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Singular perturbations and a mapping on an interval for the forced 

Van der Pol relaxation oscillator*) 

by 

J. Grasman, H. Nijmeijer & E.J.M. Veling 

ABSTRACT 

This paper deals with the Van der Pol relaxation oscillator with a 

large sinusoidal forcing term. By using singular perturbation techniques 

asymptotic solutions of such a system are constructed. These asymptotic 

approximations are locally valid and may take the form of a two time scale 

expansion in one region and a boundary layer type of solution in a next 

region. Integration constants are determined by averaging and matching 

conditions. From these local solutions a difference equation is constructed. 

There is an equivalence between solutions of the difference equation being 

an iterated mapping on a compact interval and solutions of the system it­

self. This equivalence makes it possible to analyze subharmonics and chaotic 

type of solutions to the full extent. As a result of this we find domains 

in the parameter space, where regular subharmonics exist. These domains 

overlap so that for some parameter values different subharmonics coexist. 

For the same values chaotic type of solutions are found as well. They are 

described by using concepts of symbolic dynamics. 

KEY WORDS & PHRASES: Van der Pol equation, forced relaxation oscillation, 

asymptotic expansion, mapping on an interval, strange 

attractor 

*) This report will be submitted for publication elsewhere. 





1. INTRODUCTION 

Recent studies of difference equations [14,18,25] have revealed un­

expected phenomena which in literature are characterized by the term 

"chaotic". Some of these equations are meant to model biological phenomena 

such as the, from year to year changing densities of biological populations. 

It has been found that differential equation models with state variables 

depending continuously on time may too exhibit chaotic behavior. The Lorenz 

equations, a "simple" model for the onset of turbulence in the context of 

meteorological problems, is a well-known example of such a system, see 

[17,21]. It is understood, that this system contains a so-called strange 

attractor. 

In ele:ctronic circuits it has been observed that periodically forced 

nonlinear oscillators may behave chaotically in certain parameter ranges 

[4,16]. In this paper we carry out an asymptotic analysis of such a system, 

the forced Van der Pol oscillator, 

( 1. 1) 
d2x 2 dx -- + v(x -1)- + x = (av+S)k cos kt, 
dt2 dt 

0 <a< 2/3 

for large values of v. Eventually, we will construct a difference equation 

that contains all necessary quantitative and qualitative information for 

describing the possible solutions of this system. Besides the well-known 

stable solutions of period T = 211"(2n-l), also irregular types of solutions 

are analyzed. Existence of such solutions was expected by LITTLEWOOD [15] 

and made plausible by LEVINSON [13] in a study of a related piece-wise lin­

ear equation. The horse shoe mapping created by SMALE [23,24] turned out 

to be an important tool in establishing the existence of these irregular 

solutions. LEVI [11,12] used this concept and symbolic dynamics (see also 

GUCKENHEIMER [10]) in his study of a modified version of (I.I) which comes 

close to the piece-wise linear variant of Levinson. Our results agree 

qualitative!ly with those of Levi. Furthermore, (1.1) has been solved 

numerically by FLAHERTY & HOPPENSTEADT [3]. A comparison shows that there 

is also a good agreement between the outcome of their work and that of our 

asymptotic investigation. 

In Section 2 we give a qualitative description of the solutions of 
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(1.1). Most of it is based on the work of Levi. Matched local asymptotic 

solutions of (1.1) are constructed in section 3. We only present those 

results that are needed for deriving the mapping on an interval. For more 

details of this aspect of our analysis we refer to [6,7]. Furthermore, an 

analogous analysis has been made in [8,9] and [5], where the cases a= O 

and a= 2/3 have been worked out. The solution of the case we have under 

consideration now (O<a<2/3) exhibits phenomena that are met in these ex­

treme cases separately. In section 4 we give the interval mapping in the 

form of a set of asymptotic relations. It is noticed that the domain of 

the interval mapping is related with the order of a parabolic cylinder 

function being an asymptotic approximation of the solution in a critical 

region of the state space where many diverging trajectories meet each other 

at short distance. This choice of the interval comes up in a natural way 

and shows that the asymptotic approach discloses characteristics of the 

system, that would have remained unnoticed in a different type of analysis 

of the problem. 

