
From Timed Reo Networks to Networks of
Timed Automata

Natallia Kokash1, Mohammad Mahdi Jaghoori2,
Farhad Arbab3

Science Park 123, 1098XG
Centrum voor Wiskunde en Informatica

Amsterdam, The Netherlands

Abstract

The Reo coordination language is an extensible graphical notation for component or service coordination
wherein independent autonomous software entities exchange data through a connector or a network imposing
synchronization and data constraints on those entities. Each connector is formed from a set of binary
connectors, called channels, with precise semantics and, thus, amenable to formal verification. However,
the development of verification tools for Reo-specific semantic models, namely, constraint automata with
its multiple extensions to represent quality of service, time constraints, context-dependent or probabilistic
behavior would require years of research and development. A much more promising approach is to exploit
already existing verification tools. In this paper, we present a mapping of timed Reo networks to networks of
timed automata used for system specification in Uppaal. Uppaal is a state-of-the-art toolset for modeling,
validation and verification of real-time systems used in many large-scale industrial projects. Our work
enables its application to the compositional analysis of timed service-based workflow models specified with
Reo.

Keywords: Service Composition, Reo Coordination Language, Timed Constraint Automata, Networks of
Timed Automata, Model checking, Uppaal.

1 Introduction

In software engineering, a service is an autonomous software entity running on

one or more machines and providing a particular functionality to its clients. Service

clients are typically other software systems that provide their own services and need

the provisioned functionality to fulfil some of their goals. Thus, within one system,

various services communicate with each other, e.g., exchange data or collaborate

to carry out some activity. Given only limited information about functionalities

provided by various services, it is crucial to ensure that these services communicate

1 Email:natallia.kokash@cwi.nl
2 Email:jaghoori@cwi.nl
3 Email:farhad.arbab@cwi.nl

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 295 (2013) 11–29

1571-0661/$ – see front matter © 2013 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2013.04.004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301635914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:natallia.kokash@cwi.nl
mailto:jaghoori@cwi.nl
mailto:farhad.arbab@cwi.nl
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2013.04.004
http://dx.doi.org/10.1016/j.entcs.2013.04.004
http://www.sciencedirect.com


in a right way to realize a particular business process, i.e., process activities are

executed in a right order, each service receives necessary information or accesses

a required resource within a right time, etc. The enforcement of communication

scenarios that ensure the success of a collaborative service-based process is referred

to as service coordination. To increase system verifiability and adaptability, it is

desirable to separate actual computation code from coordination code.

Reo [2] is an extensible model for coordination of software components or ser-

vices wherein complex connectors are constructed out of simple primitives called

channels. A channel is a binary relation that defines synchronization and data

constraints on its input and output parameters. By composing basic channels, ar-

bitrarily complex interaction protocols can be realized. Previous work shows that

most of the behavioral patterns expressible in process modeling notations such as

BPMN or UML can be modeled with Reo [5]. A set of tools for automated con-

version of such models to Reo have been developed [9]. Each Reo channel has a

graphical representation and associated semantics. The most basic semantic model

that currently exists for Reo relies on constraint automata [7]. Action constraint

automata [15] is a model that generalizes constraint automata by allowing more re-

fined observations on connector ports. In particular, this model can be used to show

a data transfer through a composite synchronous region of a Reo network which in

basic constraint automata is represented by a single automaton transition. This is

needed, e.g., to compute end-to-end time delays in a circuit given communication

delays in each channel. In timed Reo [3], special timed channels are introduced to

model functional aspects of service coordination protocols such as timeouts or data

processing delays.

It is not a trivial task to create a connector that implements a certain behavioral

protocol. There are several tools that can help connector designers to detect possible

errors in their models. One of them is the animation engine [4]. This tool shows

flash animated simulation of designed connectors. For more complex connectors,

their formal verification can be performed with the help of simulation and model-

checking tools [16] integrated with the Extensible Coordination Tools (ECT), an

environment for design and analysis of Reo models. In our previous work [17], we

mapped timed Reo to the process algebra mCRL2 which provides a special operator

to define relative time constraints on the occurrences of process actions. However,

the verification abilities of the mCRL2 toolset with respect to time properties are

currently very limited. In particular, a model checker dealing with real time, time-

aware simulation facilities, and system property specification language supporting

time constraints are not available. Therefore, we need a more powerful tool for

analyzing timed workflow and service composition models designed with Reo.

In this paper, we aim to eliminate this gap by integrating ECT with Uppaal [8],

a powerful and widely used toolset for real-time system modeling, validation and

verification. In Uppaal, distributed real-time systems are modeled as networks of

communicating timed automata. Research has demonstrated that rigorous mod-

eling of the behavior of concurrent and distributed systems can prove to be very

successful in uncovering design flaws. However, the need to model a system at

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2912



A B A B A B A B A B

Sync LossySync FIFO SyncDrain AsyncDrain

A B A B C
A

B
A

B

C
A

B

C
C

A

B

Filter Transform Merger Replicator Router Join

Fig. 1. Graphical representation of basic Reo channels and nodes

the level of automata or process algebras remains an obstacle for most practition-

ers without expertise in formal methods. They find it more intuitive to describe

component or service interactions at a system level [18]. Reo provides a simple

and yet powerful formalism for service-based system specification. It is suitable for

both scenario-based [6] and workflow-like modeling [5] and together with fully au-

tomated translation of graphical models to lower-level formalisms understandable

by model checking tools can become an excellent tool for rigorous system design.

