topics are limit theorems
for processes indexed by sets or functions. For instance, let H, be the empiri-
cal distribution based on n independent observations x, from H. H, puts mass
1/n on each of the x;, k=1, - - - ,n. The theory supplies us with sufficient
and - modulo measurability - also necessary conditions such that for a class §
of H-square integrable functions g

sup ‘f|g |2d(H, — H)| — 0 almost surely, (1.1)
ge

as n tends to infinity (VAPNIK and CHERVONENKIS (1971,1981), POLLARD
(1984), DUDLEY (1984)). A result like (1.1) is very helpful for proving con-
sistency of g,.

We shall now present one more two-phase regression model. This model
drew our attention to empirical processes indexed by sets because it has sets as
unknown parameters.

EXAMPLE 1.3.
yi =min(a® +x; 1 BV +x; 28, o@ +x 18P +x 28) + . (1.2)
Here, the measurements y,, kK =1, - - - ,n are the log-lifetimes of plastic pipes

for the transportation of fluids. The x;, =(x4 ,Xx ;) are (stress)/(absolute tem-
perature) and (absolute temperature) !. The idea is that at high stress and
temperature the pipes become brittle and break due to a mechanism different
from the one at low stress and temperature.

Related to (1.2) is the model

a“) +Xk, IB?) +Xk,zﬁg) + € if Xk €A
Yk (X(z) +Xk, ]Bﬂz) +Xk. 23&2) +€k if Xx gA ’



where A ={x;: X4 1Y) + Xk, 2Y2<1}. The class of regression functions is now
§ = {g(x1,x2)=(aV +x, 8" +x2 By (x1,x2) (1.3)
+ (@ +x B + x2BP)4<(x1,x7):
(@, B0, BT eR?, i =1,2, A€@)},

with @ the collection of halfspaces in R2. The only difference between this
model and (1.2) is that in the latter one imposes the restriction
Y, =B —B?) / (@® —a), t =1,2. In both models, the halfspace 4 is an
unknown parameter. In (1.2) the the set 4 is a function of the other unknown
parameters o), f¢) and in (1.3) it is a function of the Euclidean parameter y.
However, in the general two-phase regression model, the class @ in (1.3) need
not be indexed by a finite-dimensional parameter. An example is the case
where @ is the collection of all monotone sets, i.e. the class of sets A4 such that
if (xl,xz)eA also (i],iz)EA for all ()‘21,)}2) with -il <X and .iz <X3.

We shall take two-phase regression models of the form presented in Exam-
ple 1.3 as the major illustration of the theory we develop for general regression
models. In this way, we hope to provide some insight into the significance of
our results. Examples concerning other (nonparametric) models occur
throughout the manuscript and are sometimes not explored in full detail.

The presentation is organized as follows. Chapter 2 sets the background for
proving consistency. We give an overview of the history that led to the uniform
law of large numbers (1.1), which goes from sets via bounded functions to
integrable functions. We extend the uniform law of large numbers to the case
of non-identically distributed variables and allow virtually everything to
depend on the number of observations (i.e. on the n-th experiment). With these
tools, we prove in Chapter 3 a general consistency theorem, followed by some
applications to nonlinear and nonparametric regression. We must stress how-
ever that the general theorem should be regarded rather as expressing a general
viewpoint on regression than as a recipe for checking consistency. One of its
conditions often does not hold for the original §, but only for a subclass of §,
c.f. the assumption in parametric maximum likelihood that the parameter
space is compact. In specific situations one faces the problem of proving that
eventually g, lies in this subset, which can be just as difficult as showing con-
sistency directly. We elaborate on this in Section 3.4, where we apply the gen-
eral theorem to the models of Example 1.3.

Chapter 4 summarizes some results from the literature on uniform central
limit theorems. We use these in Chapter 5 to prove asymptotic normality of
the least squares estimator of the a®) and B of Example 1.3. In Chapter 6 we
return to the more general case. We exploit the techniques for proving uni-
form central limit theorems to obtain rates of convergence for g,. Here, we
make the distinction between finite-dimensional models and infinite-
dimensional models more explicit. We show to what extent the speed of esti-
mation, i.e. the rate at which the estimation error goes to zero, can be deduced
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from the entropy of §. In Section 6.4 the theory is applied to two-phase regres-

sion and the results are compared with those of Chapter 5.

Because two-phase regression is closely related to change-point models, we
devote a separate chapter to the latter: Chapter 7 concentrates on tests for a
change-point. Finally, in Chapter 8 we compute the least squares estimators
for the model of Example 1.3, using simulated and real data.

Throughout, we make extensive use of Chapters II and VII from POLLARD
(1984). In fact, this present study is very much in the spirit of this book.

We now mention some of our notational conventions:

-P is the probability measure underlying either the whole sequence of random

variables, or the random variables involved in the n-th experiment,

- boldface symbols will always represent random quantities but not vise versa:
some random quantities are not boldface because of the limited possibilities
of a word processor,

- € (in boldface) is always the disturbance term. Unfortunately, this typo-
graphic distinction is hard to see (c.f. ¢),

- for small numbers we mostly use the greek letter 7,

- @ is a finite-dimensional parameter that possibly indexes g,

- & is usually employed for defining §-entropy, but it can also be a small
number such as m, or the point mass 4(.),

- x or x is always a row-vector,

- L? is a Hilbert space of real functions on some Euclidean space, but with
functions not identified with equivalence classes,

- |l.Il is the norm of a Euclidean vector or of a function in L? (in that case it
is a pseudo-norm),

Theorems, lemmas and corollaries will be numbered according to the section
they are part of whereas examples and equations are numbered throughout the
chapter they are in.

Although many other models also fit into the theory, we mainly consider
two-phase regression as an application. For this reason, we shall present a
brief overview of the literature on this subject in the next section.

1.2 Multi-phase regression and change-point models
QuANDT (1958) is one of the earlier workers on two-phase regression. He con-
siders the model
{a(l)+xk,8(1) +€k if Xk S')’
Y =

aV +yB0 +(x, —y)B? +e if x, =y ° (1.4)

with oV, 8® and the change-point y unknown parameters. The model
arises in many fields. A famous example (BACON and WATTs (1971)) is the
relation between stagnant surface layer height and flow rate in an inclined
channel. The model also describes the influence of warfarin concentration on
blood factor VII, of nitrogen concentration on the intake of protein, of after-
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tax income on the expenditure on luxury goods, etc.. Recently, IPPEL and
BEEM (1986) fitted the model to reaction times as function of some measure of
discrepancy between stimuli.

Methods for finding the exact solution for the least squares minimization
problem are discussed in HUDSON (1966) and WiLL1AMS (1970) extended these
techniques to the case of linear three-phase regression. Smooth approxima-
tions to the non-differentiable model are given by BAcoN and WATTs (1971)
and TisHLER and ZANG (1981). HINKLEY (1969,1971) studies the asymptotic
properties of parameter estimators and procedures for obtaining approximate
confidence intervals. FEDER (1975) establishes asymptotic theory for a con-
tinuous model of the form

g(')(xk,ﬂ('))+ek if Xy Y
Ye g(z)(xk,O(z))+ck if Xk>‘Y ’

He provides conditions for consistency, and - for the situation with g®(x,6()
linear in 6V, i=1,2 - asymptotic normality, assuming that the model is
identified at the underlying true state of nature.

A more general model does not impose continuity in the parameters, e.g.

oM +x, BV + ¢ if x, <y
L a(z) +xkﬁ(2) +€k if Xk >}’ ’

An example is the model for eruptions of the Old Faithful Geyser in Yellow-
stone National Park (Cook and WEISBER (1982)). I am not aware of any
asymptotic theory for this model.

An identification problem comes up if for instance in (1.4) SV =8®. For
testing the constancy of the regression relationship, BROWN, DURBIN and
EVANs (1975) propose a cusum and cusum of squares test. They assume normal-
ity of the errors, so that their tests can be compared with the likelihood ratio
test. Asymptotic comparison in the large deviations sense is carried out by
DEesHAYES and PICARD (1982). Many other tests have been developed (e.g.
FERREIRA (1975) and MOEN and e "Broemeling” (1984) propose Bayesian test
procedures). In Chapter 7 we shall give our contribution to this discussion.

Example 1.3 of the previous section deals with another extension of (1.4).
Here, the regressors are in higher-dimensional Euclidean space R?, and one
can no longer speak of a change-point. The general linear two-phase regression
model - with obvious extension to p-phase regression - assumes functions of
the form

B g“)(x,o(l)) if xed
gx) = gP(x,0®)if xgd °

where g:RYXO-R is linear in the parameter, i =1,2, @ CR’ and where 4
varies in a class @ of subsets of R?. In Section 3.4 we shall formulate condi-
tions on @ that can lead to consistency of the least squares estimators of ¢,
i=1,2 and 4 and Chapter 5 presents conditions for asymptotic normality of
the estimators of the Euclidean parameters. In cluster analysis (see e.g.
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POLLARD (1981) and two-lines least squares (LENSTRA et al. (1982)) @ is the
collection of all subsets of RY. In that case the least squares estimator of g will
generally be inconsistent. However, the aim in cluster analysis and two-lines
least squares is not to estimate the regression but some other quantity of
interest.

Let us return for a moment to the model in Example (1.1). It is widely used,
e.g. in RoysToN and ABRAMS (1980) it describes the shift in basal body tem-
perature of a woman. It can be written in the more conventional form

oaVte g=1,---1
Ye = a®+e k=1+1, - .n" (1.4
In a general change-point model , one has observations y,, - - - ,y, from disti-
bution FO and y,,, - - - ,y, from F®, where r as well as F) and F® are in

whole or in part unknown. In HINKLEY (1970) and HINKLEY and HINKLEY
(1970), this model is considered for the normal and the binomial distribution
respectively. WORSLEY (1985) studies the model for a one-parameter exponen-
tial family. Of special interest is testing F('=F®. Worsley considers the exact
distribution of the likelihood ratio test and confidence intervals for the
change-point 7. The asymptotic null-distibution is given in HAccou et al
(1985) in the case of exponential distributions, and in Chapter 7 in the case of
normal errors. In Chapter 7 also Bahadur efficiency in the situation of a one-
parameter exponential family is obtained and contrasted with efficiency at
local alternatives.

WOLFE and SCHECHTMAN (1984) establish nonparametric confidence inter-
vals for 7. PErTITT (1979) investigates a nonparametric procedure for testing
F)=F®@_His statistic is an extension of the Mann-Whitney test for the two-
sample problem. PICARD and DESHAYEs (1983) propose a Kolmogorov-
Smirnov type of test. In PRAAGMAN (1986), the asymptotic efficiencies of a
broad class of linear rank statistics are compared.

Change-points can occur anywhere, for instance in hazard rates (see e.g.
NGUYEN, ROGERS and WALKER (1984)) and in time-series (PICARD (1983)). We
shall only investigate changes in parameters in a sequence of independent ran-
dom variables, i.e. two-phase regression type of models. We also point out that
in the literature mentioned above, the sample size is nonrandom. The problem
is to be distinguished from what one could call "alarm detection’, where a pro-
cess is followed in time and the aim is to react as quickly as possible when it is
likely enough that a change has occurred (see e.g. SHIRYAYEV (1963)).



2. EMPIRICAL PROCESS THEORY I

2.1. Vapnik and Chervonenkis theory
Let us reconsider the multi-dimensional two-phase regression model of Exam-
ple 1.3:

oM +x, 8V +¢ if xy<I
Ye @ +x, 2 +¢ if xy>1"

with x;, ---,x, iid. (row-)vectors in R? with distribution H, and
6D =, BOT)T and y unknown (column-)vectors. Example 1.3 is about the
case d =2. In the more simple situation with d =1, the subsets 4 ={x: xy<1}
are half-lines, and the model can be written as

(!(l)+X(k)B(l)+€(k) lf k<‘r
y(k) a (!(2)+X(k)B(2)+€(k) if k>71

with x(;)< - - - <X, the order statistics, and y, and €, the regressor and
disturbance term corresponding to X, respectively. The least squares estima-
tors are obtained in the following way. For each /, compute (if possible) ordi-
nary least squares estimators 0f", i =1,2 of 89, i =1,2, and the residual sum
of squares (S{”)?, i =1,2, given that the change-point is at /. Let 7 be the value
of I where (S{V)? +(S?)? has its minimum. Then 6,=0%), i =1,2 is the least
squares estimator in the two-phase regression model (without the continuity
restriction a) +yBV =a@ +yB?). The subsets of the form {xy<1} of the
data are

ot XX} X, 7 Xm )
and complements. Hence, the number of times one has to do ordinary least
squares is at most 2(n —3)+ 1, since it suffices to consider only those partitions
where both &V and #? are identified. If all x,’s are different, / can take the
values {2,3, - - - ,n —2} and n.

In the case d>1, the x; can no longer be ordered. Still, it is not difficult to
generate all different subsets of the form {x: xy<1} of the data (see also
STEINER (1826), SCHLAFLI (1901), COVER (1965), HARDING (1967) and WAT-
SON (1969) for combinatorial results). Let x;, ---,x;, be a d-tuple from
{x1, X, }. Write X, ..., =(x/, - - - ,x])T and let e be the d-dimensional
vector (1, ---,1). For X, ..., non-singular, we can take as the partition
corresponding to X; ... .: {A; ..., ={x:xy, ..., <1}, Af ... .}, with
Y, -, =XI, o ,,e- Since these are at most (Z) d-tuples for which X; ..., is

non-singular, the number of times one has to do ordinary least squares is
O(n“). The computation of the least squares estimator can be done in polyno-
mial time.

As we shall see, the fact that the number of different partitions is polyno-
mial in » can also be used to derive some asymptotic properties of the least



8

squares estimator. So-called empirical process theory provides the theoretical

background.

Let @ be a class of measurable subsets of R, and let A%(x, - - - ,x,) be the
number of different partitions of {x;, - - -,x,} of the form 4 N{x,, - - - ,x,},
A°N{xy, - - ,X,}, A€@ Then A%(x), - - - ,x,) is always at most 2". We have

seen that for
@ = {{x: xy<1}: yeR%)

A%(xy, - - - ,x,)=0(n9). Let H,= l/nEZ:]S,“ be the empirical measure based
on Xx;, - - - ,X,. The Glivenko-Cantelli Theorem states that if € is the collection
of lower-orthants {(— c0,x]: xeR? }, then
lim sug]H,,(A)—H(A)| =0 almost surely. 2.1)
n—-0w Ae

VAPNIK and CHERVONENKIS (1971) extended this to more general classes of
subsets @ than lower orthants. They show that if A%(x;, - - - ,x,) does not grow
exponentially fast, then (2.1) holds for @ - provided some conditions on
measurability are fulfilled.

We have to impose measurability conditions, because the supremum of an
uncountable set of measurable functions need not be measurable. We shall
assume that @ is permissible in the sense of POLLARD (1984). The definition of
permissibility is given in Section 2.4. At this stage, it is only necessary to know
that for a permissible class @, sup4.q|H,(4)— H (4)| is measurable.

Also, quantities like A%x,, - -+ ,x,) need not be measurable, even if @ is per-
missible. However, it turns out that if probability statements about
A%(x,, - - - ,x,) are replaced by statements in terms of outer-probabilities and

upper-expectations, the theory goes through. For definiteness, let (£, &,P) be
the underlying probability space, and write E(-) for taking expectations under
P. Define for 4 C{,

P*(4) = inf{P(B): BDA, Be&)
and for a real function f on { and the Borel o-algebra % on R,
E'(f) = inf{E(g): g=f, g 6/%—measurable}.

THEOREM 2.1.1. For a permissible class @ the following statements are equivalent

) E'(logh%xi, -+ X)),

P
i) sup [Hy(4)—H(A)| -0,

P.
(i) %logAa(xl, e Yl

(@iv) sup |H,(4)—H(A)| — 0 almost surely.

PrROOF. See VAPNIK and CHERVONENKIS (1971), and for measurability issues
and (iv) STeeLE (1978) and PoLLARD (1981). O
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Results of this type can be used in two-phase regression to obtain strong con-
sistency. But there are also results available that are even more directly appli-

cable.
Let § be a class of measurable real functions on RY. Suppose that the func-
tions in § are uniformly bounded, i.e.

sup lg| < M,

gE

for some constant M. Endow § with L*(R¢,H,,) semi-norm || - ||, ,:
Iglleo,n = max |g(x) |-

For each §>0, let N (3, H,, §) be the minimum value of m, such that there
exist functions gy, - - - ,gn, in 6, such that for each ge§

- min _|lg—gllen <8
j=1,---,m

For example, if § is a class @ of indicator functions, then (identify sets with
their indicators) N ., (8,H,, @ =A%, - - - ,x,), §<1.

We call N, (6, H,, ) the (8-)covering number of § with respect to the
L*®(R, H,)-norm. This terminology is also used by POLLARD (1984), but he

does not require that the covering set {g;, j =1, - - - ,m} is a subset of §. Note
that if g;, - - - ,g, form a d-covering set, not necessarily in §, one can always
construct a 28-covering set g;, - - + ,gn With g;€8.

In the following theorem, we assume permissibility of §. In fact this concept
is defined for classes of functions, with a collection of sets as special case. Per-
missibility of § implies measurability of

sup | [gd(H, —H)|.

Again, permissibility need not result in measurable covering numbers
N (8, H,, 6) (see Section 2.4).

THEOREM 2.1.2. For a permissible class S of uniformly bounded functions, the fol-
lowing statements are equivalent

G) E'(% log N (8, Hy, §)) — 0 for all >0,

P
(i) sup | [gd(H,—H)| -0,
pt

(i) % 1og N oo (8, H,, ) — 0 for all 80,

(iv) sup | [gd(H,—H)| — 0 almost surely.
£E
PrOOF. VAPNIK and CHERVONENKIS (1981) obtained the uniform weak law of

large numbers, and STEELE (1978) shows that convergence in probability
implies almost sure convergence, by noting that
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sup | [ed(H, —H)|

is a subadditive process. Statement (iv) of Theorem 2.1.1 is a special case of
this. O

In two-phase regression, least squares estimators can be obtained in polyno-
mial time, if the covering number of the class of feasible partitions does not
grow exponentially fast. This property also leads to a uniform law of large
numbers, as Theorems 2.1.1 and 2.1.2 assert. We shall briefly indicate why.

For bounded random variables (such as 1,(x) or g(x), g bounded), one has
exponential probability inequalities (see e.g. BERNSTEIN (1924, 1927), HOEFFD-
ING (1963)). For instance, for |g| <M, Berstein’s inequality says that

P(| [gd(H,—H)|>1) < 2exp

where o> =E(g(x)—Eg(x))’. Now if the covering number of § does not grow

exponentially fast, there are only m =exp(o(n)) essentially different g’s in 6.
Moreover, if card (§)=m

P(sup | [gd(H, —H)|>0) < m max P(| [gd(H, —H)| >1)
These observations, and a randomization device (which is necessary because

N (5, H,,6) is random) are the major ingredients of the proof of the
sufficiency part of Theorem 2.1.2 (2.1.1).

2.2. Pollard’s law of large numbers

For 1<s<oo and for Q some probability measure on R? we denote by
L°(R?, Q) the space of measurable real functions g on RY with
( f |g|*dQ)!* <oo. In most of what follows, Q will be the empirical measure
H, or the (theoretical) measure H. We denote the L*(R?, H,)-(pseudo)norm by

Il = (f] - |dH,)

and we sometimes call this the empirical norm. The theoretical counterpart is
p rp
Iy = (f | - l’dH)”‘.

For § a class of functions, the envelope G of § is defined as

G = su ;
sup |g]
Moreover, for §C L*(R?, Q), we define the covering number N,(8, Q, §) as the
smallest value of m such that there exist g, - - - ,gy in § such that for all ge§

min m(j lg —g|dQ)* < 8.

j=L-,

The logarithm of N(8, Q,6) is called the &-entropy of § for the metric
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(f I . IsdQ)l/J-

In the previous subsection, we considered a class of uniformly bounded
functions, ie. GeL®(R Q) for all Q. In that case L*(R?, H,)-covering
numbers are useful. For a class of possibly unbounded functions, with
GeL’(R% H), 1<s<oo0, it is more appropriate to work with the Ny (8, H,, 9)-
covering number of § equipped with || - [|; ,-norm. We shall first treat the case
s =1 and afterwards extend this to arbitrary s=>1.

THEOREM 2.2.1. Suppose § is a permissible class with envelope G. Then
sup | [gd(H, —H)| 0 22)
almost surely if and only if both GeL'(R4, H) and

P*

L logN (8, H,, 6) - 0 @3)
for all §>0.

PROOF. POLLARD (1981) shows that if GeL'(R?, H), (2.3) implies (2.2), and
GINE and ZINN (1984) prove necessity of (2.3) and of the envelope condition
GelL'(R, H). O

Remember that for bounded random variables, exponential probability ine-
qualities are available, whereas this need not be the case for unbounded ran-
dom variables. Therefore, one might have expected that in the unbounded case
a more stringent condition than (2.3) on the covering numbers is needed, in
order to arrive at the uniform law of large numbers (2.2). The following
theorem shows that if N (8, H,,5) does not grow exponentially fast, it does not
grow at all. This result is due to VAPNIK and CHERVONENKIS (1981) and GINE
and ZINN (1984). Because the result is somewhat hidden in literature, we give a
full proof.

THEOREM 2.2.2. Suppose § is a permissible class with envelope GeL'(RY, H).
Then

p‘
% logN1(8, H,, §) — 0 2.4)
for all §>0 implies that the theoretical covering number N (8, H, §) is finite, i.e.
T](a) == Nl(s’ H’ g)
is a finite function of §>0. Furthermore
P*(lim sup N (8, H,, 9)>T,(6—m)) = 0, 0<n<s, &>0. (2.5)
n—o0

PrOOF. Consider the class 9={|g—g|: g g€8}. This class has envelope
2GeL'(RY H), and moreover (2.4) implies that also
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p.
%mgzv.(a,ﬂ,,,g')_)o for all §>0,

Hence, we can apply Theorem 2.2.1 to &, provided it is permissible. Indeed,
this follows easily from the permissibility of 6, as we show in Section 2.4. It
follows that

sup | [|g—Z|d(H,—H)| 2.6)
&8s
is measurable, and that

gszlélga‘ |f|g—§|d(H,,—H)| — 0 almost surely.

Or, using the notation in L'(R?, - )-norms

sup |llg—glh,—llg—gli| = 0 almost surely. 2.7)

88es
Let

_ ~ - )
A, = {wel: sup |lig—glli.—llg—glh |(w)<3 }-
2.g€8

Note that 4, €6, i.e. A4, is measurable. Moreover, the almost sure convergence
(2.7) implies convergence in probability. So, for n=ny'(=n('()), n¢’
sufficiently large

P(4,) > 1-4.
Let {g), - - ,gm} be a 8/2-covering set of § endowed with |- ||, ,-norm. On
the set 4,,, we have

. 1 8
_min ‘m||g gl sj:]xp_l.n. ,mllg gllint 2<’o‘.

Hence, for weAd,, N (8, H,5)<N,(6/2, H,, §)(w).

Condition (2.4) means by definition that there exists a B,€& such that
P(B,)>1—0, and 1/nlogN,(8/2, H,,S)(w)<& for weB, and for all
n=ny"(=ny"(8)). It follows that for no =max(ny’, ng”)

P(4,, N B,,) > 1-2.
But for wed, NB,,
N (8, H, §) < exp(nd). (2.8)

Since (2.8) does not depend on we{l, this proves that N (8, H, 9) is finite for
all §>0.

The almost sure convergence (2.7) means that for some 4 €& with P(4)=1,
and all 0<n<$

sup| llg —glh.—llg —glh |(«) <n
58

for all n=ny(w)(=ny(8, n, w)) and all weA. Thus
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N (8, Hy, S)(w)<N(8—n,H,8) = T1(6—m).
for all n=ng(w), weA. This shows that

P*(lim sup N,(8, H,,)>T(6—7) = 0. O

VAPNIK and CHERVONENKIS (1981) proved that for a uniformly bounded
class 6,

p‘
%mgsz(a,u,,,g)_»o for all >0

implies that N, (8, H, §) is finite, for all §>0, and that this in turn implies that

N (8, H,, 8) remains finite in probability, for all §>0. They do not concern
themselves with measurability problems.

The situation with unbounded functions is treated in GINE and ZINN (1984).
Their approach to measurability issues differs somewhat from ours. Modulo
measurability, their Remark 8.9 asserts that for a class § with GeL'(R?, H)
and for §c={glg<c: g€§}, C>0,

p*
%logNl(S,H,,,QC)—»O forall >0, C>0 2.9)

implies that there exists a finite function 7'(8) such that
lim P*(N,(8, H,,8>T()) = 0, forall §>0.
n—oo

It is easy to see that if Ge L'(R, H), than (2.9) and (2.4) are equivalent.

We call a class § equipped with some metric totally bounded if for all §>0,
the number of elements of a minimal §-covering set is finite. Since (2.4) is a
necessary condition for the uniform law of large numbers over a permissible §,
a reformulation of one of the results of Theorem 2.2.2 says that a necessary
condition for the uniform law of large numbers, is that § is totally bounded for
ll-1l;. In other words, the closure of § should be compact.

We shall now investigate the relation between L* (R, H,)-, L'(R?, H,)- and
other L*(R? H,)-covering numbers, and what consequences conditions like
(2.3) on these covering numbers have if GeL*(R?, H). Note first of all, that
combination of Theorems 2.1.2 and 2.2.1 yields that for a permissible class § of
uniformly bounded functions

p+
% log N (8, H,, §) — 0

iff
p.
logNw(8 H,, 8 — 0.

For classes of unbounded functions, it is often easier to employ a truncation
device. GINE and ZINN (1984) use truncation at {G>C} and work with
Sc={glo<c: g€8}, C>0. For reasons that will become clear in Section 2.3,
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we introduce an other way of truncation. Define for all C>0

cif g>C
®)c = g if —C<g<C.
=C i g<—C

Let (9)c={(g)c: g€9Y).

LEMMA 2.2.3. IfGeL‘(R"', H), 1<s<oo, then for all >0 there exists a C>0
such that

N5, H,9) < N.(3, H, 9)c), (2.10)
and with probability 1 for n sufficiently large
N3 H,, 6) < N3 H,, @) @1

Moreover, for 1<s<<oo and arbitrary probability measure Q, §>0, C>0
N3, Q,(9)c) < N:(3,Q.9) 2.12)

Ni(6,Q,(9)c) < N8, Q, O))<N\(——= > %)) (2.13)

(2C)s :
and, if we denote by &
¢ ={lgl’:g=8)
Ni(6,Q,(8)c) < Ni(—— = Q O)c») (2.14)

(2C) :

PROOF. Let g, g€§ be arbitrary. If GeL*(R?, H), then
Co>o

as well as
lim lim sup [|G—(G)cll;» = 0 almost surely.
C-s0 n-o0

Since for arbitrary Q

(f1g—21*dQ)"* < (f1(®)c—@)c |*dQ)"* +2(f| G~ (G)c|*dQ)"",

this implies (2.10) and (2.11).
Of course, |(g)c—(@)c|<|g—g]|, so (2.12) follows easily. Furthermore,
for arbitrary Q,

[1®c—@)c4Q < (f1(§)c—@)c |*dQ)"*
< (@0 |®c—@)c|dQ)",
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which yields (2.13).
Finally, (2.14) follows from

s—1
J1081)e=(1g1)cld@ < @) * [I(1gDe—(|2])c14Q
=1
<0’ [l@c~@)c"]4Q O

The following theorem is the analogue of Theorem 2.2.1, albeit that we do not
present necessary conditions.

THEOREM 2.2.4. Suppose § is a permissible class with envelope GeL*(RY, H),
I1<s<oo. Then

P‘
%mgzvs(a,nn,g)_)o for all §>0 @.15)

implies
sup | liglls,—liglls| = O almost surely.
ge

PrOOF. We show in Section 2.4 that also & is permissible. Thus, the theorem
is proved if (2.15) implies

p'
%logNl(&H,,,Q‘)—»O forall 80, 2.16)

because then, we can apply Theorem 2.2.1 to §. But application of (2.11) and
(2.12) with s =1 to &, shows that it suffices to prove that (2.16) holds for the
truncated class, i.e. that

p‘
% logN1 (8, H,, (8)c) - 0 forall 8>0, C>0.
And this follows immediatly from (2.13) and (2.14):
é
N, H,,(&)c) < N\(——= » Hp, Oc)

s=1_ ?

@0

)
S N(——=  Hi,Oc~) O

20 °

Of course, it also follows from Lemma 2.2.3 that it doesn’t really matter
which covering numbers are used. This is made explicit in Lemma 2.2.5
below, where we show the analogue of Theorem 2.2.2.

LEMMA 2.2.5. Suppose that § is a permissible class with envelope GeL*(RY, H),
I<s<<oo. Then

P.
%mgzv,(a,ﬂn,@)_»o for all >0 @.17)
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implies that § is totally bounded for |- ||, i.e.
T5(8) = Ny(5, H,9)
is a finite function of §>0. Furthermore
P‘(lix'})_»?p N8, H,,9)>T(6—m)) = 0, 0<n<d, 6>0. (2.18)

PrOOF. We have seen in Theorem 22.2 that (2.17) implies that
T1(8)=N,(8, H, ) is a finite function of 8. In view of (2.12) and (2.13), for all
Cc>0

NG, H, §)c) < Ni(—>— | H, ©)c)<T(

s
@cy ! @cy )

and moreover, by (2.10)
N3, H,9) < N3, H, ®)c)

for C sufficiently large. This gives that T (8)=N,(8, H, 9) is a finite function of
d.

Using again (2.12), (2.13), we see that (2.17) also implies that for all C>0,
6>0

.
L log N,(8, H,.(9)c) — 0
and from (2.11), for all §>0
.
L log N,(3, H,,6) - 0.

Hence, in view of Theorem 2.2.4

sup [lgll.—llglls] — O almost surely.
ge

But this means that for § arbitrary, 0<n<8, a (§ —n)-covering set of § for || - [l;
is for n sufficiently large a §-covering set of § for || - |l ,, almost surely. Thus,
by the same argument as in the proof of Theorem 2.2.2

P"(lim sup N,(8, H,, §)>T,(6—n)) = 0. O

We conclude that if (2.17) holds and GeL*(R¢, H), 1<s<oo then § is totally
bounded for || - ||,. If s =00, (2.17) is equivalent to

p.
% logN (3, H,,8) — 0, forall 8>0,

in particular, if Ge L*(R?, H), (2.17) is equivalent to
P.
% logN (5, H,,(§)c) > 0, forall 8>0, C>0.
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This observation is useful because L%(R“, H,)-covering numbers are often
easier to compute.

We shall illustrate the results of this subsection with an example. In a sub-
stantial number of applications the conditions on the covering numbers can be
checked without imposing distributional assumptions, apart from a moment
condition on the envelope G. An important special case occurs when a collec-
tion @ of sets satisfies

Supx )Aa(x]’ X)) S (2.19)

{x
for some r and all n, A%(x,, - - - ,x,) being defined in Section 2.1. Recall for
instance that if @={ {x: xy<1}, yeR?}

€y ... ny<,d
{x“syp‘x"}A (x1, Xn) < (P=<n”.

An @ satisfying (2.19) is called a VC-class (VAPNIK and CHERVONENKIS
(1971)).

For classes of functions, POLLARD (1984) introduces the related concept of
VC-graph classes. Let g: R?>R be some function and define the graph of g as
the subset

{(x,1): O<r<g(x) or g(x)<t<0}
of R*1. A class § is a VC-graph class if the collection of graphs of functions
in § from a VC-class.
THEOREM 2.2.6. Let Q be some probability measure on RY, and let 8 be a VC-
graph class with envelope f GdQ=Cy say. Then

Ni(8,Q,9 < A,Cpd™"  for all >0,

where A and r’ are constants independent of Q.
PRrROOF. See POLLARD (1984). O

It is easy to see that if G is a V'C-graph class, then so is (§)c. Thus, then
N1, Q,(8)c) < A,C"8 " forall §>0, C>0

and from Lemma 2.2.3, 1<s<o0

N,(8,Q,(8)c) < 4,C"( "= A,CT'8, §>0, C>0.

& 5
@ecy!
Note that if @ is a V'C-class, then {14: A €@} is a VC-graph class. Since the

envelope of a collection of indicator functions is bounded by 1, this gives for @
a VC-class

N,(5,Q,8 < A,67" forall >0, 1<s<oo
for some A; and r’, and by (2.19)
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No(,Q & <n”

for some r.

EXAMPLE 1.3 continued. In this two-phase regression model, § is a class of
regression functions of the form

§ = {g(x)=(aV +xBV) (xy<1(x)
+(d® +xBP) 4y 1y (x):
aVeR, pYeR?, i=1,2, yeR?).

