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Singular perturbations and a mapping on an interval for the forced

Van der Pol relaxation oscillator *)
by

J. Grasman, H. Nijmeijer & E.J.M. Veling

ABSTRACT

This paper deals with the Van der Pol relaxation oscillator with a
large sinusoidal forcing term. By using singular perturbation techniques
asymptotic solutions of such a system are constructed. These asymptotic
approximations are locally valid and may take the form of a two time scale
expansion in one region and a boundary layer type of solution in a next
region. Integration constants are determined by averaging and matching
conditions. From these local solutions a difference equation is constructed.
There is an equivalence between solutions of the difference equation being
an iterated mapping on a compact interval and solutions of the system it-
self. This equivalence makes it possible to analyze subharmonics and chaotic
type of solutions to the full extent. As a result of this we find domains
in the parameter space, where regular subharmonics exist. These domains
overlap so that for some parameter values different subharmonics coexist.
For the same values chaotic type of solutions are found as well. They are

described by using concepts of symbolic dynamics.

KEY WORDS & PHRASES: Van der Pol equation, forced relaxation oscillation,

asymptotic expansion, mapping on an interval, strange
attractor
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1. INTRODUCTION

Recent studies of difference equations [14,18,25] have revealed un-
expected phenomena which in literature are characterized by the term
"chaotic". Some of these equations are meant to model biological phenomena
such as the from year to year changing densities of biological populations.
It has been found that differential equation models with state variables
depending continuously on time may too exhibit chaotic behavior. The Lorenz
equations, a "simple'" model for the onset of turbulence in the context of
meteorological problems, is a well-known example of such a system, see
[17,21]. It is understood, that this system contains a so-called strange
attractor.

In electronic circuits it has been observed that periodically forced
nonlinear oscillators may behave chaotically in certain parameter. ranges
[4,16]. In this paper we carry out an asymptotic analysis of such a system,
the forced Van der Pol oscillator,

d2x 2 dx
(1.1) —5 + v(x —I)EE-+ x = (av+B)k cos kt, 0 <ac<2/3

dt
for large values of v. Eventually, we will construct a difference equation
that contains all necessary quantitative and qualitative information for
describing the possible solutions of this system. Besides the well-known
stable solutions of period T = 2m(2n-1), also irregular types of solutions
are analyzed. Existence of such solutions was eipected by LITTLEWOOD [15]
and made plausible by LEVINSON [13] in a study of a related piece-wise lin-
ear equation. The horse shoe mapping created by SMALE [23,24] turned out
to be an important tool in establishing the existence of these irregular
solutions. LEVI [11,12] used this concept and symbolic dynamics (see also
GUCKENHEIMER [10]) in his study of a modified version of (1.1) whiéh comes
close to the piece-wise linear variant of Levinson. Our results agree
qualitatively with those of Levi. Furthermore, (1.1) has been solved
numerically by FLAHERTY & HOPPENSTEADT [3]. A comparison shows that there
is also a good agreement between the outcome of their work and that of our
asymptotic investigation.

In Section 2 we give a qualitative description of the solutions of



(1.1). Most of it is based on the work of Levi. Matched local asymptotic
solutions of (1.1) are constructed in section 3. We only present those
results that are needed for deriving the mapping cn an interval. For more
details of this aspect of our analysis we refer to [6,7]. Furthermore, an
analogous analysis has been made in [8,9] and [5], where the cases a = 0
and o = 2/3 have been worked out. The solution of the case we have under
consideration now (O<d<2/3) exhibits phenomena that are met in these ex-
treme cases separately. In séctiqn 4 we give the interval mapping in the
form of a set of asymptotic relations. It is noticed that the domain of
the interval mapping is related with the order of a parabolic cylinder
function being an asymptotic approximation of the solution in a critical
region of the state space where many diverging trajectories meet each other
at short distance. This choice of the interval comes up in a natural way
and shows that the asymptotic approach discloses characteristics of the
system, that would have remained unnoticed in a different type of analysis
of the problem.

