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Abstract. Let T[1, n] be a string of length n and T[i, j] be the sub-
string of T starting at position i and ending at position j. A substring
T[i, j] of T is a repeat if it occurs more than once in T; otherwise, it is a
unique substring of T. Repeats and unique substrings are of great inter-
est in computational biology and in information retrieval. Given string
T as input, the Shortest Unique Substring problem is to find a shortest
substring of T that does not occur elsewhere in T. In this paper, we intro-
duce the range variant of this problem, which we call the Range Shortest
Unique Substring problem. The task is to construct a data structure over
T answering the following type of online queries efficiently. Given a range
[α, β], return a shortest substring T[i, j] of T with exactly one occurrence
in [α, β]. We present an O(n log n)-word data structure with O(logw n)
query time, where w = Ω(log n) is the word size. Our construction is
based on a non-trivial reduction allowing us to apply a recently intro-
duced optimal geometric data structure [Chan et al. ICALP 2018].

Keywords: Shortest unique substring · Suffix tree · Heavy-light
decomposition · Range queries · Geometric data structures

1 Introduction

Finding regularities in strings is one of the main topics of combinatorial pattern
matching and its applications. Among the most well-studied types of string reg-
ularities is the notion of repeat. Let T[1, n] be a string of length n. A substring
T[i, j] of T is called a repeat if it occurs more than once in T. The notion of
unique substring is thus dual: it is a substring T[i, j] of T that does not occur
more than once in T. Computing repeats and unique substrings has applications
in computational biology [14,23] and in information retrieval [19,22].
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In this paper, we are interested in the notion of shortest unique substring.
All shortest unique substrings of T can be computed in O(n) time using the
suffix tree data structure [9,29]. Many different problems based on this notion
have already been studied. Pei et al. [22] considered the following problem on the
so-called position (or point) queries. Given a position i of T, return a shortest
unique substring of T covering i. The authors gave an O(n2)-time and O(n)-space
algorithm, which finds the shortest unique substring covering every position of
T. Since then, the problem has been revisited and optimal O(n)-time algorithms
have been presented by Ileri et al. [16] and by Tsuruta et al. [27]. Several other
variants of this problem have been investigated [2,10,11,15,18,20,21,24,28].

We introduce a natural generalization of the shortest unique substring prob-
lem. Specifically, our focus is on the range version of the problem, which we call
the Range Shortest Unique Substring (rSUS) problem. The task is to construct
a data structure over T to be able to answer the following type of online queries
efficiently. Given a range [α, β], return a shortest substring T[k, k + h − 1] of T
with exactly one occurrence in [α, β]; i.e., k ∈ [α, β], there is no k′ ∈ [α, β] such
that T[k, k + h − 1] = T[k′, k′ + h − 1], and h is minimal.

Range queries are a classic data structure topic [6,7,30]. A range query q =
f(A, i, j) on an array of n elements over some set S, denoted by A[1, n], takes
two indices 1 ≤ i ≤ j ≤ n, a function f defined over arrays of elements of S,
and outputs f(A[i, j]) = f(A[i], . . . , A[j]). Range query data structures have also
been considered specifically for strings [1,3,4,12]. For instance, in bioinformatics
applications we are often interested in finding regularities in certain regions of a
DNA sequence [5,17]. In the Range-LCP problem, defined by Amir et al. [3], the
task is to construct a data structure over T to be able to answer the following
type of online queries efficiently. Given a range [α, β], return i, j ∈ [α, β] such
that the length of the longest common prefix of T[i, n] and T[j, n] is maximal
among all pairs of suffixes within this range. The state of the art is an O(n)-word
data structure supporting O(logO(1) n)-time queries [1] (see also [12]).

Main Problem and Main Result

An alphabet Σ is a finite nonempty set of elements called letters. We fix a string
T[1, n] = T[1] · · ·T[n] over Σ. The length of T is denoted by |T| = n. By T[i, j] =
T[i] · · ·T[j], we denote the substring of T starting at position i and ending at
position j of T. We say that another string P has an occurrence in T or, more
simply, that P occurs in T if P = T[i, i+|P|−1], for some i. Thus, we characterize
an occurrence of P by its starting position i in T. A prefix of T is a substring of
T of the form T[1, i] and a suffix of T is a substring of T of the form T[i, n].

We next formally define the main problem considered in this paper.

