
Range Shortest Unique Substring Queries

Paniz Abedin1(B), Arnab Ganguly2, Solon P. Pissis3,
and Sharma V. Thankachan1

1 Department of Computer Science, University of Central Florida, Orlando, USA
paniz@cs.ucf.edu, sharma.thankachan@ucf.edu

2 Department of Computer Science, University of Wisconsin - Whitewater,
Whitewater, USA
gangulya@uww.edu

3 CWI, Amsterdam, The Netherlands
solon.pissis@cwi.nl

Abstract. Let T[1, n] be a string of length n and T[i, j] be the sub-
string of T starting at position i and ending at position j. A substring
T[i, j] of T is a repeat if it occurs more than once in T; otherwise, it is a
unique substring of T. Repeats and unique substrings are of great inter-
est in computational biology and in information retrieval. Given string
T as input, the Shortest Unique Substring problem is to find a shortest
substring of T that does not occur elsewhere in T. In this paper, we intro-
duce the range variant of this problem, which we call the Range Shortest
Unique Substring problem. The task is to construct a data structure over
T answering the following type of online queries efficiently. Given a range
[α, β], return a shortest substring T[i, j] of T with exactly one occurrence
in [α, β]. We present an O(n log n)-word data structure with O(logw n)
query time, where w = Ω(log n) is the word size. Our construction is
based on a non-trivial reduction allowing us to apply a recently intro-
duced optimal geometric data structure [Chan et al. ICALP 2018].

Keywords: Shortest unique substring · Suffix tree · Heavy-light
decomposition · Range queries · Geometric data structures

1 Introduction

Finding regularities in strings is one of the main topics of combinatorial pattern
matching and its applications. Among the most well-studied types of string reg-
ularities is the notion of repeat. Let T[1, n] be a string of length n. A substring
T[i, j] of T is called a repeat if it occurs more than once in T. The notion of
unique substring is thus dual: it is a substring T[i, j] of T that does not occur
more than once in T. Computing repeats and unique substrings has applications
in computational biology [14,23] and in information retrieval [19,22].

Supported in part by the U.S. National Science Foundation under CCF-1703489 and
the Royal Society International Exchanges Scheme (IES\R1\180175).

c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 258–266, 2019.
https://doi.org/10.1007/978-3-030-32686-9_18

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301636022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-32686-9_18

Range Shortest Unique Substring Queries 259

In this paper, we are interested in the notion of shortest unique substring.
All shortest unique substrings of T can be computed in O(n) time using the
suffix tree data structure [9,29]. Many different problems based on this notion
have already been studied. Pei et al. [22] considered the following problem on the
so-called position (or point) queries. Given a position i of T, return a shortest
unique substring of T covering i. The authors gave an O(n2)-time and O(n)-space
algorithm, which finds the shortest unique substring covering every position of
T. Since then, the problem has been revisited and optimal O(n)-time algorithms
have been presented by Ileri et al. [16] and by Tsuruta et al. [27]. Several other
variants of this problem have been investigated [2,10,11,15,18,20,21,24,28].

We introduce a natural generalization of the shortest unique substring prob-
lem. Specifically, our focus is on the range version of the problem, which we call
the Range Shortest Unique Substring (rSUS) problem. The task is to construct
a data structure over T to be able to answer the following type of online queries
efficiently. Given a range [α, β], return a shortest substring T[k, k + h − 1] of T
with exactly one occurrence in [α, β]; i.e., k ∈ [α, β], there is no k′ ∈ [α, β] such
that T[k, k + h − 1] = T[k′, k′ + h − 1], and h is minimal.

Range queries are a classic data structure topic [6,7,30]. A range query q =
f(A, i, j) on an array of n elements over some set S, denoted by A[1, n], takes
two indices 1 ≤ i ≤ j ≤ n, a function f defined over arrays of elements of S,
and outputs f(A[i, j]) = f(A[i], . . . , A[j]). Range query data structures have also
been considered specifically for strings [1,3,4,12]. For instance, in bioinformatics
applications we are often interested in finding regularities in certain regions of a
DNA sequence [5,17]. In the Range-LCP problem, defined by Amir et al. [3], the
task is to construct a data structure over T to be able to answer the following
type of online queries efficiently. Given a range [α, β], return i, j ∈ [α, β] such
that the length of the longest common prefix of T[i, n] and T[j, n] is maximal
among all pairs of suffixes within this range. The state of the art is an O(n)-word
data structure supporting O(logO(1) n)-time queries [1] (see also [12]).