Here we present a mapping of Reo networks to the Uppaal networks of timed au-

tomata. This mapping preserves the compositionality of Reo, i.e., each Reo channel

is mapped separately and the behavior of the entire connector can be obtained as

a combination of timed automata for channels constituting the connector.

The remainder of this paper is organized as follows. In Section 2, we explain the

basics of Reo. In Section 3, we describe the Uppaal networks of extended timed

automata. In Section 4, we explain how we model Reo channels with Uppaal timed

automata templates. In Section 5, we illustrate the use of Uppaal to analyze a

sample Reo workflow model. Finally, in Section 6, we conclude the paper and

outline our future work.

2 The Reo Coordination Language

Reo is a coordination language in which components and services are coordinated

exogenously by channel-based connectors [2]. Connectors are essentially graphs

where the edges are user-defined communication channels and the nodes implement

a fixed routing policy. Channels in Reo are entities that have exactly two ends, also

referred to as ports, which can be either source or sink ends. Source ends accept

data into, and sink ends dispense data out of their channels. Although channels

can be defined by users, a set of basic Reo channels (see Figure 1) with predefined

behavior suffices to implement rather complex coordination protocols. Among these

channels are (i) the Sync channel, which is a directed channel that accepts a data

item through its source end if it can instantly dispense it through its sink end; (ii)

the LossySync channel, which always accepts a data item through its source end

and tries to instantly dispense it through its sink end. If this is not possible, the

data item is lost; (iii) the SyncDrain channel has two source ends through which

it accepts data simultaneously and loses them subsequently; (iv) the AsyncDrain
channel, which accepts data items only through one of its two source channel ends

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 13



at a time and loses them; and (v) the FIFO channel, which is an asynchronous

channel with a buffer of capacity one. Additionally, there are channels for data

manipulation. For instance, the Filter channel always accepts a data item at its

source end and synchronously passes or loses it depending on whether or not the

data item matches a certain predefined pattern or data constraint. Finally, the

Transform channel applies a user-defined function to the data item received at its

source end and synchronously yields the result at its sink end.

Channels can be joined together using nodes. A node can be a source, a sink or

a mixed node, depending on whether all of its coinciding channel ends are source

ends, sink ends or a combination of both. Source and sink nodes together form the

boundary nodes of a connector, allowing interaction with its environment. Source

nodes act as synchronous replicators, and sink nodes as non-deterministic mergers.

A mixed node combines these two behaviors by atomically consuming a data item

from one of its sink ends at the same time and replicating it to all of its source ends.

Additionally, we introduce two special nodes as syntactic sugar in the graphical rep-

resentation of Reo connectors which are frequently used for dataflow modeling [16].

One of them, Router node, represents a shorthand notation for a Reo circuit behav-

ing as an exclusive router. Another one, Join node, represents a shorthand notation

for a component that synchronizes all ends of its incoming channels, forms a tuple

of data items received through them and replicates it to the source ends of all its

outgoing channels.

The basic set of Reo channels can be extended to enable modeling of specific

features of service communication. In particular, timed Reo [3] was introduced to

specify time-dependent interaction protocols. A deadline t for the availability of

some data can be represented using a channel with a FIFO buffer that loses its

data item after t units of time. Another representative example is a timer channel

(denoted as ) that can be seen as an asynchronous blocking channel with

internal states: when the timer is switched off, the channel consumes any data

value, starts the timer and generates a special ‘timeout’ value at its sink end after

a predefined amount of time. Often it is useful to influence the behavior of a timed

channel. To enable such control, we define channels that react in a special way

to specific data inputs. For example, a so-called t-timer with off and reset option

allows the timer to be stopped before the expiration of its delay when a special ‘off’

value is consumed through its source end. Similarly, the ‘reset’ option allows the

timer to be reset to 0 when a special ‘reset’ value is consumed.

2.1 Semantic models for Reo

The informal description of channel behavior presented above is not sufficient to

fully understand the semantics of a Reo connector. The most basic model ex-

pressing formally the semantics of Reo is constraint automata [7]. Transitions in a

constraint automaton are labeled with sets of ports that fire synchronously, as well

as with data constraints on these ports. The constraint automata-based semantics

for Reo is compositional, meaning that the behavior of a complex Reo circuit can

be obtained from the semantics of its constituent parts using the product operator.

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2914



{A,B} dA = dB
{A,B} dA = dB{A} start

{A} dA = 0

{B} dB = 0

{A} dA = 1

{B} dB = 1

{A,B}

Sync LossySync FIFO SyncDrain

{A}{B} {A,B} expr(dA) ∧ dA = dB{A} ¬expr(dA) {A,B} dB = f(dA)

AsyncDrain Filter Transform

{A,C} dA = dC {B,C} dB = dC {A,B,C} dA = dB = dC

Merger Replicator

{A,B} dB = dA {A,C} dC = dA {A,B,C} dC = (dA, dB)

Router Join

Fig. 2. Constraint automata for basic Reo channels and nodes

Furthermore, the hiding operator can be used to abstract from unnecessary details

such as dataflow on the internal ports of a connector.

Definition 2.1 [Constraint automaton (CA)] A constraint automaton A =

(S,N ,→, s0) consists of a set of states (also called locations) S, a set of port

names N , a transition relation → ⊆ S × 2N × DC × S, where DC is the set of

data constraints over a finite data domain Data, and an initial state s0 ∈ S.

We write q
N,g−→ p instead of (q,N, g, p) ∈ →. Figure 2 shows the constraint au-

tomata for the basic Reo channels. The behavior of any Reo circuit composed of

these channels can be obtained by computing the product of their corresponding

automata.