From the asymptotic interval mapping the qualitative properties of
(1.1) are found and a numerical approximation is made. In section 4.2 we
construct the regions in the parameter space, where regular subharmonics
exist. Moreover, in section 4.6, we trace a stable irregular periodic

solution by using this numerical approximation of the interval mapping.
2, THE ANNULUS MAPPING AND SYMBOLIC DYNAMICS

2.1. Properties of the Poincaré mapping

Following LEVI [11] we consider (1.1) in the form of a system of two

first order differential equations

(2.1a) X = v(y—l/3x3+x)
(2.1b) $ = -x/vtbcoskt, b = (a+Bv K,

and introduce the Poincaré mapping D:



(2.2) D(x(0),y(0)) = (x(2m),y(2m)).

It can be shown that a properly chosen annulus A in the x,y-plane is mapped
into an annulus A' under D" for m sufficiently large with A' having a
thickness O(exp(-cvz)) near the branches of y = 1/3x3—x and of order O(v_%)
at the horizontal parts where it jumps from one branch to the other, see
fig. 1. Within the annulus A' one may cut out a small part R such that for
all s = (x,y) € A,Djs € R for certain j € N. Note that there is even an
infinite sequence jk’ k=1,2,... with Djk§ € R. Therefore it is sufficient
to study the mapping P:R + R, where Ps = DIs with j being the first integer
for which Djs € R. By taking P(s) = s for s € R we obtain a continuous map-
ping 3 oﬁ R. Identification of the upper and lower sides of R makes R an
annulus. Note that no points in R corréspond with each other under P. Thus,
the study of the Poincaré mapping D is reduced to the analysis of the annu-
lus mapping P:R + R. Because of the symmetry with respect to the origin
there is a same area R' in the opposite quadrant of the x,y-plane. Clearly,

it is sufficient to study the mapping P:R - R' as P = P o P.
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L

(a) (b)

Fig. 1. Contraction of an annulus by repeated mappings D.

2.2. A circle mapping

In a first approach we ignore the thickness of R and interprete P as

a circle mapping from Sl to Sl. Graphically P behaves qualitatively as



follows (see fig. 2). A small arc A of order O(v—]) of S1 is strectched by

P to, say, 1.5 fimes the length of S], while the remaining part S]\A is de-
formed simply by closing the image of A. As we will find out, an increase

of the forcing b means a clockwise rotation of the image P(A). This immed-
iately leads to the presentation in fig. 3, where for two different values

of b we have given the graph of P. The two cases X and B correspond to
mappings P with quite different properties. LEVI [11] makes these differences
visible in the associated graphs of the annulus mapping P with R being

essentially an annulus and not a circle.
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(a) case A (b) case B X
=27
Fig. 2. Circle mapping Fig. 3. Graphs of two cases
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(b) case ABI

Fig, 4. The annulus mapping



2.3. The annulus mapping

In fig. 4a we depicted the simple configuration of one stable fixed
point p and an unstable saddle pqint z for the mapping P. By rotation we
arrive at the more complicated configuration of fig. 4b: it has two stable
fixed points P;sPy and two unstable saddle point type of fixed points z,
and Z,. There is still another set of points C, which cannot decide to which
basin of attractors they belong. C is a Cantor set of measure zero, which is
invariant under P. In fact C contains a nontrivial "attractor" of the type

known as the horseshoe, see SMALE [23,24]. Symbolic dynamics (see e.g. [22])
gives a description of P restricted to C, see MOSER [19]. We set

(2.3a) A 0 P() = H,,H,y,H,
see fig. 4b, and define VO,V1 and V3 by
(2.3b) P(Vi) = Hi’ i=20,1,3.

Furthermore, let H, = V., n P(A), then V2 is defined by
(2.3c) P(Vz) = H,.

We now introduce the transition matrix M by

Mij =0, 1if Vi n Hj 0
and
M.. =1 else,
1]
so
0111
(2.4) m=[ 0111

1000
0111



2.4, The use of symbolic dynamics

The basic idea of symbolic dynamics is to introduce a space I of all
possible biinfinite strings of a given set of symbols. Referring to the

indices of Vi and Hi of section 2.3 we take the symbols 0,1,2 and 3:

L = {0,1,2,3}2.
Thus, an element a = (...,a_],ao,al,...) € T may read
...01121322110... .