From the asymptotic interval mapping the qualitative properties of 

(I.I) are found and a numerical approximation is made. In section 4.2 we 

construct the regions in the parameter space, where regular subharmonics 

exist. Moreover, in section 4.6, we trace a stable irregular periodic 

solution by using this numerical approximation of the interval mapping. 

2. THE ANNULUS MAPPING AND SYMBOLIC DYNAMICS 

2.1. Properties of the Poincare mapping 

Following LEVI [II] we consider (I.I) in the form of a system of two 

first order differential equations 

(2.la) x = v(y-1/3x3+x) 

(2. lb) y = -x/v+bcoskt, 
-] 

b = (a+Sv )k, 

and introduce the Poincare mapping D: 
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(2.2) D(x(O),y(O)) = (x(2v),y(2v)). 

It can be shown that a properly chosen annulus A in the x,y-plane is mapped 

into an annulus A' under Dm form sufficiently large with A' having a 

thickness O(exp(-cv2)) near the branches of y = l/3x3-x and of order O(v-½) 

at the hori:zontal parts where it jumps from one branch to the other, see 

fig. I. Within the annulus A' one may cut out a small part R such that for 

all s = (x,y) E A,DJs E R for certain j E ]N. Note that there is even an 

infinite sequence jk, k = 1,2, ••• with Djk~ ER. Therefore it is sufficient 

to study thie mapping P:R + R, where Ps = DJs with j being the first integer 

for which Djs ER. By taking P(s) = s for s ER we obtain a continuous map-
.... 

ping Pon R. Identification of the upper and lower sides of R makes Ran 

annulus. Note that no points in R correspond with each other under P. Thus, 

the study of the Poincare mapping Dis reduced to the analysis of·the annu­

lus mapping P:R + R. Because of the symmetry with respect to the origin 

there is a same area R' in the opposite quadrant of the x,y-plane. Clearly, 

it is sufficient to study the mappingP:R + R' as P =P O P. 

(a) (b) 

~Fig. I. Contraction of an annulus by repeated mappings D. 

2.2. A circle mapping 

In a first approach we ignore the thickness of Rand interprete Pas 

a circle mapping from s1 to s1• Graphically P behaves qualitatively as 
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follows (see fig. 2). A small arc 6 of order O(v-1) of s1 is strectched by 

P to, say, 1.5 times the length of s1, while the remaining part s1\6 is de­

formed simply by closing the image of 6. As we will find out, an increase 

of the forcing b means a clockwis~ rotation of the image P(6). This immed­

iately leads to the presentation in fig. 3, where for two different values 

of b we have given the graph of P. The two cases A and B correspond to 

mappings P with quite different properties. LEVI [11] makes these differences 

visible in the associated graphs of the annulus mapping P with R being 

essentially an annulus and not a circle. 

~ (a) case A (b) case B 
-21r 

Fig. 2. Circle mapping Fig. 3. Graphs of two cases 
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(a) case A 

~ (b) case B 

Fig. 4. The annulus mapping 



2.3. The annulus mapping 

In fig. 4a we depicted the simple configuration of one stable fixed 

point p and an unstable saddle point z for the mapping P. By rotation we 

arrive at the more complicated configuration of fig. 4b: it has two stable 

fixed points p 1,p2 and two unstable saddle point type of fixed points z 1 

5 

and z2• There is still another set of points C, which cannot decide to which 

basin of attractors they belong. C is a Cantor set of measure zero, which is 

invariant under P. In fact C contains a nontrivial "attractor" of the type 

known as the horseshoe, see SMALE [23,24]. Symbolic dynamics (see e.g. [22]) 

gives a description of P restricted to C, see MOSER [19]. We set 

(2. 3a) 

see fig. 4b, and define v0 ,v1 and v3 by 

(2.3b) P(V.) = H., 
1 1 

i=0,1,3. 