Timed constrained automata (TCA) [3] represent constraint automata with

clock assignments and timing constraints. They are used to model elements of

time-dependent interaction protocols such as timeouts. More formally, TCA can be

defined as follows. Let C be a finite set of clocks. A clock assignment is a function

v : C → R≥0. A clock constraint (denoted cc) for C is a conjunction of atoms of the

form x �� n where x ∈ C, �� ∈ {<, ≤, >, ≥, = } and n ∈ N. CC denotes the set of

all clock constraints for the set of clocks C.
Definition 2.2 [Timed constraint automaton (TCA) [3]] A TCA is an extended

constraint automaton A = (S,N ,→, s0, C, ic) with transition relation → ⊆ S ×
2N × DC × CC × 2C × S such that C is a finite set of clocks and ic : S → CC is a

function that assigns a clock constraint, called an invariance condition ic(s) to each

location s of A.

The definition of a timed constraint automaton is similar to the definition of a

standard timed automaton [1]. However, in contrast to the usual timed automata,

TCA contain three transition labels: (i) synchronization constraints that represent

the set of ports where dataflow is observed simultaneously, (ii) data constraints that

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 15



Fig. 3. Timed constraint automaton for the timer channel with off and reset options

enable these transitions and, finally, (iii) clock constraints.

A TCA for a timer with off and reset options channel is shown in Figure 3. In

this model, the state s represents a timer that is switched off, while the state s

corresponds to the timer being switched on.

Similarly to constraint automata, product and hiding operators are defined for

TCA to obtain the semantics of a timed Reo connector out of the TCA for its basic

channels. Since the hiding operator is not essential for understanding the semantics

of timed Reo in this paper, we define only the product operator:

Definition 2.3 [Product of TCA [3]] Given two TCA T1 = (S1,N1,→1

, S0,1, C1, ic1) and T2 = (S2,N2,→2, S0,2, C2, ic2) with disjoint clock sets, the prod-

uct T1 �� T2 is defined as an TCA with the location space S = S1 × S2, the set

S0 = S0,1 × S0,2 of initial locations, the node-set N = N1 ∪ N2, and the clock set

C = C1 ∪ C2. The location invariance is given by ic(〈s1, s2〉) = ic1(s1) ∧ ic(s2). The

edge relation → is obtained through the following rules:

s1
N1,dc1,cc1,C1−−−−−−−−→1 s

′
1, s2

N2,dc2,cc2,C2−−−−−−−−→1 s
′
2,

N1∩N2=N2∩N1, N1 �=∅, N2 �=∅, dc1∧dc2 �=false

〈s1,s2〉
N1∪N2,dc1∧dc2,cc1∧cc2,C1∪C2−−−−−−−→ 〈s′1,s′2〉

.

and

s1
N1,dc1,cc1,C1−−−−−−−−→1 s

′
1, N1 ∩N2 = ∅

〈s1, s2〉
N1,dc1,cc1,C1−−−−−−−→ 〈s′1, s2〉

,
s2

N2,dc2,cc2,C2−−−−−−−−→1 s
′
2, N2 ∩N1 = ∅

〈s1, s2〉
N2,dc2,cc2,C2−−−−−−−→ 〈s1, s′2〉

.

The first rule concerns the “synchronization case” where two edges with common

nodes are combined as well as the case where two edges with non-empty “local”

node-sets are taken simultaneously. The second and the third rules apply to edges

all of whose involved nodes are local to only one of the automata. For the detailed

description and semantics of timed automata and TCA refer to [14].

3 Networks of Timed Automata

Timed automata [1] use a dense-time model where a clock variable evaluates to a

real number and all clocks progress synchronously. Suppose B(C) is the set of all

clock constraints on the set of clocks C.

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2916



Definition 3.1 [Timed Automata] A timed automaton over actions Act and clocks

C is a tuple (L, l0,−→, I) representing

• a finite set of locations L (including an initial location l0);

• the set of edges −→⊆ L× B(C)× Act× 2C × L; and,

• a function I : L 
→ B(C) assigning an invariant to each location.

An edge (l, g, a, r, l′) implies that action ‘a’ may change the location l to l′ by
resetting the clocks in r, if the clock constraints in g (as well as the invariant of

l′) hold. Since we use Uppaal [8], we allow defining variables of type boolean and

bounded integers. Variables can appear in guards and updates. The semantics

of timed automata changes such that each state will include the current values of

the variables as well, i.e., (l, u, v) with v a variable assignment. An action tran-

sition (l, u, v)
a→ (l′, u′, v′) additionally requires v and v′ to be considered in the

corresponding guard and update.

A system may be described as a network of communicating timed automata.

Semantically, the system can delay if all automata can delay, and can perform an

action if one of the automata can perform an internal action or if two automata

can synchronize. Synchronization in Uppaal takes place via channels. A binary

synchronization channel c in Uppaal can be declared as chan c. An automaton edge

labeled with c! synchronizes with another edge labeled c?. A broadcast channel c

is declared as broadcast chan c and is used for multi-party communication: one

emitter c! can synchronize with an arbitrary number of receivers c? and all channels

that can synchronize at a current state must do so. If there are no receivers, the

emitter can still execute the c! action, i.e. broadcast sending is never blocking. In

a network of timed automata, variables can be defined locally for one automaton,

globally (shared between all automata), or as parameters to the automata.