Main Problem and Main Result

An alphabet Σ is a finite nonempty set of elements called letters. We fix a string
T[1, n] = T[1] · · ·T[n] over Σ. The length of T is denoted by |T| = n. By T[i, j] =
T[i] · · ·T[j], we denote the substring of T starting at position i and ending at
position j of T. We say that another string P has an occurrence in T or, more
simply, that P occurs in T if P = T[i, i+|P|−1], for some i. Thus, we characterize
an occurrence of P by its starting position i in T. A prefix of T is a substring of
T of the form T[1, i] and a suffix of T is a substring of T of the form T[i, n].

We next formally define the main problem considered in this paper.

Problem rSUS
Preprocess: String T[1, n].
Query: Range [α, β], where 1 ≤ α ≤ β ≤ n.
Output: (p, �) such that T[p, p + � − 1] is a shortest string with exactly one
occurrence in [α, β].

260 P. Abedin et al.

If α = β the answer (α, 1) is trivial. So, in the rest we assume that α < β.

Example 1. Given T = c
1

a
2

a
3

b
4

c
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

and a query [α, β] =
[5, 16], we need to find a shortest substring of T with exactly one occurrence
in [5, 16]. The output here is (p, �) = (10, 2), because T[10, 11] = ac is the short-
est substring of T with exactly one occurrence in [5, 16].

In what follows, we prove our main result (Theorem1).

Theorem 1. We can construct an O(n log n)-word data structure which
answers rSUS queries in O(logw n) time per query in the word RAM model,
where w = Ω(log n) is the word size.

Our construction is based on ingredients such as the suffix tree [29], heavy-
light decomposition [25], and a geometric data structure for rectangle stab-
bing [8].

2 Our Data Structure

Let us start with some definitions.

Definition 1. For a position k ∈ [1, n] and h ≥ 1, we define Prev(k, h) and
Next(k, h) as follows:

Prev(k, h) = max
j

{{j < k | T[k, k + h − 1] = T[j, j + h − 1]} ∪ {−∞}}
Next(k, h) = min

j
{{j > k | T[k, k + h − 1] = T[j, j + h − 1]} ∪ {+∞}}.

Intuitively, let x and y be the occurrences of T[k, k + h − 1] right before and
right after the position k, respectively. Then, Prev(k, h) = x and Next(k, h) = y.
If x (resp., y) does not exist, then Prev(k, h) = −∞ (resp., Next(k, h) = +∞).

Definition 2. Let k ∈ [a, b]. We define λ(a, b, k) as follows:

λ(a, b, k) = min{h | Prev(k, h) < a and Next(k, h) > b}.

Intuitively, λ(a, b, k) denotes the length of the shortest substring that starts
at position k with exactly one occurrence in [a, b].

Definition 3. For a position k ∈ [1, n], we define Ck as follows:

Ck = {h | (Next(k, h),Prev(k, h)) �= (Next(k, h − 1),Prev(k, h − 1))}.

Example 2 (Running Example). Let T = c
1

a
2

a
3

b
4

c
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

and k = 10. We have that (Next(10, 1),Prev(10, 1)) = (12, 9), (Next(10, 2),
Prev(10, 2)) = (20,−∞), and (Next(10, 3),Prev(10, 3)) = (+∞,−∞). Thus,
C10 = {2, 3}.

Range Shortest Unique Substring Queries 261

Fig. 1. Illustration of the problem reduction: (k, h) is the output of the rSUS problem
with query range [α, β], where h = λ(α, β, k) ∈ Ck. Rk,h is the lowest weighted rectangle
in R containing the point (α, β).