By posing restrictions upon the type of symbol that follows a given symbol

one introduces a subspace of I:

£, ={aez|M = 1},
Moo 3;8741

Let M be given by (2.4). The mapping P:C - C is topologically conjugate with
the shift o: ZM > Iy where ¢ satisfies

[o(é)]i = a,. ie Z.

i+1?

Thus, there is a one to one corresponding 6 between C and Iyt

C c
el le
z z

M

P
—
9
M

2.5. Some remarks about the annulus mapping

Returning to the annulus (or circle) mapping we observe the following



dependence of this mapping upon b. There is a subdivision of the b-interval

~

(0,2/3) into subintervals Ak and Bk

that for b € Xk P acts as given in fig. 4a (or fig. 2a), while for b € Ek

separated by small intervals Ek’ such

the behavior can be understood from fig. 4b (or fig. 2b). In summary we
conclude that for b € Kk there is only one stable solution and except for
one saddle point all solutions tend to this stable one. For B € Bk two
stable solutions exist. Except for a Cantor set of measure zero all solu-
tions tend to one of the attractors.

As b crosses a separation iﬁterval Ek there is a sequence of bifurca-
tions and the remarkable phenomenon occurs that for uncountably many b € &
there exist infinitely many stable fixed points of P or of its iterates (see
e.g. NEWHOUSE & PALIS [20]). In trying to understand this complicated bi-
furcation pattern we need more information about the mapping P. Intuitively,
it is felt that these bifurcations are related with the disappearance of
intersections Vi n Hj’ see fig. 4b, and that therefore certain finite
sequences in ZM are forbidden.

It is obvious that an exact description of thé mapping P on the interval
as sketched in fig. 3 is the first step in the full understanding of the
bifurcation pattern. It is our goal to give a complete description of this
mapping and its dependence upon the parameters. In the following sections
we will construct matched local asymptotic solutions of (1.1), which
eventually lead to a mapping on an interval with the same properties as P.

Finally, it is noted that the study of interval mappings has become
a field of growing importance in the analysis of dynamical systems, see
e.g. [20]. Various bifurcation problems have been solved by using the con-
cept of mapping on an interval, but there still remain many questions about

the exact description of families of interval mappings. In particular we

mention the chaotic behavior of mappings within certain parameter ranges.
3. MATCHED LOCAL ASYMPTOTIC SOLUTIONS

3.1. Outline of the method

A solution of (1.1) has a behavior that is characteristic for singular

perturbation problems. Locally the solution exhibits a boundary layer type



of action like one meets in problems of fluid mechanics. On the other hand
it passes a large time interval, where a two time scales expansion can be
applied. Finally, we distinguish a sequence of points, determined by the
intersections with the lines x = +1, where the local behavior of the solu-
tions is analyzed by a stretching procedure in both the dependent and inde-
pendent variable. For a complete picture of the different regions which are
successively crossed by the solution we refer to fig. 5 . The method of
matched asymptotic expansions (see e.g. [1]) yields formal local asymptotic
solutions in which the integration constants are determined by averaging
conditions and by matching pairs of local solutions of adjacent regionms.
These computations have been carried out in [6,7]. In the next sections we
summarize the results. It is emphasized that this approach is formal and
that, for the type of problem we are dealing with, there is no proof of
correctness that justifies this approach. However, the present method results
in a clear qualitative picture of the solution and, in addition, provides

us with quantitative information about the existence of subharmonic and
other solutions. Comparing this outcome with analytical and numerical results
for the same or related problems [3,11], we observe an excellent agreement.
Furthermore, matching methods require a high degree of internal consistency.
That is: two neighboring local solutions match, if they exhibit the same
behavior in a relatively broad domain of overlap. This type of consistency
we also meet in the final result: we analyse here the case 0<a<2/3 and de-
rive conditions for B in order to have a subharmonic of order n. In the
limit o > 0 and o > 2/3 these conditions need to match the ones obtained
from studying the special cases a = 0 and o = 2/3, see [5,8]. As we will

see this turns out to be correct indeed.