A location can be marked urgent in an automaton to indicate that the automaton

cannot spend any time in that location. This is equivalent to resetting a fresh clock

x in all of its incoming edges and adding an invariant x ≤ 0 to the location. In a

network of timed automata, the enabled transitions from an urgent location may

be interleaved with those from other automata (while time is frozen). Like urgent

locations, committed locations freeze time; moreover, if a process is in a committed

location, the next step must involve an edge from one of the committed locations.

Definition 3.2 [Uppaal Model] An Uppaal model consists of: (1) a set of timed

automata templates (TAT ); (2) global declarations; and, (3) system declarations.

An automata template in an Uppaal model consists of a name, a set of argu-

ments, local declarations and a timed automaton definition (as above); formally,

TAT = (tName,Args, local ,Auto). Global and local declarations contain the def-

inition of clocks and variables. The network of timed automata to be analyzed is

defined in the system declarations by instantiating the timed automata templates.

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 17



4 Mapping Reo Channels to Timed Automata

In this section, we show how to translate Reo network specifications to Uppaal

networks of timed automata.

Note that despite the same name, Reo channels differ fromUppaal channels. An

Uppaal channel synchronizes its emitter with its receiver, which is in fact similar

to the behavior of a Reo node, i.e., synchronizing the incoming sink channel end

with the outgoing source channel end. On the contrary, Reo channels have different

behaviors. In our translation, Uppaal channels refer to Reo nodes, while Reo

channels correspond to Uppaal timed automata templates. The Uppaal model

corresponding to a given Reo network consists of three parts:

Global declarations [Reo nodes]

To model a Reo network, we define a set of Uppaal channel variables

chan a, b, c . . . with names corresponding to Reo nodes. Besides synchronization,

a node needs to pass on the data. As explained in [8], Uppaal timed automata

can exchange data through shared variables: an automaton A1 assigns a value to a

global variable var while firing an edge labeled with c! and an automaton A2 can

read this variable at the moment of the synchronization of c! with c? and copy it to

some local variable. As Uppaal supports only bounded integer variables, any data

item passing through a Reo circuit must be mapped to integer values. This mapping

does not affect the expressiveness of the model for countable data domains.

Automata templates [Reo channel types]

We represent each Reo channel type as a template inUppaal where the template

parameters are Reo ports. Hence, for mapping all basic Reo channels shown in

Figure 1, the following automata templates are created:

Sync(chan&in, chan&out); LossySync(chan&in, chan&out);

SyncDrain(chan&in1, chan&in2); AsyncDrain(chan&in1, chan&in2);

Filter(chan&in, chan&out) Transform(chan&in, chan&out)

FIFO(chan&in, chan&out) ;

To define specific expressions or transformation functions in Filter and Transform
channels, we introduce a separate template for each distinct version of these chan-

nels. In many cases the representation of the transformation functions used in

Transform channels will not be possible as neither a general definition mechanism

(e.g., λ calculus), nor a library of common mathematical functions is supported in

Uppaal.

Several unrelated transitions with data exchange can be observed at each step

in a Reo circuit. Hence, the use of a single global variable for value passing among

channels can cause confusion. Instead, we have to parameterize a timed automaton

for each Reo channel with the references to global variables this automaton must

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2918



read and write to. Thus, in data-aware Reo, the template signatures for channels

that pass data, i.e., all directed channels FIFO, Sync, LossySync, Filter and Transform,

change to:

ChannelName(chan&in, chan&out, int&d in, int&d out),

where d in and d out are references to the variables for data exchange on nodes in

and out.

Note that no data flow is possible in Reo circuits without an environment that

provides and consumes some data tokens to/from the circuit. Such an environment

in Reo is defined by external components or services. We refer to the most simple of

those components that have exactly one external port, either input or output, and

either consume or produce a single data item at a time, as to readers and writers:

Writer(chan&in); Reader(chan&out);

System definition

To create a Reo network, we instantiate a template for each Reo channel with

the variables representing its adjacent nodes. Thus, to create a so called lossyFIFO

circuit with a source node a, a mixed node b and a sink node c, we declare two

automata lossyab = LossySync(a, b) and fifobc = FIFO(b, c) corresponding to the

circuit constituent channels and execute them in parallel.To feed the aforementioned

circuit with data items, we define a reader and a writer, instantiate them with the

boundary nodes of our circuit, and add to the system:

system writera, lossyab, fifobc, readerc.

To create a data-aware Reo network, we declare global variables

int d a, d b, d c... and pass them as parameters to Reo components and channels:

writera = Writer(a, d a); lossyab = LossySync(a, b, d a, d b);

fifobc = FIFO(b, c, d b, d c); readerc = Reader(c, d c);

4.1 Timed Automata Templates for Reo Channels

Having in mind the aforementioned mapping concepts, we can define the Uppaal

timed automata representing basic Reo channels as shown in Figure 4. All syn-

chronous channels reassign the value of the variable d in to the value of the variable

d out. The FIFO channel copies the input value d in to its local variable d bf which

refers to the data value stored in its buffer, and later on assigns this value to the

global output variable d out.

Since in Uppaal timed automata it is not permitted to assign two or more

labels on a single automaton edge, we have to introduce an additional state for each

synchronous channel. This state, locked, is labeled as committed (C), which means

that the system cannot stay in it and thus triggers an outgoing transition. One

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 19



Sync LossySync FIFO

SyncDrain AsyncDrain Filter

Fig. 4. Uppaal timed automata for basic channel types

Fig. 5. Uppaal timed automaton for a t-timer channel with off and reset options

of the drawbacks of this approach is that the Uppaal simulation engine does not

recognize such channels as synchronous and shows them on two different levels of

sequence diagrams used for the visualization of the system execution traces.