Furthermore, let H2 = v0 n P(~), then v2 is defined by 

(2.3c) 

We now introduce the transition matrix M by 

and 

so 

(2.4) 

M .• =O, ifV.nH.;'0 
1J 1 J 

M •• = 
1J 

M= 

else, 

0 1 

0 1 

0 0 0 

0 1 1, 
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2.4. The use of symbolic dynamics 

The basic idea of symbolic dynamics is to introduce a space E of all 

possible biinfinite strings of a given set of symbols. Referring to the 

indices of V. and H. of section 2.3 we take the symbols 0,1,2 and 3: 
1 1 

. 7l 
E = {0,1,2,3} • 

••• 01121322110 ••• 

By posing restrictions upon the type of symbol that.follows a given symbol 

one introduces a subspace of E: 

EM = {a E E IM = l}. 
- a.a.+l 1 1 · 

Let M be given by (2.4). The mapping P:C + C is topologically conjugate with 

the shift o: EM+ EM, where o satisfies 

i € 7l. 

Thus, there is a one to one corresponding e between C and EM: 

p 

2.5. Some remarks about the annulus mapping 

Returning to the annulus (or circle) mapping we observe the following 
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dependence of this mapping upon b. There is a subdivision of the b-interval 

(0,2/3) into subintervals~ and Bk separated by small intervals gk, such 

that for b E ~Pacts as given in fig. 4a (or fig. 2a), while for b E Bk 

the behavior can be understood from fig. 4b (or fig. 2b). In sunnnary we 
~ conclude that for b E ~ there is only one stable solution and except for 

~ one saddle point all solutions tend to this stable one. For BE Bk two 

stable solutions exist. Except for a Cantor set of measure zero all solu­

tions tend to one of the attractors. 

As b crosses a separation interval 8k there is a sequence of bifurca: 

tions and the remarkable phenomenon occurs that for uncountably many b E 8k 
there exist infinitely many stable fixed points of P or of its iterates (see 

e.g. NEWHOUSE & PALIS [20]). In trying to understand this complicated bi­

furcation pattern we need more information about the mapping P. Intuitively, 

it is felt that these bifurcations are related with the disappearance of 

intersections V. n H., see fig. 4b, and that therefore certain finite 
1. J 

sequences in EM are forbidden. 

It is obvious that an exact description of th~ mapping Pon the interval 

as sketched in fig. 3 is the first step in the full understanding of the 

bifurcation pattern. It is our goal to give a complete description of this 

mapping and its dependence upon the parameters. In the following sections 

we will construct matched local asymptotic solutions of (1.1), which 

eventually lead to a mapping on an interval with the same properties as P. 

Finally, it is noted that the study of interval mappings has become 

a field of growing importance in the analysis of dynamical systems, see 

e.g. [20]. Various bifurcation problems have been solved by using the con-· 

cept of mapping on an interval, but there still remain many questions about 

the exact description of families of interval mappings. In particular we 

mention the chaotic behavior of mappings within certain parameter ranges. 

3. MATCHED LOCAL ASYMPTOTIC SOLUTIONS 

3.1. Outline of the method 

A solution of (1.1) has a behavior that is characteristic for singular 

perturbation problems. Locally the solution exhibits a boundary layer type 
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of action like one meets in problems of fluid mechanics. On the other hand 

it passes a large time interval, where a two time scales expansion can be 

applied. Finally, we distinguish a sequence of points, determined by the 

intersections with the lines x = ±1, where the local behavior of the solu­

tions is analyzed by a stretching procedure in both the dependent and inde­

pendent variable. For a complete picture of the different regions which are 

successively crossed by the solution we refer to fig. 5 • The method of 

matched asymptotic expansions (see e.g. [1]) yields formal local asymptotic 

solutions in which the integration constants are determined by averaging 

conditions and by matching pairs of local solutions of adjacent regions. 

These computations have been carried out in [6,7]. In the next sections we 

summarize the results. It is emphasized that this approach is formal and 

that, for the type of problem we are dealing with, there is no proof of 

correctness that justifies this approach. However, the present method results 

in a clear qualitative picture of the solution and, in addition, provides 

us with quantitative information about the existence of subharmonic and 

other solutions. Comparing this outcome with analytical and numerical results 

for the same or related problems [3,11], we observe an excellent agreement. 

Furthermore, matching methods require a high degree of internal consistency. 