Fig. 5. Regions for local asymptotic solutions

3.2. A two time scales expansion

For the region A of fig. 5 we assume that the solution can be expanded

as

- -2
(3.1a) X = xo(t,'r) + v ]xl(t,T) + v X2(t,T)+...,
(3.1b) T = (t=t)/v, t <t¥ <t

1/2 3/2

with
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(3.1c) t, = (-m/2+27w7) /k,
(3.1d) x. = 2 cos[l-arccos{é-a sinkt + §-C (1) }]
) 0 3 2 20 ’
) % (- . 3C,
(3.1e) (x0~1)x] = -3 " f xo(t,T)dt - (t-t )3;—‘+ B sinkt + CI(T),
t*
5C v+2r/k
0 _ -k = -
(3.1fg) W = -i? Xo(t?T)dt, CO(O) = 2/3 o,
™v
(3.1h) ¢, (o) = q(T){Clo-Bp(r)}, Cl(O) =Cio>
T Tv+2n/k
(3.11) q(t) = exp{:E ! dt dt}
2T % 2_].
0 Tv 0
T Tvin/k Tv+2m/k
. _k k 1 ~ sinkt -
(3.13) p(t) = o J eXP{fF J J 2_1 dt dr} 2_1 dt dt.
0 - %0 = 0
™v ™v

The solution will leave the region A at a time t o see (3.1c), when it
approaches the line x = 1, which is the case if CO reaches the value a - 2/3.
From (3.1fg) it follows that in the slow time scale this will be for
-2/3+0  21/k
(3.2) T==" { xo(t;co)dt}"l dc
2/3-a 0

0°

3.3. Other local asymptotic solutions

For a region Am, which is entered by the solution in a neighborhood of

(x,t) = (l,tm_l) and left near (x,t) = (l,tm), the local asymptotic solution

reads

(3.3a) X = xém)(t) + v_lem)(t) + v_zxém)(t)+... ,
(3.3b) xém) =2 cos{%-arccos(g-a sinkt + %-Cém)) +-%wj}
(3.3cd)  ¢® =4 -2/3, j=o0,

0



1

—dxém) F
dt

(m)

(3.3e) {(xém))z—l}xfm) = (m)(t)dt + B sinkt + C,

tm—]

For the v—z—neighbourhood of (x,t) = (l,tm), that is region Bm’ we

have
2 (m) i
(3.4ab) x=1+v V m)(E) + v V (&)+.. £ = (t-tm)vz,

(3.4c) ng) = -3 Dﬁm/az (—aE)/DKm/az (-ag), a =‘%2ak2,

(3.40) K =-a/2+ (c!™ 4 g+ 201) = ~a?/2 + (e D)
tm
(3.4e) I= E%- [ xém)(t)dt, K . = K + 21T,
tm—l

where in (3.4c) D (z) denotes the parabolic cylinder function of order u.

For u <0 D (z) has no zero's. Let us assume, therefore, that K < 0 It
_1

is found that for t = £ with x(t ) =1+ 0(1) and with {x(t )- 1} + 0

as v > o the following matchlng relatlon holds
3.48) o™ = ¢ () - 2w@-3/2)T + kITV.

3.4. A boundary layer type of local asymptotic solution

If for the region B]/2 the constant K is positive and bounded away

1/2
from zero (independent of v), the solution will enter the boundary layer
region C]/2 with local variable

(3.5a) n = (t—tl/z-EOv—i)Vg

where EO is the value of £ for which the denominator of (3.4c) vanishes. For

this region we introduce the boundary layer expansion
-1 -2
(3.5b) x=Wy(n) +v WM +v Wm)+...,

where WO and W1 satisfy the equations
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(3.50) (=) + 1/310g{(,+2) (1= ™'} = -n + K,

' 2_ _ 4.2 2
(3.5d) w1 + (w0 l)wl 1/4a 50 1/2a Kl/z.