The graph of a ge§ is the union of two intersections of three halfspaces. Now,
the class of halfspaces forms a V'C-class. And it is easy to see that the VC-
property is preserved under taking finite unions and intersections. Hence, § is
a VC-graph class.

2.3. Extensions
In many regression models, the class of feasible regression functions is allowed
to vary with the number of observations. Also, the independent variables and
disturbances are often not identically distributed, and their distributions might
vary with n too. To handle these situations, we generalize some of the results
of the previous sections.

Let for each n=1,2, - - -, x,, 1, * - * ,X,, be independent random vectors in
R, X, x having distribution H, ;. Furthermore, let for each neN, §, be a class
of functions on R? with envelope G, =sup,cq, |g|. Define

H® = 1/n S H,,
k=1
and let H, be the empirical measure generated by X, 1, * = * ,X, .
To establish a uniform law of large numbers, we make use of Hoeffding’s
inequality.

LEMMA 2.3.1 (Hoeffding’s inequality). Let y;, - - - .y, be independent random
variables with zero means and bounded ranges: a, <y, <by. Then for each >0

I & 1 &
P(— 3 yi=n) < exp[—2n7* / = 3 (b —a )]
n = n =
PrOOF. HOEFFDING (1963). [

We have seen that in the ii.d. case with 6, =§ (Section 2.2), necessary con-
ditions for the uniform law of large numbers are that the covering numbers
N, (8, H,, §) remain bounded in probability, and that the envelope of § is in
L'(R% H). In general however, the covering numbers are allowed to grow
with n. Furthermore, the L'(R%, H™)-norm of the envelope of §, is allowed
to grow with n too, but the faster N (6, H,, §,) grows, the more stringent the
envelope conditions become. This result is stated in Theorem 2.3.2 below. We
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shall also show that for the case of i.i.d. random variables and §, not depend-
ing on n, the conditions of Theorem 2.3.2 reduce to those of Theorem 2.2.1.

In the general set up, with triangular arrays, it is not possible to obtain a
strong uniform law of large numbers: all results only concern convergence in
probability. The assumption of permissibility is needed again to guard against
measurability difficulties (see Section 2.4). We shall prove the uniform law of
large numbers exactly according to the recipe Pollard supplies for the i.i.d. case
(PoLLARD (1984), Ch. II). This illustrates the power of the techniques Pollard
proposes.

THEOREM 2.3.2. Let {S,} be a sequence of permissible classes with envelopes
G, =supgcq, |g|. Suppose that for some sequence c,=>1, ¢, =0(n)

lim sup [ G,dH™ =0, (2.20)
n—o0 Gi>e

lim sup L [ GidH® = o, (2.21)
n—o0 Cp G,<c,

and that (c,/n)log N (8, H,, 6,) remains bounded in probability, i.e.

lim lim sup p‘(%" logN,(8, H,, 8,) > T) = 0 Q.2)
for all §>0. Then

sup | [ gdH,—H®)| 2o (2.23)

ProoOF. First, we shall show that it suffices to prove a uniform law of large
numbers for the truncated class {g 1 < : g€9,}. Let 0<d<1 be arbitrary.
In view of (2.20)

82
f G,,dH(") < —4—

G,>c,

for all n sufficiently large. Apply Chebyshev’s inequality to see that

[ G,aH®
8 G,>c,
p(6/ GodH,>) < 7 <é.
'n=>Ca
Hence
P(sup| [gdMH,—H™)| >8) (2.24)
8 €5

>0 K
<P(§ggl [ gdH,—H )| >2)+P( / GpdH, > )

* G,<c, G,>c,

<P(sup| [ gd(H,—H®)>2)+s
85 G,<c,
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Next, we symmetrize the process. For this purpose, we use that for arbitrary
n>0, and for all » sufficiently large
L [ GlaH™<n
Cn G,<c,

by assumption (2.21). Application of Chebyshev’s inequality gives that for each
g€8,

l f g2dH(n)

) nG <g
P( dH,—H")|>—) < —=— (2.25)
| st —H > (®/47
1 [ G2aH® 0
. —
G, <c, n

(8/4)? = (8/4)?

1
SE,

for n sufficiently small, and all n sufficiently large. For the symmetrization, we
introduce an independent copy (X', i, - ,Xn,} Of (X1, " ,X,.}, i€
Xp 15 """ > XnnsX'n 15 * * *,X'n, are independent and x’,; has distribution H,, ;.
Let H', be the empirical distribution, based on X, ;, - - - , X/, ,. Since (2.25)
holds, we have for all g6,

P( | gd(Hn—H<">)|<%) =7 (2.26)

G,<c,

The assumption of permissibility of §, ensures that for some random g* €6,
independent of H',,

’ 8
—H® .
| [ g'd(H,—H e

G,<c,

on the set
é
{sup| [ gd(H,—H™| > =}
geg G,ic,, 2

(see Section 2.4). Because (2.26) holds for g" too,

1 8
2P(up| [ gdM,—H™)|>2) (2.27)
"G, =c,
* 8 * , n 8
<P(| [gdH,~H")|>Z | [ gdH, ~H")|<7)
G,<c, G,<c,

. ’ [ ’ 8
<P(| [ gdM,~H,)|>)<PGup| [ gdH,~H,)|>)

G,<c, " G,<c,
We shall now describe the randomization device. Let oy, - - - ,0, be indepen-
dent random variables, independent of {x, |, - * - ,Xp, X5 1, = - * , X5}, With

P, =1) = Plo,=—1) = 5.
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Write HY for the signed measure that puts mass 1/n 0} at X, , €.g.

1 n
[ gdH; = - 2 048 (Xn k)1 (G,<c,) (Xnk):
k=1

G,<c,

Then
)
P(sup| gdH,—H,)|>-)
geg G,,ic, 4
1 & . ; )
ZP(sug | = X2 @) (G, <c,) Xn k) —8(X'n k)1 (6, <.} X'n k) | >Z)
8€% Ny —
=P (sup| - 01( L Dg 001 6,2) k)~ 8 Xni) (G2 K ) | >2)
geg n n n, {G,=<c,}\*n, n, (G, <c,} n, 4
[ é
<P(§2§3| " kglokg(xn,k)l{G,sc,}(xn,k)| >3 )
1. & )
e - / / 3
P(§E£| ) kglﬂkg(x ni)(G,<c,) (X'nik) | > g)

é
=2P(sup| [ gdH®|>2). (2.28)
geg G,,ic,, 8

Let g1, " - - ,8m; m:Nl(%,H,,,Q,,) be a minimal 8/16-covering set of §,.
Observe that if

)
[l —gldH, <2
also
| [ lg—gland| < 2.
G,<q / " 16
Now, given (X,,‘ | ’xn,n):(xn, 1, " °° 9xn,n)9 with Xn, 15 * " " s Xnyn Satisfying
L % @ i et < L »
o £ n\*n, {G,=<c,}\An, T

we have by Hoeffding’s inequality

)
p 0 >— .«
(§2§’ | f gdH, | 8 |%n.1 0o Xnn)

" G,<c,
5 ( ”(%)2
< N\(->H,,8,)2exp | —
IST: J2exp | = T
—n (S T
—2N1( 16 7Hn’gll)exp 5126” .
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Therefore, by Fubini’s theorem

) T "
p(ggy fgdH9,|>§) < 2exp[— 10;4C ]+PA,)+P°(B,) (2.29)
" G,<c, n
with
1 82
A, = {(— [ G%dH,>—}
C"G.ic, T
and

B, = {%" logNl(ng,H,,,Q,,)>T/1024}.

We shall now show that P(4,) and P(B,) can be made arbitrarily small.
Using (2.21), we see that

1 8
" / G,z,dH(") < ?

Cn G,<c,
for all n sufficiently large. Again by Chebyshev’s inequality, this implies
&/T _

=§
/T

PA4,)<

Moreover
P*(B,)<$
for T large enough and all n large enough, because of assumption (2.22).
Returning to (2.29), we see that

nT
1024 ¢,

Peup| | gdH2|>%)<2exp[— 1426 < 38

" G,<c,
for T sufficiently large and all » sufficiently large. In view of the truncation,
symmetrization and randomization inequalities ((2.24), (2.27) and (2.28)
respectively), this completes the proof. [J

We present a weaker version of Theorem 2.3.2 for two reasons. First, this
clarifies that Theorem 2.3.2 is a generalization of the sufficiency part of
Theorem 2.2.1 and secondly, the weaker version will be used in Chapter 3 to
prove consistency of the least squares estimators.

LEMMA 2.3.3. Suppose {S,} is a sequence of permissible classes with envelopes

G,. Assume that for some sequence b,=1, b, =o(n"'?)
lim sup [ G,dH™ =0 (2.30)
now oSy

and

B2 pr
. log N (8, H,, 5,) -0 forall §>0. (2.31)
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Then
H,—H®™ —>P 0
su dH, —H" ;
gel,’lfg( )|

PROOF. Since

b
2,9 =~ logN (3, H,.,6,)

is nondecreasing in 8, (2.31) ensures the existence of sequences 7,]0 and 4,0
such that

P* ($upZ,(8)>1,) =P" (Zy(8,)>1,)—0 .
This implies that there exists a sequence 5,,?1 with I;,,/b,,—->oo, l;,,=o(n'/’),

such that
~2

b, P
— logN1(8, H,,6,) > 0 forall §>0. (2.32)
By (2.30) we have
[ GdH™ < [ G,aH™ - 0. (2.33)
G,,>l;,2, G,>b,

Moreover, also

L [ GaH® = & [ GdHO+<r [ gdH®  (234)

n G,<b, n G,<b, n b,<G,<b,
2
by
< =+ f G,,dH(") - 0.
n G,>b,

Together, (2.32), (2.33)2 and (2.34) ensure that the conditions of Theorem 2.3.2
are fulfilled with ¢, =5,,. O

Recall that in the ii.d. case with §, =8, a necessary condition for the uni-
form law of large numbers is that the envelope G is integrable. This
corresponds to imposing (2.30) with {b,} any sequence tending to infinity. Let-
ting b, grow slowly enough, we see that (2.31) reduces to condition (2.3) of
Theorem 2.2.1:

ps

% logN1(3, H,, §) — 0.

Moreover, we showed in Theorem 2.2.2 that under the conditions of
Theorem 2.2.1 the covering numbers in fact remain bounded. Obviously, if §,
varies with n the uniform law of large numbers no longer implies that
N,(8,H,,8,) does not grow with n.

ExaMpPLE 2.1. Let § be a permissible VC-graph class with envelope not
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necessarily in L'(R% H™). As in Section 2.2 we define (§)c as the class of
functions truncated at C:

©)c = {sign@)|g| NC]: ge5}-

The class ()¢ is still a V'C-graph class (with envelope the constant function C).
Application of Theorem 2.2.6 yields that for all >0

N8, Hy, (9)c) < ACT67"

for some constants A and r. Also, if § is permissible, then so is (§)¢ for all
C>0.
Let >0 be arbitrary and take ¢, =n(logn)~!, then (2.20) and (2.21) hold

for (g)n”(logn)’”"
sug|(g),,naog,,)—w--| < n”(logn) *""<c, for n sufficiently large
ge

SUp | (§)nogmy*+ | *<n(logn) ™' = ofc)
Also, (2.23) is met for (8),"qogn)

cy 1 _
108N 10, H, O ogny ) = 7o~ Elogm) =6(1)
Hence, for a permissible V'C-graph class

P
Sup| [(&)naogn) +d(H, —H®)| — 0.

The remainder of this section is devoted to the situation where higher order
moments of the envelopes exist:

G,eL*(RY, HM), 1<s<co.

As before, we write

lglsn = (f|g]*dH,)"*

for the empirical norm of g. The theoretical norm now also depends on n, and
is denoted by

llglls, (n) - (f |g|sdH("))l/s.
Define
n = {lg]’: g4}
Because in general the L°(R?, H™) norm will be allowed to grow with n, it
is no longer possible to replace conditions on L'(R¢, H,)-covering numbers by

conditions on L*(R? H,)-covering numbers. We present a lemma to clarify
this.

LEMMA 2.34. For 1<s<oo and all §>0
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N1, H,,8,) < Ns(s/(S(Zglelgllglls,n)’ ) H,,8) (235)

PrOOF. For a=b=0 a*—b*<s(a —b)a* ! for all I<s<oo. Using this and
Holder’s inequality, we obtain that for all g,g €8,

[ |igl = g|aHn < s f 16|~ ¢l|imax(iet. D ~aH,

<s [lg—glllg| +1g|F ' dH, <slig—gll..A lllg| +[21l5. "

<s||g—g||s,n(2sugngll,,n)‘“- O
BE5

Hence, if sup,.g llglly,,» remains bounded, say

sugllgllx,,, <K (2.36)
g<s,

with arbitrary large probability for all n sufficiently large, then N;(8,H,,5;)
and N,(8,H,, §,) are of the same order of magnitude.

THEOREM 2.3.5. Let {S,} be a sequence of permissible classes with envelopes G,
satisfying
lim sup G, ll;, ) < 0, 1<s<o0 (2.37)
n—oo
3
Suppose that for some sequence c,=1,c,=0(n *)

lim sup [ GydH™=0 (2.38)
n—o0 G>E
lim sup—— [ G¥dH®™ =0 (2.39)
n—o0 n G,<c,
and
& p*
—log Ny(3, H,, 6,) — 0, for all §>0 (2.40)
Then
ligll ligll pO 2.41
su sn s (n 5 §
suplliglls.n —llglls | — (241)

Proor. Conditions (2.38) and (2.39) imply that

[
|”Gn||5,n il "Gn”s, (n)l = O-
It now follows from (2.37) that for some K <<oo

supllgll,, < Gy llsn <K
8E5
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with arbitrary large probability for all » sufficiently large. Apply Lemma 2.3.4
to see that (2.40) implies

Cn e
—- log N (8, H,,63) > 0 forall >0. (2.42)

The conclusion of the theorem now follows easily from Theorem 2.3.2. [

If (2.37) is not fulfilled, one can check uniform convergence of ligll;, to
liglly, ¢y by verifying (2.42) directly.

2.4 Measurability 1

Let x),x,,... be independent, identically distributed random variables, with
distribution H on R“. As underlying probability space, we take the product
space

&, 6 P) = (R)*, 8, H*)®(M, N, Q))

where (M, 9, Q) is some probability space on which some auxiliary random
variables live (we need some additional space for randomization). Without loss
of generality, (2, &, P) is assumed to be complete. We observed that

w > sup [gdH, — H)w)

need not be measurable. Of course if § is a countable class of measurable func-
tions, there are no problems. Suppose now that there exists a countable (8
such that

P |sup | [gd(H, —H)| 7 sup | [gd(H, —H)]| =0, n=1.  (243)

Then application of Theorem 2.2.1 to (§ yields
sup | f gd(H,—H)| -0 almost surely (2.44)
Bge

iff both
sup lgleL'(RY, H) and
8€o

P
%mgzv,(a,nn,og)_»o for all >0,

Now, suppose § is separable. The process g~ [gd(H, —H) is called stochasti-
cally separable if there exists a countable (§C§ such that for all closed §C8
and open BCR

[gdM,—H)eB forall gedny§
implies

[gdH,—H)eB forall ged
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with probability one (GIHMAN and SKOROHOD (1974)). If g+ [gd(H,—H) is
stochastically separable, (2.43) holds.

Stochastic separability suffices for most practical purposes (DUDLEY (1984),
Section 11.3). Note that it implies measurability of

sup | [gd(H, —H) (2.45)

However, the proof of a uniform law of large numbers needs measurability of
other quantities too. If one assumes that § is nearly linearly supremum measur-
able (ALEXANDER (1984), GINE and ZINN (1984)), measurability difficulties are
overcome without the assumption of stochastic separability.

POLLARD (1984) introduces the concept of permissibility. A permissible class
§ is also nearly linearly supremum measurable, but need not result in stochas-
tic separability of the process. We shall now copy the definition of permissibil-
ity - of a class of functions on R? - from Pollard’s book (POLLARD (1984),
Appendix C). We say that § can be indexed by T if §={g(-,t):teT}.

DEFINITION: § is permissible if § can be indexed by a separable metric space T

such that

(i) g(-,-) is B®B(T) - measurable on R‘®@T—-R (B is the Borel s-algebra
on R?, @(T) the Borel s-algebra on T), _

(i) T is an analytic subset of a compact metric space T (from which it inher-
its its metric and Borel o-field).

POLLARD (1984) eleborates on the merits of assuming permissibility. He shows
that (among other things) permissibility of § implies measurability of (2.45).
Note that if § is permissible, then so is {|g—g|: g, g€} (see (2.6)) and

& = {lg]': g€}, 1<s<oo,
and also the class of truncated functions

()¢ = {sign(g)(g|AC): g8}, C>0.

The quantities N(8,H,,9) still need not be measurable even if § is permissi-
ble. However, the use of outer-probabilities for statements about the possibly
non-measurable covering numbers does not interfere with proving laws of large
numbers.

Suppose now that x,, - - -,X,, are independent random variables, X,
having distribution H,;, k=1, ---,n, n=1. For each n, we denote the
underlying probability space by (£,, &,, P,), and we shall assume that it is
complete. Let {G,} be a sequence of classes of measurable functions on RY. In
order to handle measurability for the non iid. case and triangular arrays, it
suffices to assume permissibility of each §,. To see this, recall the proof of
Theorem 2.3.2. Note that all probability statements are for fixed (sufficiently
large, but nonrandom) n. For each n,

s dH,—H®™
sup | [gd( )
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is measurable, provided sugllglll,(,,)<oo. POLLARD (1984) shows that for fixed
g<s,
n, the symmetrization device
[gdMH,—H™)w [gd(H, —H',)

is valid. Of course, if 8, is permissible, then {g(x)s: g€§,} is a permissible
class of functions on R“*! . This makes it possible to randomize the process.
The use of Fubini’s Theorem in (2.30) is thus legitimate.
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3. CONSISTENT LEAST SQUARES ESTIMATION

3.1. L*-consistency
Consider the regression model

= g(x)te

where x is a R?-valued random vector with distribution H, e is independent of
x and has expectation zero and finite variance, and g is a member of a class §
of regression functions on R?. For an estimator of the unknown g to be sta-
tistically meaningful, it should at least be consistent in some sense. In the
least squares context the most natural requirement is L2-consistency. In this
chapter we show that entropy conditions on a (rescaled and truncated version
of) § imply this type of consistency. The results from Chapter 2 are used to
prove this.

Let L*(R“, H) be the Hilbert space of H—sguare integrable functions on R.
Writing K for the distribution of €, let L?(R?XR, P) be the Hilbert space of
measurable P = H X K-square integrable functions on RYXR with norm |- [l,.
For convenience, we omit the subscript 2, i.e. we write |- |l. Confusion is not
likely, because from now on L*-norms with s%2 will only appear sporadically
and then we shall use our old notation.

Denote by x and e the first and second coordinate projections into R? and
R respectively, and write g =g(x), go =go(x), ¥y =go +¢, where we assume that
go, the true state of nature, is in L2(R?, H). We have for ge L(R?, H)

ly —gli* = E(y—gx))*=llell* +llg —goll?,

since x and € independent.

Let (x;,€), (X2,€), -+ be independent copies of (x,€) with
Y« =go(xx)te€. Write P, for the empirical distribution based on
(x1,€), - -+ ,(X,, €) and H, for the marginal empirical distribution generated
by x;, - - - ,X,. Suppressing the subscript 2, we write || [, for the correspond-
ing L*(RYXR, P,)-norm:

l n
gl = — 3 g
=1

Iy =gl = 5 3 (g0 =le— =gl

The least squares estimator g, is - not necessarily uniquely - defined by
ly —gall7 = inflly —gll2.
The estimator g, is strongly L*(R?, H)-consistent if
g, —goll = 0 almost surely. (3.1

Strong L?(R?, H,)-consistency is defined in a similar manner. We concentrate
on convergence with respect to these metrics because the information on the
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regression function is determined by the distribution of the data. The addi-
tional knowledge that g, is in a class of regression functions § can sometimes
be used to prove consistency in, for instance, the sup-norm.

Observe that g, is the essentially unique minimizer of ||y —gll, whereas g,
minimizes the empirical counter part |y —gll,. By the strong law, |ly —gll,
converges for each fixed geL?(R% H) to |y —gll almost surely, and if this
convergence is uniform, consistency in both |-]l- and |-[l,-norm follows
almost immediately. The almost sure convergence, uniformly over a class of
functions §, was studied in the previous chapter. Recall Theorem 2.2.4. For
the case s =2, it states that, for § a permissible class with envelope G,

suglllgll,, —ligll] = 0 almost surely 3.2)
8€

if the envelope condition
[G*dH < (3.3)

and the entropy condition
.
% logN(5, H,,8) — 0 forall §>0 (3.4)

are fulfilled. Remember that logN,(8, H,, §) is called the entropy of & for
- 1l,.

PROPOSITION 3.1.1. Suppose that § is a permissible class with g, €8 and that (3.3)
and (3.4) are fulfilled, then

g, — gnll = 0 almost surely,
as well as

gy —gnll, = O almost surely.

PROOF. Obviously, conditions (3.3) and (3.4) ensure that we can apply
Theorem 2.2.4 to the class {y —g: g€6}, so

gggllly —gll,—lly —gll| = 0 almost surely.

Now, lly —gl*=llell>+Iig —goll>, and since goeSb, Ily —g,ll2<lIlell?. Hence,
for arbitrary n>0, and for all » sufficiently large

lell? +1lg, —goll* < Iy —g, 112 +n<llell2 +n<Ilel>+2n

almost surely. Or

llg, —goll*> < 2y almost surely.

Thus |Ig, —goll—0 almost surely, and since llg —goll,—llg —goll almost surely,
uniformly in g €6, this implies that also [Ig, —goll,—0 almost surely. [
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The uniform convergence (3.2) is certainly not necessary for consistency and it
is clear that condition (3.3) and (3.4) from empirical process theory will hardly
ever be satisfied for a class of regression functions 8. For example, for
8={(g(x,0)=x0=0,x,+ - - - +0,x,: §cR?} (3.3) and (3.4) do not hold. This
partly due to the fact that § is a cone (i.e. if ge§ also age§ for all a>0).
Therefore, we consider a class scaled functions

§= {f=—E8—:gef).
V=T g 89
Then [|fll<1 for all f€%, and ¥ is often essentially smaller that 6, e.g. if Gis a
cone. In smooth enough models, (3.3) and (3.4) will hold for %. This is for
instance the case in linear regression. However, the envelope condition on &
still seems to rule out many interesting models. Therefore, we propose to
weaken (3.3) to uniform square integrability of % and to impose the entropy
condition on a class of truncated functions.
A class F is uniformly square integrable if
lim su dH =0 35
C—o0 fegml Cf ( )
The class of truncated versions of functions in ¥ is defined as before: i.e. let C
be a positive number and denote

cif f>C
Ne =1 fif <G
—-Cif f<-C

and Hc=((f)c: f€F).

THEOREM 3.1.2. Suppose that § is a permissible class with g, €6, that F is uni-
Sformly square integrable and that for each C >0

g’
% logN2(8, H,, 9)c) — 0 for all >0, (3.6)
Then g, is strongly L*(R?, H)-consistent.

PrROOF. We shall first construct a covering set of the class

€+go
1+lgll

e = 1 gebh

£
1+lgll c

c
Let f;, j=12,--- ,Ny(8, H,, (9c) be a covering set of (9)c, ie. for each
S =g/(1+lIgll)€¥ there exists an f; such that

I )e =l <. (3.7)
Forall j=1, - - - ,N,(8, H,(9)c), define
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hi, = (kd(e+go)c—f;, k=0,1,---,[1/8])

Then for all n sufficiently large, {hj:;j=1,"-" ,N2(6, H,, (%)),
k=0,1, - - - ,[1/8]} is a covering set of Ic. To see this, choose f =g/(1+lIgll),
f; as in (3.7) and k =[1/(8(1+igl}))]. Then

=<8 | & |
I+llgh . | 1+ligh ). P
1 B
I g (e+go)ll,+1 gl | fll

<blletgoll, +8<blle—goll +26

almost surely, for n sufficiently large. Thus, we can apply Theorem 2.2.4 to
JCc, which yields that

( €t+go ) g )
—~ —~ 3.8
sup|l I+1gl |, l+||g||JC” e
(+g0 F4
— " 0
ANEY o Tl C“ -

almost surely, for all C>0.
Let n>0 be arbitrary. Then from (3.8) we have that for all ge§, C>0 and
n sufficiently large

€t+go g )

[ - i 39
+lgh |~ | T+ign ) e
Cero 1

sfl 2L - | & 1247 almost surely.

T+lgh | .~ | T+1igh |,

c
To get rid of the truncation in (3.9), we argue as follows. Obviously,

€t+go g 2 €YE8—L .5
NTFugn | ~ [T+ ign | M= " gn
gl gl | g
For the lefthand side of (3.9), we have
€+g0 g
I =5 | (3.10)
1+ligll o 1+igll &
o (B Ry K| o g EL  EVEL
1+1igll 1+ligll & 1+1lgll 1+lgll & 1+1lgll
Because of the assumed uniform square integrability,

llg/(1+ligl)c—g/(1+ligI)ll can be made arbitrary small by taking C
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sufficiently large. Moreover, lle+goll is finite, so {(e+go)/(1+lIgll: g8} is
also uniformly square integrable. Hence, for C large enough

€t+go
1+1gll |,

= f=B

T (i 4
1+]gll &

Il
1+ligll

Thus, (3.9) implies that for n sufficiently large

€+g0 2 go 3
I T+Igl Ejp =808 T+ gl £2 20 almost surely.
Since € and x are independent, this can be written as
llell> +1lg —goll? (3.11)
< lle+go—gll2+2n(1+llgll> almost surely,

for all ge6.
For g,, we have

le+go—gallz < llellZ,
because gy 6. Hence (3.11) implies that for all » sufficiently large
leli* + lg, —goll <llell2 +2n(1+lig,11)®
< llel®+3n(1+1Ig,l)* almost surely,

or

|| *r< 3n almost surely.
l|g,,||

Since 7 was arbitrary we can take 3n<lL. But  then
((IIgO—é,,Il)/(l+l|§,,||))2<1 for all n sufficiently large implies that for some
constant K <<oo

lg.ll < K

for all n sufficiently large.
This yields

llgo —g.l*> < 3n(1+K)* almost surely,
which completes the proof. O

It is easy to see that the conditions of Theorem 3.1.2 are implied b 2' those of
Proposition 3.1.1, but that in general they do not imply L*R‘ H

consistency. Consistency properties of regression estimators for more spec1ﬁc
models have been studied by other authors. In nonlinear regression, § is a class
of functions of the form {g(x, #): #®} with ©® some metric space and g(x, 6)
continuous is & for H-almost all x. It is shown in Section 3.2 that condition
(3.6) is fulfilled for this § if © is compact. JENNRICH (1969) proves consistency
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under the assumption that © is compact and that the envelope condition on §
holds:

f sup lg(x, O)FdH(x) < oo.

HuBkr (1967) imposes an envelope condition on a rescaled version of 8. He
allows for more general scale transformations, but there appears to be not
much loss of generality if we restrict ourselves to the choice of 4. If the
envelope F of F belongs to L2(R9, H), then it can be shown that if (3.6) holds,
g, is also strongly L?(R¢, H,)-consistent. Moreover, the truncation device
becomes redundant.

In nonparametric regression, there is usually no parametrization such that
the regression functions are continuous in the parameter for H-almost all x. In
Theorem 3.2, this continuity assumption is not required. The relation with the
assumption of compactness of parameter space is made clear in the following
lemma. Remember that a class ¥ is called totally bounded for | -|| if for all
8>0 the 8-entropy log N, (8, H,%) with respect to the L2(R¢, H)-norm, is finite.
The closure of a totally bounded ¥ is compact.

LEMMA 3.1.3 The conditions of Theorem 3.1.2 imply that ¥ is totally bounded for
l- |l. Moreover, if F is totally bounded for ||- ||, then F is uniformly square integr-
able.

PrOOF. In view of condition (3.6), application of Lemma 2.2.5 to (9)¢ yields
that (9)¢ is totally bounded for ||-|l. The uniform square integrability now
gives that ¥ is also totally bounded. This proves the first assertion.

Suppose now that ¥ is totally bounded for |[-|l. Let § be arbitrary and let
Sireoosfm m=1,...,Ny(8, H,9%), be a d-covering set of . Then for C
sufficiently large

j_{nax . I(f)e —fill <@

.....

Furthermore, for f€9, ||f —f;I<é
N = A < 1) =l +H e = £l
HIf; —AI<2Uf=fll +H(f)c = fill < 36.
It follows that
fim, sug WPe A1 =0
This is equivalent to uniform square integrability. [J
So far we did not consider classes of regression functions depending on n, §,
say. Such a situation arises for instance in spline regression, nearest neighbour
regression and some other nonparametric regression models. The situation with

9, depending on n will be treated in detail in Section 3.3. Here, we maintain
the assumption of iid. random variables, but because of the practical
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importance we consider a simple application of Lemma 2.3.3. Suppose {§,} is
a permissible sequence, then Lemma 2.3.3 asserts that

"
711_ lOgNZ(S’ l{m (Q,,)C) — 0 forall 86>0 (3]2)
implies
P
sup @)clln—lig)cll] = O.
g<s,

Note that the convergence is now in probability (almost sure results can only
be obtained if the entropy remains small). It is now not difficult to adjust
Theorem 3.1.2 to this situation, assuming uniform square integrability of
U%, %, ={g/(1+ligll): g8,}, together with (3.12) for (%,)¢c, C >0.

3.2 Applications

In this section we shall concentrate on conditions for the entropy condition
(3.6) on (9 to hold. The technique to prove the lemmas is construction of a
covering set and some combinatorics to count the number of elements. The
uniform square integrability of ¥ imposes requirements on the (unknown) H.
Often, it has to be shown by separate means that g,/(1+Ig,l) is eventually in
a totally bounded subset of ¥ (see e.g. HUBER (1967)). To avoid digressions,
we shall not elaborate on the uniform square integrability condition for
specific situations, but only highlight that (3.6) is a common feature of regres-
sion models.

An important special class of functions, that appears in several applications,
is the collection of indicator functions of VC-classes of sets. A minor
modification of Theorem 2.2.6 says that for a V'C-class of sets, and more gen-
erally, for a V'C-graph class ¥ of functions

N2, 0,(9)c) < AC’6™" forall >0
where 4 and r are constants not depending on Q. Examples of VC-graph
classes will be given below.

3.2.1. Nonlinear regression. If the functions in § form a (subset of a )finite-
dimensional vector space, then both § and % are VC-graph classes (see PoL-
LARD (1984, Ch. II, Lemma 28), DUDLEY (1984)). This is a consequence of the
fact that the collection of half-spaces is a V'C-class. Here is one more example
where the regression functions form a V'C-graph class.
ExAMPLE. A model considered in BARD (1974) is

y = exp(—le,e_o”")+c, 0,=0, x;=0, i=1,2
The graphs are of the form

((X1,%2,1): 0<t<exp(fx,e **), 6,=0, x,=0, i =1,2)

={(x1,x2,2): loglog%>log01 +log#, —6,x,, 6,=0, x,=0, i =1,2}.



36

Thus (use Theorem 9.2.2 of DUDLEY (1984)) § is a V'C-graph class and since §
is uniformly bounded, this implies that & satisfies (3.6).

ExAMPLE. The p-compartment model

y = ﬁaiexix +€’ ai>0’ Ai>09 l:1’ T 9P7 x=0.
=1
If p =1, the class of regression functions § forms a V'C-graph class, so then we
have for some 4 and r

Ny(6, H,,(9)c) < AC"67", 0<é<l.
This yields for the case p1 (apply the triangle inequality)

P
N,(6,H,,(8)c) < AC'(%)_’] .

and since § is a cone, the same holds for the (9)c.

In general, let §={g(-, #): €O}, with (8, -|]) some metric space. If ¥ is
not a V'C-graph class, one can handle the entropy condition by assuming com-
pactness of the parameter space.