Intuitively, Ck stores the set of candidate lengths for shortest unique sub-
strings starting at position k. We make the following observation.

Observation 1. λ(a, b, k) ∈ Ck, for any 1 ≤ a ≤ b ≤ n.

Example 3 (Running Example). Let T = c
1

a
2

a
3

b
4

c
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

and
k = 10. We have that C10 = {2, 3}. For a = 5 and b = 16, λ(5, 16, 10) = 2,
denoting substring ac. For a = 5 and b = 20, λ(5, 20, 10) = 3, denoting sub-
string aca.

The following combinatorial lemma is crucial for efficiency.

Lemma 1.
∑

k |Ck| = O(n log n).

The proof of Lemma 1 is deferred to Sect. 3.
We are now ready to present our construction. By Observation 1, for a given

query range [α, β], the answer (p, �) we are looking for is the pair (k, h) with the
minimum h under the following conditions: k ∈ [α, β], h ∈ Ck, Prev(k, h) < α
and Next(k, h) > β. Equivalently, (p, �) is the pair (k, h) with the minimum h,
such that h ∈ Ck, α ∈ (Prev(k, h), k], and β ∈ [k,Next(k, h)). We map each
h ∈ Ck into a weighted rectangle Rk,h with weight h and defined as follows:

Rk,h = [Prev(k, h) + 1, k] × [k,Next(k, h) − 1].

262 P. Abedin et al.

Let R be the set of all such rectangles, then the lowest weighted rectangle in
R stabbed by the point (α, β) is Rp,�. In short, an rSUS query on T[1, n] with
an input range [α, β] can be reduced to an equivalent top-1 rectangle stabbing
query on a set R of rectangles with input point (α, β), where the task is to
report the lowest weighted rectangle in R containing the point (α, β) (see Fig. 1
for an illustration). By Lemma1, we have that |R| = O(n log n). Therefore,
by employing the optimal data structure for top-1 rectangle stabbing presented
by Chan et al. [8], which takes O(|R|)-word space supporting O(logw |R|)-time
queries, we obtain the space-time trade-off in Theorem 1. This completes our
construction.

3 Proof of Lemma1

Let lcp(i, j) denote the length of the longest common prefix of the suffixes of T
starting at positions i and j in T. Also, let S denote the set of all (x, y) pairs,
such that 1 ≤ x < y ≤ n and lcp(x, y) > lcp(x, z), for all z ∈ [x + 1, y − 1].

The proof of Lemma 1 can be broken down into the following two lemmas.

Lemma 2.
∑

k |Ck| = O(|S|).
Lemma 3. |S| = O(n log n).

3.1 Proof of Lemma 2

Let us fix a position k. Let

C ′
k = {h | Prev(k, h) �= Prev(k, h − 1)}

C ′′
k = {h | Next(k, h) �= Next(k, h − 1)}.

Clearly we have that Ck = C ′
k ∪ C ′′

k .
The following statements can be deduced by a simple contradiction argument:

1. Let i = Prev(k, h) �= −∞, where h ∈ C ′
k, then i = Prev(k, lcp(i, k))

2. Let j = Next(k, h) �= ∞, where h ∈ C ′′
k , then j = Next(k, lcp(k, j)).

Figure 2 illustrates the proof for the first statement. The second one can be
proved in a similar fashion.

Clearly, |C ′
k| is proportional to the number of (i, k) pairs such that lcp(i, k) �=

0 and i = Prev(k, lcp(i, k)). Similarly, |C ′′
k | is proportional to the number of (k, j)

pairs such that lcp(k, j) �= 0 and j = Next(k, lcp(k, j)). Therefore,
∑

k |Ck| is
proportional to the number of (x, y) pairs, such that lcp(x, y) �= 0 and lcp(x, y) >
lcp(x, z), for all z ∈ [x + 1, y − 1]. This completes the proof of Lemma 2.