Notice that'W0 -+ 2 as n - «, Apparently, the boundary layer solution matches

the solution for region A given by (3.1) provided that

(3.5e) C =K

2
10 = Kyjp ¥ 1287 - 8.

< 0 and K > 0, the solution first passes the region A3/2, where

£ Ko 3/2 12
{ _

it satisfies (3.3) with j = 1 and C -0 + 2/3. Next, in region B3/2 it

satisfies (3.4) and, finally, it enters the boundary layer region C3/2,

where (3.5) holds with t]/ replaced by t3/2. It matches the solution of

2
region A if

(3.5f) C. =K., +1/2a% - g.

10 3/2

3.5. Balancing on an unstable branch: dips and slidings

In this section we consider the case where

(3.6a) K1/2 =g exp(-dv?
with o0 = #1. This choice of K1/2 will produce a local behavior near the
line x = =1, which we indicate by dips and slidings of the solution. In
the B1/2~region the solution takes the form

~ -4 -1 -dv
(3.6b) x = x(t) )*8v 5v) + v(E)V e 7,

where % is the regular expansion (3.3) valid in a 0(1) neighborhood of

t=t For t < typ e have that m = 1/2 and j = 1, while for t > t]/2

1/2°
we must take m = 3/2 and j = 2. For the integration constant in the leading

term (3.3b) we have the same value

(3.6¢) Céllz) = Cé3/2) = -o + 2/3.
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For v(§) in (3.6b) we obtain
2.2
(3.64) v = -0 a exp(a“g /4)D_1(-a£).

As the solution leaves the Bl/z—region the perturbation term v grows rapidly.

This process continues in the ZB/Z-region where

(3.7a) x ® x(t3v) + V(t3v),
t
(3.7b) V=o¢o exp{—v(A(t)+d)}[~av_%/§;;zgf exp{VA(t) }dt],
t o _ t1/2
(3.7¢) A(t) = J {x%(t;0)-1}dt.
Y2

This asymptotic solution brakes down as t approaches t* satisfying
*
(3.8) A(t ) = -d.

Assuming that t* < t3/2 we have to introduce another boundary layer type of

solution for the region C
-1 *
(3.9ab) X = Wo(n) + v Wl(n)+..., n = (t-t )v

with W, satisfying

0
£n|W0—z*[ lnlwo—a*l lnlwo—x*l 1n|-caV237v/2|
(3- 9C) + + = -n + s
2 21 21 2
Z* a* X* Z*

. . ~ % .
in which z, = x(t 3;0) and a, and x, are the two other roots of the algebraic

equation

3 _ 3
(3.9d) 1/3Wy~ = Wy = 1/32,7 - z

*

with a, < -1 and x, > 1. For W] we have
*

t

(3.9e) W, o+ W 2 = ank coskt* - f ;(t;O)dt + B sinkt* - B+ %az.

1 o ~DW

1
t1/2
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Taking 0 = 1 we find that W0 > X, as n > < and matches the solution of region
A, see (3.1), if

*
t

(3.10a) C10 = -B + %az - [ §(t;0)dt.

t1/2
For o = -1 WO tends to the other stable root a~ < -1 and matches the asymp-
totic solution for region A3/2 given by x = a(t;v) satisfying (3.3) with
=1, C(3/2) = - aqa + 3/2 and
a
0
*
t
(3.10b) 023/2 = cf3/2) + J %(t;0)dt.
1
Y172
In the B3/2—region (3.4) is valid with
t*
3 32,
(3.11) K3/2 = - J x(t;0)dt - [ a(t;0)dt.
t1/2 £

After crossing the unstable interval lx] < 1, it arrives at the region A,
where it matches (3.1) because of (3.5f).