LEMMA 3.2.1. Suppose that g(x,0) is continuous in 8 for H-almost all x, and that
(®,11- II) is compact. Then for all C>0, §>0

.
L logN5(8, H,(G)c — 0
as well as

1 P
— 1ogN2(8, Hy, (9)c) - 0.

PrOOF. The proof shows that for all >0 there exists a finite §-bracketing

-set, i.e. a set of functions {g®),g®} such that for each ge§ there exists a pair

[g4), gR] with gD <(g)c<g® and I|g ) — g®)[| <8 (sec DEHARDT (1971)).
Define for all xeR?, §c©

wx,8,0) = . sup |(g(x, O)c—(g(x, )|

(6:116—8li<p)

Then

lim w(x,8,0) = 0

p—0
for every § and H-almost all x. Since (g(x,6))c<C for all x, dominated con-
vergence implies that also

lim|lw(-,8,p)I> = 0.

p—0

Hence for arbitrary §>0 there exists a finite covering set of © by balls with
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radius p; and centres 6;, such that
w(-,8;, p)lI2 < 582

For all n sufficiently large, also
lw(-,8;, po)llz < &

But then {(g(-,6;))c} is a finite covering set of (§)¢ with L%(R¢, H,)-norm:
IEC,0)c—(g(, 0)clln < liw(-, b;, p)lln <5,

for a].l ”0—0,“<p,.
In the same way, one can construct a finite covering ser of %, since the class
{ag: a€[0,1], g€$} also satisfies the assumptions of Lemma 3.2.1. [

If the regression functions are not continuous in 6, one can often split them up
into continuous parts. An example is multi-phase regression, which is treated
in detail in Section 3.4.

In the next three applications § is always a cone. Thus, to check the entropy
condition for the (%)¢ it certainly suffices to verify the entropy condition for
the (§)c. In the proofs, the order symbol () holds for n—o0.

3.2.2. Monotone functions (isotonic regression).
LEMMA 3.2.2. Let §={g: R—R, g is increasing}, then for all >0, C>0

P
L logN2(8, H,,(9)c) - 0

ProoF. For ge§, define k=[C/8] and 4D ={x: i8<(g(x))c<(i +1)8}, for
i=—(k+1), =k, - - k. Take g®)=i8 and approximate (g)c by Z;g"1 0.
The {4®} form a partition of R with T=2(k +1) elements. As g varies, the
A® are in a class @ of intervals, for which

A (xy, - -+ %) = O(n?)
Thus, we have O(n*T) functions of the type =g 1,0. Also,

supl(g())c ~ Zg¥(x)Lew| < 8

Thus,
Noo(a’Hn(g)C) = O(nZT). o

The result can be extended to functions of bounded variation and unimodal
functions. If d>1, further conditions are in general necessary to make sure
that the entropy condition is fulfilled, e.g. assumptions on H or the condition
that § is a class of distribution functions of bounded Stieltjes-Lebesgue meas-
ures.
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3.2.3. Smooth functions. Let G,, n=1, be a sequence of classes such that the
elements of (6, have all partial derivatives of order s <m, m=0.

LEMMA 3.2.3. For x€R, let ||x|| denote the Euclidean norm of x. Suppose there
exists an a<1 and

mta
L, =on ¢ )
such that
lg™(x)—g™(x)| < L,llx —xI*
for all x, X, g€8,. There for all $>0, C>0

.
- 1og V28, Hy,(9)c) — 0.

Proor. Without loss of generality we can assume that H has compact support
K. If this is not the case, take a K with H(K)>1—8/C?. Then for any g

”(glK)C—(g)C“n < C(]—H"(K))l/l_)c(l_H(K))l/2<6,

almost surely. Let {B®} be a covering of K by balls with centres x) and
radius m!(8/L,)"™ *¢. The number of balls needed is O(L,/8)*'™ ¢ .
Construct from the {B?} a partition {4®} of K, eg take
AV ={xeBY, xgBV, j<i}.

Let g€, be arbitrary, and expand g(x) for xe4® in a Taylor series
around x®,

gx) = gV()+RO(x), xed®,

where g@)(x) is the m-th order Taylor expansion. The Lipschitz condition tells
us that

|IRO(x)| < L,/m!llx —x®|m T <.
Thus we have that
Sgpl(g(X))c - (E(g‘i)(x))c 140 (x))|<8.

As g varies in §,, the g form a class of polynomials of fixed degree, § say.
This class is a finite-dimensional vector space, so there exist constants A4 and r
such the for arbitrary measure Q

Ny(8, 0,(9c) < ACT8™".
For each i with H,(4 )40 we make the following choice for Q

4 H .
=00 =—2"__, @)
Q = Q% H.40) on AY.

This shows that there is a covering set {g!)} of (8)c with at most AC"87"
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elements, such that for arbitrary g €8 there is a g{") with
”(g(i))CIA"’ - }') Lol = f|(g(’))c—g§f)|2dH,,

A(i)
=H,(49) [|gV)c — g FdQY <H,(A4D)3?, H,(4D)70,
But then
Il —ZgPLowlz = T Hi(49) [|gD)c— g’ FdQY <&
i i i: Hy(A“540

and
”(g)C = Egj('i) lAm ||,l < 26.

Hence, the functions { g’ 1,40} form a 28-covering set of (,)c. The number
8], &

1
of different functions in this covering set is
k

(=)
(Acrs—r) )

el
m+ta

0

1.e.
d
L logN2(8, Hou(Ga)c) = L) =o(l). O

If the functions in §, are uniformly bounded and H has compact support,
then §, is totally bounded with respect to the sup-norm (see KOLMOGOROV
and TIKHOMIROV (1959)). In our situation, 6, need not be uniformly bounded.
The functions in (§,)¢ no longer have m derivatives, except in the case m =0.

The result of Lemma 3.2.3 can be applied in penalized least squares. Let
d =1 and let the penalized least squares estimator g, be obtained by minimiz-
ing

lly —gllZ +A2J(g),
where J (g) is the penalty
J@g) = [m D (x)Pdx, m=0

(see e.g. WAHBA (1984)). We use Lemma 3.2.3 with d=1 and a=1 to estab-
lish the following.

LEMMA 3.2.4. Suppose J (go)<oo and n™ "'\, —co, then there exists a sequence
8, such that g, €8, almost surely for all n sufficiently large, and such that for all
6>0, C>0

o
% log N2(8, Hy,(Sx)c) — O.
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PrOOF. The penalized least squares estimator g, has 2m continuous deriva-
tives (see WAHBA (1984)). We have

80— (@) < J2(@)llx — I
(see IBRAGIMOV and Has’MiINsk11 (1981, page 81)). Also
lly =&l +A%7 (&) < llellz +A2J (go),
which implies that for all » sufficiently large,

J]/Z(é") < 2_“;l +J1/2(g0)

almost surely. Take
8, = {g: supllg™(x)—g™&)I<L,llx —xII}

with L, =2llell /A, +J"*(g9)=o(n™*") and apply Lemma 3.2.3 with a=1 and
d=1. O

3.2.4. Nearest neighbour regression. We consider the nearest neighbour regres-
sion estimator of the form

g = 2 g 140

i=1

where the g are polynomials of fixed degree and A{’, i =1, - - - ,p, forms a
random partition of R?. For instance, one may take the A as the set con-
taining the N =[n/p,] nearest neighbours of some x,. In general, let

Pn ; . ;
S = (28" r: gV, AP e

) ) P
APNAP =2, i#), .L_JlAﬁ,‘):R"}. (3.13)

In a sense, this is an extension of a p-phase regression model to p,-phase
regression.

LeMMA 3.2.5. Suppose that in (3.13) § is a VC-graph class and @ a VC-class,
and that p, = o(n/logn), then for all >0, C>0

1 P
- 10gN2(8, H,,(S,)c) — 0.
PrOOF. Since §is a V'C-graph class, we have

n n

) 8 |
No(- H,,(0)0) < 4C" |2
2(p ©)c) [P J

for some constants 4 and r.
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Let {g;} be a (8/p,)-covering class of (S)c, such that for arbitrary g¢)e§
there is a g;e{g;} such that

i )
“(g( Ne —gill. < P_

n
Then
P P o
I1ZEDclio— Zgluoll, < J1gD)c—g; lln<d.
i=1 i=l i=l

For a fixed partition 4D, --- 4% there are at most (AC"(8/p,) ")"
different functions of the type Ef"zlgj, 140. Since @ is a V' C-class,

Ae(xl’ e ,X,,) = @(ns)

for some s=0. Thus the number of L®(R?, H,)-different partitions is O(n"").
The total number of L*(R?, H,)-different functions Ef'zlgj‘_ 140 is thus

P
on).

Ol 1=
AC'(—)
Pn

And 1/n 1og N5(8, H,,(8:)c) =(1/n p, log(np,))=o(1). O

3.3. The non-i.i.d. case and triangular arrays

In this section, we assume that for each n, x,, |, - - - ,X,, are independent ran-
dom vectors in R?, x,; having distribution H, ;. Furthermore, €, 1, - - - ,€,,
are independent random variables with distribution K, ,, Eg,;=0,
k=1,~<-,n, and {€, 1, ~,€,] 18 independent of {X, 1, *°.X.n}. We
observe (X, x,¥Ynx), K =1, - - - ,n, where

Ynk = Bon(Xni)t&ns, k=1,---,n

and where g(, is a member of a class §, of regression functions. The least
squares estimator g, is defined as a solution of the minimization problem

inf - 3 ¥k —gGni))-

ges, n =,
As in Section 3.1, P, denotes the empirical measure based on
(X, 1,€1,1), ** * s(Xpn-€s,) and H, is the empirical measure generated by
Xn 1, ** »Xnn. Moreover, we write
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The theoretical norm on L2(RYXR,P™) is denoted by |-l ie. for
geL*(R4, H™)

lggy = [lglPdH™,
and for g, go,€L?(R?, HM) and [|e[*dK™(e)<oo

ly =gl = [le+80n(x)—g () dP®(x,€)

= llellZ,) +lg —go,nllZ)-

The empirical norm on L2(RYXR, P,) is denoted again by |- |, e.g.

lgl? = [lgldH,,

ly =gl = [letgon(x)—gx)PdPu(x,)=lle+gon—glI5-
Finally, the class 9, of rescaled functions is defined as

9 = {g/(0+igllmy): g€5)-

Throughout this section, we assume that [lell,) as well as llgg ,ll»y remain
bounded. Moreover, we shall impose conditions that ensure that |llell(,) — llell, |
and |llgo,nllmy = llgo,» || converge to zero in probability. We impose an entropy
condition on the class of truncated functions (%)c, C,=Vb,, b,=1,
b,=o(n'?), endowed with L*R¢ H,)-norm, as well as on
(%)% ={f’\C2: fe%,} endowed with L'(R?, H,)-norm. Recall Lemma
2.3.4, where a relation between these covering numbers is presented.

THEOREM 3.3.1. Suppose that {S,} is a sequence of permissible classes with

80.n €Sy, n=1. Assume that for some sequence {b,}, b,=1, b, =o(n Ty
b, P
7" log N2(8, H, (%)) = 0 for all §>0, (3.15)
by P
— log N (8, H,,(%,)32) = 0 for all >0, (3.16)
and
lim sup su |f2dH™ = 0. (3.17)
n—o0 jegmiibn
Moreover, assume that
lim sup [ |e*dK™(e) = 0 (3.18)
0 1>,
and
lim sup [lell(s <co, lim sup llgo,nllny <co. (3.19)
n—oo n—

Then g, is L>(RY, H™)-consistent, i.e.
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P

PrOOF. The proof is very similar to the proof for the iid. case. Define
C,=V/b,. We construct a covering set of the class

geb,

X, =

ﬂﬂ_] _ _g_] .
1+1Igllen) c 1+lIglln c.
as before: let f;, j =1, - - - ,N,(8, H,,(%,)c,) be a covering set of (%,)c,, take
for f=(g/(1+llgllx)))€%, f; the corresponding neighbour of (f)c, (as in
(3.7)) and take

hj,k = (kd(e+gon))c, —fj, k=[178(1+ ligllimy))
Then

I ~hyll, < Slle+goll,+5.

1+ |Ig||(,,)

€t+gon ] B
G

&
1+ gl .

Use Lemma 2.3.3 to see that conditions (3.17), (3.18) and (3.19) imply that
lle+go,nll»=0p(1). Thus from (3.15)

b2 P
7" log N»(8, H,, ¥c) - 0 forall §>0. (3.20)
If we apply Lemma 2.3.3 to (%,)% , we obtain that
P
2 2
sup [1()e Iz =G e, | — 0.

Therefore

;.SG%E,”h”"<”€+gO’"”" +?2‘E|l(f)c, l, = Gp(1).
Application of Lemma 2.3.4 now gives that (3.20) implies
%’2'— log N, (8, H,, 3 i 0 forall §>0.
Use Lemma 2.3.3 now for 3% to get

P
2 2
5up 13 = kI | — 0

In other words, for arbitrary >0

sup ||l _€t8on | _|_g ”(2")_
28 | T lglen |~ | TF gl |
P >1-n (321
[ . [ D S T P
1+ IIgIl(,.) c 1+ Ilgll(,,) ¢ "
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for all n sufficiently large.
Using inequality (3.10) and assumptions (3.17) and (3.18), we get that for all
n sufficiently large

8o ] B
G

Il

—E& | 2 3.22
1+lIgllen) ]C I 525

- llellZay +11go,» — gl B
(1+ligllmy)?
for all g€6,. The fact that g¢ , €9, for all n gives that

’

le+go..—8alla < lell2.
Combine (3.21), (3.22) and (3.23) and use (3.18) and (3.19) for |lell2, to obtain
that for all » sufficiently large
én —80,n
1+lIgllny

Since lIgo,nlln) is assumed to remain bounded, we can complete the proof as
before. [J

P

I ||(2",<3n] > 1-2n

We can now establish consistency in the empirical metric |-, using two
approaches which depart from apparently different sets of assumptions. The
first approach resembles the one for the i.i.d. case: assume that the envelope
F, of ¥, is square integrable. The second approach is to work conditionally
on X, 1, *°* ,X,,. We summarize the result in two lemmas.

LEMMA 3.3.2. Suppose that {S,} is a sequence of permissible classes, that
go.n €5, for all n and that for some b,=1, b, =o(n 12y

b? P

- logN,(8, H,,9,) > 0, for all §>0. (3.24)

b; P

- logN (8, H,,52) - 0, for all §>0. (3.25)
and

lim sup [ FrdH® = 0. (3.26)

n—oo Ff>b.

Moreover, suppose that (3.18) and (3.19) hold for this {b,}. Then lIg,—go.nllm)
as well as |Ig, —go ||, converge to zero in probability.

PrOOF. Of course (3.26) implies (3.17). It is also obvious under (3.26), (3.25)
and (3.16) are equivalent, and that (3.24) and (3.15) are equivalent too. So

P
”gn _goyn“(n) - 0
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In other words, for all n>0, llg, —go.ll(xy <n with large probability for all n
sufficiently large. It now suffices to show that

P
su lllg—gonlln— llg—go‘,,ll(,,)| — 0. 3.27)
llg = gonllwy<m
g<5,

Now, application of Lemma 2.3.3 to % yields
P
sup 111l =1 llmy| = O,
which easily leads to (3.27). [0

Recall that under (3.24)
lim Sup ”F,,“(,,) < o0

implies (3.25).
We now discuss the alternative approach. Conditioning on X, =X,
k=1,...,n, n=12, --- can be seen as assuming nonstochastic regressors.

Therefore, we take H, , =8, , in the following theorem.

LEMMA 3.3.3. Suppose {S,} is a sequence of permissible classes, go,€S5,, n=1.
Suppose H, =0, ,, k =1,...,n,n=1.2, - . If for some b,>1, b, =uln'?)

b2
—nl logN,(8, H,, %,)—0 for all §>0 (3.28)
lim sup sup [ |f’dH, = 0 (3:29)

n—o0 fE ,mz>b~

and (3.18) and (3.19) are met, then

R P
”gn _gO,n”n - 0.

ProoF. Conditions (3.28) and (3.29) correspond to (3.15) and (3.17) respec-
tively, with H, ; =0, , k=1, ...,n (under (3.29), truncation becomes redun-

dant). Also (3.16) holds, since Lemma 2.3.4 can be applied:

lgll,
= —x<1. O
sup Al = sup e

If the x, , are actually stochastic, condition (3.29) is to be replaced by

lim sup P(sup [ [f?"dH,>n)=0 forall 7>0.
n—o0 fe"lﬂz>b,,

Then, provided (3.28) holds in P*-probability, consistency in empirical norm
follows. Lemma 3.3.3 does not give any clue on consistency in theoretical
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norm and (3.28) and (3.29) seem to be substantially weaker than the condi-
tions of Lemma 3.3.2. We shall consider the particular case of i.i.d. x;, and
8,=86, where nevertheless the assumptions of Lemma 3.3.3 imply those of
Lemma 3.3.2.

LEMMA 3.3.4 Suppose that X,,X,, - - - are i.i.d. with distribution H and that ¥ is
a permissible class with envelope F. If

.
% log N>, H,, %) > 0 for all >0

and if for all n>0
lim sup P(sup [ IffdH,>n) =0, (3.30)
n—oo fe¥, 2
>b,
for all b, tending to infinity arbitrarily slowly then
FeL*(RY H).

PROOF. As in the proof of Lemma 2.3.3, we can choose sequences ¢, |0, §,]0
such that

P* (- 10g N3(8,, Hy, ) > )0

It now follows from application of Lemma 2.3.4 that for some sequences
b,—, b, :o(nl/Z)’

b2 3
- log N1(8, H,, (D=) - 0 forall §>0. (3.31)
Let 0,,0,, * *° be independent random variables with

P(o;, =1)=P(o, = —1)=1/2. It follows from (3.31) that
1 5 P
sup |— Y o | — 0,
g 5 El 1 (f(xi))52 |
Hence by (3.30)

1o
sup |— S o 2(x)|<
fe§|n,§1 f (X))

1 n 5 2 P
sup |— D o (f(xx))52| +2 su dH, - 0.
feg | ”kgx e (F(x)51 | fegmz l bﬁlﬂ
Since
18 L
sup |— Y o (x
feg | nkgl kf ( k)l

is a reversed submartingale (see e.g. POLLARD (1984)) this implies

13,0
sfgg | . kglok f*(x¢)] = 0 almost surely.
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But by the Borel Cantelli Lemma, the strong uniform law of large numbers
implies that the envelope is integrable

/ sflelg fPdH <
(see GINE and ZINN (1984)). [

It turns out that in case of stochastic x,, (i.e. H,; does not degenerate at
Xnk =Xnx) it is often difficult to verify whether the entropy condition (3.28)
holds in P*-probability, unless the envelope condition (3.26) holds. For obtain-
ing consistency in both || - ||, - and || - |l,-norm, our approach indeed needs the
envelope condition (3.26).

ExaMPLE 3.1. Suppose (for simplicity) that (x;,€;),(x;,€), - - - are i.i.d. and
that g, is fixed. Suppose that §CL*(RY,H) is a permissible VC-graph class

with go €8. Let b,—00, b, =o(n'*(logn)~1"?) and define
60 = {(®)}*: g5}

Let g, be the function in §, which minimizes |ly —gll,. Then one can prove
that

= P
llg, —goll = 0

as well as

R P
g, —golln — 0.

To see this, recall Theorem 2.2.6, which says that for all C>0, §>0, n=1 and
for some constants 4 and r

N6, H,, (§)c) < AC™6 7.

Let 9,={g/(1+lIgll): g€8,}. By straightforward computation
N,(6, H,,5,) < A'b,tV2,67771 §>0

for some A’, and
Ny, H,, B2) < 44’b¥ 16 771 §>0.

Thus, the conditions of Lemma 3.3.2 are met, except that g, need not be §,
for all n, i.e. (3.23) need not hold. However, we can replace (3.23) by

lly —&all, <llell, + ll(go —(g0)s*) g, 8, ln <Ilell, +n

almost surely, since |/(go —(g0)s2)ljg,*>s, Il—0 almost surely.

We end this section with the following observation. Since everything may
depend on n, one can define a new class §,={a,g: g€9,}, with {a,} some
sequence converging to infinity, and use the uniform laws of large numbers of
the previous chapter to prove that |la,(g, —go.»)ll, converges to zero. In other
words, in this way one obtains a rate of convergence. However, the resulting
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rate will not always be the best possible. Note that so far, we only assumed
existence of second order moments of the ¢,,. We shall show in Chapter 6
how the existence of higher order moments of disturbances can lead to optimal
rates and laws of large deviations.

Nevertheless, consistency of |la,(g, —go.)ll. can be concern in certain
parametric models, where

§ = {gg: 00} (3.32)
with @ CR".

EXAMPLE 3.2. In linear regression

go(x) = x0
with x a row-vector in RY and 6 a column vector. Let H, , =8, , and let
Xn, 1
X, =
Xn,n

be the desiTgn matrix. Denote by A;, and A, , the smallest and largest eigen-
value of X, X, respectively. It is easy to see that if

Mon/Ap = 072179 for some 0<c<],

then conditions (3.29) and (3.30) of Lemma 3.3.3. are fulfilled with
b, =n"2179_ 1t follows that

. P
”gn _gO,n”n = 0,
provided that the regularity conditions (3.18) and (3.19) are met. If
lim inf %Al,n > 0,

n—oo

this in turn implies
" P
”0"_001"” == 09

8. =86,.80.n=8s,,- However, if X,’X, is ill-conditioned, i.e. if n ' A; , goes to
zero, consistency of g, in || - [[-norm no longer implies consistency of 8,.

The following lemma presents a direct proof of consistency of the least
squares estimator of a finite-dimensional parameter. It is a straightforward
application of Theorem 2.3.2. To arrive at the same result as in Wu (1981), we
assume compactness of parameter space. By a simple argument, this assump-
tion can be dropped at the cost of strengthening (3.33) (see also Section 6.2).
Moreover, we assume nonstochastic x,, ;.

LEMMA 3.3.5. Let G={gq: €O}, with © a compact subset of R% go=gy,,
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g —ge,lln = Ky ,ll0—6ll

for all €0, where K, ,>0,
lgo(x)—go(x)] < Az ()OIl

for all 6,6V, and where ||A; ||, =K, ,=(1) and
K3)¢
K3,

for some 0<c<1. Moreover, impose the regularity conditions

— @(n 1/2(1—(‘))

P

lim sup llell, <oo, |llell, — ll€llmy| — O.

Then
. P

116, — 6,1l — 0.
PrOOF. Since

lly —gull, <llell,, or

2 & A % 2

; 2 (n,k(gn(xn,k)_gO(xn,k)) = “gn _g()”2’

k=1

it suffices to show that for all >0

1 &
— 2 cn,k(gﬂ(xn,k)_gl)o (xn,k))
n, - P

— 0.

su 2
18— 6,11>7 llgo —ga,lln
0O

Define
€(go(x)—gq,(x))

e h A —
o = AR = 12

 16—8,11>n, 60}
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(3.33)

and ¢, =n'"¢/2, It is now easy to see that Theorem 2.3.2 can be applied to IG,.

Thus
—1 Enlh X —>p 0
hsgﬁ l”k : (€n,k, n,k)| >

and the proof is complete. [J
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3.4. Two-phase regression in detail: identified case
We noted already in Example 1.3 that the class § of functions of the form

aV+xpM if xy<l

g(x) = a(2)+XB(2) if x.Y>19 ERd+l’ i:1’2, YERd (334)

0o = [;;i:ii

is a VC-graph class. Thus there exist constants 4 and r such that for arbitrary
probability measure Q

N1(3,0,8)c) < A8'C’, forall C>0, §>0. (3.35)

Since, § is a cone, the same holds for any rescaled version of §, e.g.
9 ={g/(1+lIgllex)): g€S}. In other words, no distributional assumptions are
needed to verify the entropy conditions (3.6) (or (3.15) and (3.16)) of the previ-
ous sections. To investigate consistency, we now have to check some uniform
square integrability condition. Here, we do need to specify the distributional
assumptions.

By making use of the results of Section 3.3, one can study the general setup
with possibly non-i.i.d. random variables. However, to simplify the exposition
we mainly restrict ourselves to the iid. case and only briefly address the
non-i.i.d. case at the end of this section. We assume that x;,x,, - - - are i.i.d.
with distribution H, and €,¢,, - - - are ii.d. with expectation zero and finite
variance and independent of the x;, k=1,2, - - -. Also g¢ is assumed to be
fixed. We consider the class of regression functions
g = {gx)= 3 (@ +xpM)0(x): 0= [l‘gi eRIt!, AOCRY, i=1,2,

i=12

AVUAD=R?, AV NAP =g, 4=4Veq) (3.36)

where @ is a permissible class of subsets of RY. For convenience, we often write
@Y =@ and @ ={A4°: Ae®). We do not restrict @ to be the class of halfspaces
{{x: xy<1}, yeR?). Moreover, the regression functions are allowed to be
discontinuous. The least squares estimator is defined by

lly —gll, = inf lly —gll,,
ge$
where § is given in (3.36).
Theorem 3.1.2 asserts that g, is L?>(R“, H)-consistent if both
-
—’1,- logN(5, H,, @ — 0

and ¥={g/(1+|Igll): g€S} uniformly (H-)square integrable. However, it turns
out that even if the regression functions are of the form (3.34), ¥ is in general
not uniformly square integrable. Here are three examples.
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ExaMPLE 3.3. Take d =1 and consider the class §; defined by
9 = {al(—wy: @€R, YER}.

Note that & is a subclass of § in case @ is the collection of halfspaces. Define
H(y)=H(—o0,y]. Suppose there exists a sequence {y,,}x=1, With H(y,)>0,
m=12, --- and

lim H(y,,) = 0.
m-—o0

Let g, =aml(—soy.)» @ =H(¥m) %, m=12, ---. Then llg,l=1 and
2
—E" G = § [ (gnPdH—1/4, moco,
| T+ llgm!l
gn|/(1+llgn ) >C |g.|>2C
since |g,,|>2C for m sufficiently large. e —

gm:—‘-

Yare Br
FIGURE 3.1. H is the uniform distribution on (0,1)
ExAMPLE 34. Letd=1 and
8§ = {gp(x)=min(8*+ Bx,0): B>0}.

Let H(x)= ——-, —co<x<I. Then llgsll=1, gg6s and

x3’
2
lim _gﬂ_] 1
-
B—a a+ighy>c | 11 11gall

Il

84 84
FIGURE 3.2. B, <pB,
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ExaMPLE 3.5. Let d=1 and

6 = {gy(x)= -\/—;63?1(—00,‘1]("): y>0}.

Let H(x)=3x +7, 0<x<1, H({0})=7-
Then |lg,||=1 for all g, €§, and
2
. g |'_1
tim |-+

lgyl/(1+ligy I)>C

FIGURE 3.3. v, <y,

Our conclusion is that Theorem 3.1.2 cannot be applied under fairly general
conditions on H. We shall now take the following approach. We first show
that for a subclass Sg of 6, Fr={g/(1+llgll): g€br} is uniformly square
integrable, provided of course that

Ex"x < oo. (3.37)

In the sequel, we assume throughout that (3.37) is fulfilled. Next, we show
that under certain conditions on gy and H, g, automatically belongs to this
subclass S for all n sufficiently large (see Lemma 3.4.2).

As before, write [|6®] for the norm of the Euclidean vector 8*). Define

(i)
g (x) = a® +xB0=(1,x)80, g0 = [;(,] i=1,2. (3.38)

Define for A CR?

S(4) = 1 =
( )—/{ o 57 dH (x).
If H(A)#0 we denote by A, the smallest non-zero eigenvalue of =(4), and
otherwise we take A4 =1. Note that in all three examples 3.3, 3.4 and 3.5, we
constructed a sequence of functions g=gg 1, with A4—0. The following
lemma asserts that if one prevents A, from becoming arbitrarily small this

results in uniform square integrability.

LeEMMA 3.4.1. For n>0, consider the restricted class of regression functions
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Gr = {g= D g l40: g8, Ao>n, i =1,2}. (3.39)
i=12

The class

Iz = {g/(1+lIgll): gebr)

is uniformly square integrable.

PROOF. Take g= > ggol40€Gp and C>0. We have
i=1,2

2

dH <

i=12 lgen Lo
1+llggn Lol

For A CRY, H(A)70, let 1~XA be the diagonal matrix of eigenvalues of 2(4),
and P, the matrix of eigenvectors:

E(A):i)A]\A};:, iAi)‘:’:i)ji)A:I
The diagonal matrix of non-zero eigenvalues is denoted by A4, and the

corresponding matrix of eigenvectors by P,:

3(A) = PALPY.

— &

1+1igll

2
g¢”
x| g
T+lge Lo ]

lg7(1+liglh>C

So Py=(P,, Py 4), with Py 4 the eigenvectors corresponding to the eigen-
values equal to zero.
We have

J(L.x)Po 4P 4(1,x)TdH(x) = 0.
A

Hence
2
gl 1+llggo Lyl
1+ "gﬂ) Ll
| / ALVIE R de()
- IEENTTTTE %
e, | 1t lge Ll
1+ ”gﬁ") Ll
1 P PTo(i) 2
< (1”‘#;_ dH ().
10.0P P8 +lge L4l
1+ llggor Lyl

If AA >, then
lgg 141l = (BOTZ(A)ID)* >0 (|Py PTO.
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Therefore
2

T pi)
(I,X)PAPAa( dH(x)

I+llge 14l

{4 :Skign} SRP [:‘)
100P.PAPL| >C

[(1,x)P, Py
1+llgen 1,41l

’ 2
(i)
JL;L dH(x)
1+97 @]

< Su ~Su .
(A NBg) 40 P

JLLWM?LIIX.{; >C

+2" 1u®

3 2
d x)!!(')
< - dH(x).
W ood o) 4

B (0]
e

1+9 llp,‘
But the class

(g /(A4 1pO1l): p® eR*1)
is uniformly square integrable. [J

Write
go = X gewlay

i=1,2
and

a

8= 3 g la
i=12

Moreover, let for A CR?,
ANA = ANA", AM = (A\A)UA\A).

To show that eventually g,€6z, with 8z the restricted class defined in (3.39),
we first of all need an entropy condition on @ Secondly, we require that g is
actually a two-phase regression function, not a one-phase regression function.
This can be seen as an identifiability condition, since if g, consists of only one
phase one cannot identify the A or equivalently, one of the 8. However,
this type of identifiability is not a necessary condition for |l - [|l-consistency, as
we shall see in Chapter 6.

Thirdly, we impose a regularity condition on H. For this purpose, we intro-
duce the class C of all hyperplanes in R?, i.e.

8 = {C={x: (1, x)* =PPT(1,x)'}: PeH}

were 9 is the class of (d +1)Xs matrices P, 1<s<d+1, PTP=I. As in the
proof of the previous lemma, let P4 denote the eigenvectors corresponding to
non-zero eigenvalues of =(4), A CR?, H(A4)7#0. Then C4={x: x=P4P4x)
is an element of C with positive mass. Such hyperplanes will play an
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important role in Lemma 3.4.2 below. We shall assume that the probability in
Hausdorff-neighbourhoods of each Ce€ - neighbourhoods not including C
itself - is uniformly small (see (3.42)). This assumption is e.g. fulfilled if H has
a uniformly bounded density with respect to Lebesgue measure at all x in such
neighbourhoods. The Hausdorff-distance is denoted by

d(x,C) = infllx—x|l, CCRY,
xeC
where ||x —Xx|| is the Euclidean distance between x and x.

LEMMA 3.4.2. Suppose that the entropy condition:
-
%logNz(S, H,® -0 forall 8>0, (3.40)

the identifiability condition:

ligo—gkll = 0 for some sequence g = > ggl40 €8 (3.41)
i=1,2

implies A0 —0, i=1,2,
and the regularity condition:

11351 sup H({x: 0<d(x,C)<n}) =0 (3.42)

are fulfilled. Then there exists an n>0 such that eventually A} ® >n almost surely.
PROOF. Define

I x
Z,4) = [ [xr xrx]dﬂn(x), ACR

A
We have

ly —gall7 < llell?,
which implies
g ll, < 2llell, +llgoll,-

Hence for some constant K <<oo

lg.ll7 <K
for all sufficiently large n. Write this as
3 0"s, AN < k (3.43)
=132
Now, let A;® = - - - =A3°  be the eigenvalues of E(Af,i)) in decreasing order,
and define A,” =1 and AR =0, i =1,2. In other words, A;” =A;" for some

0<s;<d+1 and A}” =0 for s>s5,. For each infinite subsequence {n'} C{n}
one can construct a further infinite subsequence {n*} C{n’} such that for some
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0<s;<d+2 and some 7,>0, Ay> —0 and A" >m;, i=12. In view of
assumption (3.40), £,(49) - =4 “)) almost surely, uniformly in 4©ed@?,
i=1.2.

If we denote by AV, = - -- =AU, the eigenvalues of Z‘.,,(;\f,')) and define
AD =1 and A%, ,=0, it follows that A%} | -0 and for n* sufficiently large,
Ay 1>, i=1,2.

Let P(') be the matrix of ?1genvectors corresponding to the eigenvalues of
z (A ) that are larger than 5;, with the convention P{) =0 if all eigenvalues

are smaller than 2 5 ;. Then (3.43) implies
2
lpdll < =K,
& Ni

where p{? =POPOTY" i =1,2. Define
€9 = (x: (1,x)T=POPOT(A,x)T}, i=1,2

Because for the subsequence, A} | —0, we have that for each >0
HAY N (x:d(x,,C)>n})> 0.