Range Shortest Unique Substring Queries 263

Fig. 2. Let h ∈ C′
k and i = Prev(k, h). By contradiction, assume that there exists j ∈

(i, k) such that j = Prev(k, lcp(i, k)). Since h ≤ lcp(i, k), T[j, j +h−1] = T[k, k+h−1].
This is a contradiction with i = Prev(k, h). Thus, i = Prev(k, lcp(i, k)).

3.2 Proof of Lemma 3

Consider the suffix tree data structure of string T[1, n], which is a compact trie of
the n suffixes of T appended with a letter $ /∈ Σ [29]. This suffix tree consists of
n leaves (one for each suffix of T) and at most n−1 internal nodes. The edges are
labeled with substrings of T. Let u be the lowest common ancestor of the leaves
corresponding to the strings T[x, n]$ and T[y, n]$. Then, the concatenation of
the edge labels on the path from the root to u is exactly the longest common
prefix of T[x, n]$ and T[y, n]$. For any node u, we denote by size(u) the total
number of leaf nodes of the subtree rooted at u.

We decompose the nodes in the suffix tree into light and heavy nodes. The
root node is light and for any internal node, exactly one child is heavy. Specifi-
cally, the heavy child is the one having the largest number of leaves in its subtree
(ties are broken arbitrarily). All other children are light. This tree decomposition
is known as heavy-light decomposition. We have the following critical observa-
tion. Any path from the root to a leaf node contains many nodes, however, the
number of light nodes is at most log n [13,25]. We have the following lemma.

Lemma 4 ([25]). The sum of subtree sizes over all light nodes is O(n log n).

We are now ready to complete the proof. Let Su ⊆ S denote the set of pairs
(x, y), such that the lowest common ancestor of the leaves corresponding to
suffixes T[x, n]$ and T[y, n]$ is u. Clearly, the paths from the root to the leaves
corresponding to suffixes T[x, n]$ and T[y, n]$ pass from two distinct children of
node u and then at least one of the two must be a light node. Therefore, |Su| is
at most twice the sum of size(·) over all light children of u. Since |S| =

∑
u |Su|,

we can bound |S| by the sum of size(·) over all light nodes in the suffix tree,
which is O(n log n) by Lemma 4. This completes the proof of Lemma 3.

4 Open Questions

We leave the following related questions unanswered:

1. Can we design an efficient O(n)-word data structure for the rSUS problem?
2. Can we design an efficient solution for the k mismatches/edits variation of

the rSUS problem, perhaps using the framework of [26]?
3. Can our reduction be extended to other types of string regularities?

264 P. Abedin et al.

References

1. Abedin, P., et al.: A linear-space data structure for Range-LCP queries in poly-
logarithmic time. In: Proceedings of Computing and Combinatorics - 24th Interna-
tional Conference, COCOON 2018, Qing Dao, China, 2–4 July 2018. pp. 615–625
(2018). https://doi.org/10.1007/978-3-319-94776-1 51

2. Allen, D.R., Thankachan, S.V., Xu, B.: A practical and efficient algorithm for
the k-mismatch shortest unique substring finding problem. In: Shehu, A., Wu,
C.H., Boucher, C., Li, J., Liu, H., Pop, M. (eds.) Proceedings of the 2018 ACM
International Conference on Bioinformatics, Computational Biology, and Health
Informatics, BCB 2018, Washington, DC, USA, 29 August–01 September 2018.
pp. 428–437. ACM (2018). https://doi.org/10.1145/3233547.3233564

3. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.:
Range LCP. J. Comput. Syst. Sci. 80(7), 1245–1253 (2014). https://doi.org/10.
1016/j.jcss.2014.02.010

4. Amir, A., Lewenstein, M., Thankachan, S.V.: Range LCP queries revisited. In:
Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp.
350–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5 33

5. Ayad, L.A.K., Pissis, S.P., Polychronopoulos, D.: CNEFinder: finding conserved
non-coding elements in genomes. Bioinformatics 34(17), i743–i747 (2018). https://
doi.org/10.1093/bioinformatics/bty601

6. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

7. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J.
Comput. 22(2), 221–242 (1993). https://doi.org/10.1137/0222017