In [7] the case where d is sufficiently large (including o =0) has been
studied in detail. Then t= = t3/2 and a special type of local solution is
valid in the B3/2-region. We no not present this result here as it does not

affect the matching relations given above.
4. MAPPING ON AN INTERVAL

4,1. The formula for the interval mapping

Using the matched local asymptotic solutions of the foregoing sections,
we will relate the value Kn of the Bn—region (n a positive integer) with
We restrict K

the value of K to a compact interval X of length 271l

1/2° 1/2
and take for n the first positive integer for which Kn returns in this
interval. In this way we constructed a mapping P of X into itself. From
(3.1h), (3.4d), (3.4f) and (3.5ef) it follows that for K e X, excluding any

exponentially small (with respect to v) neighborhood of K = 0 mod(2wI)
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(4.1a) PK = —qK + R(n(K))
with
(4.1b) R = (l+q+pq)B - %a2(1+q) + 2m(n~-3)I - kITv,

where p = p(T) and q = q(T) are given by (3.1ij). It is remarked that n may
jump to n*1 as K varies over X in order to keep PK within X. Furthermore,

near K = 0 the relations (3.1b) and (3.10a) hold, so we have

(4.1¢) PK = C (t%) + R(n(K))

with
*
t

(4.1d) ch(t™) = q [ x(t;0)dt - Ik(t*—tllz)
t1/2

and K and t* such that

(4.1e) K = exp(-dv)
t*

(4.1F) J {gz(t;O)—l}dt = -d.
Y172

On the other hand for

(4.1g) K = —exp(-dv)

we have

(4.1h) PK = C (t7) + R(n(K))
t” t3/2

(4.11) c (™) = of J x(t;0)dt + J a(t;0)dt}-2nI
t1/2 e

with t~ satisfying (4.1f). It is observed that for d » « (4.1c) matches
(4.1h) as then t* > t3/2, s-e (4.1d) and (4.1i). Moreover, (4.1c) and (4.1h)
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match (4.1a) as d > 0.

4.2, A discontinuous approximation of the mapping

In a first approach of describing the mapping (4.1) we let formally
Vv +  and consider PK for the interval (0,2nI), see fig. 6. The mapping has

a fixed point that corresponds with a symmetric solution of period 2m(2n-1)/k

for

(4.2a) 8 (a5v) < B < B (a;v)

with

(4.2b) g = (b’ (1+q)-H (a,9)}/s,
(4.2¢) B = {(4a”+211) (1+q)-H_(a,v) }/5,
(4.2d)  H_ = {2n(a-})-KTv}I

(4.2e) S = l+q+pq.

Since B_ < B

<B

n+l1 -n-1
B e An = (Bn+1’§n—l)’ where one symmetric solution of period T = 27(2n-1)/k

< En’ there are two types of B intervals:

is found and B € Bn = (én’gn+1)’ where two symmetric solutions of period

T = 2n(2n*1)/k exist. In [8] and [5] conditions for B were computed in order
to have symmetric solutions of period 2m(2n-1) for the special cases a = 0
and a = 2/3 (k=1). If for o = 2/3 we consider the range of B given by (4.2),
we observe that this special case, studied in [5], is completely covered by
the present results. Moreover, for o = 0 the conditions on B match those of
[8] for B » », see formulae (21) and (22) of [8]. In fig. 7 the functions
P»q,I and T of o are plotted. Using this data we are in the position to
construct regions Qn in the b,v-plane, where the conditions for existence
of a symmetric solution of period T = 27(2n-1)/k are satisfied. The follow-
ing procedure has been carried out for k = 1, n = 1,2,3 and 4:

step 1. a value of v is fixed, say v = v*,

step 2. a = o is determined such that T(a*)v* = 2n(n-1%),
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step 3. the corresponding values of §n and §n are computed

step 4. the line v = V' is within @ for o+ gn/v* <b<a + En/v*.

The result of this procedure, carried out for a sufficient number of values
of v, is depicted in fig. 8a. The boundaries of Qn for b small are
computed from [8]. The shape of Qn agrees quite well with the results of
FLAHERTY & HOPPENSTEADT [3], who integrated (1.1) numerically for a wide

range of parameter and initial values, see fig. 8b.

(a) case A.n (b) case Bn

Fig. 6. Limit interval mapping, discontinuous at K = 0, mod(2rI).