But then from (3.43)
A0

HAY\ ) < HAY n(x, d(x,,C2)>n))
+ H({x: 0<d(x, C*)<n)}) > 0, as n—0,
or equivalently
H(A(') \B®) - 0, (3.44)
where B@)- “A ﬁC(i,)-, i=12
The class

6 = {guolpo: IKON < %K, BOY=40NC, AV e@?, Cet}
satisfies
%ldgNz(B, H,, §9) : 0 forall §>0,
because (3.40) holds. Moreover, the envelope of ) is in L?(R¢, H). Thus
'S [Ie-+g0—gu) a1 ~ le+g0 g, ln ||2]| 0 almost surely.
i=l,

Furthermore

2 Ie+go—gu)lpellz: = 3 lite+go—ga)pellz:
i=12 i=12

< D lletgo—go)aellz = llet+go—ga 12 <llell2-.
i=12
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This yields that

hmsup Ell(go gu)lpel?— 3 llelio\pell*| < 0 almost surely.

i=12 i=12
From (3.44) it now follows that
> ll(go—gu)1a2l> — 0  almost surely,
i=12
or
lgo— 8 013217 — 0 almost surely.
i=1,2
But then by (3.41), A,® — 0,i=1,2

Summarizing, we have that for each infinite subsequence {n’}C{n} there
exists a further infinite subsequence {n"} C{n’} such that A, does not con-

verge to 0, i =1,2. This shows that there exists an >0 such that Ay” >n for
all n sufficiently large. [

It requires virtually no additional effort to conclude from the proof of
Lemma 3.4.2 that under assumptions (3.40), (3.41) and (3.42), g, is Il-I-
consistent. However, we alternatively use Theorem 3.12 to show this.

PrOPOSITION 3.4.3. Suppose (3.40), (3.41) and (3.42) are met, then
g, —goll = O almost surely.

PROOF. By Lemma 3.4.2 there exists an >0 such that A ” >7, i =1,2, almost
surely for all n sufficiently large. Thus it suffices to show that the conditions of
Theorem 3.1.2 are fulfilled for the restricted class

6 = {g= X g¢ 1o, BV eRT!, ADe@®, Ao >n, i=1,2).

i=1,2

The entropy condition follows from (3.40):
o
%mgzvz(a, H, (%)) = 0 forall C>0, §>0.

Furthermore, we have shown in Lemma 3.4.1 that % is uniformly square
integrable. [J

For consistency of the estimators of the parameters 8 and A, i =1,2, we of
course need a further identifiability condition. If 4, is known, 8f is identified
if 3(A§) is of full rank. In the situation with 4o unknown, this is no longer
true, even when /6§’ — 6§’ ||540.

ExampLE 3.6. Let d=2 and suppose H puts all its mass on 8 points
xV, - xP, X, - xP, HE?)>0, t=1,---,4, i=12 Let
A —{xﬂ‘) x50, xD, x{M ) and AD =D, x xP, x&z)} (see Figure 3.4).
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Then there exists a 6, such that [|6§) —6§ (|40, and a @ such that
18— 8y |I5-0, with

I'S gglso—goll = 0.
i=12

\/
x{P

L)

x$

A

N

FIGURE 3.4.

Obviously, the roles of (6", AV) and (6¥, A®) can often be interchanged.
Identifiability should be understood in the wide sense, i.e. modulo a possible
re-indexing of the {(6”, 4?¥): i =1,2}. A sufficient condition for identifiability
that can easily be verified, is given in Lemma 3.4.4. Let

T = {}: H({x: lIx—Xxll<n}) > 0 for all n>0}

be the support of H. We assume below that there are sufficiently many points
in TNAf, i =1,2, in order to identify .

LEMMA 3.4.4. Suppose that ||0§ — 01|50 and that there are 2(d +1)—1 points
(xD:t=1,---2d+1)—1}CAP NT, with no d+1 x{) on a (d—1)-
dimensional hyperplane, i =1,2. Suppose furthermore that (3.40) and (3.42) are
met. Then |10, — 6, ||—0 almost surely. If moreover

H({x: ggo(x)=gg(x)}) = 0, (3.45)

then also H(A,,AA 0)—0 almost sy(r_fly. (These convergence results should be
understood modulo replacement of (0, , AY) by (02,’ . AE,’ ) isEj)

PrOOF. We shall first show that the identifiability condition (3.41) is fulfilled.
Let g, ==, go 140 €9 be some sequence with g, —goll—0. Either A" or
AR contains at least 2d+1)—1 points from
(xP:¢t=1, - ,2(d+1)—1, i =1,2}. Therefore, at least (d +1) of the x{” in
one of the A§), say A", must all be x{"’s or x{?’s. Without loss of generality,
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we can therefore assume that at least (d +1) x{"’s are in A{) for all k. This
implies that AY{) stays away from zero. Moreover, it implies that 6" —6f".
This in turn yields that A4§" cannot contain more than d x{’s, since
166" —66?1140. So AP must contain more than (d +1) x{?’s and thus AY
stays away from zero and 6 »8{?. In other words (3.41) holds.

Conditions (3.40) and (3.42) yield consistency of g,, and obviously this now
results in consistency of 0,.

Since

g —gol2 = 3 {(62’—08‘>>T2(Af,"nA8>)(é£"’—08'>>
i#je(1,2)

+(0) ) S(AY \AQ’)(éﬁ”—osf‘))}

the consistency of g, and 0, implies that
(68 —60)"S(A,A40)0F" —6F) > 0. (3.46)

Now, let Af a4,.1= - -+ =A4 ag,,4+1 De the eigenvalues of E(A,,AA 0), and take
AAag,0=1 and Aj a4, 4+2=0. Construct an infinite subsequence {n*}C{n}
such that for some 0<s<d+2 and some n9>0, Aj.a4,,—0 and
AA.A4,,s —1>Mo- Let P a4, be the matrix of eigenvectors corresponding to the
eigenvalues larger than 79, with P} 54 =0 if all eigenvalues are smaller than
1o. Define

Biag, = {x: (1,x)"=P4 a4, Pf a4, (1,x)7}
and

Co = {x: ggn(x)=gg(x)}.
It follows from (3.46) that

(660 —8) P4 a4, PA a4, (6" —06) — 0.
Therefore for each >0

H(BA a4, N{x:d(x,Co)>n}) > 0.
Assumptions (3.42) and (3.45) now yield

H(Bj .a4,) < H({x:d(x,Cy)=0})+H({x: 0<d(x,Co)<n})

+ H(BA.a4, N{x: d(x,Co)>n}) = 0.

Again by (3.42) this implies that also H(A,-Ad)—0. O

Here is an example where (3.45) is not fulfilled.

ExaMPLE 3.7. Take d=1 and go(x)=min(ey+xpy,0). Suppose that B0
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and that there is positive mass m concentrated at the change point —ag/fp.
Let A§) =(— o0, —ay/Bo] and 4 =(— o0, —a,/B,) with a,/f, some sequence
converging from above to ay/fy. Then

—a
1
1 x Bo
3(A4,04,) = / x 2|HE Sml 2
. R .. . | p
B TR Bo | Bo

Thus the limiting matrix is singular and has [;2] in its null-space.

In the non-i.i.d. case, consistency of g, and of the parameter estimates can
be proved using e.g. Theorem 3.3.1. We shall not do this, but only investigate
one particular case for later reference (Examples 6.6 and 6.7). We take
€, - ,¢ iid. and x, ;, - - - ,x,, fixed points on a uniform lattice in the 4-
dimensional unit cube. Furthermore, we let @={{x: xy<1}, yeRY} be the
class of halfspaces. Finally, we take go=2,-,g¢ 140 fixed. Define

H,=1/n%}_,8, and

1 x
Z,4) = [ [xr xrx]dHn(x).

A

The conditions of Proposition 3.4.3 and of the lemma following it all have
their counterpart for the non-i.i.d. case. In the particular situation we have
now, we have introduced so much regularity that the only additional assump-
tion we need is some kind identifiability.

PROPOSITION 3.4.5. Suppose that the AY, i =1,2, have positive Lebesgue meas-
ure and that 68" — 82)H#0 then

A P P
16, — 8ol 50 and H,(A,Ad¢) — O.

PROOF. We have as before that for some constant K
2 ég) En(A(‘))a(')
#=1
We can wnhout loss of generahty assume that for all n the eigenvalues of one

of the 2 (A ) say of 2 (A ) are all bounded away from zero. This implies
that 0 remains bounded. But then by Theorem 2.3.5

llie+g0 —8)1A% I — e+ g0 —x) A" ||(2n)| -0,
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which yields
P
lim sup(ll(go —.)14® 12, — lle1a" 1IZ,)) < O.
n—oo

The identiﬁab;l(ilty at go now implies that H (Af,l)) is bounded away from zero.
But then also 8, " remains bounded. Application of Theorem 2.3.5 gives

: P
Ilgo—g,,ll(,,) - 0.
The consistency of @)f,'), i=1,2, and A, now follows easily. [J
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4. EMPIRICAL PROCESS THEORY II

4.1. Introduction

Just as a uniform law of large numbers can be a tool to prove consistency of
the least squares estimator, a uniform central limit theorem can be applied to
obtain rates of convergence and asymptotic distributions. First, we briefly dis-
cuss the idea which led to Proposmon 3.1.1 of the previous chapter. Let § be
a class of measurable functions in L2(R?, H), let y=g(x)+¢, g€§ be a regres-
sion model, where it is assumed that Ee=0, E|e[><oo and that x and € are
independent, and let (x;,¢€,), (xz,cz) - be independent copies of (x,€).

If we define <e,g>, as

<eg>, = /egdP,,
then we can write
ly —gllz = llell3 —2<e.g —go>n+llg —goll7-
Since lly —g, /12 < llel2,
g, —goll? < 2<e.8,—go>n 4.1

The uniform law of large numbers says that if § is a dpermissible class satisfying
some entropy condition and with envelope G € L*(R?, H), then

sug|<e, g —go0>n| = 0 almost surely.
8€

This implies by (4.1) that |Ig, —goll,—0 almost surely (see Proposition 3.1.1).
By the central limit theorem, we have that for each g€§ with [|g —g¢l%0

Vn<eg—go>, °©
= n; _ggo flgo = O, lleli?). 42)
Thus
<68 —80>n _ —12
_— = ; 4.3
e =0l Op(n™""%) (4.3)

Suppose now that (4.3) also holds for g, then (4.1) shows that
IIg,, goll,=0p(n'"?). Indeed under entropy conditions on §, (4.3) holds for
g,. We shall establish this in Chapters 5 and 6. The present chapter provides
the theoretical background. Uniform central limit theorems will be used
directly in Chapter 5. The techniques for proving uniform central limit
theorems are adjusted for proving rates of convergence in Chapter 6.

Let us return to (4.1) for a moment. Obviously, for each ge§

£,
\/r;<e,g —g0>n — O, llel*llg —golI?). (4.9

Now, think of Vn <e, g —go>» as a process indexed by functions ge§, and
suppose this process converges to some limiting process with uniformly
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continuous sample paths for || - || (we shall make this more precise in the next
section). In view of the |- || consistency of g,, this would imply

<68, —go>n = op(n~1?)

and by (4.1), one obtains

g, —gollx = op(n ™).

In Chapter 6, we shall also encounter this rate, and in fact all rates ranging
from Op(n ") to op(n~"4).

4.2. Uniform central limit theorems
Define 3= {e(g(x)—go(x)): g8} and

va(h) = Vn [hdP,, heX

The process »,( ) is an element of some space X of real valued functions on
X being equipped with supremum norm. A function ye% is continuous if
lh —h||—-0 implies |y(h)—y(h)|—>0. We introduce a Gaussian process G, on
JC with mean zero and covariance structure

cov(Gy(h), G,(h)) = [hhdP,

where we assume that I is G,BUC (or P-pregaussian), i.e. I is such that G,
admits a version with bounded and uniformly continuous sample paths. A
sufficient condition for ¥ to be G, BUC is the entropy-integrability condition

1
J@og Na(x, P,30)"2dx < oo 4.5)
0

(see DUDLEY (1967)).

We first present the definition of a functional Donsker class. The word func-
tional refers to the fact that convergence in law is strengthened to convergence
in probability. This makes it possible to postpone some measurability con-
siderations.

DEFINITION. J(Cis called a functional Donsker class if

(1) is G,BUC,

(i) there exist independent copies Y (h,w) of G, such that he Yi(h w) is
bounded and uniformly continuous on ¥ for all k, and such that for all
1>0

P*(n ™ "?max sug] > (h(ex, xi)— Y ()| >n) — 0.
m<n hell ;"=
Here is a characterization of a functional Donsker class.

THEOREM 4.2.1. X is a functional Donsker class iff I is totally bounded for ||- ||
and for all >0 there exists a §>0 such that
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P* | sup [p(h)—w,()|>n| <n 456)
hhei

llh —hll<8
for all n sufficiently large.

PrROOF. See DUDLEY (1984). [

Condition (4.6) is called the asymptotic equicontinuity criterion.

In the literature on empirical processes, there are several results available
which make it feasible to check whether a particular JC is a Donsker class. We
present one of these results. Let S be a finite collection of points in R*! and

denote by Ps the empirical distribution based on S. Write ||- |1} = f (-)*dPs.
Define for H Z's'u&q|h|

D,(8,30 = Slg_PNz(SHHHs, Pg, 30. 4.7

THEOREM 4.2.2. Suppose that He L*(R**!, P), that I is permissible, and that
the entropy integrability condition

1
f(logDz(x, 90)2dx < oo (4.8)
0

holds. Then C is a functional Donsker class.
PrROOF. PoLLARD (1982). O

Recall that 3= {e(g(x)—go(x)): g€§}. We use Theorem 4.2.2 to show that
under entropy conditions on §, I is a functional Donsker class, provided a
higher order moment of € exists. Observe that (4.8) is met if

logD,(8, ) < M§™” 4.9)
for some constants M and 0<r<<2 and for all §. In the following theorem, we
impose (4.9) on 6.

THEOREM 4.2.3. Suppose that G is a permissible class with envelope
GeL*(R? H), and with
logD,(8,8) < M§™* (4.10)

for some constants M and 0<v<2 and for all 6>0. Moreover, suppose that
E|ef¥ <oo for some p>2/(2—v). Then H={e(g(x)—go(x)): g8} is a func-
tional Donsker class.

PrROOF. If D,(8,8)<<co for all §>0, then § is totally bounded for |||l (see
DupLEY (1984)). Since € and x are independent, this yields that JC is totally
bounded for ||-|| too. Thus, the theorem is proved if we show that the
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asymptotic equicontinuity criterion (4.6) holds. In fact, the envelope and
entropy condition on § imply that |||, — || - | almost surely uniformly on &, so
it is also sufficient to show that for all n>>0 there exists a §>0 such that

P( sup |n'2<e g —g>,>3n)<5n. @.11

llg —gll,<8
88<8

Without loss of generality, we may assume that € is symmetric about zero (see
the symmetrization device in Section 2.3). Let oy, - - - ,0, be independent ran-
dom variables, independent of (x;,€), - -, (X,,€,), Wwith P(o,=1)=
P(ox, = —1)=1/2. Write

® 1 & -
<6g=g>n = — 3 oeu(g(xi)—g(%0)).
k=1

_p
For each jeN, let & be a minimal (2 2 §)-covering set of § endowed with
L*(R4, H,)-norm. Then

Card(8¥)) < exp(M8~"2P"2||G|2)
for all jeN and §>0. Define g(;, =g 1 y<y25», g’ €8”). We have
P( sup |n'?<eg —§>2|>3n)<2p(sug|n”2<e,g —g0)>9>n)
gE

lig —gll<8
8g<s

+P( sup  |n'2<ego)—go >al>m=2P" +P?,
lligo — g l.<38

where g, =g©® liy<s, g9 =g9(g)ed9, lIg® —gll, <8.
Let r =r(n) be the smallest integer such that 27 >n and write

r=1
<€,g —g(0)>'2 = <€,g —g(,)>2+ 2 '<€,g(j+1) _g(j)>2’ (412)
j=0

g(]) :g(j)1|(|<2’”8—“’, g(l) :g(l)(g)eg(])’j :091’ Rl NOW,
lgg+n—g@plla < IEY™D =g y<rs v lln +11G 1 g>25- ly,

and
P(IG1 >y 12 > (j+1)22‘17’8210g%IIGIIZIEMZP)
< lIGIPP(>2728"17)  _ 1 ,
G+ 1)22_17’8210g%||G||2IE|c|21’ G +1Plog 5
Thus

P |Gl gy I3 = (j+1)22‘!7’8210g%—IIGIIZE|<|2Pfor some jeN

1
<7,
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for & sufficiently small. Hence, with probability >1— %TI
g+ =gl < 227#28+(j +1)27#"8(log %)"ZIIGII(E|c|2F)“2 (4.13)
<Co(j +127728(log )",

for some constarllt Co. 1
Take E = 3 —— and n,==—1— Then 3 7,=- and by (4.13)
j=0

=YTEas 2E(j +1) 2
r—i1
1
P su > n”2<e,g(,-+1) —g(/>>3|>771 (4.14)
8¢ =0
80 =80@®)
G+ =8¢+ng)
rl 172 0 L
<P poe 4 In""<e€.8¢+1 =8¢ >nl>nj| + 77
J=0 80 =80(®)
g(,u;:gqﬂ)(g)

llgg +1y =8Il <Colj +1)27#8(log %)m

By Hoeffding’s inequality (Lemma 2.3.1), for
g +1)—8lla<Co(j +1)27#"28(log %)1/2’

P(|nl/2<c,g(]—+1) —g0)>2|>nj|(xla(| ), T 9(xn’€n))

(W{EG +1P)P
2
20718 P XCR( +172 S log3)

<2exp(—C n* VP25~ Fp),

<2exp|—

for some constant C,; and with pr<B<<2p —2. Thus, on the set with
IGll,<2lIGl,

P sup : In1/2<‘,g(j+l) _g(j)>2|>nj|(xl’€l)’ 5 (Xns€n)
g+~ 8ol < Colj + 127" 8(l0g )"

< N3(Q2~V*YP728, H,, 82 exp(— C \n*2P/25Fp)
<exp(4M8* 272 ||G|I")2 exp(— C \n* VP28~ B/P)<2 exp(— C3n?* 2P*/28 "),

for some C,, C3 and all >0 sufficiently small. Insert this in (4.14) to see that
for n sufficiently large
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¥~
1
P| sup | Zn'2<eggn—ggp>al>7n
80 =80®) ;=0
8u+n=8y+ng)
ges
=l )
< S 2exp(— CynP2P28 ")+ 5n<n,
Jj=0

for & sufficiently small.
Representation (4.12) now shows that

PD < P(sup|n'’?<e,g —g(,)(g)>9,|>%n)+n. (4.15)
4

But
n'2 <e.g —g(r)(g)>al < n'?llell,llg —g (@)l 4.16)
+n'2<|ell g5, G>).
Since 27>=n and ||g “g(’)(g)ll,, <2728,

n"2lell, llg —g (), <2722-7"28]lell, s%n, 4.17)

1
8
n”2IE|<|1|,|>2m,;—wE(G(x))<n“22”28‘"PZ"'P82E|e|2PE(G(x))<%n,

for §<—n and all n sufficiently large. Also,

for & small. Thus for the second term on the right hand side of (4.16) we have
P (12| <|dlygsz50, G5 >+ @18)
<(4/m)*2r1-P§2-2PE|? |G <n,
for 8 small enough. Combination of (4.16), (4.17) and (4.18) gives
P(sgpln 2<eg —g(’)(g)>2|>%n)<n,

and it follows from (4.15) that P() <2ny.
It remains to show that P® <y, where

2 — -~
PO =P( sup [n"2<ego)—g0)>=0>n).
llgo —gawlla <38

Again by Hoeffding’s inequality , we have that on the set |G|, <2lIG|l,

1 o
P( sup |n'"2<egoy—g0)>o>nl(x1,€), - (X))
lgo —&aoll <38

e
<M (&H,.,Q)?-exp(zs_—z,?;%—z)
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|
Tsﬂw)skxp(— C4677")<n,

with C4 some constant and with § sufficiently small. [J

<exp(4M&~"||GII")2exp(

4.3. Measurability 11

We have specified »,(-) as an element of some space X of functions on 3. The
problem is that the supremum metric generally makes % into a nonseparable
space. As a consequence , ¥,(-) is not Borel measurable. Now, denote by %
the o-algebra on X that makes all finite-dimensional projections measurable
and that contains all closed balls with centres y X that are uniformly continu-
ous. E.g. in D[0,1], the space of functions on [0,1] that are right-continuous
and have left hand limits, the o-algebra generated by closed balls coincides
with the smallest o -algebra that makes all coordinate projections measurable.
Denote by (£,6,P) the underlying probability space. If I is permissible and
separable for ||+ || , then »(-) is &/% - measurable ( POLLARD (1984)). Then by
definition the random process », converges in law to some limiting process

w(-)if
P(g(a)—>PE()

for all real continuous measurable functions g on %X .

If the limiting process »(-) concentrates on a separable set, then some
important theorems for the Euclidean case (the Continuous mapping theorem
and the Almost sure representation theorem) go through for the situation with
more general X . A separable set in X is for instance the set of bounded con-
tinuous functions. Now, the limiting distribution of »,(-), if it exists, must be
some Gaussian process on I . If ICis G, BUC, then the limiting distribution of
v,(+) concentrates on a separable set.

DEFINITION. A permissible class 3Cis a Donsker class if
@@ Kis (E!,BUC

(@) »,(-)>Gy(*).

In Theorem 4.2.2 we have presented sufficient conditions for 3C to be a func-
tional Donsker class. POLLARD (1982) assumed stochastic separability of the
process »,(-) (see Section 2.4) and only proved the Donsker property (not the
functional Donsker property). Using the results of POLLARD (1984) and Dup-
LEY and PHILIPP (1983), one sees that stochastic separability of »,(-) can be
replaced by permissibility of 3, and that the word functional can be added.
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5. ASYMPTOTIC THEORY IN TWO-PHASE REGRESSION: IDENTIFIED CASE

5.1. Introduction
In this chapter, we study the model

y = g(x)te (5.1
with
g= 2 g"w
i=12

where %()’) is in the class of linear functions, ie. g®(x)=gg(x)=a®+xp7,
g i .
09 =(%i)eR? T, i =1,2, and where {4®},_,, forms a partition of R?. We

1)
write 0:(22)) and A =A". The set A4 is an unknown parameter and it is

assumed to be an element of a class @ of subsets of R“. As in Section 3.4, we
sometimes write @ =@ and @ ={4°: 4 @).

We are interested in conditions for asymptotic normality of the least squares
estimator of @, based on n copies of (x,y). First, the continuous model is
investigated. In this model,

@ = {A)={x: xy<1}: yeRd}

and the class of regression functions is

; (i)
8 = {gg.(x)=min(aV +xBD, a® +xp?): ) = [,‘le"') eRI*! i=1,2}.(5.2)

Thus, in this model the least squares estimator of A (y) is a function of the esti-
mator of 4. Also, a discontinuous model is considered, where

eR4*l,  (5.3)

8 = (gou)= 3 (@ +xpM)40(x), 60 = [};ﬁii

i=12
ADe@ =12}

and where @ is e.g. {A4(y)={x: xy<I1}: yeR“}, but also more general classes
are allowed. Note that in this model, the sets 4 are actually unknown parame-
ters. We also derive the asymptotic distribution of the estimator of 4.

Let

go = X galay
i=1,2

be the true underlying regression function. Throughout, the identifiability con-
dition 16" — 6 |1£0 is imposed. Moreover, for model (5.3) it is assumed that
8o 1s discontinuous in some sense. Chapter 6 treats the situation where d =1,
166" — 61| =0 and also the case where d =1 and g, continuous, but the con-
tinuity is not taken into account in the estimation procedure.
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5.2. The continuous model
The regression function is assumed to be of the form

go.c(x) = min(a® +xpV, a® +xp%), 6= [%]’ " [?;;}

Define
Ag = AP ={x: aV +xpV<a® +xp?)

and AP = A5, Write Af) =Af) and Ay =4, i =1,2. )

Theorem 5.2.1 below asserts that the asymptotic distribution of 8, does not
differ from the asymptotic distribution of the least squares estimator for the
case A’ known but without continuity restriction. In the latter situation the of
regression functions are of the form

b2 (a +xﬁ(i))1Ag>(x) (5.4)

i=1,2

. N _ . .
with (g(,-)), i =1,2 unknown parameters, i.e. the regression functions are not

necessarily continuous. The conditions of Theorem 5.2.1 are those of Lemma
3.4.4 plus the assumption that an arbitrary higher order moment of |¢? exists.

THEOREM 5.2.1. Suppose that the conditions of Lemma 3.4.4 are met:

) 11;151 sC\i%H({x: 0<d(x,C)<n}) =0 (5.5)

where C is the class of hyperplanes in R® and d(- ,-) is the Hausdorff distance,
()] there exist
{(x0:1=1,---,2d+1)—1}CAP NT, (5.6)

where T is the support of H, such that no d +1 x{") lie on a (d —1)-dimensional
hyperplane, i =1,2,

Gii)  H({x: ggo(x)=g })=0 5.7
and
) 116 — 8 ||540. (5.8

Al ()
Assume that E|e¥ <co for some p>1. Then Gf,) and 05,) are asymptotically
independent, with limiting distribution

Vn (0" —69) L4 MO, lelP= 1 (4f))), i=1,2. (5.9)

PrOOF. The functions gg .(x)=min(gg (x), gg»(x)) are Lipschitz continuous
in @ for every x, i.e. at 6

|g0,c(x)_g0.,,c(x)l < J(X)IIB—OOII,
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where J(x)=1+|zy|+ - - - +]|z4], with z, - - - ,z; the coordinates of xeR¢.
Consider the functions

80,c(x)—gg,c(x) |
it 110—8,l£0
10=6, 16—=8o 17

Jox) = 1 otherwise.

These functions form a VC-graph class §={j,: cR***D} with envelope
JeL*(R? H). Thus (Theorem 2.2.4)

s%p|||j9||,, —lljgll] = O almost surely. (5.10)
But
o = g’ o @ 0)TER, 0APIE —0))
‘ 116, — 811 1212 116, —6, 12
and since SAY NAY) > S(40) and S(4§) is of full rank, this implies that
Il > K, 5.11)

for some constant K| >0.
Write

0=[ly —gullz —llell; = —2<e & —go>x+ 1. —gollz (5.12)
= —2010,—boll<e, jis, >n+18,— 6112115, 12.

Because § is a VC-graph class
D>, = supN (8l I, H, H<exp(M8~)

for all »>>0 and some M (see Theorem 2.2.6). Take »<<2—2/p and conclude
from Theorem 4.2.3 (take §=¢ and go=0 in this theorem) that
{€jg(x): 0eR*@* D} is a (functional) Donsker class, which implies

<€ jo,>n = Op(n~"). (5.13)
Insert (5.13) in (5.12) to obtain that
—2118, — 6o I6p (n )+ 118, — oI 11j3, 112 < O,
or
18, —Bol11ja, 12 = Op(n %)
Hence by (5.11)
18, — 861l = Gp(n~*).
Let 8, be a Vn-consistent estimator and define A, =A#), i =1,2. By (5.7),
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. P
we have H(A,AA4y) — 0. Thus, again because of the V'C-graph property of all
classes of functions involved

I(gs,.c —go)1A% Iz
= 0 -0, (AY N4 )BY —6())+ 116, — 8,12 i, i ao 12
= @ —80) SAP ) —8)+op (1), i=12
Similarly, since the Donsker property implies asymptotic equicontinuity

<€(86,c—80)A" >n

- % _; €k(1,xk)}(bn(")—0{{’)+|Il~9,,—0o|| I’% g fkjb,(xk)]
XA, NAY XA, \ A
[ )
= |+ 3 ax0|@” -09) +op(2), =12
n x‘EAgl n
Thus, if we write [|Z%(4§)all* =a"=(4§)a, acR?*!, and
LS qx)7| = NOeri+!, i=12,
n x.eAg’
lly —ga,. 12 —llell2
= 3 (~2NY' @) ~0)+ IZHAPYE ~ 01} +on () (5.14)
i=12
In particular (5.14) holds for l~),, =é,,, so that
0=|ly —g,ll7 —llell2
= 3 (IS4 )8, —08)—=HUP NP |12 (5.15)

i=12

- IIE_”(Ag’)NSf)llz}+op(%).
If we take 0, =88 + 3~ 1(A)ND, i =1,2, we get from (5.14)

ly —goclly—llelz = — 3 ||2~%N<;>u2+o.:(%). (5.16)
i=12
Since [ly —g,l,<lIly — g, .|l, combination of (5.15) and (5.16) yields
S (IS4 XY ~00) - APINDIF) = an( L),
i=12

or
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SHAR) 0 —0) = STHAPINGD +op(n*), i=1,2

. E .
Because VnN® — N0, llel2=(4§)), i =1,2, this proves the required result.
O

Condition (5.7) ensures that 68—, implies H(A44AA4¢)—0. If it is not
fulfilled, then a large fractlon of observations is concentrated at
{x: ggo(x)=gg>(x)}, and the 0 will no longer be asymptotically indepen-
dent. This situation can be compared with the case 4, known, where because
of the continuity restriction, the least squares estimators of 60 and 69 are
also not independent.

The object of study in FEDER (1975) is a continuous model with one-
dimensional change-point, i.e. d=1 and

Y = 86" (0)](—c0,y(X) F 862 () ]y, 0 (X) T €,
where the ggo are linear in @9, i=1,2, and satisfy gg (y)=gg(y). Feder
obtains asymptotic normality of the least squares estimators, under
identifiability conditions. His method of proof makes extensive use of the spe-
cial structure of the class @={(—o0,y]: YER} of subsets of R. Extension of

Feder’s method to two-phase regression models with sets in higher-dimensional
Euclidean space as unknown parameters appears to be cumbersome.

5.3. The discontinuous model
In this section, we deal with two-phase regression functions of the form
ge(x) if xed
804) = 1ep(x) if xed G4l

with gg(x)=a®+xpO, ¢9 —JB()) and with 4 €@ The class @ may be the
class {A(y)={x: xy<1}: yeR“}, but we shall not require this because it turns
out that also other classes can be handled without too much increase of com-
plexity.

We assume again that the conditions for consistency of 0 and A are
fulfilled, i.e. @is a permissible class satisfying the entropy condition

logN2(8 H,, ® : 0 forall 6>0, (5.18)

and moreover
17’151 sug H({x: 0<d(x,C)<n}) =0 (5.19)

and there exist
(xP:t=1,---2d+1)-1}CAP NT, i=1,2, (5.20)

with no d +1 x{" on a (d —1)-dimensional hyperplane,
165" —0@ 1l 5= 0, H({x: g (x)=gP (x)}) = 0. (5.21)
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Here is a description of discontinuity at the true parameter value.

Di1SCONTINUITY ASSUMPTION. There exists an n>0 such that

i 1) (x)— o2
Ae@: 0<ll?(t,.4AAo)<nlE(g$0 (X) gso (x)|XEAAA0)>O- (522)

EXAMPLE 5.1 Take d=1 and @={(—o00,Y]: YER}. If
aff +yo B F#af® +voBP, and if H puts positive mass on some interval
around vy, then the discontinuity assumption is satisfied.

In the discontinuous model, with discontinuity assumption, the least squares
estimators 6,  and 05, are asymptotically independent and asymptotically
equivalent to the least squares estimators of the 69,i=1,2 in the case A,
known. This is asserted in Theorem 5.3.2, and the result is called adaptation:
the fact that 4, is unknown has asymptotically no influence on the estimators
of the 89, =1,2.