Timer channels

Figure 5 shows an Uppaal timed automaton for a t-timer with off and reset op-

tions channel. Here we assume that circuits operate with any integer value d in ≥ 0

while d in = −1, d in = −2 and d in = −3 are used to represent values correspond-

ing to the ‘reset’, ‘timeout’ and ‘off’ signals, respectively. Note that Arbab et al. [3]

abstract from data constraints and the TCA presented in this paper do not show

guards that ensure that the automaton reacts on these special inputs in a special

way. Instead in our model, any data input d in ≥ 0 switches on the timer repre-

sented by a local clock x and the automaton goes from the state off to the state

on. It stays in this state for a predefined amount of time, i.e., x ≤ t. Before this

time expires, the timer can be reset back to 0 by a data input d in = −1. At time

x = t, the automaton returns to the initial state and generates a special output

value d out = −2. If another data input d in ≥ 0 is available at time x = t, the

timer can generate an output value, be switched off and immediately turned on with

its clock reset to 0. This is modeled as a transition to an intermediate committed

location and then back to the on location without any time delay.

Note that other variants of timer channels can be defined in Reo. For example,

one of the useful modifications of the aforementioned timer channel would be a

delaying FIFO that instead of generating the ‘timeout’ signal would dispense the

data input it received earlier through its source end. We will use such a channel in

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2920



the next section to model an activity with a known processing time.

4.2 Implementing Reo join operator in Uppaal

Due to the fact that Uppaal channels synchronize non-deterministically if several

combinations of input and output edges with the same name are enabled, we can

model the behavior of Reo Merger and Router nodes by instantiating all joint chan-

nels with a common port name. However, to reproduce the behavior of Replicator
nodes, we need to involve broadcast channels. Since Uppaal specification language

does not support polymorphism or channel type inheritance, we cannot pass broad-

cast channels as parameters to the aforementioned templates. Hence, we need to

create separate templates for all basic Reo channels connected to Replicator nodes.
For every channel type, e.g., FIFO, we introduce two additional templates with the

following signatures:

FIFO r(chan&in, broadcast chan&out, int out m, int&out n);

FIFOr (broadcast chan&in, chan&out, int&out n);

Here we use a suffix r after the Reo channel name to refer to a Replicator node.

For example, the template FIFO r represents a FIFO with a sink end connected to

a Replicator node, and FIFOr refers to a FIFO with a source end connected to a

Replicator node. Apart from that, we need to guarantee that an edge corresponding

to a data item dispensed out of a FIFO r channel fires only if all outgoing Reo chan-

nels are ready to accept this data item. To implement such a behavior in Uppaal,

each automaton has to know how many connected channels it must synchronize

with. Therefore we provide each Reo channel with this information using an integer

variable out m that refers to the number of outgoing channels from a Replicator node.
Automata corresponding to channels with source ends connected to the Replicator
(e.g., FIFO r) increase a shared variable out n while an automaton corresponding to

a channel with the sink end connected to the Replicator, (e.g., FIFOr ) checks that it

synchronizes with the correct number of outgoing channels defined by its parameter

out m, i.e., out m = out m. For example, to create a circuit with a source node

a, an internal node b and sink nodes c and d, which consumes a data item into

one FIFO channel and replicates it into two other FIFO channels, we declare global

channel variables chan a, c, d and a broadcast channel variable broadcast chan b

together with three instances of the FIFO templates synchronized on a broadcasting

channel b:

fifoab = FIFO r(a, b, 2, out b); fifobc = FIFOr (b, c, out b);

fifobd = FIFOr (b, d, out b);

where int out b is a variable used to count how many automata edges labeled with

b? must synchronize with b!

Figure 6 shows the Uppaal implementation of FIFO channels connected to

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 21



FIFOr FIFO r FIFO j

Fig. 6. Modeling the behavior of channels connected to the Replicate and Join nodes

Replicator and Join nodes. For any broadcasting channel c in Uppaal, an automa-

ton edge c! synchronizes with all enabled edges c? in this step. However, if several

edges c! can be triggered at some step, only one of them will synchronize with edges

c?. Taking this into account, the behavior of the Join node can be modeled as fol-

lows: a first Reo channel with its sink end connected to the Join node that receives

a data input triggers a sending c! edge, while all subsequent incoming channels have

to synchronize with it via c? edge and increase the shared variable in n used to

count the number of synchronized processes. Before completing the transition, the

Reo channel that triggered c! has to check that all Reo channels connected to the

Join node are ready to provide their inputs, i.e., in n == in m and the outgoing

channel is ready to accept the synchronized input, i.e., out n == 1. The template

for a Reo channel, e.g., FIFO, with the sync end connected to the Join node looks

as follows:

FIFO j(chan&in, broadcast chan&out, int in m, int&in n, &out n,

int&d in, int&d out);

Channels with their source ends connected to Join nodes behave similarly to

the channels connected to Replicate nodes. However, if Join nodes are used in a

Reo circuit, they affect the global data structure used to describe the data elements

exchanged through channels in this circuit. A Join node synchronizes all incoming

edges and forms a tuple from all received data inputs. To reproduce such a behavior

in Uppaal, we need to use an array of integer values int d in[N ] to store all data

inputs. Consequently, global variables d x[N ] are needed to further propagate this

data along the circuit. Thus, for all Reo channels following some Join node, the

arrays of integer variables are used for data passing. Ideally, we would use arrays

of dimensions N = in m, but the Uppaal specification language requires N to be

a predefined integer constant. We can define N as the maximal sum of the arities

of Join nodes on all execution paths in a Reo network. Templates for channels with

their source and sink ends connected to Join and Replicator nodes are formed as a

combination of the templates presented above.