That is: two neighboring local solutions match, if they exhibit the same 

behavior in a relatively broad domain of overlap. This type of consistency 

we also meet in the final res~lt: we analyse here the case O<a<2/3 and de­

rive conditions for 8 in order to have a subharmonic of order n. In the 

limit a ➔ 0 and a ➔ 2/3 these conditions need to match the ones obtained 

from studying the special cases a= 0 and a= 2/3, see [5,8]. As we will 

see this turns out to be correct indeed. 



2 

L 

0 

-1 

9 

II 
II 

A I 
I I -I 

- --- ---- -tt---f-
11 

cl c* 
c3/2 

B n-1 
2 

t I t* t3/ 2 -\-

to ti t2 t n-2 t n-1 t 
n 

Fig. 5. Regions for local asymptotic solutions 

3.2. A two time scales expansion 

For the region A of fig. 5 we assume that the solution can be expanded 

as 

(3. I a) 

(3. I b) 

with 

T = * (t-t ) Iv, t 1 /Z * ~ t 
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(3.Ic) 

(3. 1 d) 

(3. 1 e) 

(3. Ifg) 

(3.Ih) 

(3.li) 

(3.Ij) 

t = (-1r/2+21rr)/k, r 

1 3 3 
XO = 2 cos[3 arccos{z a sinkt + 2 co (-r)} J, 

t 

= - ::o - I 
t* 

= 2/3-a., 

't"V 

Cl(-r) = q(-r){CIO-Sp(-r)}, 

-r i:v+21r/k 

q(-r) = exp{;: f l 
0 't"V 

p(-r) = ~ 2,r 

'[ 

f exp{:,r 
0 

--!-- dt dT} 
XO -1 

T ~v+21r/k 

I f 
0 .... 

't"V 

-1- dt d;} 
XO -1 

TV+2,r/k 

f 
't"V 

sinkt 
2 dt d-r. 

XO -1 

The solution will leave the region A at a time t , see (3.lc), when it 
m 

approaches the line x = 1, which is the case if c0 reaches the value a - 2/3. 

From (3.lfg) it follows that in the slow time scale this will be for 

-2/3+a. 21r/k 

(3.2) T = -;,r f { f x0(t;c0)dt}-l dC0• 

2/3-a. 0 

3.3. Other local asymptotic solutions 

For a region A, which is entered by the solution in a neighborhood of 
m 

(x,t) = (1,t 1) and left near (x,t) = (1,t ), the local asymptotic solution m- m 
reads 

(3.3a) x = x(m)(t) + v- 1x~m)(t) -2 (m) 
0 + V x2 (t)+ ••• , 

(m) 1 3 sinkt + I c<m)) 2 . } 
(3.3b) XO = 2 cos{3 arccos(2 a 2 0 + 31TJ 

(3.3cd) c<m) = a - 2/3, j = o, 0 



(3.3e) 

-1 

t 

- f 
t m-1 

For the v 2 -neighbourhood of (x,t) = (1,t ), that is region B, we m m 
have 

(3.4ab) 

(3.4c) 

(3. 4d) 

(3. 4e) 

- 1 -1 (m) 
X = 1 + V 2Vo(m)(s) + V vi Cs)+ ••. , 

! s = (t-t )v 2 
m ' 

(m) 
v0 = -a Di /a2 (-as)/DK /a2 (-as), 

m m 

K = -a2/2 + (-C(m) + S + 2TII) = -a2/2 + (-C(m+l)+S) 
m I . I 

t 
m 

I= 2TI I 
t m-1 

(m) 
XO (t)dt, K m+l = K + 21rI, 

m 

where 1.n (3.Lk) D (z) denotes the parabolic cylinder function of order µ. 
µ 

Forµ s OD (z) has no zero's. Let us 
µ 

assume, therefore, that K < 0. It 

I I 

is found that fort 
m -1 -1 

= t with x(t) = I+ 0(1) and with {x(t )-1} v 2 + 0 
m m m 

as v + 00 the following matching relation holds 

(3 .4f) 
(m) 

c, = cl (T) - 2TI(m-3/2)I + kITV. 