THEOREM 5.3.2. Suppose that the conditions (5.19), . . , (5.21) and the discon-
tinuity assumption are fulfilled, and that (5.18) can be strengthened to

D;,(8,®) = sgpNz(S, H;, @) < exp(M§™") (5.23)
Jfor some constants M and 0<v<<2. Assume that X1,4,(x) is bounded uniformly

in A€@ A in a neighbourhood of A, i.e. there exists a constant Ky<<co such
that for some my>>0

H({x: By, laan(>Ko)) = 0. (5.24)

su
Ac@ H(4
Finally, assume that E|e|* <co for some p>2/(2—v). Then l}f,l) and (}5,2) are
asymptotically independent with limiting distribution

Vi @? —0§) S w0, 2z (af)), =12 (5.25)

PrOOF. We shall first show that H(A,,AA 0)=0p(n~"). Of course, for 4 =4,
fixed the class

{e(gg> —gav)140: 09 in a neighbourhood of 4§}
is a Donsker class, i =1,2. Since és)—>08) this implies that
|<6(g6" —ga)lap >n| = op(n™*), =12

By (5.23) and (5.24) and using the assumption that E|e[¥ <oco, we see that also
the class

{e(gg> —ge)1anq,: 09 in a neighbourhood of 6ff), 4 €@,
H(4A40)<mo}
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is a Donsker class, i, je{1,2}. Hence, since H(A,,AA 0)—0,
|<€(86" —ga0)Lao\A" >n| = 0p(n™"), =12,
as well as
|<€(g6) —ga) A"\ a0 >nl = op(n™"), i7je{1,2}.
But then also

|<€8:—go>al < 3 |<e€(g5” —go) 140 >

i=12
+ 2 <6 (i —ga)lap\AY >l
i=12
T <o —ga) A\ ap>al = op(n "),
i#je{1,2)
This shows that
18, — g0) 14 a4, 112 <IIg, — g0 112 <2|<€,8, —go>n| = op(n*). 526

Assumptions (5.23) and (5.24) also imply that the class
{(g¢> —ge»)*14a4,: 0 in a neighbourhood of 8, 4 €@,
H(AMg)<mo), ije{l,2)
is Donsker, so from (5.26)
18, —g0)1A,a4, 17 = 1@ —£0)1A a4, I3 +Cp(n ~*)=Cp(n "), (5:27)

We shall now utilize the discontinuity assumption. In view of (5.24), for all
n sufficiently large,

I () —gap ()| 14,4, (x) < K318, — 680112
Thus, for arbitrary 1, >0
1@ —80)1A.0a, 12 = lI(ge — g2 h aa, 12 —m H(A,A4 ),

for all n sufficiently large. Combine this with (5.22) to obtain that for some
constant K;>0

1@ —g0)1A,a4, I? = Ky H(A,A)
for all n sufficiently large. In view of (5.27), we thus obtain
H(A,Mo) = Gp(n ")
Since E,,(Af,i)) — X(A{) almost surely, we see by explicitly writing down the

expression for the least squares estimator

@, -0p) = (>:"<A8>)+o(1»{% 3, &(1x)"

X, €A,
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1 ~ .
- Z (g,.—go)(l,xk)T}, i=12. (5.28)
XA, \4)
By (5.24) and (5.26)
LS @—goLx)T < I3 —goll KoH (AyAo)

XA, \ A
= op(n V" )H;; (A,A4,).

But the Donsker-property for {4A4,: Ae@} and H (;\,,AA 0)=0p(n ") imply
H,(A,A4¢)=0p(n~"). Therefore, we can write (5.28) as

0, —0p) = (2_'(1‘16’")+o(1)){1 2, &1, %) +op(n~ ”)}

x,,eA

= 37UAP)T 5 @ +op(n )

xkeA

because {e(l,x)TlAMo(x): Ae® H(AAA )<mng} is also a Donsker class. [

We shall derive an expression for the hmmng distribution of A This limiting
distribution does not depend on 0,, ,i=1,2.

LEMMA 5.3.3. Under the conditions of Theorem 5.3.2
A,Ado = argsup R,(4)+op(l),

with
R,(4) (5.29)
= ¥ %{ € (ge (Xi)— ga“’(xk))— 2 (ga“(xk) ge (X)) | .
i=12| A?\N4D
i

PRO?(F It is easy to see that for {4,} C@ some sequence of subsets in R? and
=(@)
"(||€1A""nA:," ”2 — iy —&@+n"1,4,)14°0 40 ||r21)

};‘ & (1,x )1 —1OTZAD N APy, i=1,2.
x,eA NAY
Thus, using the Donsker-property

"(”flA‘,"’nA{,'" ||;2, P Il(y —g(a,,+n‘“1),A,)1A‘,"nA:,‘" ||;2:)

= 2% 3, e(lx —TSUDYO Fop(D), i=12,
X, €A,
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uniformly in ||7||<L and {4,} C& H(A,A4()<mn, — 0. Furthermore

"(”‘IA‘."\AI:’ 5= Iy 8 +n""n,4,) 149\ 49 12)

=2 > &lg@+ /v (Xk)— 8o (Xi))

X €4, \Ag)

= 2 (880 + /vy (Xk) — g (i) =2 ; (g0 (i) — g0 (X))
x.ed, \ 47 x eAY \ AP

— 3 e -gm)P+ep(l), i=12,

XA\ A7

ije(1,2}, uniformly in |I7lI<L, {4,} C@& H(A4,A4)<n, — 0.

We have seen that with arbitrary large probability, \/;IIO"—00|I<L for L
and n sufficiently large. Moreover , H(A,AA4,)—0 implies that there exists a
sequence 1,0 such that with arbitrary large probability H(A,AA4()<n, for all
n sufficiently large. Thus with arbitrary large probability

n(llel2—lly —g,112)= sup n(llel2 =1y —g @, +n-"n.all?)
IILH @L
€

- 1 T (i DT i i
= 2 1, 20 — 20T SAP YD) + R, (4)+ op (1
Ae@:ﬂlf(l}:%o)<n_{i:21-2{ \/:%tk( Xe) ( 8) } (A)+op( )}
= 1 T (i)
ufﬁl&{izzm{z \/;%ﬁc(l,xk) 1‘ }}+§1£ R,(A)+op(l). O

EXAMPLE 5.2. Take d =1, @={(— ,y]: YER} and gg =a?). Then for y>y,
R(—0,7) =2 3 elal’) —af?)—(ab’ —af?) nH,(vo,7)
Yo <X <Y
Apply the law of the iterated logarithm for partial sums to see that condition-
ally on x;,x;, - - - =x,x3 - - -
> &) —af?) = &((nH,(vo,Y)*loglog(nH,(vo, 7)),
Yo <X <Y

uniformly in nH,((yo,Y]) =0. Hence
Sl;pRn((_oo,Y]) = Op(1),

and

H,,((—OO,‘?,,]A(—OO,Y()]) = OP [%]

This result is comparable with HINKLEY (1970), who assumes normality of the
&, k=12,---.

In Example 5.2, we showed that sup,.g¢R,(4)=0p(1), and this in turn
implies that n(llell2—lly —g,112)=0p(1) and llg, —goll,=Op(n~*). Here is an
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example where sup,.¢R,(4) does not remain bounded in probability.

ExaMPLE 5.3. Take d=2, @={A(y)={x: xy<l}, yeR?} and g =a",
i=1,2Let AP’ ={x=(z,,23): (z; +2)*+2}3 <1} and let H be the uniform dis-
tribution on A{¥ UA), where AP ={x=(z,z5): (z; —2)*+23<1). Observe
that if af’~af?, the discontinuity assumption is fulfilled. Also all further con-
ditions of Theorem 5.3.2 hold, provided E|e|? <o for some p>1.

Now, consider the convex hull of the data {x;, - --,x,} in A" and A{
respectively. To every point x, on the convex hull, which lies between x),

and x{!), there corresponds an A(y,)=A \ {x,, }.

A(Yn) «

Obviously
sup R, (4)=sup R, (A(y,)) = max ey, (af’ —af?) —(af’ —af?). (5.30)
€ 2 %
As n tends to infinity, the number of points x, also tends to infinity, so the

maximum in (5.30) will be taken over an increasing number of independent
copies of €. This maximum will not remain bounded.
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6. RATES OF CONVERGENCE

6.1. Introduction
This chapter is inspired by LECAM (1973) and BIRGE (1983). We shall first
sketch some of their results.

Let 6 be an index set and {P,: ge&} a collection of probability measures on
a Euclidean space. One can equip & with the Hellinger-metric, defined as

hgd) = (3 [I(dP)" —(dPy)* )",

Let gt be the maximum likelihood estimator of g based on n independent
observations from P, . LECAM (1973) shows that if ¢ satisfies certain dimen-

sionality restrictions

h(ght, go) = Cp(n™").

These dimensionality restrictions are entropy conditions on & endowed with
the Hellinger-metric.

BIRGE (1983) investigates the minimax risk for estimation. For example, let
P, be the probability measure on R with density g with respect to Lebesgue
measure and let ¢ be a «class of densities on R. Define

d(g, g):/|g(x)—g(x)|dx. The minimax risk is
R,(d) = inf sup E, (d(T,. go)).
T, 8o

where T, is any estimator of gy. Denote by log N (8, §) the 8-entropy of ¢ for
d. Birgé shows that

log Ny(8,5) < M§&" forall >0
implies
1
R,(d) < M'n ',

In regression theory, least squares estimators coincide with maximum likeli-
hood estimators if the disturbances are i.i.d. and normally distributed. Thus,
in that case LeCam’s theory can be applied to obtain conditions under which
g, converges with rate Op(n ") in the Hellinger-metric. We shall prove that if
the disturbances are not necessarily normally distributed, but satisfy some
moment conditions, and if certain dimensionality restrictions on & endowed
with || -[|,-norm are met, then g, converges with rate ¢p(n ") in |- [|,-norm.
This result is established in Theorem 6.2.2 while Corollary 6.2.6 contains the
result as a special case of a partly more general situation, where the parameter
space may be infinite-dimensional, but stronger moment conditions are
imposed.

The relation with Birgé’s work becomes clear from Corollary 6.2.7. Here, it
is shown that
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logNy(6,H,,5) < M§" forall 6>0, n=1

and 0<p<<2, implies
—
”éﬂ *80“:1 = tNIJ’("I e )
Because the minimax theorem of Birgé in the situation of density estimation
has its obvious counterpart in regression analysis, this means that the least
squares estimator is minimax in the sense of rates of convergence in |- [|,-
norm.

Theorem 6.2.5 gives the most general result, albeit under fairly strong
moment conditions on the disturbances. We allow for classes of regression
functions 6, depending on n and the true underlying g¢ , €5, may vary with n
too. In some situations, the rate of convergence can actually depend on gg,.
which generally means that a rate faster than minimax is obtained. We denote

by
B,(p.5:.80.) = {g€%: lIg —gonlln<p}, p>0 (6.1)

a ball with radius p around gg,. intersected with 6,. The covering number of

this neighbourhood of gg , is
N,.(8,0, 92 80.n) = N2(8, H,. B,(p. 5,. g0.0)). p=6>0. (6.2)

In the following section, we prove that the behaviour of N,(8, p, 5,.g¢.») as
function of &, p and n determines the speed of estimation. We call a model
finite-dimensional if N, (8. p, 5,. go,,) remains in some sense small (see (6.3)).
In Subsection 6.2.1 we obtain rates under moment conditions depending on
the dimension. Subsection 6.2.2 deals with infinite-dimensional models. Here,
we impose an entropy-integrability condition on N, (8, p, 5,, go.,), Which is
similar to condition (4.8) of Theorem 4.2.4 (see (6.21)).

Now, in general N, (8. p, 5,. g¢.») 1s random. However, to simplify the expo-
sition, we assume throughout Section 6.2 that H,, =8, . k=1,---.n, n=1.
If the x,,, are actually stochastic, this is equivalent to working conditionally on
(Xp 15 " X)) =(Xn 1, © - 2Xy). It is not difficult to adjust the results of the
next section for the case of stochastic x,,;: one simply imposes the condition
that for each n &, is permissible (in order that Fubini’s theorem can be
applied) and assumes that the appropriate entropy-conditions hold in P°-
probability. We elaborate on this in Section 6.3, Corollary 6.3.1, in the situa-
tion of i.id. x,,. Theorem 6.3.2 presents sufficient conditions such that the
rates of convergence in || ||,- and || |l-norm are the same.

In Section 6.4 the results are applied to two-phase regression and compared
with those of Chapter 5.
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6.2. The rate of convergence of the least squares estimator
Let ’

Yok — g(xn.k)+‘n.kw k=1, gegm n=12---,

where x, |, -+ ,X,, are vectors in R? and ¢, |, - - - ,€,, are independent ran-
dom variables with expectation zero and finite variance. The finite-dimensional
case and the (possibly) infinite-dimensional case are treated separately, because
in the latter we need more stringent moment conditions on the €, .

6.2.1. The finite-dimensional case. Call the sequence {6,. |- Il,} of finite metric
dimension r at {g ,} if there exist constants ng,j(,8 such that

N Nn(8~218~gnsg0.n) < A 63

sup sup sugso o < A<co. (6.3)

n=n, j=j, 0<8

For instance, suppose 9, can be indexed by an R"-valued parameter:
6, = {ge: 0€0,}, ©,CR".

Then {6,,ll-ll,} is of finite metric dimension r at {go,} if for some
O<K]’,,<K2‘,,<OO with

lim sup Ko < o0 (6.5)
n—o0 K]_n
the following holds:
||g0 —ga,, H,, = K|.,,“0_00‘,,” for all 06@,,, (66)

where g4 =g, and
ligo—gilln < K1,10—6Il forall 6,8c@,. 6.7)

Observe that if gg(x) is differentiable with respect to @ for all x, this can be
exploited to compute K,, and K;,. We also remark that it is of course
sufficient to consider neighbourhoods of 6, once consistency is already esta-
blished. We shall see examples of this in Section 6.4.

To establish a rate of convergence for g,, we need a probability inequality
for the random variables

= 1 & "
<68 —8>n = ; 2 cn.k(g(xn.k)_g(xn,k))-
k=1
LEMMA 6.2.1. If for some p=1

% = y<
sup ,QfénlEl‘"J‘l y<oo, (6.8)
then for some C depending only on p and y

g —gll%
nPa?%

)

P(<e g —g>,=a) < C
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Sfor all a>0, all g, g and all n=>1.

PrROOF. WHITTLE (1960) shows that for some €}, depending only on p
N C n - 5 r
[E| <, g _g>" |2/’ = ;2% Z (g(xn.k ) —g(-xn.l\' ))2(IEI('1.I\' |..p )l//7
k=1

Application of Chebyshev’s inequality now gives the required result. [J

THEOREM 6.2.2. If {S,. |l |l } is of finite metric dimension r at {go,} and (6.8)
holds for some p>r, then there exist constants A’, L' and n' such that for all
L=L" and n=n’

Pdlg, —gonll,>n""L) < A’L~% "7, (6.9)
g

ProOF. Define 8, =n ~". Remember that g, €, implies
2=, 8: —Lon >n— Hgn _gO.n”?; = 0.

Therefore, replacing L by 2% in (6.9). the theorem is proved if we show that for
all L sufficiently large and »n sufficiently large

P < AL,

SUP 2<€,g —gO.n>n _”g _gO.n“%?O
P

llg —go.ll,>2"8,

In particular, we shall take L=, where j, is defined in (6.3).
Clearly,

P SUP 2<(*g_g0.n>n_”g _gO.nH,21>OJ (6.10)
llg —goall,>2"8,
< 3P su 2<€, 8 —gon>n—llg —20,lI2=0
. P €, g gO.n n g 8onlln=
S P )

2 )
< >P SUp 2<eg —go_,,>,,>2-/87,] = > P, say.
/BL v—B,,(2 ,,."*,“g.)_,,) /ZL :

Let {g} be a minimal §,-covering set of B,(2 *'8,.6,,g0.,), i.e. for each
g€B, (2 718,.6,., g0.,) there exists a g (g)e{g?} such that
lg —g @l < 8,
Since {5,. [ Il,} is of finite metric dimension r at {gq_, }.

card ({g©}) < 42u*Dr (6.11)
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for all n and ; sufficiently large. We get

Pr = o =>2% 2]
= L B.(Z’S'PS?.«L.g,,”)z'«’g Zon >0 =282
<P [(51‘1‘8|<c,g(0)_g()’">”|>22(,7|)8’2']

g

+p ; o= (g)= =22 -1 z]: (4 pQR.
L' B"(2,S~PJE) ":n~gu..)l<( g g (g) "| 2 6" p/ Pj

Since [Ig'? — g, I, <2/ *28,. application of Lemma 6.2.1 yields

P}” =R [{sq“gl<‘~g‘0) —g0.11>n|>22('/_”8'21]
g

@28)7 (2128,
(0) S P e (Vigallh o g T e
< Card({g })C np(22q-l)8’2’)2p <A2 Cnp(z?.(j—l)s;’;)zly
for all n sufficiently large. This can tidied up to
PN <qC2 27 1% N, (6.12)

Next, we shall use the chaining method to show that the P are also small
(see e.g. POLLARD (1984), Ch. VII). Let for k€N, {g*)} be a minimal 27 *§,-
covering set  of Bn(zj e s F}n»go.n ). Then for g EB,,(zj i 18", p;mgO.n)«
llg —* @)l <27#8, keN

58" = glg“"(g)—g“' e
pointwise on x, |, - * * ,X,,. Define

s = 1=(r/p) (6.13)
and E=3_, k27% n. k27 %/E. Then

P <€, 2 — 0) > 222(]—1)8'2
[K' B,(ZJS'PSES'?"‘gu_")I €878 (g) n| :

20

< SP[ e [<egWE)—g Ve |ma s
k=1 g-B,(2 ,.-"L-gu‘,.)
The number of pairs {g*)(g), g* ~"(g)} is at most
NyQR758,, 2 418,61, 80N, (27 * 718, 2 718,.6,. gon) (6.14)
< Na(2748,, 2118, 6. goa) (420 TN
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for all n sufficiently large.
Hence, application of Lemma 6.2.1 gives

@ (450 K + a2 (O i
i< /\gl(Az ) C"”(ﬂk2207')35)2p

(6.15)

:A2cz2r+8pE2p2-2j(2p—r) i k—Zp.
k=1

Returning to (6.10), we see that
P sup  2<e,g —gon>n g —gonllz=0| < S (PP +PP)
8EY,

n =1
llg —gall.>2"8, 4

<V ACT TP+ A2 C I ER % k=#)27i%N<yq2-%-nL
j=L k=1

for L and n sufficiently large. Thus the proof is complete. [J

In (6.3), where we defined finite-dimensionality, we assumed that the con-
stant A does not depend on n. A weaker version of (6.3) would be

N,,(s. 2187 «t';n ng.n)
A, 2"

sup sup su < oo, (6.16)

n=n, j=j, 0<8<§,

where {A4,} is some possibly unbounded sequence. One can easily adjust the
proof of Theorem 6.2.2 to show that under (6.16) the rate becomes
Op(n~"A)?) (replace 8§,=n"" by 8,=n""A)P).

Now, let us reconsider the case

6, = {gy: 0€96,}, 8,CR", (6.17)

with {6, [I-l,} satisfying (6.6) and (6.7), but not necessarily (6.5). Obviously,
then (6.16) is met with 4,=(K,,/K,,), and the rate is thus Cp(n "A4L7).
However, careful inspection of the metric structure of Euclidean space reveals
that this is not the most refined result: it turns out that it suffices to assume
p>75rin (6.8) and that the rate is Op(n~"4)/®’). This is shown below.

LEMMA 6.2.3. Suppose that 6, is of the form (6.17) and that for some
0<K|‘”<K2~,,<OO

”gg—ggo."”,, = KL,,||0—00_,,|| for all 06@",
lgo—gill, < K1, 10—8l for all 6,60,

If (6.8) is met for somep>%r, p=1, and if Ky /K, ,=o(n?'"), then there exist
constants A', L’ and n’ such that for all L=L" and all n=n’

r/(2p)

o —p_2n ' =Qp—r)
P10, —6,.,1| = n Ko D=A'L p—r
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@, being defined by g,=gs,).

Proor. Take

K
8, =nRd}%, d. = 1
n n n n K]" (6 8)
and consider the set
b = {(0=(6,. - - - .0,): 0,—0,.,|<¥*! i
nj+1 — { —( 1s s r)- lrgsaérl s O.n.sl\ Kln }
Since for 8€ B, (2 *'8,, S, go.n)
0—8,1l < 1 llgs —ge,, <2/+1—61-.
= K].n % 58 Kl.n
we have
Bn(2j+18nv gmgO.n) C {g0: 06bn.j+l }
The r-dimensional cube b, ; ;| can be covered by
{21+k+12\/:K2‘n ] p r
Kl.n
small cubes with side of length 27%(8, /( VrK,,)). We have
([ ~j+k+1 1 r
Y H 2V Ky, +1| < CA,20tk+1r
Kl.n !
for  some  constant C, depending  only on ¥, Write

N§Q27%8,, 2118, 64, o) =CrA, 20K+ Let {¢®} be the collection of
corners with the smallest co-ordinates of the cubes covering b, ;. Then
card ({c®})<N§(27%8,, 2 %15,.6,.80.). For 0=(8,, - - - .6,)€b,; ;). write

g¥(gg) = gw if max |6, —cW)| < 2""(8,,/(\/r_K2‘,,)).

Iss<r

Then
llgs —g®(go)ll, < Ka,ll0—c®||<27%8,.
So {g.} forms a 2~%§,-covering set of B,(2 '8, 6,, go.,) with
card({g.» }) < N5(27%8,,2718,,6,. gon):
The covering sets {g.} have as special feature that the number of pairs
{ge(ga), gv(gp)}, with c®5£c* ~1 is at most
(2 — 1N (27%8,, 2 *18,, 64, gon):

Now, in the proof Theorem 6.2.2 one can make the following adjustments.
Take 8, as in (6.18), replace {g*’} by {g«}, k=0,1,2,--- and
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N,(27%8,,2%18,,6,, g0m) by NS(27%8,,2718,,6,.80n), k=12, -+, jeN.
Define in (6.13), s=1—(r/2p) and replace the bound in (6.14) by
(' —1)N5(27%8,,2/ 118, 6,, go.n)- The rate Cp(8,) for g, now follows easily
and this rate implies the Op (K 8,)-rate for 6,. O

EXAMPLE 6.1. In Example 3.2 of Chapter 3, we studied the linear model
go(x) = x0, 0€0,,

with ©,=0, 6,,=0,. The smallest and largest eigenvalue of XX,
X,=(x] 1,...xI' )T, are denoted by A, and A,, respectively. We showed in
Lemma 3.3.5 that under regularity conditions on the second moments of the

€,k
5 [
10, — 8yl — 0

provided that for some ¢ >0
A'/z(l +¢)

i

AI.n

and provided © is compact.
If (6.8) holds for some p>1, then the regularity conditions on the second
moments of the ¢, are met. Now, obviously (6.6) and (6.7) are fulfilled, with

K,-‘,,:(%)\,-.,,)"“, i=1,2. So, ifp>%r(:%(d +1)), then it follows from Lemma
6.2.3 that

=e()

. P
16, —6,1| — 0
provided
1 20—r
e = of 15
I.n

Compactness of © is not needed.

6.2.2. The infinite-dimensional case. The condition on the |e,,|* we need in
finite-dimensional models is the existence of an absolute moment of order
larger than the dimension of parameter space. In possibly infinite-dimensional
models, we assume existence of the moment generating function of |c,,.,\.|2. Of
course, this assumption also establishes an improvement of the bound in (6.9)
(see Corollary 6.2.6). We start off by formulating a pendant of the
Chebyshev-type inequality which we presented in Lemma 6.2.1.

LEMMA 6.2.4. If for some >0
sup max E(exp(Ble.x|*)) < '<oo, (6.19)
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then there exists an a0 depending only on B and T" such that
2

P(|<c,g—§>,,|>a) < exp _an—a~ ,
g —gll2
for all a>0, all g,g and all n=>1.
Proor. For all >0

P(|<e, g —g>,|=a) < exp(—hna)E[exp(hn<e,g —g>,)]
<CXP( - hna) H E[exp(h |(n.k I Ig(xn.k ) '—g(xn.k )')]
=1

KUELBS (1978) shows that under (6.19) for some A depending only on 8 and I'
Elexp(h|€nx||g(xnk) —2(xns)D] < explh*(g(xns) —g(xns)) A%}
Thus _
P(|<e, g —g>,|=a) < exp(—hna)exp(h*nllg —gll3 A?).
Take h =(2aa)/llg —glI2, with a=(4A%)"'. Then

fat } a*Anllg —gli2
ex

P(<eg—g>,|=a) < exp|— - -
2A2|g —glI12 4N g —zlld

—exp | — ana?
g —gll2

In Theorem 6.2.5 below, the entropy conditions (6.20) and (6.21) are
perhaps at first sight rather unappealing. However, after proving the theorem
we shall give several clarifying examples.

THEOREM 6.2.5. Let 8,—0 be some sequence with lim inf,_,,n"8,>0 and sup-
pose that

. \/logNn(an'« 2j8", gn»gO n)
1 . — =0 6.20
/LIEL "S;l"po n"8,2 (6-20)
L \/log N, (u8,.28,.5,, go.n
lim sup v e g 9 B du < M<co. (6.21)
Joe n=ng g n"o,

If moreover (6.19) holds for some B>0, then g converges with rate ¢p(8,). In
fact, there exist constants M',L" and n' such that for all L=L" and all n=n’

P(llg, —go.nlln>8,L) < exp(—M’L*né}).

PROOF. As in the proof of Theorem 6.2.2 we replace L by 2- and write
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P sup 2<e,g—gonn—llg —gO"MHEZOJ
lig —gf.nlln">2’ 5,
<3P sup 2<e.g*g0‘,,>,,>22-/‘8%] < P,
2t @ =t
Let, for each k€{0,1,2, - - - }, {g*’} be a minimal 2%§,-covering set of

B,(2*18,.,6,.g0..) and let g*)(g) be defined by
lg —g“ @)l = minllg gl
g
As before
P, =P 2<€,8 —8on>) 22218,2,]
4 [g»—tBMS’PSE.«L.g(._") B T
<P [{sqﬂp}|<e,g‘°)—go_,,>,,|>22(/_')8,2,]
g
+P <e, g—gO(g)>= >22(/‘”82] =PV +pQ,
L, Pk 4 s-:,.g.,_n)l “878" @)l o I
Application of Lemma 6.2.4 gives
P =P [(Slsor;l<fag‘°’—go.n>n|>22"*"8i]
' g
< exp(log N, (8,.2 *18,,. 6. go.n) — a2 62 né}).
By (620), logN,(6,.2"18,.6,. go,)<73(a2 %2%nd2) for all j and n
sufficiently large, so
PP < exp(— a2~ 72%n832).

We use the chaining again to bound P{?:

PR = p <e, g—920(g)> 2220_1)82]
! tB"(zls*"g-)‘";nw‘{u.,.)l “87& (g) "l n

o o) i
SZP Lo, |<esV@ =" Ve)ya=2Y "Sﬁn/-k]~

k=1 eB,(2"

where {m;,}7= is a sequence satisfying Z7°-m;, <1. Define E=3_,2 k"
and take

V0ogN,27%8,, 2 *18,.5,. 20.,) 2-kg"
i — max 0 ;
ik 2Mn"8,2 * *1(log2)"! 3E
Then in view of (6.21)
S, <% Viog Ny *8,, 218,61 g0) | | {27052 )| _,
3PS 2Mn"8,2 ¥ \(log2) ™! 2E
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for all j=L, and all n sufficiently large. Use Lemma 6.2.4 again to establish
PR < exp [21ogN,2746,,2 15,6, g0,) a2 L Pen}uns})
s,\gexp 2(2Mn" 5,2+ MR T _"‘2“6241.22/\'"8'2’"/2“"]
< i exp —-—a2_724f22kﬂ5,2,’712;k]
k=1 L

2

0 [ —Gmdindk 2—kk'/z
<k§Iexp —a277292%n§2 T
- %exp ’—a2_724fn82 9 |

k=1 " (2E)?

Hence for L sufficiently large, n sufficiently large

S (P +PP)
j=L

<3 [exp(—a2_722fn8%)+ iexp(—a2‘72“»’n8ﬁ £ )

= Fes) (QEY

<exp(—M"2%Ln82). O

The entropy-integrability condition (6.21) makes the chaining method work.
POLLARD (1982) uses this method to establish the uniform central limit
theorem that was reproduced here as Theorem 4.2.2. We have adopted his
technique in the proofs of Theorems 6.2.2 and 6.2.5. We also mention
Pollard’s chaining lemma (PoLLARD (1984) Ch. VII), which presents the rela-
tion between entropy-integrability and asymptotic equicontinuity in a more
general context.

A first corollary of Theorem 6.2.5 concerns the finite-dimensional case.

COROLLARY 6.2.6. Suppose that (6.16) holds, i.e.

N,,(& 2183 grn gO.n)
nsgr}?o jSIZJJIZ 0<Sg£80 A,,2f’

for some r and some sequence {A,}, lim inf A,>0. Without loss of generality we
assume A,=2 for all n, so that logA,>0. Then for 8,=n""(log4,)"*, (6.20)

and (6.21) are fulfilled:
\/logNn(Sn’zjamgmgO,n) <= V lngj

n"8,2 b)

and

L \/log N, (u8,, 2/8,, 5. g0.,)

J‘ n"8,2

1

’ 1 Y

e Y2
du C'(-)/(]Ogu) du,
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Sor all n=ngy, j=jo, 6,<8y, where C, and C', only depend on r. Thus provided
(6.19) holds for some >0,
“éﬂ _gO,n Hn - @p(n _l/z(lOgAn).: )

In particular, if {S,, |- 1l,} is of finite metric dimension i.e. im supA, <o
] = ’
— logP(lig, —goall,>a) < —M'a®
for all n=n" and a>L'n""". This is called a law of large deviations for g,.

EXAMPLE 6.1 CONTINUED. In the linear model. application of Corollary 6.2.6
yields that if (6.19) holds for some >0, then

“én _0n ” = LaP( -\/Iog( \/-\/ }\ )/}‘l n )
I.n

The remainder of this section deals with application of Theorem 6.2.5 to
(truly) infinite-dimensional models. The first example we give, however, shares
a common feature with finite-dimensional models. Consider the global entropy
log No(8,, H,.5,) of the space ¢,. Provided |- ||, remains bounded on ¢,, we
have that if {s,.11-1l,} is of finite metric dimension r, then

sup sug)B N,(8, H,.5,) <A.

n=n, 8<4,

This is also true for &, in Example 6.2.

ExAMPLE 6.2. Let §,=¢ be a V'C-graph class with envelope G, and let {[-I|,}
be such that
limsupl|Gll,, < 0. (6.22)

n—x

Then by Theorem 2.2.6
sup 86’N2(6 H L1)

n>n,, 8>
for some constants » and A, where 4 only depends on {||-l,} via the left-hand
side of (6.22). It is straightforward to see that (6.20) and (6.21) hold with
rf"z(logn)l’/z, using the bound N,(8,2/8,6,.g0,)<N:(8, H,,5). Hence
under (6.19), llg, —go..ll, =Cp(n ~"(logn)") for all sequences {gg,, } C&.

Corollary 6.2.7 below clarifies the relation with Birgé’s results (BIRGE
(1983)).

COROLLARY 6.2.7. Suppose that for some constants v>0 and M
n>m, O<8£ “8 lOgN2(8 H” LJ")
1
Take 8,=n >"". Then (6.20) holds, and if v<<2, (6.21) holds too. It follows
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that under (6.19)

1
72*‘[/)

“én_g().n”n = @P(n
Sfor v<2 and for all {g¢,}, go.n €%, N=ny.

Here is an application of the previous corollary.

EXAMPLE 6.3. Let

6 = {g: K—>R, g has m derivatives, (6.23)

(m) —g(m) (%
sup lg ™ (x) £ (X)) <L, |g|<C}.
xxo K [lx —x||*

with a>0, K is a compact subset of RY and where |[x —X|| is the Euclidean
distance between x and x. KoLMOGOROV and TIHOMIROV (1959) show that

d
sup 8" % logN (8, H,,5) < M. (6.24)
>
Thus if d/(m +a)<<2 and (6.19) holds
mta
”én _gO.n”n = Q\F‘(" m ha)ytd )
for all {g,} C6 Similarly, let
6 = {g: K>R, g has m derivatives, (6.25)

Jlg™x)Pdx<L, |g|]<C}

where K is a compact subset of R. Given the result (6.24) for ¢ defined in
(6.23), it is easy to see that the & of (6.25) satisfies

gu 0"log N,(8, H,,5) < M
>
so under (6.19) , g, —go.nll, =Cp(n ™"+ for all {gg,} CS. STONE (1982)
proves that these rates are optimal.
EXAMPLE 6.4. Let
6 = {g: R>R, g increasing, |g|<C}. (6.26)

BIRGE (1980) shows that the L'-entropy of ¢ is of order 8 '. It is not clear
whether the L2-entropy is also of this order. Lemma 6.2.8 below presents a
bound for the L2-covering number that by application of Theorem 6.2.5 leads

to the rate |Ig, —go..l, =0p(n ~"(logn)*) for all {g,,} Cs.

LEMMA 6.2.8. For ¢ defined in (6.26)
log N»(8, Q,6) < M& 'log(8™ ") for all §>0, (6.27)
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where Q is any probability measure on R and where M only depends on C.