One of the fundamental differences between Reo and Uppaal with respect to the

concurrency modeling is that the automata synchronization in Uppaal is possible

only through communicating channels while in Reo synchronous data flow can be

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2922



A1 B1 C1

A2 B2 C2

{A1}

{A1}

{A2} {A2}
{A1, A2}

{B1, C1}

{B1, C1}

{B2, C2} {B2, C2}
{A2, B1, C1}

{A1, B2, C2}

{B1, C1, B2, C2}

(a) Parallel flows

A1 B1 C1

A2 B2 C2

{A1}

{A1}

{A2} {A2}
{A1, A2}

{B1, C1, B2, C2}

(b) Barrier synchronization

Fig. 7. Parallel flows and synchronization in Reo

Fig. 8. FIFO with global synchronization

observed on various ports without their interaction. Consider a network consisting

of two chains of FIFO channels shown in Figure 7(a). According to its (T)CA

semantics, if both buffers are full, the simultaneous data flow on ports B1 and B2

can be observed. However, our Uppaal mapping will show only an interleaving

of actions corresponding to the data flow on ports B1 and B2. Such treatment of

“accidental” synchronization will lead to the deadlock in the Uppaal representation

barrier synchronization template shown in Figure 7(b). To forceUppaal to consider

all combinations of synchronous events in Reo, we can introduce a simple automaton

with one state and one loop transition representing a global “next step” event

using an emitter channel step!. Reo entities that provide data, such as buffered

channels, writers and external components, can synchronize with this event and

afterwards decide non-deterministically whether to release data or not. Figure 8

shows a representation of a FIFO channel synchronizing with such a global event

through the receiver channel step?.

The relation between the TCA semantics for Reo circuits and their representa-

tion using Uppaal networks of timed automata can be expressed by the following

proposition:

Proposition 4.1 Given a TCA A = (S,N ,→, s0, C, ic) and a corresponding net-

work of communicating timed automata NTA = {TATi | i = 1..n}, a transition

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 23



s
N,dc,cc,C

−−−−−−−→ s′ exists iff for any TATi = (Li, l0,i,−→i, Ii) ∈ NTA there exists an

execution path l, l1, ...lm, l′, | l ∈ Li, l
′ ∈ Li, ∀j = 1..m, lj ∈ Li, where l and l′ are

not marked and l1, ..., lm are masked as committed locations.

The intuition behind this statement is as follows: by construction, for every

location in a TCA for a basic Reo channel, we introduce a non-committed loca-

tion in the corresponding timed automaton, while all committed locations in the

instantiated templates represent data flow through Reo ports shown as TCA tran-

sition labels. Thus, we can define a weak bisimulation relation between TCA and

the constructed networks of timed automata. The goal then is to show that the

introduced Uppaal synchronization templates preserve the semantics of the TCA

product operation. Due to the lack of space we cannot provide a formal proof here.

5 Example: Remote Distributed Data Request

In this section, we consider an example of a Reo circuit modeling a remote dis-

tributed data request and show how this model is mapped to Uppaal networks of

timed automata.

Our scenario is as follows. A local server receives a data request from its user. It

switches on a local clock to keep track of the request processing time and forwards

it to a remote server. The remote server replicates the request and sends it to two

databases. After processing the requests, the databases return retrieved data to the

remote server. The remote server combines the data received from both databases

and returns the result to the local server. If the request processing has been carried

out within the time limit, the local server returns the result to the user, otherwise,

a timeout exception is generated.

A Reo model for this scenario is shown in Figure 9. We modeled the behavior of

the local server, remote server and two databases using four Reo connectors as shown

in Figure 9(a). The local server accepts a user request through its internal buffer and

in the next step forwards this request to the remote server and starts the internal

clock. The clock is modeled using a t-timer with off and reset options. When a

response from the remote server is received, the signal passes through a Transform
channel that generates an ‘off’ option to switch off the timer. The response is

returned to the user through the port res out. The remote server replicates the

request through a Replicate node and forwards it to the two databases. Later on, it

accepts responses from the databases and joins them using a Join node resR out.

All basic activities are modeled using t-timer channels that behave exactly like

FIFO channels with internal clocks, i.e., accept data items at their source ends and

after some time dispense them through their sink ends. The behavior of databases

that accept data requests and provide the results is also modeled using such t-timer

channels. Figure 9(b) shows an integrated Reo model for this scenario where the

internal details of each component are hidden.

The generated Uppaal specification for the aforementioned scenario is shown

in Figure 11. We define two Uppaal global variables for each Reo node: one of the

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2924



(a) Component specifications

(b) Integrated model

Fig. 9. Reo model of the Remote Distributed Data Request scenario

Fig. 10. Remote Distributed Data Request scenario simulation

type chan to join Reo channel ends, and one of the type int for data value passing.

Additionally, for all Replicate and Join nodes that are declared as broadcast channels,

i.e., req out, res in, reqR out and resR out, we define variables out req, out res,

out reqR and out resR to count the number of synchronized broadcast channels.

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 25



All variables for the nodes that follow the Join node resR out are arrays of two el-

ements, i.e., int d resR out[2], d res in[2], d res out[2]. All automata declarations

are based on automata templates discussed in Section 4.