3.4. A boundary layer type of local asymptotic solution 

If for the region Bl/Z the constant K112 is positive and bounded away 

from zero (independent of v), the solution will enter the boundary layer 

region c 112 with local variable 

(3. Sa) 

where s0 is the value of s for which the denominator of (3.4c) vanishes. For 

this region we introduce the boundary layer expansion 

(3.Sb) 

where w0 and w1 satisfy the equations 
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(3. Sc) 

(3.5d) 

Notice that w0 ➔ 2 as n ➔ m. Apparently, the boundary layer solution matches 

the solution for region A given by (3.1) provided that 

(3.5e) 2 c10 = K1/ 2 + 1/2a - 8. 

If K112 < 0 and K312 > O, the solution first passes the region A312 , where 

it satisfies (3.3) with j = 1 and c~3/ 2) =-a+ 2/3. Next, in region B312 it 

satisfies (3.4) and, finally, it enters the boundary layer region c312 , 

where (3.5) holds with t 112 replaced by t 312 • It matches the solution of 

region A if 

(3. Sf) 2 
= K3/ 2 + 1/2a - 8. 

3.5. Balancing on an unstable branch: dips and slidings 

In this ·section we consider the case where 

(3.6a) K1/ 2 = o exp(-d~) 

with o = ±1. This choice of K112 will produce a local behavior near the 

line x = -1, which we indicate by dips and slidings of the solution. In 

the B112-region the solution takes the form 

(3.6b) 

where xis the regular expansion (3.3) valid in a 0(1) neighborhood of 

t = t 112 • Fort~ t 112 we have that m = 1/2 and j = 1, while fort~ t 112 
we must take m = 3/2 and j = 2. For the integration constant in the leading 

term (3.3b) we have the same value 

(3.6c) c(l/2) 
0 

= c<3!2) =-a+ 2/3. 
0 
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For v(~) in (3.6b) we obtain 

(3.6d) 2 2 v = -cr a exp(a ~ /4)D_ 1(-a~). 

As the solution leaves the B112-region the perturbation term v grows rapidly. 

This process continues in the z312-region where 

(3.7a) x ~ i(t;v) + V(t;v), 

t 

(3.7b) V = cr exp{-v(A(t)+d)H-av-½ ✓21r-a2f exp{vA(t)}dt], 

(3.7c) 
t tl/2 

A(t) = f {;2(t;O)-l}dt. 

tl/2 

* This asymptotic solution brakes down as t approaches t satisfying· 

(3.8) * A(t) = -d. 

* Assuming that t < t 312 we have to introduce another boundary layer type of 
. . * solution for the region C 

(3. 9ab) * Tl= (t-t )v 

with w0 satisfying 

(3.9c) 
lnlwo-a*I lnlWo-x*I + __ 2 ___ + __ 2 ___ = -n + __ 2 ____ ' 

a -1 X -1 Z -1 
* * * 

ln l-cra✓2_ir/v/2 I 

,.. * in which z* = x(t ;O) and a* and x* are the two other roots of the algebraic 

equation 

(3.9d) l/3w0
3 - W = l/3z 3 - z 

0 * * 

with a*< -1 and x* > 1. For w1 we have 

(3.9e) ' 2 * W1 + (W0 -l)W1 = ank coskt 

* t 

f i(t;O)dt + B sinkt* - e + ½a2• 

tl/2 
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Taking o = I we find that W + X 
0 * 

as n + 00 and matches the solution of region 

A, see (3.1), if 

* t 

(3.10a) CIO -e + ½a 
2 

f i(t;O)dt. = 

tl/2 

* For o = -1 w0 tends to the other stable root a < -1 and matches the asymp-

totic solution for region A3/Z given by x = a(t;v) satisfying (3.3) with 

J• = I c(3/Z) = - a+ 3/2 and 
' a 

0 
* t 

(3. I Ob) c(3/2 = c(3/2) + f i(t;O)dt. 
al 1 

tl/2 

In the B312-region (3.4) is valid with 

* t t3/2 
(3. I I) K3/2 = - f i(t;O)dt - f a(t;O)dt. 

tl/2 * t 

After crossing the unstable interval lxl < I, it arrives at the region A, 

where it matches (3.1) because of (3.Sf). 