Proor. Without loss of generality we assume that 0<g<1 for all geo.
Define T=[1/8%]+1 and let —0c=a¢<a;< --- <ay_,<ar=oo be such

that Q(a; _,a;]<8 fori =1, - - - ,T. Define for each ge§

&) - / ]ng/Qw,-fl,a,]
and o

ki(g) = {%} i=1, === T (6.28)
Then

[ g —8ki(g)PdQ < Q(a;—1.a){varp(g(X)|xE(a; —1,a,])+8)

(a,_.a)

< Q(ai~1,a;]{g(a,)2 —g(a,-ﬁ])z}%-Q(a,-_l,ai]az, j=1, sse T

Hence
T
[lg =83 ki(®)lw_,.a12dQ < 8*(g(a,)* —g(ag)") +8* <28 (6.29)
k=1
We have that 0<k,(g)< - <kp(g)<[l/8] and k(g)eZ, i=1, - ,T.

The number of functions of the form

T
Skili, ,ap 0<k < - <k;<[1/8), kieZ, i=1,---,T, (6.30)
i=1

is equal to

[1/8] [1/8] (6.31)

(T+l)+[1/8]-l] B [[1/62]+[1/8]+1

Thus

[1/8%])+[1/8]+1

logN,(V28, 0, 6) < log[ (/) <M% log(%). 0

We end this section with some remarks. First, Theorem 6.2.5 presents a
fairly general result, but since the calculation of entropies is often quite
difficult, the merit of the theorem is primarily that it shows that the statistical
problem can be replaced by a combinatorial one.

It should secondly be noted that if the rate 8, is slower than n ", then the
probability inequality of Theorem 6.2.5 implies that for some constant L

p(“én —gO.n||n<L08n) - 1L (632)

e
Moreover, if the rate is slow enough - e.g. 8,=n 2**, »>0- then by Borel-
Cantelli’s theorem |lg, —go..ll,<Lo8, almost surely, provided of course that
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the sequence of disturbances all live on the same probability space.

Finally, due to the entropy integrability condition (6.21) Theorem 6.2.5 can-
not handle optimal rates slower than op(n ™). Such slow rates are the conse-
quence of large entropies, meaning that 6, has so little metric structure that
the process \f;<(, g —go >, might not be asymptotically equicontinuous (see
also Chapter 4).

6.3. Stochastic design

Let x;,x,, - - - be independent random vectors with distribution H, and let
N,(8, p, 6., go.n) be defined as in (6.2). The randomness of this covering
number prohibits direct application of Theorem 6.2.5, but of course by condi-
tioning one can easily adjust this theorem to the case of stochastic design.
Before doing this, we make some simplifying assumptions to facilitate the
exposition. We assume that also €, €;, - - - are i.i.d. (of course with expecta-
tion zero, finite variance and independent of the x;) and that §,=¢ and
go.n=go(€8). This brings us back to the situation of Section 3.1. Finally, we
restrict ourselves to Op(n ~'/@*¥)-rates, 0<y<<2. Then the stochastic counter-
part of Theorem 6.2.5 becomes:

COROLLARY 6.3.1. Suppose G is a permissible class, satisfying
8"10g N, (8, 28, S,.. go.n) -

i P* - M| = A
pkodglo It N 0. (630
for some L>0, M>0 and 0<v<<2. If
E exp(Ble; |2) < o for some (>0, (6.31)
then
o
I8 —gonlla = Cp(n **"). (6.32)

It appears to be difficult to check (6.30). However, we have seen examples
(e.g. Examples 6.3 and 6.4) where covering numbers can be computed even
when one has virtually no knowledge about the metric used (i.e. [-1l,).
Nevertheless, in general one faces the problem of drawing conclusions about
the random L2(RY, H, )-covering numbers from the theoretical L*(RY, H)-
covering numbers. In other words, one is asking for the order of magnitude of

the ratio || - [|,,/1/- ll. We address this problem in Lemma 6.3.4.
The main aim of this section is to present sufficient conditions such that a
rate of convergence in ||-|[[,-norm implies the same rate in [ -[l-norm (see

Theorem 6.3.2). A natural question is whether it is possible to prove rates in
Il - [[-norm directly. Recall that the conditions we needed in Section 3.1 for con-
sistency in || - [[,-norm are stronger than those for consistency in [l - [l-norm: in
the latter case an envelope condition could be replaced by a uniform square
integrability condition. Indeed, an envelope condition is implicit in (6.30).
This is illustrated by Lemma 3.3.4 and also by for instance Examples 6.3 and
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6.4. It is not clear whether anything can be gained on the assumptions if one
is only interested in rates in || - ||-norm.

A situation where |- |- and |/-[l,- norms can in a certain sense be inter-
changed frecly, arises when there exist covering sets with bracketing. A §-
bracketing with respect to [|-|| of a function geL%(RY, H) is a pair [g}, g1]
such that g,<g<g, and |lg, —g,/I<é. The minimum number of brackets
necessary to cover § is denoted by N§!(8, H,§). Lemma 6.3.4 will show that
under appropriate conditions on N1(8, H, 8) the metrics ||-[l, and |- are
asymptotically equivalent.

We already encountered covering sets with bracketing in Application 3.2.1.
Here,

6§ = {gg: 00O}
with g4(x) continuous in 6 for all x, ® compact and

2 md
suplge| € L°(R?, H).

We asserted in Application 3.2.1 that N,(8, H,, ) remains bounded almost
surely for all §>0. To prove this, we showed that N41(8, H, §) is finite.
Another illustration is given by Example 6.4. It is not difficult to see that in
this example N, (8, Q, 9) and N#!(8, Q, 9) are of the same order of magnitude
(in 8) for all probability measures Q.
Now, let B(p, S, g9), p>0, be a ball with radius p for ||-] around g, inter-
sected with § and let

NU(8, p, 6, g0) = NII(8, H, B(p, 5, g0)), 0<8<p.

THEOREM 6.3.2. Suppose S is a uniformly bounded permissible class with
&log NUI(8, L8, S, go)
LS;EQ 0<sg£s‘, log L
. __1
then |lg, —goll, =Op(n  2%") implies |lg, —goll=Cp(n **").

< M. »=0, (6.33)

PrOOF. This follows from Lemmas 6.3.3 and 6.3.4 below. O

We first present the probability inequality we use and then prove that the
ratio |lg—goll,/llg —goll cannot differ too much from 1 if ||g —goll is large
enough. Theorem 6.3.2 then follows immediately.

LEMMA 6.3.3. If |g|<], |g|<], then

H612

— 35 | a>0.
8llg —gl*+73a

P(llg —glia—llg —gll*|=a) < 2exp | —
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PrROOF. If z;, - - -z, are independent random variables with expectation zero,
variance Ez; =0} and with |zo|<M, k =1, - - - ,n, then Bernstein’s inequality
(BERNSTEIN (1924, 1927), BENNETT (1962)) says that

(12

P(| X %|=a) < 2exp | ——
=) A S oh)+3Ma
k=1
Apply this with z, =(g(x,)—g(xx))* — llg —glI*, |zx|<4 and E|z;|*<4llg —golI*,

k=1,---,n.

LEMMA 6.3.4. Suppose that G is a uniformly bounded class satisfying (6.33) for
some v=0 and M. Then for all n>0 there exists an L,>0 and a,>0 such that
for all n=no(=8y ®*"), with 8 defined in (6.33))

P’ su :
llg —goll=Lyn ***

llg —goll 8 5 5
= 1> < — — s L 2+v )
llg —goll M=, P 05"

—
PROOF. Define §,=n 2. Assume without loss of generality that |g|<1 for
all ge6. Let {[g,,g,]} be a minimal §,-bracketing set of B(LJ,, S, go), where
L=L,, L, to be specified later. We shall first show that for all L=L,, n=n,

P, =P (6.35)

1
- >+~
g{B(sL%Rigo)llg goll,>(1+5m)L$,

< 4exp [—%LG”/‘“”’} :

Let {g,} be the set of left brackets from {[g;, g2]}. We have

1
P, <P s tis,
' “gn*guﬁgl_ﬂ)s””gl goll,>(1+3m)
gie{zi}
1
+ P* su lg) —gall,>7nLs, | =P +PP.
Bodllgal o PE AT A {

If we take L, sufficiently large, such that ((1 +%n)L)2—(L +1)2>%11L2 for
all L=L,, then

Py = p

1
- >(1+—3m)LS
llgl—goﬁ%ﬁﬂ)&“gl goll,>(1+73mL3,
gie{g}

<P’

o 12—l — o 12 1 2. 2
ug.—goﬁ‘é‘i’una,”g' golla —lig1 —goll*>((1+3m)L8,)" —((L + 1),)
gie{g)
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<P’

llg.*goﬁguw)s"”g‘ golli —lig1 —gol g7
gi={g}

From Lemma 6.3.3 we see that for [lg; —goll<<(L +1)§,
p [Hgl —gol2—llg, —g0||2>§nL265} <lexp [—nas,“Lza;’,] :

for all L=L,, L, sufficiently large and for some constant !’ depending only
on 7. Moreover, for L=L, and n=ny, =8, **"
log NU(S,, LS,,. 5, g0.,) < M(logL)s, ",

and M(log)&,,“’S%naS,”Lz&z, for all L=L,, L, sufficiently large. Hence
P{) < NI, L8,, 6, go)2exp [—nas,“LZaﬁ]
< 2exp [-—%a%"LG”"“"’], L=L,, n=n,.

As for PP, we have that for L>L,, L, sufficiently large, n=n,

. 1
PR = p g1 —g2ll,>7nLa,

su
[gl.gz]'—' ( |~g1]

2 1
Sy g1 —gall, —llgy — g2 l1>>(7nL8§,)* — 82
[g.-gz]e{g..g:]; 81782 8182 (M

g [ — 1
<p* su I I, — 1 2>-L 21282
lgl.me{E..g;]} 81782 81782 3 "

1
< 2exp [_7a$’2)L2nv/(2+v)J .

for some constant a(?.
Thus for &, <5 min(a{", a{?)

P, < P&])+Pg)<4exp [_&nLZnu/(Z-H/)] ’

for all L=L,, n=n,. This proves (6.35). Assertion (6.35) in turn implies that
if we take L=L,, L, sufficiently large, n=n,

llg—goll,

sup
(L-18,<lg-gl<Ls, llg—goll
ges'»

P >(1+m) (6.36)



g9

=P [geB(i%Pg.go) ”g —go||,,>(1 +n)L — 1)8,,]

. 1
<P sup )llg—go]|n>(1+7'ﬂ)L3n =P,

geB(L3,.5, g

<= 4 exp( _&T'LGv/(2+v)).
Similarly,

lig —golln

mn
(L —1)8,<llg —gol<L3, ||g—g0 I
gE.kY

P’ L=

< P

inf —goll,<(1— Lgn]
(L—1)8"<1||Igl—g0||<1_5” llg —goll, <(1=m)

N
g

1
inf llgy —goll, <<(1—5m)L6
(L —2)8,<llg, —gall (L +1), g1 =goll,<(1=7mLS,

gie{g)

* 1
¥ g1 —gall,=75L8,

su
(g1, glle{gl-gz])

< P* _ 2. _ 5>L—228%— l—l 2L28,2,
||g1'gnﬁté?L+l)8,,”gl gO” “gl g()” ( ) ( 2,'1)
gie{g}
1
+ P su gy —gall,=7nLs, | =P 3) L p@.
e gl gy o) 824 P +PY

We already showed that for L=L,, n=n,
P? < 2exp [—%aﬁ,‘)LG““”)] )

If we take L, sufficiently large then for L=L,

Py =P’ — ool —llg1 —goll2 >(L —2)262 —(1—3n)2L282
2 llg,-guﬁl\g()LH)s"“g' goll g1 —gollz=>( )0 —( 271) n
gie{g}

N
k:

— — — 1 1

su ||g g 12— ||2> 1—= 252

iigl‘gﬁll&}ﬂ)s, 1 0 g1 8olln 411( 211)[ p
gie{g

1
< 2exp [-70{%3)1‘2”»/(2”)]
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1
3, L i (@) 3
for some aﬁ, , n=ny. Hence for a, <75 min(e;”, ay’)

p* - llg—goll,

n
(L—1p,<lg—gl<Ls, lig—goll
ges

< 4exp [~a,,L2n”“2+"’} :

>]—n (6.37)

Finally, combine (6.36) and (6.37) to obtain that
- llg—goll, >1-q| < 3 8exp {_anL2nv/(Z+u):'

lg —gl>L,8, llg—goll L=,
ged

< 8 exp [—a,,LG"/‘H"’] . O
a

6.4. Application to two-phase regression

We consider the models of Chapter 5 and compare the various sets of assump-
tions and outcomes with those of Section 6.2. To avoid digressions, we assume
throughout that the disturbances €. €, - - - form an i.i.d. sequence (€¢; having
expection zero and finite variance) and that g, =g is fixed. We start with
the continuous model:

6 = {gg.(x)=min(a +xBD, a@ 4 x g2y (6.38)
1) . (i)
o= [zz)], g = [E”J i=1.2)
LEMMA 6.4.1. Let X, =X, k=1, -+ .n, with X, Xy, - -+ a sequence of i.i.d.

random vectors with distribution H. Let & be given by (6.38). Then there exists a
constant K,<<oo such that for all n sufficiently large and for all gg .. g5 €Y

lgo.—gsclln < K>ll0—8Il  almost surely. (6.39)
Define for all n>0 the restricted class

9r(M) = {go.€5: 10—0yll<n}.
Suppose that there exists a set of points

(d:i=1 - - 2d+ 11} c AP NT. (6.40)

where T is the support of H, and no d +1 x{") lie on a (d — 1)-dimensional hyper-
plane, i =1,2, and that

65 — 8§ || = 0. (6.41)

Then there exists an >0 and a constant K|, >0 such that
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lgo.c—g6,.clln = Kil0—6oll  almost surely, (6.42)
Sor all n sufficiently large and all gg . € Sg(n).

PROOF. Result (6.39) follows from the fact that the functions gy (x) are
Lipschitz continuous in @ for every x:

|80.c(x)— g (x)] < J(x)I6—8Il,

where J(x)=1+|z,|+ - -+ +|z4], x =(z1, - -+ ,z4). Since J,—IJIl almost
surely,

Iga.c—gaclla < 2171116—8]  almost surely,

for all n sufficiently large.

Inequality (6.42) is of course closely related to (5.11) (see the proof of
Theorem 5.2.1) which asserts that (6.42) holds for §=6,. Condition (6.40)
implies that if the @), i =1,2, in § are appropriately indexed, then there are at
least (d +1) x{"’s in A§". This implies that, from a possible re-indexing, the
smallest eigenvalue of X,(4§" NAY)) is bounded away from zero for all § and
all n sufficiently large. Hence

(B —66")TE,(45) NAD oV —8)) = K3, 160 6012 (6.43)

for some constant K; ; >0, all properly indexed ¢ and all n sufficiently large.
Moreover, by taking 7 sufficiently small we see that [|[0—6ll<<n and (6.39)
imply that A4 cannot contain more than d x{®’s, because of assumption
(6.41). Thus, for n sufficiently small the eigenvalues of X, (4% NA),
l6—8, 1l <m, are eventually also bounded away from zero, and so

(00 —6F)TE, (AP NAP Y0P —0F) > K, 167 6|12

for some constant K, , >0, all [|§—6,[/<<n and all » sufficiently large. (In fact,
if 7 is sufficiently small re-indexing of 6, [|6—6[|<<n, in (6.43) is not needed).
Thus

lgo.c—ga.lls = = (69 —06)Z, (49 NAY )6 —6p)
i=12

= {mnln2 1(,-2.,}“0—6?0”2 almost surely
for all [|0—6, ! <n,  sufficiently small, and all » sufficiently large. [J

In other words, under (6.40) and (6.41) the sequence {Sg(n), Il-ll,}, with
Sg(n) defined in Lemma 6.4.1, is for n small enough of finite metric dimension
2(d +1). We can now apply the results of Section 6.2, because in Lemma 3.4.4
the strong consistency of 0, is established, i.e. for every n=>0 8, G6z(n) for all
n sufficiently large. The conditions of Lemma 3.4.4 include (6.40) and (6.41).
Recall furthermore that in Theorem 5.2.1 we also needed the conditions of
Lemma 3.4.4. The following proposition collects previous results and those
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obtained by application of the theory in Section 6.2.

PROPOSITION 6.4.2. Define G as in (6.8) and let X, ; =X, with X|,X,, = -+ Lid.
with distribution H. Suppose that the conditions of Lemma 3.4.4 are fulfilled. We
have

~

(i) 118, —Byl1—0 and H(A,A4)—0, almest surely
(i) if E|€|* <oo for some p>1, then 8, and @, are asymptotically indepen-
dent and

@ . B _
n* (8 —08)) > O, Iel2= 1 (A8)). i =1.2,
(iii) if E|€;|? <oo for somep>%r(:d+ 1), then for all L=L’, n=n’
P10, —6ll > n "Ly < A’L~% ",
(iv) if E exp(Bl€;|*)<oo for some B>0, then for all L=L', n=n’
P10, —6oll>n"%L) < exp(—M'L?).

PROOF.
(1) This is Lemma 3.4.4.
(i) This is Theorem 5.2.1.
(iii) Combine Lemma 3.4.4, Lemma 6.2.3 and Lemma 6.4.1.
(iv) Combine Lemma 3.4.4, Theorem 6.2.5 and Lemma 6.4.1. O
Note that the Op(n~")-rate for 8, in (iii) and (iv) of Proposition 6.4.2 fol-
lows from the Op(n ~")-rate for g,. The situation is somewhat different in the
discontinuous model. Here, the class of regression functions is

3 (6.44)

A ‘ 5
§ = {goa(¥)= 3 (@”+xBD)40(x): = [22)

i=12
. (i)
B ¢ 4
g = [ o

We shall first consider a special case with d=1. This will clarify the
difficulties in higher dimensions.

,ADea?, i=1,2).

LEMMA 6.4.3. Let d=1, X, =X, k=1, ,n, with X;,X,, -+ iid with
distribution  function H:R—R. Let & be defined in (6.44), with
@={A4,=(—o0, y]: YER}. Define for all >0

Sr(M) = {go.4, €5 10—06,ll<m, H(A,A44)<n).
Suppose there exist {x{): 1 =1,2,3, x{V5£x{), 11541, } CAY NT, i =1,2. Furth-
ermore, suppose that the discontinuity assumption (5.22) can be strengthened to:
for some n; >0, K>0 we have

H(yo—m, Yotm] >0



103

and
lga (x)—ger (x)] > K,
for all x e(yo—m,Yo+m) Then for n sufficiently small
N,(8, 28, Sr(n), go) < A 27, almost surely,
for all n sufficiently large, where r =2(d +1)+2=6.

PROOF. Let gg 4 €B, (28, 5x(n), go):
lgs.a, —golln < 2.

Since for n sufficiently small H(A4,A4,)<7n implies that ye(yo—m,vo+m]
we have

(287 = I(ga.a, —g0)a,an, 17 =KH,(4,A4).
Also
(28) = l(go.4, —go) v nap 1, =K; 1169 — 681l almost surely, i=1,2
for some K; >0, 7 sufficiently small and » sufficiently large. Hence
B, (28, Sr(n), g0) C{go.4, €Sr(n): 1160 — 0§ I<2/8/K;, i =1.2,
H(A,00)<(¥8)*/K}.
Since
N8, H,, {A,: H(A,M)<(Z8}/K}) < A2Y (6.45)
for all 0<§<1, this implies that for n sufficiently small
N, (8, 28, 8r(m), go) < A2Y, r=2d+1+2. O

Equality (6.45) in the proof of Lemma 6.4.3 is a special feature of the class
of intervals {(—o0,v]: YER}. If d=2 and @={x: xy<1}: yeR?}, then in
general the number of x; in the set

U (4@ H,(4A4,) < (Un~ ")) (6.46)

need not remain bounded (see Example 6.5). It is not clear how to calculate
the entropy of neighbourhoods like (6.46) for general @. An upper bound is of
course the global entropy of @. We use this upper bound in (iv) of Proposition
6.4.4.

PROPOSITION 6.4.4. Let § be defined in (6.44) and let X, j =X, X1, Xy, * = * Lid.
with distribution G. Suppose that the conditions of Lemma 3.4.4 are fulfilled. We
have

() 16, —6oll — 0, H(A,AA4 ) —0 almost surely.

Suppose in addition that H satisfies (5.24).
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(i)  If the discontinuity assumption (5.22) holds and if moreoyer
D, (8, G’)<exp(M8 ") and El|? <oo, p>2/(2—v), 0<»<2, then 8,
and 0 are asymptottcally independent, and

Vn (@ 05)).av7u0 lelP2 1Ay, i=1.2.

(i)  If d=1 and the conditions of Lemma 6.4.3 hold (i.e. if (5.22) is replaced
by the stronger assumption), then E|e,|* <oo for some p>>6 implies that

18, —golln = Ep(n~").
(iv)  If Dy(9, (i)<;48_;, r>0, and Eexp(Ble,|*)<oo for some B=>0, then

I8, —golln = Cp(n~*(logn)*).

If Dy(8, §)<<exp(M&™"), 0<v<<2 and [Eexp(,B|cl|2)<oo for some B>0,
then

18, —goll, = Ep(n 277).

PROOF.

(1) This is Lemma 3.4.4.

(i)  This is Lemma 5.3.1.

(1)) Combine Lemma 3.4.4, Theorem 6.2.2 and Lemma 6.4.3.
(iv)  For g defined in (5.24), the class

Sr(mo) = {ga.4 €S: 110—6plI<my. H(AAA)<no)
satisfies
N, (8, H,, Sr(m)) < A8 24+ DD, (8. ).

Insert this in conditions (6.20) and (6.21) of Theorem 6.2.5, with
8,=n "(logn)* and 8, =n""2*" respectively. [

EXAMPLE 6.5. Let d=2, d={A(y)={x: xy<1}. yeR?}, gy =a o i=1,2,
af#af? (i.e. we assume for simplicity thal B =0.i=1,2 is known), and let
H be the uniform distribution on A’ UAY’. where A" and A§ are the two
disjoint discs defined in Example 5.3. Since « is a VC-class, it follows from
Proposition 6.4.3 (11i) that if then
g, —goll,=Cp(n~"(logn)*). This implies the rate ¢p(n *(logn)*) for the
estlmator ofa)), i=1.2, bul from (ii) of Proposition 6.4.3 we know that in fact
o)) —af)|=Cp(n "), i=1.2. The ratc for @ also implies that

H,(A,A49)=0p(n~ ‘logn), ie. Op(logn) observations are assigned to the
wrong sample. This rate cannot be improved. in the sense that if e.g.
€, €, - -+ are normally distributed, then one can show that for some a>0

lim inf P(H, (A, AAO)>a—93i) > 0.

n—o0
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In the following three examples, we again restrict ourselves to the case d =1
and @={(— o0, y]: yYER}. We take nonrandom x, s, with the particular choice
X,k =k/n. Speeds of estimation are investigated in the discontinuous model,
with the assumption of discontinuity of the underlying true regression function
(Example 6.6), the assumption of continuity and identifiability of the underly-
ing regression (Example 6.7) or without identifiability at g, (Example 6.8).
The first example treats virtually the same situation as the one in Lemma 6.4.3.
We present it to facilitate the comparison with Example 6.7.

EXAMPLE 6.6. Let d =1, x, :f, k=—[(n—1)/2), - - - [n/2].
go4,(x) = 3 (@ +xpM)1u(x), beR*, AN =(—00,7],
=12
and
go(x) = X (@) +xB) 10 (x), abFalP, A5 =(— o0, y0], Y0 =0.

i=12

R [ P
Application of Proposition 3.4.5 yields that 8, —6,|l — 0 and |y, —Y0| — 0.
Moreover, for 7 sufficiently small the class

Sr(m) = {go.a: 10—0ll<mn, |y—vo|<m}
satisfies for some constant A

N,,(B] 218* QR(T,)* gO)
Sup sup su . <

J=Jo n=ny 8< 26/

A

Hence if E|e,|% <oo for some p>6

g, —goll, = Gp(n ")
which implies

”611_00“ = @P(n_./l)’ H’n_YOl = GP(%)
It is now not difficult to prove that l}f,l), (A)Lz)
independent, with limiting distributions

and ¥, are asymptotically

: ¢ 0 (1
Vi@, —06) — 0, llelP( f [X ;]dx)"),
1
V@@ — o0 & 5. Bl % -
n(@, —06) — O, llell*( o2l
0

£ l
n(Y»—vo) — arg §ug2(ab” —af) > € —(ab) —afP)!
= k=0

(compare with Example 5.2).
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ExAMPLE 6.7. Let d =1, x, :—S, k=—[(n—1)/2), ---,[n/2),
ga.A,(x) = 2 (a(i)-l_xﬁ(i))l/i"’(x)v 0ER4, A“):(_w7 Y]’
=)
and
g()(X) = min(o’ -XBO)a B0>O (AOZ(—OO» YO]’ YOZO)

. P P
From Proposition 3.4.5 we obtain that |16, — 6l — 0 and 19, —Yo| = 0. For
7 sufficiently small, the class

Sr(m) = {goa: 10—6oll<m, [n—mo|<n}
satisfies for some constant A

N.(8.28, Sa(). 80) _
2(4+2/3) =

sup sup su
jsza n>np0 8<38,

Hence if E|e;|¥ <oo for somep>4+%
g, —goll, = Gp(n™")
which implies
18, ~80ll = Eo(n™) a0l = nln ™)

2 2 ~ . . . . )
It can be shown that OL) and y, are asymptotically independent, with limiting
distributions

R N 01 x
V(8 —687) — 90, lel( [ [x 12]‘1)‘)_')»
_l/2
\/_"(2)_ 2) EL, 2V21x —1
n(0, —0§) — O, llel*(f « x2|9)7)
0 ;

£ K
n"(Ya —¥0) — arg ?gg(zﬁo||€||6/xdW(x)—B(2,y3/3)

where W(-) is standard Bfownian motion. So the difference with Example 6.6
lies in the slower rate for ¥,,.
ExampLE 6.8. Letd =1, x,x=k/n, k=1, - - - ,n,
fud = Bl 41, €0, 4y =(— 0, ¥} ¥=0
and
g0=0.
Then for §= (g, 4,: a€R, y=0}

D Sup su N,(8,28, 6r(n), go) _
=k A5k, b<h 2Ylogn

A<c. (6.47)
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To  see this, let — goa €5  with  |a|<V/H,}(y). Then
lgay —&olln=|a* H,(y)<28. Define g, =a;1(_ 4y, where

log(nH,(v)) }

=nl(1-27Y) ", i= |

)

B e
& \/;l—

VY
k,._[—s }

Then (1—2~%)<y,;/H,(y)<1. Furthermore

a\/*; _1] P - )

and

5 B

02“,‘ —a= "
{ VYi VYi
It follows that
Iga.a, —&lln = (@a—a;)*y; +?(H,(Y)— Vi)

< 82 +2%8%(1—v,/H,(y)) <26

a\/Yi 28 Yi ;
<k = |——| < |5 \/ 5= <2
0<k; [ s }< s H,7) <2

The number of functions of the form
)

kw (- 0,7

with keZ, 0<k <2/, and with

v, =n '1-27¥%"" ieZ, 0<i< [__l_ogn__
| log(1—2 4y

We have

is equal to
@ +1) | —B__| < 4 (logn)2V.
log(1—279)
It follows that if E(exp(B|e, |2))<oo for some >0, then
g, —goll» = Gp(n~"(loglogn)")
(see Corollary 6.2.6). In fact, DARLING and ERDOs (1956) prove that if
Ele, |* < oo, then

llg, —goll,
lim su I {

—_— < \/2‘ almost surel
e n~"(loglogn)* ey
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and

a +2loglogn + %logloglog n— %logw

lim P lig, — n S ) )
et I =gl n"(2loglogn)*

=exp(—277), —ow<a<oo

(see also Chapter 7.4 for related results).

REMARK. In the continuous model without identification at g, the same rates
as in Example 6.8 can occur, i.e. the continuity restriction cannot prevent
n"llg, —goll, from exploding.

We conclude that the application of the theory of Section 6.2 to two-phase
regression problems can lead to some extent to more refined results than the
ones obtained by the direct methods of Chapter 5. It shows that the continu-
ous model - with identification at g, - is of finite metric dimension, whereas
for d>1 the discontinuous model can be infinite-dimensional. Example 6.5
illustrates this. However, Proposition 6.4.4 reveals a mAaJ?r shortcoming: the
rate for g, does not always determine the rate for the @, . Since Section 6.2
concentrates on rates for g,, the techniques there cannot produce possible fas-
ter rates for the 0, .

In Examples 6.6 and 6.7, where d=1, the models are again finite-
dimensional. These examples only differ as regards the assumptions on g;. In
Example 6.6 the rate Op(n ") for g, implies that |y, —vo|=Cp(n '), whereas
in Example 6.7 we have that g, —goll =0p(n ") leads to |§',, — 0| =6p{n ).
If in Example 6.7 the continuity of g, were known and a continuity restriction
were super imposed on the estimated model, then the rate for ¥, would of
course have been Op(n ). It is important to note that in Chapter 5 we could
not handle the model of Examples 6.6 and 6.7 without restricting g, to satisfy
the discontinuity assumption (5.22). Example 6.7 now treats a situation where
(5.22) (or rather its counterpart for the non- i.1.d. case) is violated.

Given the rate of convergence, the asymptotic distributions in Examples 6.6
and 6.7 are relatively easy to find. We remark that in e.g. LECaM (1970), the
rate Op(n ") for the Euclidean parameters indexing a parametric model is
taken as a starting point. Then asymptotic normality can be proved without
assuming the existence of first and second derivatives almost everywhere:
essentially only differentiability in quadratic mean is required. The continuous
model of Section 5.2 can be viewed in this light, since there the estimator of
indexing gy . converges with Op(n~")-rate and it can be shown that Zo.c 18
differentiable in quadratic mean |- || at 6,. Also for other non-linear regression
models, it may be convenient to prove the Op(n~")-rate for the Euclidean
parameters first, using the results of Section 6.2 (more specifically, Lemma
6.2.3), and then establishing asymptotic normality given this rate.

If the rate for g, is Op(n ~") but the rate for some of the Euclidean parame-
ters indexing g differs from Op(n "), then ad hoc methods are necessary in
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order to obtain asymptotic distributions. Yet, Examples 6.6 and 6.7 suggest
that they can again be found more easily, once the rates have already been
established. Observe that the limiting distributions of the GS)Athat we have
encountered so far were alwg(ys of the same kind, i.e. 6, and 0;2 asymptoti-
cally independent and \/;(0,,' )—08)) converges to a normal law with covari-
ance matrix |le[>Z1(4§), i =1,2.

In Example 6.8, the model is again as in Examples 6.6 and 6.7, but gq is
now assumed to be a one-phase function. The example shows that the rate for
g, can depend on gg. It illustrates the merit of concentrating on g, instead of
0, and A,: the latter are not identifiable at g,. We already elaborated on this
in Section 3.4. However, even though we did not assume identifiability of all
6, we did need condition (3.41), which can be seen as an identifiability condi-
tion on A. Example 6.8 now suggests that if (3.41) is not imposed, then tech-
niques that g, beyond uniform laws of large numbers are needed to prove con-
sistency of g,. To find the limiting distribution of g, in this example, we used
the fact that the expression for llg, —goll, coincides with the maximum of the
absolute value of weighted partial sums. The question arises whether in general
the knowledge of the rate of convergence - possibly slower than Cp(n ~"%Y- for
g, can substantially facilitate the investigation of its asymptotic distributional
behaviour.
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7. TESTS FOR A CHANGE-POINT

7.1 Introduction
Example (1.1) deals with the change-point model

A(I)+(k,k:l, s T
Ye =

XDt , k=r+1, -0 ' NERI=12.

In Section 6.4, Examples 6.6 and 6.8, entropy considerations led to the conclu-
sion that if there is no a priori knowledge about AD =12 or r then

lg,—goll. = Cp(n™"), if AP

whereas

”én — 8o “n OP (n =% (loglog")% )9 if Af)]) :ABZ)a

provided that the proper moment conditions on €, hold.

In this Chapter, we shall study the model where y,, - - - ,y, are independent
random variables, y;, - - - ,y, having distribution Fy» and y,4,, - - - ,y, having
distribution Fy». {F): A€A} is a set of probability measures, with probability
densities f) with respect to some o-finite measure p. We are interested in the
testing problem Hy: AV =A@ against H;: AD£A2.

The (log)likelihood ratio test statistic is

= T (L
T = e =1 T"(n)’
where
i n
_ I fxo(ye) I fao(ye)
Ty=i k=1 k=11
T,(—)=inf |sup 2log |——|+ sup 2log | ———
n AeA [ATEA T PETN n
kr:IrfA()'k) k:I}HfA(Yk)

The rate Op(n ~"“(loglogn)”) that we encountered in Example 6.8 suggests
that under Hy, T, =0p(loglogn). In fact, if F) is the normal distribution with
variance 1, then this is a straightforward consequence of Example 6.8. In other
words, T, behaves in a non-standard way.