10 1 4+
T_ 4 1
P R +
q T
.08 q F-8 .8
1.75
1
.06 4 -p L6 .64 L 1.50

.04 | Lo -4

.02 4 Fe2 .24

1/3

Fig. 7. the auxillary functions p,q I and T.
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125 1

1/v

.100

.075 1

.050

.025

(a) from asymptotic solutions, see text for procedure

.150

125

.100

.075 |

.050

.025 |

.010 T . T T T Y — T
0 .1 .2 .3 4 .5 .6 .7 .8

(b) from numerical solutions, after Flaherty and Hoppenstendt [3]

Fig. 8. The domains e, with periodic solution T = 2w(2n-1).
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4.3, The case B € K£

In the discontinuous approximation we only found the stable fixed
point; the unstable one is situated in the boundary layer, as is seen in
fig. 9. Note that the X—interval.has been shifted in order to have X = 0
in the interior of the interval. For any starting value different from the
unstable fixed point the iterated solution will approach the stable fixed

point.

mI

PK

Fig. 9. The interval mapping for B € Kn
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4,4, The case B € En

Besides the two stable fixed points of the discontinuous approximations,
there are also two unstable ones within the boundary layer. The situation is
now more complicated, as it is incorrect to assume that for any starting
value, not coinciding with the unstable points, the iterated solution will
tend to the two stable fixed points. There exists a non attracting subset
of zero measure in which the iterated solution may go around in an irregular
way. In order to describe this class of solutions we use symbolic dynamics,
see section 2.2 and 2.3, As given in fig., 10 we consider subintervals
Vi (i=0,1,2 and 3) and keep track of the mapping of points remaining in

UVi in the transition matrix

0111
0111
1000 ’
0111

(4.3) M

if Mij = 1 a point Vi is mapped in Vj’ while for Mij = 0 such a mapping is not
possible. As we described in section 2.3, the topological subspace Ly con-
sisting of all biinfinite sequences of the symbols 0,1,2 and 3 is introduced
allowing only combinations ij for which Mij =1, i.e. forbidden combinations
in the set of sequences are 00,10,21,22,23 and 30. It is noted that the

two unstable solutions are represented as sequences of just the symbol 1

and the symbol 3, respectively. Furthermore it is seen that the interval
mapping discloses the dynamics of (1.1) to the same extent as the annulus
mapping of section 2.2, The iterated solutions that correspond with an
element of ZM have zero measure. Nevertheless they give us insight in the
behavior of (1.1) with starting values chosen in such a way that the solu-
tion remains in UVi a large (but finite) number of iterations of P before
locking into a stable subharmonic. Initially such solutions behave in the
irregular way as described here and the set of starting values has a meas-

ure different from zero.



21

g
PK
1
)
X
K—
-TlL v v v V0 mL

—
N
w

Fig. 10, The interval mapping for B € E;

4,5, The transitional case

In the discontinuous approximation of section 4.2 a third type of struc-
ture remained out of sight. We are aiming at the case of one stable fixed

point with the point T below the unstable fixed point S, see fig. 11, Then
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higher order stable fixed points of the iterated mapping are possible, as
pointed out by LEVI [11]. His statement is based on a theorem of NEWHOUSE
& PALIS [20], In fig. 11 we sketch such a solution, while in the next sec-

tion we will trace numerically one in a specific example.

T

Y

N

Fig. 11. The interval mapping for B « gn
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4,6. A numerical approximation for a = 1/3 and v = 7.5

Using analytical and numerical methods we found for a = 1/3:

35/4{2E(arcsin/2/3(1-1/3/3), 1/3/2-V3)

(4.4a) I=
- F(arcsin/2/3(1-1/3Y3), 1/2/5:753
+ 1/3(2-/3)V24+14Y3}/1=1.47597,
(4.4bcd)  p = - 0061926, q = 0.788070, T = 0.392236,
where

V1 -k sin 6 de

(4.4e) E(¢,k)

(4.4F) F(¢,k)