In [7] the case where d is sufficiently large (including o = O) has been 

studied in detail. Then t* = t 312 and a special type of local solution is 

valid in the B312-region. We no not present this result here as it does not 

affect the matching relations given above. 

4. MAPPING ON AN INTERVAL 

4.1. The formula for the interval mapping 

Using the matched local asymptotic solutions of the foregoing sections, 

we will relate the value K of the B -region (n a positive integer) with 
n n 

the value of K112 • We restrict K112 to a compact interval X of length 2~1 

and take for n the first positive integer for which K returns in this 
n 

interval. In this way we constructed a mapping P of X into itself. From 

(3.lh), (3.4d), (3.4f) and (3.Sef) it follows that for KE X, excluding any 

exponentially small (with respect to v) neighborhood of K = 0 mod(2~I) 
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(4.la) PK= -qK + R(n(K)) 

with 

(4. lb) 2 
R = (l+q+pq)B - ½a (l+q) + 2~(n-½)I - kITv, 

where p = p(T) and q = q(T) are given by (3.lij). It is remarked that n may 

jump to n ± 1 as K varies over X in order to keep PK within X. Furthermore, 

near K = 0 the relations (3.lb) and (3.10a) hold, so we have 

(4.lc) 

with 

+ * PK= C (t) + R(n(K)) 

* t 

(4. ld) C+(t*) = q f ;(t;O)dt - Ik(t*-t 112) 

tl/2 

* and Kandt such that 

(4.le) K = exp(-dv) 

t* 

(4.lf) f 
.-.2 

{x (t;O)-l}dt = -d. 

t]/2 

On the other hand for 

(4. lg) K = -exp(-dv) 

we have 

(4. lh) - * PK= C (t) + R(n(K)) 

* t3/2 

(4.li) - * C (t ) = q{ r x(t;O)dt + f a(t;O)dt}-2nI 

* t 

observed that ford+ 00 (4.lc) matches 

tl/2 

with t* satisfying (4.lf). It is 

* (4.lh) as then t + t 312 , s-e (4. ld) and (4. Ii). Moreover, (4. le) and (4. lh) 
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match (4.la) as d + O. 

4.2. A discontinuous approximation of the mapping 

In a first approach of describing the mapping (4.1) we let formally 

v + m and consider PK for the interval (0,2ffI), see fig. 6. The mapping has 

a fixed point that corresponds with a symmetric solution of period 2ff(2n-1)/k 

for 

(4.2a) B (a;v) < B < B (a;v) -n n 

with 

(4. 2b) 2 
~n = {½a (l+q)-H (a,v)}/S, n 

(4.2c) - 2 
Bn = {(½a +2~I)(l+q)-H (a,v)}/S, n 

(4.2d) H = {2~(n-½)-kTv}I n 

(4.2e) s = l+q+pq. 

Sine~ ~n < Bn+l < ~n-l < Bn, there are two types of B intervals: 

BE An= (Bn+l'~n~1), where one symmetric solution of period T = 2~(2n-1)/k 

is found and BE B = (B ,B +l), where two symmetric solutions of period n -n n 
T = 2~(2n±l)/k exist. In [8] and [SJ conditions for B were computed in order 

to have symmetric solutions of period 2ff(2n-1) for the special cases a= 0 

and a= 2/3 (k=l). If for a= 2/3 we consider the range of B given by (4.2), 

we observe that this special case, studied in [5], is completely covered by 

the present results. Moreover, for a= 0 the conditions on B match those of 

[8] for B + m, see formulae (21) and (22) of [8]. In fig. 7 the functions 

p,q,I and T of a are plotted. Using this data we are in the position to 

construct regions n in the b,v-plane, where the conditions for existence 
n 

of a symmetric solution of period T = 2~(2n-1)/k are satisfied. The follow-

ing procedure has been carried out fork= 1, n = 1,2,3 and 4: 
. . * step 1. a value of v is fixed, say v = v , 

step 2. a= a* is determined such that T(a*)v* = 2ff(n-½), 
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step 3. the corresponding values of f3 and f3 -n -n 
4 1 . *. . h" f * step • the .ine v = v is wit in Q or a + 