We shall consider two approaches for investigating the asymptotic efficiency
of T,: efficiency in the sense of Bahadur and efficiency at local alternatives.
We show in Section 7.2 that if {F\: AeA} is e.g. a one-parameter exponential
family, then T, is optimal in the sense of Bahadur. Section 7.3 compares the
Bahadur slope of T, with the slopes of some alternative tests. We shall how-
ever also give evidence that T,’s optimality in Bahadur’s sense is for practical
purposes not very relevant. In Section 7.4 we show that if F) is the normal
distribution or the exponential distribution, then at local alternatives T, has
asymptotic power equal to its asymptotic significance level. Local alternatives
will be those alternatives with |A) —A? | =0(n %)
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Section 7.5 deals with the testing problem for a regression model with
change-point. There is an obvious analogue of T, in a regression model with
possibly unknown error distribution. However, the theory developed in Sec-
tions 7.3 and 7.4 indicates that this analogue has too many unfavourable pro-
perties. Therefore, we shall propose several alternative test statistics, also bear-
ing in mind that a more user-friendly test is desirable.

7.2 Bahadur efficiency of likelihood ratio tests

For a description of the concepts of Bahadur slope and efficiency, we refer to
BAHADUR (1967,1971) and GROENEBOOM and OOSTERHOFF (1977). Bahadur
looks at probabilities of large deviations, i.e. probabilities which are exponen-
tially small as n — oo. We shall first review some general results.

Let {Pg:0€©,U®,} be a set of probability measures dominated by a o-
finite measure p. Let pg=dP4 /dp and let {T,} be a sequence of test statistics,
based on n iid. observations from Py, for testing Hy: €O, against H;:
0€0,. Define for all 1 >0

G, (1)=Py, (T,=1) =gug Py(T,=1).
The sequence {T,} has (exact) Bahadur slope c(0) at 6©), if
P,
%mgc;"('r" )= — (8.

The word ‘exact’ refers to the fact that one uses the exact null-distribution of
T,, as opposed to its asymptotic null-distribution.
For the evaluation of the Bahadur slope, the following theorem is useful.

THEOREM 7.2.1. Suppose that

1.7
;T,,—) c(0), 60,

and that for all a >0 in a neighbourhood of c(6)
%logPHo(T,,>na) = —l(a),

where [(a) is a nonnegative function, continuous at c(6), then the Bahadur slope
of {T,} is equal to 21(c(0)).

PROOF. See BAHADUR (1967,1971). O
An upper bound for the Bahadur slope is twice the Kullback-Leibler infor-

mation J(6), defined as

J(0) = inf K(6,),
0O,

with
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fpglog(pg /po)dpif Py<<Pj

K(6.6) = otherwise

THEOREM 7.2.2. For each 6
P, %logG,,(T,,)s —J(@)—n| = 0 for all 70,
PROOF. See BAHADUR (1971). OJ

The following lemma is a minor modification of Corollary 5 in BAHADUR and
RAGHAVACHARI (1972).

LEMMA 7.2.3. Suppose that

fim P,,(%T,,<2J(0)—n) = 0 for all 10, 1)
lim sup %log[PHo(T,, =>na) < —'%a for all a >0, (7.2)
n—o0

then {T,} is optimal in the sense of Bahadur, i.e. its Bahadur slope is equal to
2J (0).

ProoOF. Let n>0 be arbitrary. Then
lim sup P,;(%logG,,(T,,)? —J(O)+n)
n—o0

< lim sup Pg(—’ll-logG,,(T,,)> —J(0)+n, %T,,>?J(0)—n)

+ lim sup p,,(lTn<21(0)—n)
n— o0 n

= lim sup Pg(%logG,,(T,,)> —JO)+n, ~T,>27 6)=).

If n='T,>2J(6)—n, then
1

L10gG,(T,) < 108G, (n(2J (6) ),

and application of (7.2) with @ =2J () —n gives that for all n sufficiently large
LlogG,(n (M O)—m) < —JO)+31

Thus
lim sup Py(~-10gG,(T,)= ~J(6) =)

< lim sup ng(%logG,,(T,,)> —J(@)+n,
n—oo
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I el
nlogG,,(T,,)< J(0)+4n)

=0.

Since according to Theorem 7.2.2 we have
lim Py(--10gG,(T,)< ~J 6) 1) = 0,
this completes the proof. [J

Lemma 7.2.3 is the basic tool for proving optimality in Bahadur’s sense of
the statistic

= T.(ZL
T = 1< ] T"(n)'
We shall first describe the change-point model in an i.i.d. setting to enable us
to use the previous results. Let §=(AV,A? y), and let (x;,yx), i =1, - - - ,n, be
independent observations from the probability distribution

) B xFo(y) if x<y
Pg(xl <X, ¥ SVV) - 'YFA"‘(}’)+(X_Y)F)\(Z)(Y) if x>y

In the sequel, we shall assume that y, =y, where r; is the rank of x; in the

ordered sequence X())< - - - <X,. Then given (x;, - - - ,X,)=(xy, - * - ,x,) we
have that y,,---,y, are iid. with distribution function F)» and
Yr.+1, " **,¥o are Lid. with distribution function Fy», where 7,=17,(y)=

{number of x; <y, 1<k <n}. We shall regard T, as the unconditional likeli-
hood.
The parameter space is

0 = (=AV A y): N\VeA, i =1,2, ye(0,1)).
For J(6), 8=(A",A?,y), we find the following expression:

7@ = inf [y [frwlog(fa / fdu+(1=)[frelog(fie / .
Lemmas 7.2.4 and 7.2.5 below present sufficient conditions such that the
assumptions (7.1) and (7.2) of Lemma 7.2.3 hold for {T,}.
LEMMA 7.2.4. Suppose that for 6=\ \? y),

.Y)
n

lim Pg(%T,,( y<2J(6)—n) = 0 for all >0, (13)

Then also

lim Pyg(T,<2J(#)—n) = 0 for all n>0.

PrOOF. This follows immediately from the fact that
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= k = Ta(Y)
= —) = . O
T, | max_ T,.(n) T.( P
If we define
kI_TIfA“'()'k)
1D, 1) = JHp 2og |[————
kr:Irf)\(Yk)
and
. _H+ ]f A2 (k)
1P\, 1) = U 2log ____—1" ,
k:rTI+ 1f)\()’k)
then

T, = max inf [IPAk)+1IPA k)]

I<k<n-—1 AeA
LEMMA 7.2.5. Suppose that for every sequence {k,}, 1<k,<n—1,n=12, -
lim sup %log [iug Py (DM k,)=na)| < —Y%a, a>0, i=12. (14)
n—oo €
Then also

lim sup %logPHq(T,,>na) < —Ya.
n—oo

PRrROOF. For each A\je A
T kn .
Tn(_n_) = )}?{ [Isr])(}‘skn)+ls12)(}‘akn)]

< 1PN, k) HIP (Ao k).

Hence
— k,
Py, (T, (51)=na) < sup Py, (000, k) HID o k) =na). (15)

Let n>0 be arbitrary. Then for all A\je A
Py, (5" Ao, kn) +1P (Ao, k) =na)

= hﬁ:]“’x« (AP Mo, kn)Elmin,n (i + ), 1PN, kn)=na—n (i + 1)
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+ Py, (1P Ao.ky)=na)

<SP\ 1 Qo) 2 ninPy, (1D Ro.)>na —n i + 1)

i=0

+ Py, (P (Mo, kn)=na).
From (7.4) we know that for arbitrary §>0 and for n sufficiently large

Sup Pa, (15 Ao ey >nim) < exp(_n(%l —8))
and

iléf/)\ Py, AP N ky)=na—n(i + 1)) < exp(—n(% — ﬁ%ﬂ —3)),
which implies

iUR Py, 1 Xo, k) +1P (Ao, k) =na)

(a /] '
< ﬁ" exp(—n(% - —;_L —28))+exp(—n(% —8))
i=0

<

exp(— n(% —28)).

£+ e/ 2 +1
n
Since 7 and § are arbitrary, this implies
lim sup sup %logp&(lf,”()\o,k,,)+l§,2)(}\0,k,,)>na) < —ha
From (7.5) it follows that also
g
lim sup logPHo(T,,(T)zna) < —Ya.
n—o0
And since this is true for all sequences {k, }, also

lil;'n_il:lp%PHo (T,=na)

n—oo

< lim sup %log{nlg’\aén Pm("f"(f)?na)}

<lim sup %logn —%a = —%ha 0O

n—o0

Now, KALLENBERG (1978) shows that (7.3) holds for {F,: AeA} an
exponential family in standard representation and A¥), i =1,2, in the interior
of parameter space. Moreover, he proves that (7.4) also holds if {Fy: AeA} is
a one-parameter exponential family. Thus, we arrive at the following theorem.

THEOREM 7.2.6. For {F): Ae A} a one-parameter exponential family in standard
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representation, {T,} is optimal in the sense of Bahadur at all alternatives
=MD A y), XD i =1,2, in the interior of A, y€(0,1). O

Note that for k-parameter exponential families (k >1), Bahadur-optimality of
{T,} follows if (7.4) holds.

Related results have been obtained by DESHAYES and PICARD (1982). They
consider the normal distribution and derive large deviations results both at Hy
and H,.

7.3. Bahadur efficiency in the normal and exponential case
Examples of one-parameter exponential families are the normal distribution
with known variance and the exponential distribution. We shall treat these in
some more detail. In Subsection 7.3.1 we compute the slopes for T, and some
alternative tests that are easier to use in practice. Furthermore, the fact that
these alternative tests are Op(1) under Hy, might also be considered as a
theoretical advantage. To explain why, we actually need the results of Section
7.4, which imply that the alternative tests always behave better than T, at local
alternatives.

Subsection 7.3.2 presents a test statistic which is asymptotically equivalent to
T, under Hy, but which has Bahadur slope zero.

7.3.1. The normal case
For F) =®(-—A), AeR, ® the standard normal distribution, we have

T, = max T,,(%),

I<k<n-—1

with T,(k /n)=t.(k /n),
— k n
Ly = /=R [%Zy.-— = Sy a9
i=1

‘ n—k ;5%

The exact null-distribution of T, is quite cumbersome and it turns out that
the limiting null-distibution of the appropriately normalized T, is not a good
approximation for finite sample sizes.

We propose statistics of the form

k= .k
T,y = max =T (—),
e l<k<n—l¢(n) "(n)
where {(.) is a function that diminishes the weights in the tails. For practical
purposes it is convenient to take y(s)=s(1—s), because then the approximate
significance level can be found in standard tables: under Hy

£

2 -
Toy — Ogl;lgl B-(s), for Yy(s)=s(1—13),

where B(.) is a standard Brownian bridge.
Other relatively easy to use tests statistics are
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=] k
|t§l = , Etn(_)l
k=1 N
and more generally
o= L k il k
S | = FLEEY.
4] = | SWEIRE)]
The superscript ’S’ refers to sum-statistic, as in PRAAGMAN (1986). Under H,
§ 1
[t2] = |9U0,(;7 ~2)
and

£ 1
[t5y] — |(57L(O,E)|, for Y(s)=s(1—3s).

Let ¢(T,,0) and c(|t]|,0) denote the Bahadur slope at 6=QA",A? y) of
{T,,} and {|t5, |} respectively.
LEMMA 7.3.1. If Fy=®(-—A),
c(T,0) = y(1—y)AD —A@)2,
c(1€].6)
(%'”_ Vy(1—7) —(1—y)arcsin V1 —y —yarcsin Vy )?

: S ()\(l) _}\(2))2
Z ==

and for Y(s)=s(1—s)
e(Ty,0) = 4y (1—y)P AV —A®)2,
C(|t£|,0) = 372(]_Y)2(A(1)_A(2))?

Proor. The Kullback-Leibler information number is
J(O) = T DAV AV

Hence ¢(T,0)=v(1 —y)AD —AD)2,
We apply Theorem 7.2.1 to calculate the slopes of the other statistics. It is
easy to see that for a sequence of normally distributed random variables N,,

with expectation zero and variance 62 —0>

« 1 A o 1 02
lim —logP(|N,|=n"a) = —%=-.
n—o N o
Straightforward calculation now gives

y 1 y az
—logP S| =n*a) = —h——m—mor,
"lgr:o s H,(|th | =n"a) 4

Tn -2
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2

5 1 | 8 a
—logP >n"a)) = — — = —24?
n]Ln;lo P # (Tuy=(n"ay) 20<1?£1 Us) 4
2
lim %logPHo(|t,SL¢|>n'/za) = —'/z—al— = —6a’,
12
Moreover

_ Po ((s /(1=5)2(1 =) | AV =AD | if s<y
—y7 [ns]
n= " t( - ) { (1=5) /s)Py| AV =A@ | if s>y

uniformly in s €(0,1). Thus

P ¥ 1
—1 [ 4S . o S ]_S D_ 2
n |t,,|—>[(1 y){'\/——l_sds-l-y['\/——-s ds]p\() A |

= (%77— Vy(1—7) —(1—v)arcsin V1—y —yarcsin Vy ) [AD =A@ |,

Py
n 1T,y — WY1 —)AV =A?) = ¥ (1—y)? QD —AD)?

and
Y 1

P,
nThtS,| - [(1 —y){sds+yf(l —s)ds] [AD —A@ |
b4

= TH1I-DNI AP O

As is to be expected, the loss of Bahadur efficiency for the alternative tests is
always the most substantial for values of y near 0 or 1.

7.3.2. The exponential case
Suppose F(y)=1—exp(—Ay), A>0, y=0. Then

= ik

T = 8, Bl

with

’T“n(—ﬁ-) = —2klog [——B",fy/";,k)] —2(n —k)log [—1 lf",:?;k)], (1.7
k
=¥

Bu(Ynk) = S— k=1, n
2)’1‘

i=1

At =D A? y) we have

_ 1— 1 1
J(6) = log(5 + 1)~ logiy —(1-v)log 157
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and the Bahadur slope of {T,} is 2/(6).
The second order Taylor expansion of the right-hand side of (7.7) at
Ba(Yn,k)=k /nis equal to

(BalYooh) 7
"k /nY1—k /n)

k

n

To(%) =

Define
T, = max T,‘,(K).
1<k<n-—1 n

It is shown in HAccou et al (1985) that after the appropriate normalization,
T, and T, have the same limiting null-distribution. Moreover,

T

] n
(;iglyi)z

where
2

— k n

1<k <n n K= n—K& ;5%

is the likelihood ratio test for the case of normally distributed random vari-
ables (see equation (7.6)).

LEMMA 7.3.2. If Fx(y)=1—exp(—Ay) then T, has Bahadur slope zero.

PROOF. It is easy to prove that T, converges in P,-probability for each 6.
Thus, it remains to show that for all a >0

2l .
- >na) = 0.
"]Ln; - logPy, (T,=na) = 0

Now, under Hy, B,(Y,,k) has the same distribution as the k-th order statistic
U, (k) from a sample of size n —1 from the uniform distribution. Hence, if we
take » sufficiently large

Py, (T, >na) > Pm(’f,‘,(-};)>na)

U ()

=a
((1/n)(1—1/n))"*
>p a .y 1 a.y,
= P(U,(D)=(—)"+—) = PU,(1)=2—)")
n n n

n—1
I—M%VW .
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Thus,

1 * n 1 a .y
—logPy (T, >=na) = —2(4)*| = 0.
nlog u,(T,=na) : log[l 2(") J 0 O

In the same way it can be shown that Ty also has Bahadur slope zero. In
Section 7.5, we shall introduce the residuals-test, based on the least squares
estimators of the parameters in a two-phase regression model. The residuals-
test has the same appearance as the likelihood ratio test for normally distri-
buted random variables. The result of this subsection therefore indicates that
from the point of view of Bahadur efficiency it is not sensible to use the residu-
als test. Furthermore, the following section implies that also its Pitman
efficiency is zero.

7.4. Efficiency of the likelihood ratio test at local alternatives
We study the behaviour of T, at alternatives 8, =(A",A?,7, /n) for which
the following holds: for some {A, },

A=Ay | = Oz "), (7.8)
IAD =N, | = &(n—1,)"").

Again, we shall only consider the normal case with known variance and the
exponential case. Then, condition (7.8) defines exactly the alternatives which
are contiguous to the null-hypothesis and it is equivalent to the condition that
the Hellinger distance between (Fy»)"(Fy»)' ™ and (F) )" remains bounded
(see e.g. OOSTERHOFF and VAN ZWET (1975)). We shall only study the situa-
tion where n<<(r, /n)<l—n for some >0 and for all »n sufficiently large.
Then we can assume without loss of generality that 7, /n—ye(0,1) and (7.8)
reduces to

AN =A@ | = &(n~").

7.4.1. The normal case. Let F)=®(-—A\). The limiting null-distribution of T,
is given in Lemma 7.4.1.1 below. Since T, =0p(loglogn) under Hy we need to
renormalize it. Define for 0<g,<1-§,<1,

e (l_nn)(l_an)
p(1,,8,) = 7log [———m 5, ]

Furthermore, write

b(x) = 2logx +3loglogx — 5 logm, (1.9)
a(x) = 2(logx)",
b, = b(logn),

a, = a(logn).



122

Let t,(k /n), k=1, - - - ,n—1 be defined as in (7.6).

LEMMA 7.4.1.1.
. - k 5 +b(p(14,8,)) _
o L = — 5
nan:o Ph, n,<kr}lp‘;1§1—5n |t n J a(p(n,,6,)) exp—267).
—00<<S < 60,

PROOF. A minor extension of Corollary 1.9.1, page 57 in CSORGO and REVESz
(1981) says that for B(x) a standard Brownian bridge

. IB(X)I s +b(P(77m8n)) _ —
Iim P| su < = exp(—2e™%),
"l_’°° 11,,<xg8,, VX(I—X) a(p(nnan)) p( )

— 00 <s <00.
Now, t,(k /n), k=1, - - - ,n—1, is under Hy in distribution equal to
k
B(-")
,k=1---,n—1

k k

=23

n n

The increments of B satisfy

: B +x)—Bu)| _
nlinc}o OSuil}El/n G 1/n V2(logn) /n : (1)

almost surely ( CSORGO and REVEsz (1981), Theorem 1.4.1, page 42). For sim-
plicity, we only consider the interval (0,%]. Take n,=a(p(n,,5,))logn)* /n,
Bx) Bk /n)

then
-0,
Vx(1—x)  V(k /n)Y1—k /n)
almost surely, in view of (7.10). On the remaining subinterval (7,,7,) we have

ax |B(k /n)| e s +b(p(15,6,))
n<k /n<i, V(k /n)1—k /n)  a(p(1,,8,))

|B(x)| s +b(p(1,,8,)) 0
W Vrl—n) a8, :

since p(ny, 1 .—;’n) =ola(p(m,,8,)). O

<k /n<%

a(p(n,,6,)) [ max

SUP
k /n<x<(k+1)/n

P

<P

1t follows that

A}
T, <(

+by _
- )| = exp(—2e7°), —oo<s<co.

n
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We can also use Lemma 7.4.1.1 to draw conclusions about the behaviour of
the maximum likelihood estimator of the change-point. Let 7, be defined by

5 = k
T, = ar max T,(—).
" 8 ien ”(n)

It follows from Lemma 7.4.1.2 below that 7, /n— 0 or 1 in Py -probability,
so under Hy 7, /n is in a sense a consistent estimator of the change-point.
However, at contiguous alternatives 6, also 7, /n— 0 or 1 in Py -probability,
so in general 7, is inconsistent.

LEmmA 7.4.1.2.
- ~ n A
<——orT,=n—
"ler; P, (7, logn Of Tn=n logn)
. & n -
= nlin;lo Pgﬂ(TnSEg—n or 7,=n — logn) =1,

for all contiguous alternatives 8, =\ NP7, / n).

PrOOF. We have that

-k s +b,
Py, max % i |
A <k<n——= " n
logn logn
— s(py)t+b
= Py, — !t"(£)|> (pn)+b(pp) ’
" ck<n—-—L g a(p,,)
logn logn

where s(p,)=(a(p,) / a,)(s +b,)—b(p,) and p,=log[logn(1—1 /logn)]. Since
s(py,)—o0 as n— oo, application of Lemma 7.4.1.1 now implies that under H,
T,<n /logn or 7,=n —n /logn with probability tending to 1.

Because (Fy»)"(F)»)" ™ is assumed to be contiguous to (F) )", the same is
true in Py -probability, 8, =AM AP 7, /n). O

Define y} =y, —Eg Yo, k=1, - - - ,n, and let
0
TO = max [6)(5))2
I<k<n-1 n
be the likelihood ratio evaluated at y*y, - - - ,y{’). Then under Py,
=0) k

k n—T, 1y . ;
t, (—)+(————)"C,| if k<n,
n n—k T,

-k 2 _
|t,,(n)| , (7.11)

n

2
g LARE . )'/ZC,,] if k>,
n k n—r

where
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Co = (n =) N =7 AP
In view of (7.11), we have at contiguous alternatives with (r, / n)—y
" i +0 %
L1 < )+
uniformly in k<n /logn or k=n —n /logn. Thus the extra term added to

|ty (k /n)| is small. The consequence is that T, has as mptotlc power equal
to its significance level at alternatives 6, =(A), >\(2) AP | =0(n"").

THEOREM 7.4.1.3.

s+b,
pﬂ,, Tn >(

)2

- 0,

_|qu

n

s+b, ,
T, >( p )

—iQ <L << 00,

for all contiguous alternatives 8, =\ AP, 1, /n) with (1, / n)—ye(0,1).

Proor. For n sufficiently large,

—0) § +¢, 1 by
Py, max | )|>-q—
1<k < orn———<k<n-1 "
! logn
(
- k § by
< Py, max | &=} =
I<sk<s—"— orn——L—<k<n—1 n L
logn logn
—0) +b
< Py, max | th (—)] o AL B
Isk<—"—orn——2—<k<n—I An
logn logn

where

n—%®y—n”b—;—ﬁﬂ ”LClﬁO

The theorem now follows from:

) -k s+b,
lim Py, max =) =—
b= I<k<-—"— orn———<k<n-1 &
logn logn
. s+b, ,
= lim Py [T,>( )
n—oo n
and
. 0 s+g,+b
lim Py max |_t( )(k)| L
et I<k< orn———<k<n-—1 an

n
logn logn
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. = s+g,+b,
= lim sup Py, max [ | se————
neee l<sk<s——orn——2—<k<n—1 " "

logn logn
= l—exp(—2e77),

for all g,—»0. O

In Theorem 7.4.1.3 we excluded the cases (7, /n)—0 or 1. One can however
also show that if (r,/n) converges to =zero very fast (eg.
7, = o(logn / loglogn)), then T, has again asymptotic power equal to its asymp-
totic significance level at contiguous alternatives (A", A, 7, /n). On the other
hand, at contiguous alternatives with e.g. 7,=0((loglogn)logn), lim inf
7, /logn>0, T, does have some nontrivial power.

7.4.2. The exponential case
Let Fy(y)=1—exp(—Ay), y =0,A>0. Most of the results of the previous sub-
section also hold for the case of exponentially distributed random variables.
We shall again only consider contiguous alternatives 6, =AP AP, 7, /n) with
(t, / n)—>v€(0,1), so that

IAD—AD | = o(n*). (7.12)
Let a, and b, be defined as in (7.9).

THEOREM 7.4.2.1.

5 1b,
T, >(

Il

lim Py,

n—o

)ZJ = exp(—2e7°), —oo<s <co.

PRrOOF. See HAccou et al. (1985). O

Define y Ok =ynx / Eg, (Ynx), k=1, - - - ,n. Let

©0) — (0) k
T, = _max T,(7)
be lhe llkehhood ratio evaluated at (y, - - - ,y')). We compare T,(k /n)

and T (k / n) at contiguous alternatives of the type (7.12). For simplicity, we
only consider the case k=1,.

LEMMA 7.4.2.2. At contiguous alternatives 8,=0\PD AP, 1, /n)  with
(mn / n)—>v€(0,1)

11 ) 3 (0)
- E:y z:y
=0, k AN AD __f=

n()T()_
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o (2) @)
}\(1) )\ _ 1
+ — BRE B (5,
( )2 n n "
o

uniformly in k =1,

PROOF. We have

Tn(l’:_) = 2n10g[ Elyn,]

é Iyn.i]’

i=k+

1< 1
— 2klog [;—; } = 2(n—k)log[n_k

so for k =1,

| o (0)
5 & (X @) &

T,,( ")~ (-5 = —2klog |1+ & (7.13)
2) Elynt
n (0)
AD A(Z))Ey
+ 2nlog [1+— 1

—Zy.-
AD S

= —2klog(1+x;) + 2nlog(1+x,) say.

Note that x, =0p, (") uniformly in k=7,. Expand the two terms on the

right-hand side of (7.13) in a second order Taylor series around x; and x,
respectively, to obtain that uniformly in k=,

Ty

1 ©) ©
( ) T(O)(k)_ n __i=l1
! L liymz iz":y«»
AP J= i =
A 1 o < 0)
AD AP g.y o E .
1 k(= )" —n(=; Y| +0p, (n77)
Sy b8
=1

2
AD

i=1
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11 G (0) ©
A(l) )\(2) Z Yni B l;}y
1

1 k
AQ) - zly(o) % 2yt

i=1

1 Lo

W ok
1 n k
A2

+ Op, (n 7). O

We proceed by showing that the maximum likelihood estimator 7, /n is
inconsistent under contiguous alternatives, i.e. the pendant of Lemma 7.4.1.2
for exponentially distributed random variables.

LEMMA 7.4.2.3.
n
Ho( < n< logn) -0
as well as
n A n
—<f,<n————) >0
Po"(logn T, <n Togn -

for all 8, of the type (7.12).

PROOE. Let T, (x)=T,(k /n),xe(::l k_ and

1 n=1

S k-1 &
U,(x) = = xe(—
ni=1"n=1
_zyn.i

i=1
From HAccou et al. (1985), we have that under H,

= n(U,(x)—x)*
. Sup . TX)———— (7.14)
(loglogn) <x<]_(loglogn) x(l—x)

M»

!

=

= o(loglogn), almost surely.

On a rich enough probability space, one can define a sequence of Brownian
bridges {B,(x): 0<x <1} such that

sup [n%(Up(x)—x)—B,(x)]|
log:,ogg ] — logLogg

= O(n " "logn), almost surely
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under H, (see CsORGO and REVESz (1981)). Thus under Hy
I’l%(U,,(X)_X) B B,,(X)

su - , (7.15)
L Team G-y
logn logn
3/2
(9(-0—03%) almost surely.
n
Combination of (7.14) and (7.15) yields that under H,
sup  [a, T (x)—by] (7.16)
;<x <1 .
logn logn
= sup [a ,,—l"(—)lq —b,]+o1), almost surely.
Locpa]=mts (x(1—x))
logn logn
Define a(p,) and b(p,) as in (7.9). From CSORGO and REVEsz (1981)
| By(x)|
P sup [a( n)_——'.r—b(pn)]<s
—]——<x <l el x))
logn ogn
— exp(—2e7%), —oo<s<oo.
In view of (7.16), this gives that under H,
sup | T,(x)|"* = &(logloglogn)*, almost surely.

logn = logn
Theorem 7.42.1 now implies that under H,, 7,/n<1/logn or
7, /n=1—1 /logn with probability tending to one.
This is also true under Py because 6, is contiguous to Hy. O

Finally, we show that T, has asymptotic power equal to its asymptotic
significance level at contiguous alternatives of the type (7.12).

THEOREM 7.4.2.4. For all contiguous alternatives 8,=A\D NP 7, /n) with
(m, / n)—v€(0,1)

Py, (a, | T, |" —b,>5)— Py (a, | T, |'/2—b,,>s)’ 50, —o0<s<oo.

ProoF. Application of Lemma 7.4.2.2 gives that

T.(£)- T‘O’(k>' S, (o

1%
logn ¥

sup

n n
I<k< orn— <k<n-—1

logn logn

The same line of reasoning as in the proof of Theorem 7.4.1.3 now leads to the
required result. O
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Of course, the results of this section can be extended to other families of dis-
tributions. Now, consider the statistic

'i“,, - max ’T‘,,( 1(-),
n

Ty S—<l1-—)
n

where 0<n, <'2. If no a priori knowledge about 7, is available, it is desirable
to let 1, tend to zero. But then T, still cannot detect local alternatives
6,=AM AP, 1, /n) with (1, / n)—ye(0,1). The order of magnitude of T, for
the case of normally distributed random variables is given in Lemma 7.4.1.1.

7.5. Hypothesis testing in a regression model with a change-point
The two-phase regression model we study in this section is

g(x )0V + e if x, <y
. {g(xk)a(z)+5k if x>y

where €,¢6,, - - - are i.i.d. random variables with variance o?, x,,x,, - - - are
11.d. random variables, independent of ¢,,¢,, - - -, with distribution H:R—-R,
and where g:R—R" is a known function, with
[o o]
G = [gx)g(x)dH(x) < oo.
=00

The 6, i =1,2, are unknown elements of R” and y is the unknown change-
point. The continuous version of this model, where it is assumed that
270" =g(y)6?, is studied in FEDER (1975) (see also Section 5.2) and the
discontinuous model is a special case of the one considered in Section 5.3.
Also Section 6.4 treats models of this form.

We showed that under regularity conditions, the least squares estimators of
6, i =1,2, are asymptotically normal, as long as the true underlying regres-
sion function actually obeys two different regimes. Example 6.8 clarifies what
goes wrong if there is only one phase instead of two, and Section 7.3.1 and
7.4.1 give some more precise results for the case with € normally distributed
and g=I1 (i.e. r=1). We shall now provide some heuristics for the testing
problem Hy: 6V = 6@ against H,: 6546,

Let f,l), 0&,2) and ¥, be the least squares estimators without continuity res-
triction and let 6, y, be the least squares estimator given that Hy is true. The

residuals test statistic is

T, = 3 (% _g(xk)bn.Hﬂ)Z
F=1

— Y gl S (g0

X<y, 1<k<n X >y, 1<k <n
& SV « =Y,

Example 6.8 shows that T, generally explodes at rate Cp(loglogn). Section
7.4.1 establishes its local inefficiency. Therefore, we shall consider other test
statistics, which are the counterparts of the tests T, , and |t5, | introduced in
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Section 7.3.1, and for the situation_with a priori knowledge about the change-
point, we present the analogue of T, which was mentioned at the end of Sec-
tion 7.4. _

We shall first write T, in a convenient form. Let T,(y) be the residuals test
statistic given that the change-point is at y:

L0 = 3000 n)’
(1) A(2)
- 2 (yk _g(xk )on.y)z . 2 (yk _g(xk )on.y)z,
X<y, I<k<n X >y, 1<k <n

with éf,i‘),, i =1,2, the least squares estimators given y. Of course T,,(y)?O. We
shall write T,(y) in the form

— _T p—
T.(v) = (ML),
E,,(y) defined below, and we shall consider test statistics that are functions of

t(Y)-
Let H, be the empirical distribution function based on x;, - --,x, and

define 7,(y)=nH,(y). Let x;)< - - - <x,, be the order statistics and write
g(xq)) Yoy
X =! . L¥Y.=]|.l

£ ) Yo
where y(, corresponds to the k-th order statistic X, kK =1, - - - n. Write
Gy = X0 Xuy, Go = Groos Xo = Xnoo, Yo = Yoo
Then t,(y) is defined for G, and G, —G,, non-singular:
6() = Quy'Auy,

with
Quy = 61,6 ' (G, —Gyy)
Ay = =R Yoy =BG BTN
Given (Xp. %% X=Xy * ¥ * 1 %,), ?,,(y) has expectation

n" (v, v0)(05" — 0), where
B (¥:Y0) = Qv Qnl(¥:Y0)s

_ [Ratvy0) i Y270
9110 = 1R (vop) if y<vo °

and
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RH(Y’YO) = n nyo I(G Gn,y)-

Now, define
g
= [ g"()g(dHK), Q, = G,G(G—G,),

and let W be a standard Brownian motion. Then

_ e
t,(1)—n" pa (1, 70)(605" —85) — 0, " B(v)
as process in Ye{y: G, and G —G, have all eigenvalues >n}, n>0. Here

¥ 0
B(Y) = o [ g(x)dW(H(x))—G,G o [ g(x)dW(H(x))
We also have that for 0<r<'A

Q1) — 1" QL (v, 7o) —08) — 05 ***B(y)

as process in YER.
This suggests test statistics of the form

T, = 0 (V)6 ()

u
{y: G, and G—G, hav?al] eigenvalues >}

which has limiting null-distribution
B'(v)Q; 'B()

sup
{y: G, and G — G, have all eigenvalues >7}
and
T,y = sup  LEQHLE)
e —w<y<w ke
with limiting null-distribution

sup  B'(1)Q; " B(y).