Problem rSUS
Preprocess: String T[1, n].
Query: Range [α, β], where 1 ≤ α ≤ β ≤ n.
Output: (p, �) such that T[p, p + � − 1] is a shortest string with exactly one
occurrence in [α, β].
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If α = β the answer (α, 1) is trivial. So, in the rest we assume that α < β.
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and a query [α, β] =
[5, 16], we need to find a shortest substring of T with exactly one occurrence
in [5, 16]. The output here is (p, �) = (10, 2), because T[10, 11] = ac is the short-
est substring of T with exactly one occurrence in [5, 16].

In what follows, we prove our main result (Theorem1).

Theorem 1. We can construct an O(n log n)-word data structure which
answers rSUS queries in O(logw n) time per query in the word RAM model,
where w = Ω(log n) is the word size.

Our construction is based on ingredients such as the suffix tree [29], heavy-
light decomposition [25], and a geometric data structure for rectangle stab-
bing [8].

2 Our Data Structure

Let us start with some definitions.

Definition 1. For a position k ∈ [1, n] and h ≥ 1, we define Prev(k, h) and
Next(k, h) as follows:

Prev(k, h) = max
j

{{j < k | T[k, k + h − 1] = T[j, j + h − 1]} ∪ {−∞}}
Next(k, h) = min

j
{{j > k | T[k, k + h − 1] = T[j, j + h − 1]} ∪ {+∞}}.

Intuitively, let x and y be the occurrences of T[k, k + h − 1] right before and
right after the position k, respectively. Then, Prev(k, h) = x and Next(k, h) = y.
If x (resp., y) does not exist, then Prev(k, h) = −∞ (resp., Next(k, h) = +∞).

Definition 2. Let k ∈ [a, b]. We define λ(a, b, k) as follows:

λ(a, b, k) = min{h | Prev(k, h) < a and Next(k, h) > b}.

Intuitively, λ(a, b, k) denotes the length of the shortest substring that starts
at position k with exactly one occurrence in [a, b].

Definition 3. For a position k ∈ [1, n], we define Ck as follows:

Ck = {h | (Next(k, h),Prev(k, h)) �= (Next(k, h − 1),Prev(k, h − 1))}.

Example 2 (Running Example). Let T = c
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and k = 10. We have that (Next(10, 1),Prev(10, 1)) = (12, 9), (Next(10, 2),
Prev(10, 2)) = (20,−∞), and (Next(10, 3),Prev(10, 3)) = (+∞,−∞). Thus,
C10 = {2, 3}.
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Fig. 1. Illustration of the problem reduction: (k, h) is the output of the rSUS problem
with query range [α, β], where h = λ(α, β, k) ∈ Ck. Rk,h is the lowest weighted rectangle
in R containing the point (α, β).

Intuitively, Ck stores the set of candidate lengths for shortest unique sub-
strings starting at position k. We make the following observation.

Observation 1. λ(a, b, k) ∈ Ck, for any 1 ≤ a ≤ b ≤ n.

Example 3 (Running Example). Let T = c
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and
k = 10. We have that C10 = {2, 3}. For a = 5 and b = 16, λ(5, 16, 10) = 2,
denoting substring ac. For a = 5 and b = 20, λ(5, 20, 10) = 3, denoting sub-
string aca.

The following combinatorial lemma is crucial for efficiency.

Lemma 1.
∑

k |Ck| = O(n log n).

The proof of Lemma 1 is deferred to Sect. 3.
We are now ready to present our construction. By Observation 1, for a given

query range [α, β], the answer (p, �) we are looking for is the pair (k, h) with the
minimum h under the following conditions: k ∈ [α, β], h ∈ Ck, Prev(k, h) < α
and Next(k, h) > β. Equivalently, (p, �) is the pair (k, h) with the minimum h,
such that h ∈ Ck, α ∈ (Prev(k, h), k], and β ∈ [k,Next(k, h)). We map each
h ∈ Ck into a weighted rectangle Rk,h with weight h and defined as follows:

Rk,h = [Prev(k, h) + 1, k] × [k,Next(k, h) − 1].
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Let R be the set of all such rectangles, then the lowest weighted rectangle in
R stabbed by the point (α, β) is Rp,�. In short, an rSUS query on T[1, n] with
an input range [α, β] can be reduced to an equivalent top-1 rectangle stabbing
query on a set R of rectangles with input point (α, β), where the task is to
report the lowest weighted rectangle in R containing the point (α, β) (see Fig. 1
for an illustration). By Lemma1, we have that |R| = O(n log n). Therefore,
by employing the optimal data structure for top-1 rectangle stabbing presented
by Chan et al. [8], which takes O(|R|)-word space supporting O(logw |R|)-time
queries, we obtain the space-time trade-off in Theorem 1. This completes our
construction.