n 

are computed 

* * - * B Iv < b < a + B Iv. -n n 
The result of this procedure, carried out for a sufficient number of values 

of v, is depicted in fig. 8a. The boundaries of Q for b small are 
n 

computed front [8]. The shape of Q agrees quite well with the results of 
n 

FLAHERTY & HOPPENSTEADT [3], who integrated (I.I) numerically for a wide 

range of parameter and initial values, see fig. 8b. 
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In the discontinuous approximation we only found the stable fixed 

point; the unstable one is situated in the boundary layer, as is seen in 

fig. 9. Note that the X-interval has been shifted in order to have X = 0 

in the interior of the interval. For any starting value different from the 

unstable fixed point the iterated solution will approach the stable fixed 

point. 

,rI 
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PK 

/ 

-1rl 

Fig. 9. 
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~ 4.4. The case BE B n 

Besides the two stable fixed points of the discontinuous approximations, 

there are also two unstable ones within the boundary layer. The situation is 

now more complicated, as it is incorrect to assume that for any starting 

value, not coinciding with the unstable points, the iterated solution will 

tend to the two stable fixed points. There exists a non attracting subset 

of zero measure in which the iterated solution may go around in an irregular 

way. In order to describe this class of solutions we use symbolic dynamics, 

see section 2.2 and 2.3. As given in fig. 10 we consider subintervals 

V. (i=0,1,2 and 3) and keep track of the mapping of points remaining in 
i 

UV. in the transition matrix 
i 

(4.3) M= ' 

if M .. = 1 a point V. is mapped in V., while for M •. = 0 such a mapping is not 
iJ i J iJ 

possible. As we described in section 2.3, the topological subspace EM con-

sisting of all biinfinite sequences of the symbols 0,1,2 and 3 is introduced 

allowing only combinations ij for which M •. = 1, i.e. forbidden combinations 
iJ 

in the set of sequences are oo·,10,21,22,23 and 30. It is noted that the 

two unstable solutions are represented as sequences of just the symbol I 

and the symbol 3, respectively. Furthermore it is seen that the interval 

mapping discloses the dynamics of (I.I) to the same extent as the annulus 

mapping of section 2.2. The iterated solutions that correspond with an 

element of EM have zero measure. Nevertheless they give us insight in the 

behavior of (I.I) with starting values chosen in such a way that the solu­

tion remains in UV. a large (but finite) number of iterations of P before 
i 

locking into a stable subharmonic. Initially such solutions behave in the 

irregular way as described here and the set of starting values has a meas­

ure different from zeroo 
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-TTI 
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Fig. IO. The interval mapping for 13 EB 
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4.5. The transitional case 
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TTI 

In the discontinuous approximation of section 4.2 a third type of struc­

ture remained out of sight. We are aiming at the case of one stable fixed 

point with the point T below the unstable fixed point S, see fig. 11. Then 
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higher order stable fixed points of the iterated mapping are possible, as 

pointed out by LEVI [II]. His statement is based on a theorem of NEWHOUSE 

& PALIS [20],. In fig. II we sketch such a solution, while in the next sec­

tion we will trace numerically one in a specific example. 

t 
PK 

Fig. 11. The interval mapping for a E g 
n 

K-+ 1f l 
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4.6. A numerical approximation for a= 1/3 and v = 7.5 

Using analytical and numerical methods we found for a. = 1/3: 

(4.4a) I = 3514{2E(arcsin/2/3(1-1/3/3), 1/3/2-✓3) 

- F(arcsin/2/3(1-1/3/3), 112/2-13) 

+ 1/3(2-/3)/24+14✓3}/~=l.47597, 

(4.4bcd) p = - 0.061926, q = 0.788070, T = 0.392236, 

where 

(4.4e) E(cj,,k) = ( li-k2sin2e de 

0 
( -J 

(4.4f) F(cj,,k) = ( /1-k2sin2a) de 

0 

In order to carry out the iterations of the mapping we approximate the 

mapping as follows. First a composite asymptotic solution is constructed. 