—oo<y<oo

Moreover, one can construct uniform asymptotic confidence intervals for
B (v:Y0)O08) —68) v, Yoe{y: G, and G—G, have all eigenvalues >} and
for Q, (v, 70 (05" — 66), v>0, yeR.

It will be clear however, that the asymptotic distributions are hardly of any
practical use. One could alternatively approximate the level of the tests pro-
posed so far, by simulating from the null-distribution. However, in general the
distribution of ¢, will be unknown. One could start up a simulation procedure

~2
with the disturbances normally distributed with variance o,,, where o,, is some

consistent estimator of o, and with (x;, - - - ,X,)=(x;, - - - ,X,). Two draw-
backs are of course the compuler time needed and the assumption of normal-
ity.

A more simple test statistic is
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0 T 0
Tay = [ / QZ,ytn(Y)dY} Cn[ / Q:,,tnmdy}, 0<r<s,

where C, is some positive (semi-)definite matrix depending on (X, - - - ,X,)
and where the integral is taken over those values of y where t,(y) is well-
defined. Note that under Hy

o0 _ £ 00
[ Quitimdy — [ 07 %+ B(y)dy, 0<y<,
i J

i.e. the limiting null-distribution is multi-dimensional normal, with covariance
matrix V" say. One can estimate V consistently by V, say, using (x,, - - ,X,)
and a o,,. If one chooses for C,

G =W
then the limiting null-distribution of T, is chi-squared with r degrees of free-
dom.

The Pitman efficiency of T5, at some alternative (85",6(",yy), with
|65 — 6P | =n"A, can be approximated by
A]

In the case of normally distributed errors with known variance, this is also an
approximation of the Bahadur slope (see Section 7.3.1, where the Bahadur
slopes for a special case are computed).

Test statistics of the type Ty, could be called sum-type statistics and the
tests based on the supremum over y max-type statistics. PRAAGMAN (1986)
shows for a related problem (i.e. linear rank tests for a change-point) that for
every sum-type statistic there exists a max-type statistic that is at least as
efficient in Bahadur’s sense. This indicates that our sum-type statistics Tj,, are
not efficient in the sense of Bahadur. However, the practical significance of this
may be exponentially small.

The sum-type statistics we mentioned above are easier to use in practice
than the max-type statistics T, and T,y,. BROWN, DURBIN and WATSON
(1975) propose the CUSUM test statistic, a max-type statistic that is also easy
to use in practice. This test statistic is

CUSUM = sup t;()
¥

e ]

0 T
[AT { f Qn.yl‘n('Y»YO)dY] Co an.yl"n('Y"YO)d'Y

. ~ _l/2 ~ ﬁl/z
(sum eigenvalues V, C,V, )

where Cer
1 } Yor5)+1) ~EXrs)+1))Grns Xs Ys

t(y) = — = =ds.
n 8 —o<>(]-i_g(x(-r,,(s)-%l))(;n,slg(x(1-,,(s)+l))T)/2

The limiting null-distribution of t,(y) is

(1) — oW (H (1)),

as process in v, with W’ a standard Brownian motion.



133

8. COMPUTATION OF LEAST SQUARES ESTIMATES IN A MULTI-DIMENSIONAL TWO-
PHASE REGRESSION MODEL

8.1 Description of the algorithm
We calculate estimates for the two-dimensional version of the two-phase
regression model of Section 5.2:

y = min(@" +x8",a? +x8?)+¢,

with x=(z,,2z;)eR?. This model is used to describe the lifetimes of plastic
pipes for transportation of fluids as function of temperature and stress. The
class @ is of the form

@ = {{x:xy<1)}: yeR?).

Estimates are obtained from realizations {(xx,px), k=1, ---,n} by the
method of least squares. We mentioned already in Section 2.1 that the compu-
tation can be done in polynomial time. At each partition it takes O(n) time to
find the least squares estimates given this partition. Since there are O(n®)
different partitions of the data {x,, - - - ,x,}, the total computation takes O(n?)
time. We shall present an algorithm that reduces this to 6(n?). The algorithm
needs constant time to find the estimates at a given partition. Our experience
however is that although asymptotically this is an improvement, the constant
time needed at each partition is still substantial, i.e. of the same order of mag-
nitude as n for moderate sample sizes (n=~70). Some numerical results are
given in the next section (Tables 3 and 4).

The main idea of the algorithm is to exploit the fact that estimates
corresponding to one partition can be easily calculated from those at another
partition, provided these partitions differ with respect to a limited number of
points. The complexity of the calculations increases as a function of the
number of points at which two partitions differ. Therefore, we aim at a
sequence of partitions such that successive partitions differ in only one point.

Denote the partitions of {x;,---,x,} by P;=(JJP}, with
JV=Aan{xy, - ,x,) and JP=A4°N{x,, - - - ,x,} for some A €@. For sim-
plicity, we assume that no three points of {x,, - - - ,x,} are on a line. In Sec-
tion 8.2 we shall elaborate on the case with some points in {x, - - - ,x,} coin-
ciding. Other violations of the assumption that there are no three points on a
line necessitate only minor adjustments in the algorithm. There are now

exactly M =(g) different partitions P;. Here, we do not include the partition

{{x1, - ,x,}, D} because the least squares estimate will not consider this
partition as feasible. _ .

The M partitions P; are represented as vertices in a graph G =(,I'), where
P={Py, - - ,Py} (we identify vertices with the partitions they represent) and
where I" denotes the collection of edges. Two partitions are connected by an
edge in T" iff they differ in only one point. We shall now describe a method to
recognize some (not all) of the adjacent vertices with little effort. The method
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defines a subgraph G =(%,T’) of G with 'CT.

Let x;=(zx 1,2k.2), k=1, -,n. We assume that the first co-ordinates
711 < -+ <z, are in increasing order and that if z; =z, for some k=,
then z; <<z, ,. Consider the line L, through x; and x;. Denote by X, the
2 X 2-matrix

I I 70 N A )
Xt = Sl " B
Xk k1 Zk2
Write

— e Zk,2 T 22
Agi = w2
k1 201

and

— ]
ki = X [1]

di; = det(Xy ).

Then L, ;={x: xc;;=dy;}. We define P, ,={J{}.J}} as the partition with
x;eJil), x, eJ?) and for m=£k, 1, x,, €J} iff x,,¢;,<<dy; (see Figure 8.1).

FIGURE 8.1. P, ; and some other partitions Py ,,

In this way, we have defined a one-to-one correspondence between all pairs
{(axp): k<le{l, - --,n}} and all partitions {P;: j=1, - - - ,M}.
The slope of Ly is

Zk,2 212 Ch.l.1
Skl — = 3 k<l
Zk,1 720 Ch,1,2
with s, ;= o0 if z; | =z, ;. We put the slopes in increasing order: s;< - - - <sy

(equal slopes are ordered arbitrarily in this sequence). Let P; be the partition
corresponding to the j-th slope in the ordered sequence. Define a graph
G =(9,I), with two partitions P; and P;,, j; <j,, adjacent iff one of the fol-
lowing conditions holds:



(1) P; =Py, P;, =Py and for j, <j<j,, P;=P,, where g#k, rk,
(i) P; =Py P, =P, andfor jy<j<j,, P;=P,, where g-I, r=-l.

ExAMPLE 8.1. Let n be equal to 5 (see Figure 8.2).

X3

X4 o Xs

X2

FIGURE 8.2. n =5

FIGURE 8.3. Ordered slopes

The ordered slopes and the corresponding partitions are

slope partition
34 12435
1.2 21435
33 21453
1.4 24153
1.9 245|13
1,3 245 3|1
4,5 25431
2,5 52431
2,4 54231

2,3 54321

135
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The graph G =(%,I') is given in Figure 8.4.

1,3

FIGURE 8.4. (?,I) corresponding to the data of Figure 8.2

Lemma 8.1.1 asserts that two adjacent partitions in G=(%,I') differ with
respect to only one point.

FIGURE 8.5. P, s={{2,4,5},{1,3}} is connected with e.g. P ;-{{2,4,3,5},{1}}

LemMMmaA 8.1.1.

rcr

Proor. Let P; and P;, j;<j;, be adjacent in I, with P; =P, and
P; =Py . Then there are no data-points xo such that the slope between x

and x; is larger than s;; and smaller than s; ,,. Hence, the only point at which
P; and P;, differ is x,,. Similarly, if P, =P, and P, =P, are adjacent, they
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can only differ in x,,. 0O

We shall show that G=(%,T’) is a connected graph, i.e. there is a path from
each vertex to any other vertex. This is a desirable property because given esti-
mates at one partition, one can follow the path to obtain estimates at any
other partition. Let

['(P;) = { all vertices adjacent in G to P;, including P; itself}.
LEMMA 8.1.2. G=(9,TI) is a connected graph.
Proor. This can be shown by induction. Let G,=(%,.I;) be the graph

representing the partitions and edges for a data set of size n. Obviously, the
lemma holds for n =2.

Now, let G, be the graph corresponding to {x, - - - ,x, -} and suppose
that G,_, is connected. All vertices in %,\ ¥,_; are of the form
P;=P,,: a€(l, ---,n—1}. Let P; and P;,, j;<j,, be two vertices in ¥, _,

which were adjacent in G, —;, ie. P; €l,_(P),). Define
{a: P,,=P; for some j, <j<j,}={ay, - - - ,ar} say
B = @ if no such a exists )

We consider four cases:
() If P, =Py, and P;, =Py, k&B, then P; €l',(P),), i.e. the edge between
P; and P, remains in G,.
(ii) Similarly, if P; =Py, and P;, =P,,;, [&B, then P; €[,(P)).
(1) If P; =Py, and P;, =Py, k €B, then there is a path Py =Py ,—Py .
(iv) If P; =P, and P; =P, , [€B, then the situation is as in Figure 8.6.
Assume without loss of generality that x;=(0,0).
, X,

Yon
FIGURE 8.6.

Then s, ;<<s;, is equivalent to

Zk,2 > Zn, 2 '
Zk, 1 Zn, 1
This implies
Zk,2(Zn,1 —2k,1) < 1(2n,2 = 2k.2)

Zk12n,1 Zk,1Zn,1
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or, since z, | >0 and z,, ; —z; >0,

Zk,2 _ Zn2 " Zk2
Skl = = = =Sk.n-
Zk, 1 Zn, 1 2k, 1

In the same way, one can show that s; , <s;,, S,n <<Sm, and s,, , <s, ;. Thus,
one obtains a path

Pk.l_)Pk,n_’Pl.n_’Pm,n—')Pm.l-

In all four cases, we found that the edge between P; and P;, remained in
G, or was replaced by a path. Clearly, all of the (n —1) vertices added to %, ;
are adjacent to at least one vertex of %, _;. Since by induction G, is con-
nected, the lemma follows.  [J

The connected graph G=(%I') has a connected subgraph
Gr=(?,I'y), '+ CI' with the minimum number (M —1) of edges. Such a sub-
graph is called a generating tree.

2.3 3,4

2,4

2,5

1,3

FIGURE 8.7. Generating tree for Figure 8.4

One can supply each branch in I'r with an orientation such that for some ver-
tex - called the root of the directed graph - there is a directed path from this
vertex to all other vertices.

The tree Gr endowed with orientations will define a path through the parti-
tions. Starting in the root, one follows the directed branches until one reaches
a vertex where there is no way out. Then one follows back the same path
against the stream, until a vertex is entered from whence one can take a
directed edge to a not previously visited vertex. The formal description of this
walk is given below. We create for the original graph G a generating tree Gr
including root and orientations.
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(I) ALGORITHM FOR FINDING A GENERATING TREE
(1) Start in an arbitrary PV 9.

(2) Given the vertices PV, - - - P
(@) find r =max{s: 1<t<s, I[(P") not a subset of {PD, ... PO}
(b) choose a P6HDel(PO)\ (PD, ... PO},

(c) take the orientation from P") to PC*D,
(3) Stop if all vertices have been visited.

While creating the generating tree, we simultaneously compute estimates.
Thus, estimates corresponding to partitions are found according to the order-
ing PO, ... PM of the tree. We postpone the exact formulas for the esti-
mates to the next section. Here, we only present a more or less verbal descrip-
tion.

The least squares estimates without continuity restriction at partition P; are
denoted by ; and the residual sum of squares at 6; is denoted by S?. For con-
venience, and to stress the fact that these estimates need not respect the con-
tinuity restriction, we sometimes write 6, =6, ; and sz- =sz-‘0. The issue of con-
tinuity follows now.

Define for each 6,

—R)_ RO § =@ — gD
=B =B, 4 =a —al.

Since ; does not take the continuity restriction into account, partitions of the
form

{{xk: Xy <6}, {xi: xxv,=0;}}

need not coincide with P;. Therefore, we consider at P; three types of res-
tricted estimates. Suppose P;=P; ;. We let 6, | be the least squares estimate at
P; under the restriction

o} + x5} = o} +x B, (8.1)

where (o'}, BV, a3,8%7)=6] . Similarly, 6, , is the least squares estimate at
P; under the restriction

o} +x,81 = ol +x,8%. (8.2)

Furthermore, 6 ; will be the estimate at P; under both restrictions (8.1) and
(8.2). Obviously, the continuity restriction is always fulfilled at 6; 3. Denote by
qu the residual sum of squares at 6, ,, ¢ =1,2,3.

Now, let 0j‘,,p, be the optimal solution at P; under the continuity restriction
that some partition of the form

{ {xk * XkYj.opt <aj,opt }a {xk * Xk Yj,opt 28],0}71 } }

is the same as P;. Here, v, ,, and §;,,, are defined by

— 2 ——7) 1
Yjopt — 3/(,3,;: i B}.(gpt ’ 8].0[71 = aj(\(zpt - a},(gpr-

Note that 01-,,,/,, need not be one of the 0/14* g =0,1,2,3. However, the algorithm
is such that nevertheless the overall optimal solution § will be found (see
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Lemma 8.1.3).

(IT) ALGORITHM FOR FINDING THE LEAST SQUARES ESTIMATE 6

(1) At the root PV of the tree, the least squares estimates without continuity
restriction are calculated, using a standard least squares program. These
estimates - and some auxiliary variables - are stored.

(2) Given estimates and auxiliary variables at PV, - - - P0) we choose an r
as in step (2) of algorithm (I). The least squares estimates without con-
tinuity restriction at P¢ "1 are computed from those at P") according to
the formulas given in Section 8.2.

(3) Let jo=arg min{S}: je(1, - -+ ,M}}. If at ; the continuity restriction is
fulfilled, #=6; , S =S} and the algorithm stops.

(4) If at 0j0 the continuity restriction is not fulfilled, this necessitates the cal-

culation of §; , and S}o‘q, g =1,2. This can be done using the formulas of
Section 82. The algorithm replaces S} by min{S? ,, 4=12} and
searches anew for j; =arg min{S?: je{l, - - - ,M}}. Continuing this pro-
cedure, one ends up with a sequence of indices jgo,/;, - -+ ,j, say.

(5) If S} has already been replaced by an S? 4+ ¢ =1,2, the algorithm calcu-
lates 8, 3 and S7 3 and replaces S} ,, ¢ =1,2, by S7 3.

Algorithm  (II) results in an estimate 6, ,  corresponding to
sz'»wflw ZMn{S}q:je{l, -+ ,M}, qe{0,1,2,3}}. Note that algorithm (II)
does not compute all Sﬁ g ¢ =123 That 0, , is actually the overall optimal
solution @ is shown in the following lemma.

LEMMA 8.1.3.
0.

it = 0.
Proo¥. Clearly, if at each partition 6, ,,, were calculated, then 020““0,,,, where
0;.,.op: 1s the estimate corresponding to

J;
3 op=min{S% ., je(l, -, M}}.

Thus, we only need to show that the 6, ,,, that are not considered are not the
overall optimal solution 6.

Let P;=Py ;. If 0, ¢{0,4: ¢ =0,1,2,3} then there is an x,, ak,/ on the
line {x: x¥; 4 =8,y ). Suppose there is exactly one x,, a7k,/ on this line.
Consider the partition P, generated by the line through x, and some other
point x, say. If 6, satisfies the continuity restriction, then S;<S7,. ¢ =12, so
then 6, is not the overall optimum. If alternatively 6, does not satisfy the
continuity restriction, then ; ,,, =6, for some ge{1,2}, so then 6, ,, is con-
sidered.

Suppose there are two points x, and x,, azk,l, b%k,/ on the line
{X 1 XY)opr =80pr ). Let P, now be the partition generated by this x, and x;.
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The same line of reasoning shows that either 6, ,, is not the overall optimal

solution, and/or 8, ,,, =6}, 3. 0O

8.2 Numerical results

We shall first present the formulas for the 6, and S}_q. Let P, =P") and
P, =P“*D be two successive partitions in the tree that differ in one single
point  x, say. Suppose P; =(JPJP}  with x,eJP. Then
PP ={JD\ (x,}.JP U{x,}}. Let Z¥) be the matrix of design-points
zx =(1,x,) with x, €J$), i =1,2. When the algorithm arrives at P;, the follow-
ing quantities are in store at P; :

. =i
_ DT (i L
) BY = [z}? z}?J Li=12,
2)  the parameter estimates 0}’. Voi=i1.2

3)  the residual sum of squares S7 .

From these the BY), 6y and sz'z can be calculated:

B{z,z7,B"

1 B = gy BT B 8.3
) 4 L H-z,,,BJ(Pz,f, (8-3)
B2,z BY

B = p@ 4 L mm I
T T, B,

2) 6D = 60+ BV 2L — 20, (8.4)
0P = 80 —BP 25 (v — 2P,
Ou—20F  (a—2a0)

— ! 8.5
14z, B0l 1—z;B02) (8

3) §2 =8+

Given the unrestricted estimates 6, at some partition P;=P;; say, one can
also calculate the restricted estimates HM, q=12,3. Let

B
G=1% o
]
and
rir = (@ —2k), 2=(1,%),

r2 = (22 Z=(1x).

Calculate for g =1,2
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Crl r C:
D Gy =G-—tE
Tj.4%i").q
Crl r. 8.
2 b =6
T.9%i")q
0TrT r. 6,
3) sz‘.q — 5/2+_u‘_LL;_L'
7j.9Cithg
Given C;,, 0, and S}, for some g<{1,2}, say for ¢ =1, we have

1) no need for further matrices

€, yrparlsb
2) 83=6,,— j 17,2 (.ZT(.I ,
' ' r;2Cr;
#2172
0T 1T r. 0.
- ji 17}, 27}, 29;,
3) 8§y =%, 4LLBAL
ri.2Cj11j.2
We now describe how equal points in {x, - - - ,x,} are handled. Slopes sy,
are computed for the subset {x; , - - -,x; } of different points. At the root of
Gr the initial estimates at P) are calculated using the complete data set
{(xk k), k=1, - - - ,n}. Estimates at PjZ:P‘”“ are found from those at
P; =P"") using the following transformation. Let x,, €{x,, " ,x_} be the
point at which P; and P;, differ and suppose that there are p observations
Y, -y at x,, ie. there is a group of the form {(x,.y¥), t=1,--- p}

in {(xg,yx): k=1, - --,n}. In the expressions (8.3), (8.4) and (8.5) we replace

%i )

Y -

t=1
For the algorithm of Section 8.1 the computer program NEWP was written
in Pascal by M. Voors. A full description of NEWP can be found in VAN DE
GEErR and VoOoRrs (1986). We first present the result of a simulation, with
n =20 and low noise level (Table 1).

} BB @ gp R
1 3 5 4 1 2
1.03 300 500 414 098 2.00

2w =(1,X,) by Z,,=p"z,, and y,, by yu=p~

b
0

TABLE 1. Simulation results, n =20, § 2 1.13

Real data were supplied by a firm for the production of plastic pipes:

J

log(life-time of a pipe)

stress
absolute temperature

Z]
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1
absolute temperature

There are n =295 observations. We first used the program NONLINWOOD
(see DANIEL and WooD (1980)). This is a program for computation of least
squares estimates in a general nonlinear regression model. To obtain starting
values for NONLINWOOD, F. Burger wrote a special program for life-times-
of-pipes-data, which calculates estimates at a hopefully representative subset of
all possible partitions. The program NONLINWOOD was run several times
with varying starting values and step sizes. From the outcomes we took the
one with the smallest residual sum of squares. The result is given in the first
row of Table 2.

The program NEWP is too costly to handle the complete data set on the
interactive system to which we had access, even though after grouping equal x;
there remained only n’=71 observations (see Table 3 and 4). Therefore, we
simply threw away 11 observations. The data turned out to be more or less
ordered with respect to temperature: in the second row of Table 2 high tem-
peratures are disregarded whereas in the fourth row low temperatures are omit-
ted. Note that throwing away observations from the reduced data set means
not using more than four times as many observations from the original data
set.

29 =

norw o Bl B a®  pp P s
(1) 295 -45.13  -50.19 21.82 -26.79 -22.55 1221 4720
2) 60 -56.20 -62.63 27.19 -4193 -2595 1221 10.12
3) 60 -5145  -6999 26.74 -4408 -27.09 1847 1045
4) 60 -41.20 -51.27 20.78 -39.11 -26.13 16.72 10.88

TaBLE 2. (1)NONLINWOOD, (2)NEWP 1 -60,
(3)NEWP 6-65, () NEWP 12-71

Table 3 and Table 4 present an overview of the relative cost of NEWP as
functien of »’.

n"  SIMP NEWP TREE

20 3.69 431 427
30 6.32 8.01 9.04
40 1327 17.89 21.05
50 29.86 73.33 82.24
60 6580 19993 21831

7] * % X * % Xk * %k Xk

TABLE 3. NP-costs, *** insufficient field length for load
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n" SIMP NEWP TREE
20 41735 43157 42401
30 62724 64204 63376
40 112567 114105 113277
50 151306 152662 152054
60 216733 220313 217505
7 l % %k % % % * % %

TABLE 4. CM-costs, *** insufficient field length for load

The program SIMP uses straightforward calculations, i.e. no generating tree
is created and at each partition the estimates are computed directly without
making use of previously obtained estimates at other partitions. TREE does
create the generating tree but it does not use it: estimates are computed as in
SIMP. As to be expected, NEWP is cheaper than TREE as regards NP-costs
(normal priority costs) but less economical with CM-costs (central memory
costs). Roughly speaking, the difference between TREE and SIMP represents
the time needed for creating a generating tree. This turns out to be very costly.
In order to decide which partition will be next in the generating tree, the pro-
gram has to make about 20 comparisons at each partition. This may be sub-
stantial, but we did not expect it to outweigh the O(n) effort needed for recal-

culating estimates at each partition.
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Samenvatting

Regressieanalyse en empirische processen

De klasse van regressiemodellen die in dit proefschrift wordt bestudeerd is

Ve = g(Xi)te, k=1, n,

met ¢, - - -6, onderling onafhankelijke stochastische grootheden met ver-
wachting nul en eindige variantie, en X, - - - ,X, vectoren in R?. De funktie g
wordt verondersteld een element te zijn van een collectie § van regres-
siefunkties. Voorbeelden zijn niet-lineaire regressie, waarbij § een klasse is van
funkties geindexeerd door een Euclidische parameter, en niet-parametrische
regressie met bijvoorbeeld § een klasse van gladde funkties.

We onderzoeken de relatie tussen de ’grootte’ van § en het asymptotisch
gedrag van de kleinste-kwadratenschatter g,. Zij go€9 de ware onderliggende
regressie. Des te minder men van g, bekend veronderstelt, des te groter is § en
des te moeilijker zal het zijn g, te schatten. We preciseren dit door de entropie
van § te beschouwen en maken daarbij gebruik van de theorie over empirische
processen. Ter illustratie gaan we in op het twee-fasen regressiemodel.

In (lineaire) twee-fasen regressie, de klasse § is de verzameling van funkties
van de vorm

g = g+,

met g en g@ lineair en de verzameling A variérend in een klasse @ van
deelverzamelingen van RY. Hoofdstuk 1 geeft een aantal voorbeelden van klas-
sieke twee-fasen regressie, waar d =1 en waar de funkties g een knik of sprong
hebben. In klassieke twee-fasen regressie is @ de collectie van halfrechten; in
het algemeen kan men ook andere klassen @ beschouwen.

Empirische proces-theorie betreft met name de uitbreiding van de Glivenko-
Cantelli-stelling naar algemene uniforme wetten van grote aantallen en
uniforme centrale-limietstellingen. Hoofdstuk 2 geeft een overzicht van de
literatuur over uniforme wetten van grote aantallen en generaliseert de theorie
naar het geval van niet-identiek verdeelde stochastische grootheden. In
Hoofdstuk 3 worden deze resultaten toegepast op regressie. Er wordt
beschreven in hoeverre entropievoorwaarden op § leiden tot consistentie van de
kleinste-kwadratenschatter g,.

Hoofdstuk 4 behandelt de uniforme centrale-limietstellingen die in de
navolgende hoofdstukken als referentiekader zullen dienen. In Hoofdstuk 5
wordt ingegaan op het twee-fasen regressiemodel. Het blijkt relatief eenvoudig
om - gegeven consistentie en de theorie van Hoofdstuk 4 - asymptotische
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normaliteit van de kleinste-kwadratenschatters van de Euclidische parameters
af te leiden.

In Hoofdstuk 6 keren we terug naar het algemene regressiemodel. Hier
wordt op een wat subtielere manier gebruik gemaakt van de entropie van 6,
waardoor het mogelijk wordt de convergentiesnelheid voor g, te bepalen. De
entropievoorwaarden in dit hoofdstuk gelden echter vaak alleen lokaal, d.w.z.
in een omgeving van g,. Met behulp van de resultaten in Hoofdstuk 3 kan
men nagaan of g, op den duur in zo'n omgeving belandt. Naast niet-
parametrische regressie dient het twee-fasen model weer ter illustratie.

Twee-fasen regressie is sterk verwant met de situatie waarbij men een
abrupte verandering modelleert in de verdelingsfunkties van een rij van onaf-
hankelijke stochastische grootheden. In Hoofdstuk 7 besteden we aandacht aan
dit laatste geval. We onderzoeken de asymptotische efficiéntie van de
likelihood-ratio toets voor de aanwezigheid van een verandering.

Tenslotte presenteert Hoofdstuk 8 een algoritme voor het berekenen van de
kleinste-kwadratenschatter van een twee-fasen regressiemodel.
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5 Y oo
Het bewijs van Stelling 2.3.2 in dit proefschrift kan eenvoudig getransformeerd
worden om de volgende uniforme wet van de grote aantallen, uniform over een
klasse I van verdelingen op R?, af te leiden: Zij H, de empirische maat geba-
seerd op n 0.0. waarnemingen met verdeling H € i en zij & een klasse van re€le
funkties op RY met F=supses |f |- Stel dat lim¢_, supy.x [r>cFdH = 0
en dat voor alle >0, (1 /n)logN(8,H,,9) —"* 0, uniform in He%, waarbij
logN (8,H,,9) de §-entropie van ¥ is voor de (pseudo-)metriek [|-|dH,. Dan
geldt (onder meetbaarheidsvoorwaarden)

o | st —1p| <"
uniform in H e

=3 =
Zij % een klasse van reéle uniform begrensde funkties op R? en laat voor alle
8>0, % een overdekking in supremum-norm van ¥ zijn. Zij @ de collectie van

graphs van funkties in % en zjj A% (x1, - - ,x,) het aantal verschillende ver-
zamelingen van de vorm AsN{xy, - - ,x,}, As€d. Als % z6 gekozen kan
worden dat

sup logAe‘(x., Cr LX) < W8 logn, 60,

voor zekere constanten W en »=0 en alle n =1, dan geldt voor de §-entropie
logN (8,0, %) behorende bij de (pseudo-)metriek (/| - |2dQ)*:

logN,(8,0,9) < M8"log(%), 50,

voor zekere constante M die alleen van de maat Q afhangt. Als & een VC-

graph klasse is, kan men % =% en »=0 kiezen en komt dit resultaat overeen

met het Approximation Lemma in [1].

[1]JPOLLARD, D. (1984). Convergence of Stochastic Processes. Springer Series
in Statistics, Springer Verlag, New York.

-
Laat {P4: R’} een collectie kansmaten zijn met dichtheid pg=dPy / dp ten
opzichte van een o-finiete maat p. Zij §, de meest aannemelijke schatter geba-
seerd op n 0.0. waarnemingen X, K =1, - - - ,n, met verdeling Pg4. Stel dat er
een oneindige verzameling ® CR” is met dimensie kleiner dan r, zodanig dat
V 0€0 3 640 met Py=Pj, en zodanig dat V §¢©, Po=Pj d.es.d. als §=4.
Dan is in het algemeen voor n—oc de logaritme van het

aannemelijkheidsquotiént

> log po, (%) — X log pg(xi)
L =1 k=]



niet begrensd in Pg-kans. Voorbeelden zijn het twee-fasen regressiemodel en
het twee-compartimentenmodel.

-4-
De beperking tot n ~*-omgevinkjes van de oneindig-dimensionale component
van de onbekende parameter, zoals in [2] gebeurt, verdient te worden gerecht-
vaardigd.
[2]BEGUN, J.M., W.J. HALL, W.M. HUANG en J. WELLNER (1983). Information
and asymptotic efficiency in parameteric—nonparametric models. Ann. Sta-
tist. 17, 435-452

= 5=

)

Grote-afwijkingen en lokale asymptotiek zijn twee wiskundige technieken ter
benadering van een experiment & = {P}: §€®©} voor grote waarden van n.
Aangezien deze benaderingen tot tegengestelde conclusies kunnen leiden, is ten
minste één ervan alleen statistisch zinvol onder extra regulariteitsvoorwaarden.

-6-
Bij een model met abrupte verandering in de parameters van orde n~" voor
n—oo kan de lokatie de verandering niet geschat worden maar het bestaan
ervan kan wel worden getoetst.

%

w T

Een inkomenspolitiek die rekening houdt met een subjectief oordeel van het

individu over de subjectieve waarde van het inkomen, kan in abstracto bestu-

deerd worden (zie [3]), maar is in praktijk onuitvoerbaar.

[3]JKAPTEYN, A,, S. VAN DE GEER en H. VAN DE STADT (1985). The impact of
changes in income and family composition on subjective measures of well-
being. In: Horizontal Equity, Uncertainty, and Economic Well-Being. Studies
in Income and Wealth, Vol. 50, 35-67, The University of Chicago Press

-8-
Aangezien ’commerci€le kunst’ een contradictio in terminis is, betekent de
afschaffing van de BKR dat hedendaagse beeldende kunst als overbodig wordt
gezien.

-9.
In [4] wordt het volgende knapzakprobleem onderzocht:

n n

max{Ecjxj: Za,-ij-Snb,-, i=1,---,m x;e{0,1}, j=1, -~ ,n},
j:] j:]

met ¢,¢, - en  &,,a,, - -,i=1,---,m, onafhankelijke identiek

verdeelde stochastische grootheden met waarden in [0,1]. De Lagrange-

relaxatie  van het continue probleem is

L,,(A) e max{gk,b,+%é(cj_ i)\ia,-])x‘,-: ngjgl, J:1, B & ,nl,



Laat A, >0 een oplossing van de Lagrange-relaxatie zijn. Zij L(\)=EL,(}) en
stel dat L(A) een uniek minimum A" heeft. Dan geldt voor n— oo

n . i [
Cogiogn)” (LA —LA| = &)

met kans 1.
[4]VAN DE GEER, S. en L. STOUGIE (1987). A note on the rate of convergence
of the multi-knapsack value function. To appear

-10 -
Beschouwt men de statistische consultaties waar ik mee te maken heb gehad
als representatieve steekproef uit het universum van statistische consultaties,
dan leidt dit tot de conclusie dat proeven met muizen een onaanvaardbaar
groot bestanddeel van het wetenschappelijk onderzoek vormen.

-11-
Het sex-gedrag van de Chlamydomonas engametos kan worden beschreven
door middel van een statistisch model door de overgangswaarschijnlijkheden
van vrije, ongebonden cel naar geéxciteerde of gebonden cel, te relateren aan
het aantal ongebonden cellen van het andere geslacht. In de limiet levert dit
model een aantal differentiaalvergelijkingen op die analoog zijn aan de
Boltzmann-vergelijking.
[S]DEMETS, R., AAM. ToMsON, S VAN DE GEER en A. Tip (1987). A statistical
description of sexual cell interaction in Chlamydomonas engametos. Pre-
print, FOM-institute for Atomic and Molecular Physics

o 1w
Een vertolking van Das Wohltemperierte Klavier op piano kan deze muziek een
dynamische dimensie geven, maar doet tekort aan het karakter van de verschil-
lende toonsoorten.