3 Proof of Lemma1

Let lcp(i, j) denote the length of the longest common prefix of the suffixes of T
starting at positions i and j in T. Also, let S denote the set of all (x, y) pairs,
such that 1 ≤ x < y ≤ n and lcp(x, y) > lcp(x, z), for all z ∈ [x + 1, y − 1].

The proof of Lemma 1 can be broken down into the following two lemmas.

Lemma 2.
∑

k |Ck| = O(|S|).
Lemma 3. |S| = O(n log n).

3.1 Proof of Lemma 2

Let us fix a position k. Let

C ′
k = {h | Prev(k, h) �= Prev(k, h − 1)}

C ′′
k = {h | Next(k, h) �= Next(k, h − 1)}.

Clearly we have that Ck = C ′
k ∪ C ′′

k .
The following statements can be deduced by a simple contradiction argument:

1. Let i = Prev(k, h) �= −∞, where h ∈ C ′
k, then i = Prev(k, lcp(i, k))

2. Let j = Next(k, h) �= ∞, where h ∈ C ′′
k , then j = Next(k, lcp(k, j)).

Figure 2 illustrates the proof for the first statement. The second one can be
proved in a similar fashion.

Clearly, |C ′
k| is proportional to the number of (i, k) pairs such that lcp(i, k) �=

0 and i = Prev(k, lcp(i, k)). Similarly, |C ′′
k | is proportional to the number of (k, j)

pairs such that lcp(k, j) �= 0 and j = Next(k, lcp(k, j)). Therefore,
∑

k |Ck| is
proportional to the number of (x, y) pairs, such that lcp(x, y) �= 0 and lcp(x, y) >
lcp(x, z), for all z ∈ [x + 1, y − 1]. This completes the proof of Lemma 2.
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Fig. 2. Let h ∈ C′
k and i = Prev(k, h). By contradiction, assume that there exists j ∈

(i, k) such that j = Prev(k, lcp(i, k)). Since h ≤ lcp(i, k), T[j, j +h−1] = T[k, k+h−1].
This is a contradiction with i = Prev(k, h). Thus, i = Prev(k, lcp(i, k)).

3.2 Proof of Lemma 3

Consider the suffix tree data structure of string T[1, n], which is a compact trie of
the n suffixes of T appended with a letter $ /∈ Σ [29]. This suffix tree consists of
n leaves (one for each suffix of T) and at most n−1 internal nodes. The edges are
labeled with substrings of T. Let u be the lowest common ancestor of the leaves
corresponding to the strings T[x, n]$ and T[y, n]$. Then, the concatenation of
the edge labels on the path from the root to u is exactly the longest common
prefix of T[x, n]$ and T[y, n]$. For any node u, we denote by size(u) the total
number of leaf nodes of the subtree rooted at u.

We decompose the nodes in the suffix tree into light and heavy nodes. The
root node is light and for any internal node, exactly one child is heavy. Specifi-
cally, the heavy child is the one having the largest number of leaves in its subtree
(ties are broken arbitrarily). All other children are light. This tree decomposition
is known as heavy-light decomposition. We have the following critical observa-
tion. Any path from the root to a leaf node contains many nodes, however, the
number of light nodes is at most log n [13,25]. We have the following lemma.

Lemma 4 ([25]). The sum of subtree sizes over all light nodes is O(n log n).

We are now ready to complete the proof. Let Su ⊆ S denote the set of pairs
(x, y), such that the lowest common ancestor of the leaves corresponding to
suffixes T[x, n]$ and T[y, n]$ is u. Clearly, the paths from the root to the leaves
corresponding to suffixes T[x, n]$ and T[y, n]$ pass from two distinct children of
node u and then at least one of the two must be a light node. Therefore, |Su| is
at most twice the sum of size(·) over all light children of u. Since |S| =

∑
u |Su|,

we can bound |S| by the sum of size(·) over all light nodes in the suffix tree,
which is O(n log n) by Lemma 4. This completes the proof of Lemma 3.

4 Open Questions

We leave the following related questions unanswered:

1. Can we design an efficient O(n)-word data structure for the rSUS problem?
2. Can we design an efficient solution for the k mismatches/edits variation of

the rSUS problem, perhaps using the framework of [26]?
3. Can our reduction be extended to other types of string regularities?
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