8. Chan, T.M., Nekrich, Y., Rahul, S., Tsakalidis, K.: Orthogonal point location and
rectangle stabbing queries in 3-D. In: 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, Prague, Czech Republic, 9–13 July
2018, pp. 31:1–31:14 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.31

9. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th Annual
Symposium on Foundations of Computer Science, FOCS 1997, Miami Beach,
Florida, USA, 19–22 October 1997, pp. 137–143. IEEE Computer Society (1997).
https://doi.org/10.1109/SFCS.1997.646102

10. Ganguly, A., Hon, W., Shah, R., Thankachan, S.V.: Space-time trade-offs for the
shortest unique substring problem. In: 27th International Symposium on Algo-
rithms and Computation, ISAAC 2016, Sydney, Australia, 12–14 December 2016,
pp. 34:1–34:13 (2016). https://doi.org/10.4230/LIPIcs.ISAAC.2016.34

11. Ganguly, A., Hon, W., Shah, R., Thankachan, S.V.: Space-time trade-offs for find-
ing shortest unique substrings and maximal unique matches. Theor. Comput. Sci.
700, 75–88 (2017). https://doi.org/10.1016/j.tcs.2017.08.002

12. Ganguly, A., Patil, M., Shah, R., Thankachan, S.V.: A linear space data structure
for range LCP queries. Fundam. Inform. 163(3), 245–251 (2018). https://doi.org/
10.3233/FI-2018-1741

13. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984). https://doi.org/10.1137/0213024

14. Haubold, B., Pierstorff, N., Möller, F., Wiehe, T.: Genome comparison with-
out alignment using shortest unique substrings. BMC Bioinform. 6, 123 (2005).
https://doi.org/10.1186/1471-2105-6-123

https://doi.org/10.1007/978-3-319-94776-1_51
https://doi.org/10.1145/3233547.3233564
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1007/978-3-319-23826-5_33
https://doi.org/10.1093/bioinformatics/bty601
https://doi.org/10.1093/bioinformatics/bty601
https://doi.org/10.1007/10719839_9
https://doi.org/10.1137/0222017
https://doi.org/10.4230/LIPIcs.ICALP.2018.31
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.4230/LIPIcs.ISAAC.2016.34
https://doi.org/10.1016/j.tcs.2017.08.002
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.1137/0213024
https://doi.org/10.1186/1471-2105-6-123

Range Shortest Unique Substring Queries 265

15. Hon, W., Thankachan, S.V., Xu, B.: In-place algorithms for exact and approxi-
mate shortest unique substring problems. Theor. Comput. Sci. 690, 12–25 (2017).
https://doi.org/10.1016/j.tcs.2017.05.032

16. İleri, A.M., Külekci, M.O., Xu, B.: Shortest unique substring query revisited. In:
Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp.
172–181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07566-2 18

17. Iliopoulos, C.S., Mohamed, M., Pissis, S.P., Vayani, F.: Maximal motif discovery in
a sliding window. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds.)
SPIRE 2018. LNCS, vol. 11147, pp. 191–205. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00479-8 16

18. Inoue, H., Nakashima, Y., Mieno, T., Inenaga, S., Bannai, H., Takeda, M.: Algo-
rithms and combinatorial properties on shortest unique palindromic substrings.
J. Discrete Algorithms 52, 122–132 (2018). https://doi.org/10.1016/j.jda.2018.11.
009

19. Khmelev, D.V., Teahan, W.J.: A repetition based measure for verification of text
collections and for text categorization. In: Proceedings of the 26th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2003, pp. 104–110. ACM, New York (2003). https://doi.org/10.
1145/860435.860456

20. Mieno, T., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substring queries
on run-length encoded strings. In: Faliszewski, P., Muscholl, A., Niedermeier, R.
(eds.) 41st International Symposium on Mathematical Foundations of Computer
Science, MFCS 2016, Kraków, Poland, 22–26 August 2016. LIPIcs, vol. 58, pp.
69:1–69:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). https://
doi.org/10.4230/LIPIcs.MFCS.2016.69