Since dK/dt* = 0 in the endpoints t* = -n/2, 3n/2, the boundary layer solu­

tion converges nonuniformly in-these points as dP/dK = dP/dt*. dt*/dK. This 

is compensated by adding an asymptotically small -correction to the composite 

asymptotic solution. For KE [0,nI] we have as a composite solution 

(4.5a) * K = exp{-d(t )v} 

* t 

(4.5b) d = I ""2 {x (t;0)-l}dt + 

t½ 

- 2 sin(t*-~/2)exp{(t*+n'/2)(t*-3n/2)v'vfi/2)/v, 

(4.5c) + * PK= C (t (K)) + R(n(K)) - qK, 

while for KE [-nI,0] 
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(4.Sd) * K •- -exp(-d(t ) ) 

* with t satisfying (4.Sb) and 

(4.Se) PK 
- * . 

= C (t (K)) + R(n(K)) - qK. 

This composit,e expression is evaluated numerically in a set of points that 

have increasing density near K = 0: for n points we take 

(4.6) K(j) = TIIexp{-jvd(t312 )/n}, 

* then t follows from (4.Sb). The value of PK is found from (4.Sc) and (4.Se). 

In the computations a four point interpolation formula is used for the 

points (4.6), where PK is computed with a 6 decimal accuracy. Using this 

scheme we trace a stable fixed point of the second iterate by shifting the 

mapping in a vertical direction until in the iterated mapping two new fixed 

points arise, one of them being the stable fixed point we are looking for, 

see fig. 12. It turns out that the stable solution has a very small domain 

of attraction and that it is only stable over an extremely small range of 

s. Therefore, we only give the value of the two new fixed points, which 

coincide within the accuracy we are working with. They arise at 

K 1= -1.63402626 

as Stakes one of the values 

S - 9.3770 - 5.3320(n-6), n = 1,2, .... 
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PK 

(a) all fixed points of P2 not 
occurring for Pare unstable 
for this value of a. 
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K+ 

(b) one stable fixed point of P2, 
not occurring for P, for this 
value of a. 

Fig. 12. The occurence of irregular subharmonics 
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5. CONCLUDING REMARKS 

As a result of our asymptotic analysis, we have obtained a completely 

determined relation between a con~inuous dynamical system and a mapping on 

a compact interval (a one-dimensional difference equation). This result is 

new in the sense that up to now, there has not been yet such a description 

of a continuous system having chaotic type of solutions in terms of a differ­

ence equation. For the Lorenz equations [ 17] with its strange attractor a 

comparison with a system of difference equations such as the Henon attractor 

is made, but the relation only refers to the occurence of a typical set of 

limit points in both cases. In the study of Levi a more specific qualitative 

relation between a continuous system and a difference equation was estab~ 

lished. Levi expected the interval mapping to act upon a specific domain 

of the state space, see section 2.2. Likewise one describes the Lorenz 

equations by a mapping from a cross section of the state space into itself. 

From the present study we learn that there exists a typical difference var­

iable which in this case turned out to be the index of a parabolic cylinder 

function, being part of a local asymptotic solution. It suggests that one 

has to look for characteristic quantities of a continuous system in order 

to relate it to a set of difference equations. 

From the interval mapping the bifurcation pattern is understood for 

the various values of b. For the transitional domains gk the bifurcation 

structure turned out to be quite complex. It would be worthwhile to describe 

it in more detail using symbolic dynamics, as suggested in section 2. 

Constructing a numerical approximation of the interval mapping as done 

in section 4.6, we touched upon two points needing some consideration. 

Firstly, the boundary layer solution appeared to be not differentiable in 

the end points, which was overcome by introduction of an asymptotically 

small correction term. Secondly, for v = 7.5 it was not possible to deter­

mine a stable irregular subharmonic for some~. From sharper calculations 

we concluded that even an accuracy of 14 decimals did not suffice. The 

reason for this is that the boundary layer in the interval mapping has a 

thickness of O(exp(-v)). Consequently, the graph of P2 has an extremely 

sharp peak at the point where it is about to be tangent to the diagonal, 

see fig. 12 • For stability it is necessary that I dP2 /dKI < I which is 



only the case for B just past the point of tangency. 
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