Figure 10 shows a screenshot of the remote distributed data request scenario

modeled in Uppaal. By changing time delays assigned to the local server to gener-

ate the timeout event and to databases to model time delay for request processing,

one can observe the system exhibit different interesting behavior. For instance,

when the process request cannot be handled within a predefined timeout t1 = 10,

the system will get into a deadlock: the t-timer with off and reset options will

generate a ‘timeout’ signal and expect a data item d in ≥ 0 to restart the timer.

Consequently, the Transform channel will not be able to dispense a data item, and,

thus, it will not accept an input from the synchronous channel Syncjr(resR out,

res in,...) represented by the automaton RS LS response. This automaton will

not be able to leave its committed location and the system will end up in a deadlock.

The absence of deadlocks in a Reo model as well as other system properties can

be checked automatically by the Uppaal model checker given formulae in a subset

of the Computation Tree Logic (CTL). Examples of system properties specified in

the Uppaal query language can be found in [8]. However, note that the presence

of deadlocks in Uppaal simulations of timed automata obtained from Reo circuits

using the presented approach does not necessarily mean a conceptual mistake in a

circuit design. Deadlocks in Uppaal simulation of Reo circuits simply correspond

to the absence of dataflow through these circuits. For example, the deadlocks in the

generated Uppaal execution traces may appear due to the fact that we can enter

a committed location of a timed automaton for a synchronous Reo channel without

being sure that all nodes involved in a synchronous transaction are ready to provide

or consume data. In this case, we can revert several steps back in the Uppaal au-

tomata simulations and consider other execution traces. The presented translation

is more suitable for a guided simulation and reachability analysis of timed dataflow

models, rather than their automated verification, due to the potential difficulties to

formally describe desired system properties.

6 Conclusions and Future Work

In this paper, we presented an approach for mapping Reo networks to the networks

of timed automata to enable their timed analysis with the Uppaal model checker.

Despite many conceptual differences in these two specification formalisms, we were

able to compositionally map one into the other preserving the behavior of dataflow

models in Reo. The most closely related work to ours is the SAT-based verification

of timed component connectors [12]. In this work, an approach for bounded model

checking of TCA is proposed by translating systems of TCA into propositional logic

with linear arithmetic constraints. Since TCA provide a semantic model for timed

Reo, this work can be used for the analysis of Reo circuits. However, our work pro-

vides a more straightforward approach and uses the well-established Uppaal model

checker. In [13], a compositional model for real-time coordination in dataflow net-

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2926



works is presented. This approach is interesting for its combination of synchronous

and asynchronous communication patterns, but it significantly differs from the prin-

ciple of extensible channel-based coordination used in Reo. An important issue for

our future work is to formally establish the relation between TCA and the semantics

of the generated Uppaal networks of timed automata. The intuition behind it is

as follows: a transition in a TCA corresponds to a path in the Uppaal network of

timed automata that leads from one location without committed states to another

location without committed states.

A translation from a subset of constraint automata to timed automata has been

discussed in [11] in the context of schedulability analysis of real-time actors coordi-

nated by Reo. In that work, a Reo connector is considered to be locally deployed,

i.e., no distributed implementation of Reo, and furthermore, the coordination is

assumed to happen in zero time. The effect of communication delay is studied as

an orthogonal concern.

Together with previously developed tools for mapping BPMN, BPEL and UML

specifications to Reo, our work constitutes an important step in enabling timed anal-

ysis of business process models through their seamless transformation to lower-level

formalisms for which powerful established tools exist. In particular, our work is di-

rectly related to the mapping of workflow notations toUppaal. For example, Gruhn

and Laue [10] provide a set of patterns for mapping a basic workflow specification

notation consisting of an activity and four common control structures, AND-split,

OR-split, AND-join and OR-join, to the Uppaal timed automata. We find the

patterns proposed in this paper disputable as they do not preserve the semantics of

the original notation. For example, the proposed mapping of the AND-Split node

rather corresponds to a structure that imitates the behavior of a variable: after

the value of the variable is set, it can be read arbitrarily many times. However, in

this template, there is no guarantee that the AND-split node replicates data to all

outgoing branches simultaneously.

Another direction in our future work includes the mapping of action-constraint-

automata-based semantics for Reo [15] to Uppaal networks of timed automata to

enable tool support for performance analysis of Reo with communication delays.

We also believe that this work will help us to develop a suitable “handshaking”

protocol for a distributed real-time implementation of Reo.

References

[1] Alur, R. and D. Dill, A theory of timed automata, Theoretical Computer Science 126 (1994), pp. 183–
235.

[2] Arbab, F., Reo: A channel-based coordination model for component composition, Mathematical
Structures in Computer Science 14 (2004), pp. 329–366.

[3] Arbab, F., C. Baier, F. de Boer and J. Rutten, Models and temporal logical specifications for timed
component connectors, Software and Systems Modeling 6 (2007), pp. 59–82.

[4] Arbab, F., C. Koehler, Z. Maraikar, Y. Moon and J. Proenca, Modeling, testing and executing Reo
connectors with the Eclipse Coordination Tools, Tool demo session at FACS ’08 (2008).

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 27



[5] Arbab, F., N. Kokash and M. Sun, Towards using reo for compliance-aware business process modelling,
in: Proceedings of the International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA’08), LNCS 17 (2008), pp. 108–123.

[6] Arbab, F. and M. Sun, Synthesis of Connectors from Scenario-based Interaction Specifications, in:
Proceedings of the International Symposium on Component Based Software Engineering (CBSE’08),
LNCS 5282 (2008).