21. Mieno, T., Köppl, D., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Com-
pact data structures for shortest unique substring queries. CoRR abs/1905.12854
(2019), http://arxiv.org/abs/1905.12854

22. Pei, J., Wu, W.C.H., Yeh, M.Y.: On shortest unique substring queries. In: 2013
IEEE 29th International Conference on Data Engineering (ICDE), pp. 937–948.
IEEE (2013)

23. Schleiermacher, C., Ohlebusch, E., Stoye, J., Choudhuri, J.V., Giegerich, R., Kurtz,
S.: REPuter: the manifold applications of repeat analysis on a genomic scale.
Nucleic Acids Res. 29(22), 4633–4642 (2001). https://doi.org/10.1093/nar/29.22.
4633

24. Schultz, D.W., Xu, B.: On k-mismatch shortest unique substring queries using
GPU. In: Proceedings of Bioinformatics Research and Applications - 14th Inter-
national Symposium, ISBRA 2018, Beijing, China, 8–11 June 2018, pp. 193–204
(2018). https://doi.org/10.1007/978-3-319-94968-0 18

25. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: Proceedings of
the 13th Annual ACM Symposium on Theory of Computing, Milwaukee, Wiscon-
sin, USA, 11–13 May 1981, pp. 114–122 (1981). https://doi.org/10.1145/800076.
802464

26. Thankachan, S.V., Aluru, C., Chockalingam, S.P., Aluru, S.: Algorithmic frame-
work for approximate matching under bounded edits with applications to sequence
analysis. In: Proceedings of Research in Computational Molecular Biology - 22nd
Annual International Conference, RECOMB 2018, Paris, France, 21–24 April 2018,
pp. 211–224 (2018). https://doi.org/10.1007/978-3-319-89929-9 14

https://doi.org/10.1016/j.tcs.2017.05.032
https://doi.org/10.1007/978-3-319-07566-2_18
https://doi.org/10.1007/978-3-030-00479-8_16
https://doi.org/10.1007/978-3-030-00479-8_16
https://doi.org/10.1016/j.jda.2018.11.009
https://doi.org/10.1016/j.jda.2018.11.009
https://doi.org/10.1145/860435.860456
https://doi.org/10.1145/860435.860456
https://doi.org/10.4230/LIPIcs.MFCS.2016.69
https://doi.org/10.4230/LIPIcs.MFCS.2016.69
http://arxiv.org/abs/1905.12854
https://doi.org/10.1093/nar/29.22.4633
https://doi.org/10.1093/nar/29.22.4633
https://doi.org/10.1007/978-3-319-94968-0_18
https://doi.org/10.1145/800076.802464
https://doi.org/10.1145/800076.802464
https://doi.org/10.1007/978-3-319-89929-9_14

266 P. Abedin et al.

27. Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings
queries in optimal time. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa,
A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 503–513. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04298-5 44

28. Watanabe, K., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Shortest
unique palindromic substring queries on run-length encoded strings. In: Proceed-
ings of Combinatorial Algorithms - 30th International Workshop, IWOCA 2019,
Pisa, Italy, 23–25 July 2019, pp. 430–441 (2019). https://doi.org/10.1007/978-3-
030-25005-8 35

29. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th
Annual Symposium on Switching and Automata Theory (SWAT 1973), pp. 1–11.
IEEE Computer Society, Washington, DC (1973). https://doi.org/10.1109/SWAT.
1973.13

30. Yao, A.C.: Space-time tradeoff for answering range queries (extended abstract). In:
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Comput-
ing, STOC 1982, pp. 128–136. ACM, New York (1982). https://doi.org/10.1145/
800070.802185

https://doi.org/10.1007/978-3-319-04298-5_44
https://doi.org/10.1007/978-3-030-25005-8_35
https://doi.org/10.1007/978-3-030-25005-8_35
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1145/800070.802185
https://doi.org/10.1145/800070.802185

	Range Shortest Unique Substring Queries
	1 Introduction
	2 Our Data Structure
	3 Proof of Lemma1
	3.1 Proof of Lemma2
	3.2 Proof of Lemma3

	4 Open Questions
	References