0

|
f 1 -k sin 9) de
0

In order to carry out the iterations of the mapping we approximate the
mapping as follows. Firét a composite asymptotic solution is constructed.
Since dK/dt* = 0 in the endpoints t* = -n/2, 3n/2, the boundary layer solu-
tion converges nonuniformly in these points as dP/dK = dP/dt*. dt*/dK. This
is compensated by adding an asymptotically small correction to the composite

asymptotic solution. For K € [0,mI] we have as a composite solution

(4.5a) K = exp{-d(t*)v}
t*
(4.5b) d = f {x2(£;0)~1}dt +
2!
- 2 sin(t -n/2)exp{ (t*+n/2) (£ =31/2)/~[2/2) /v,
(4.5¢) PK = C'(t"(K)) + R(n(K)) - oK,

while for K € [-nI,0]
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(4.5d) K = —exp(-d(t*))
with t~ satisfying (4.5b) and
(4.5e) PK = C (t7(K)) + R(n(Kj) - qK.

This composite expression is evaluated numerically in a set of points that
have increasing density near K = 0: for n points we take

(4.6) K(j) = wlexp{-jvd(t,,,)/n},

3/2
then t= follows from (4.5b). The value of PK is found from (4.5c) and (4.5e).
In the computations a four point interpolation formula is used for the
points (4.6), where PK is computed with a 6 decimal accuracy. Using this
scheme we trace a stable fixed point of the second iterate by shifting the
mapping in a vertical direction until in the iterated mapping two new fixed
points arise, one of them being the stable fixed point we are looking for,
see fig., 12 . It turns out that the stable solution has a very small domain
of attraction and that it is only stable over an extremely small range of

B. Therefore, we only give the value of the two new fixed points, which

coincide within the accuracy we are working with., They arise at
K= -1.63402626
as B takes one of the values

B =9.3770 - 5.3320(n-3), n=1,2,... .
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4
PK
\\/
K - K>
P2K
S
K - - K -
(a) all fixed points of P2 not (b) one stable fixed point of Pz,
occurring for P are unstable not occurring for P, for this
for this value of B. value of B.

Fig. 12, The occurence of irregular subharmonics
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5. CONCLUDING REMARKS

As a result of our asymptotic analysis, we have obtained a completely
determined relation between a continuous dynamical system and a mapping on
a compact interval (a one-dimensional difference equation). This result is
new in the sense that up to now, there has not been yet such a description
of a continuous system having chaotic type of solutions in terms of a differ-
ence equation. For the Lorenz equations [ 17 ] with its strange attractor a
comparison with a system of diffefence equations such as the Henon attractor
is made, but the relation only refers to the occurence of a typical set of
limit points in both cases. In the study of Levi a more specific qualitative
relation between a continuous system and a difference equation was estab-
lished. Levi expected the interval mapping to act upon a specific domain
of the state space, see section 2.2. Likewise one describes the Lorenz
equations by a mapping from a cross section of the state space into itself.
From the present study we learn that there exists a typical difference var-
iable which in this case turned out to be the index of a parabolic cylinder
function, being part of a local asymptotic solution. It suggests that ome
has to look for characteristic quantities of a continuous system in order
to relate it to a set of difference equationms.

From the interval mapping the bifurcation pattern is understood for
the various values of b. For the transitional domains §£ the bifurcation
structure turned out to be quite complex. It would be worthwhile to describe
it in more detail using symbolic dynamics, as suggested in section 2,

Constructing a numerical approximation of the interval mapping as done
in section 4.6, we touched upon two points needing some consideration.
Firstly, the boundary layer solution appeared to be not differentiable in
the end points, which was overcome by introduction of an asymptotically
small correction term. Secondly, for v = 7.5 it was not possible to deter-
mine a stable irregular subharmonic for some B. From sharper calculations
we concluded that even an accuracy of 14 decimals did not suffice. The
reason for this is that the boundary layer in the interval mapping has a
thickness of 0(exp(-v)). Consequently, the graph of P2 has an extremely
sharp peak at the point where it is about to be tangent to the diagonal,

see fig, 12 ., For stability it is necessary that |dP2/dK| < 1 which is
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only the case for B just past the point of tangency.
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