[7] Baier, C., M. Sirjani, F. Arbab and J. Rutten, Modeling Component Connectors in Reo by Constraint
Automata, Science of Computer Programming 61 (2006), pp. 75–113.

[8] Behrmann, G., A. David and K. G. Larsen, A tutorial on UPPAAL, in: M. Bernardo and F. Corradini,
editors, International School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM-RT 2004. Revised Lectures, LNCS 3185 (2004), pp. 200–237.

[9] Changizi, B., N. Kokash and F. Arbab, A unified toolset for business process model formalization, in:
J. Happe and B. Buhnova, editors, Proc. FESCA 2010 (2010), pp. 147–156.

[10] Gruhn, V. and R. Laue,Using timed model checking for verifying workflows, in: F. J. Cordeiro, J., editor,
Proceedings of the International Workshop on Computer Supported Activity Coordination (2005), pp.
75–88.

[11] Jaghoori, M. M., O. Hlynsson and M. Sirjani, Networks of real-time actors: Schedulability analysis and
coordination, in: Proc. Formal Aspects of Component Software (FACS’11), 2011, to appear.

[12] Kemper, S., SAT-based verification for timed component connectors, ENTCS 255 (2009), pp. 103–118.

[13] Kemper, S., Compositional construction of real-time dataflow networks, in: COORDINATION, 2010,
pp. 92–106.

[14] Kemper, S., “Modelling and Analysis of Real-Time Coordination Patterns,” PhD thesis, CWI (2011).

[15] Kokash, N., B. Changizi and F. Arbab, A semantic model for service composition with coordination
time delays, in: Jin Song Dong and Huibiao Zhu, editors, Proc. ICFEM, LNCS 6447, 2010, pp. 106–121.

[16] Kokash, N., C. Krause and E. de Vink, Data-aware design and verification of service composition with
Reo and mCRL2, in: Proc. of SAC 2010 (2010), pp. 2406–2413.

[17] Kokash, N., C. Krause and E. de Vink, Time and data aware analysis of graphical service models in
Reo, in: Proc. SEFM’10 (2010).

[18] Uchitel, S., R. Chatley, J. Kramer and J. Magee, System architecture: the context for scenario-
based model synthesis, in: Proceedings of the ACM SIGSOFT Symposium on Foundations of Software
Engineering (2004), pp. 33–42.

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–2928



const int t1 = 10, t2 = 3, t3 = 9;

//Nodes and shared variables

//Local server

chan req in, timer out, res out, timer in;

broadcast chan req out, res in;

int d req in = 0, d err out = 0, d timer = 0, d req out = 0, d res in[2], d res out[2];

int out req = 0, out res = 0;

//Remote server

chan reqR in, resR1 in, resR2 in;

broadcast chan reqR out, resR out;

int d reqR in = 0, d reqR out = 0, d resR1 in = 0, d resR2 in = 0, d resR out[2] = 0;

int out reqR = 0, in resR = 0, out resR = 0;

//Databases

chan req1 in, res1 out, req2 in, res2 out;

int d req1 in = 0, d res1 out = 0, d req2 in = 0, d res2 out = 0;

//Reo channels

//User

usr request = Writer(req in, d req in);

usr error = Reader(timer out);

usr response = Reader(res out);

//Local server

LS request = FIFO r(req in, req out, 2, out req, d req in, d req out);

LS startTimer = Syncr (req out, timer in, out req, d req out, d timer);

LS timer = TimerOffReset(timer in, timer out, t1, d timer, d err out);

LS offSignal = Transformr (res in, timer in, out res, d timer);

LS response = FIFOr (res in, res out, out res, d res in, d res out);

//Communication LS-RS

LS RS request = Syncr (req out, reqR in, out req, d req out, d reqR in);

RS LS response = Syncjr(resR out, res in, 2, out resR, out res, d resR out, d res in);

//Remote server

RS request = Timer r(reqR in, reqR out, 1, 2, out reqR, d reqR in, d reqR out);

RS response1 = Timer j(resR1 in, resR out, 1, 2, in resR, out resR, d resR1 in, d resR out[0]);

RS response2 = Timer j(resR2 in, resR out, 1, 2, in resR, out resR, d resR2 in, d resR out[1]);

//Communication RS-DBs

RS DB1 request = Syncr (reqR out, req1 in, out reqR, d reqR out, d req1 in);

RS DB2 request = Syncr (reqR out, req2 in, out reqR, d reqR out, d req2 in);

DB1 RS response = Sync(res1 out, resR1 in, d res1 out, d resR1 in);

DB2 RS response = Sync(res2 out, resR2 in, d res2 out, d resR2 in);

//Databases

DB1 process = Timer(req1 in, res1 out, t2, d req1 in, d res1 out);

DB2 process = Timer(req2 in, res2 out, t3, d req2 in, d res2 out);

system

usr request, usr error, usr response, LS request, LS startTimer,

LS timer, LS offSignal, LS response, LS RS request, RS LS response, RS request,

RS response1, RS response2, RS DB1 request, RS DB2 request,

DB1 RS response, DB2 RS response, DB1 process, DB2 process;

Fig. 11. Uppaal specification for the Remote Distributed Data Request scenario

N. Kokash et al. / Electronic Notes in Theoretical Computer Science 295 (2013) 11–29 29


	Introduction
	The Reo Coordination Language
	Semantic models for Reo

	Networks of Timed Automata
	Mapping Reo Channels to Timed Automata
	Timed Automata Templates for Reo Channels
	Implementing Reo join operator in Uppaal

	Example: Remote Distributed Data Request
	Conclusions and Future Work
	References

