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HEINRICH HERRE, JAN JASPARS AND GERD WAGNER 

PARTIAL LOGICS WITH TWO KINDS OF 

NEGATION AS A FOUNDATION FOR 

KNOWLEDGE-BASED REASONING 

INTRODUCTION 

As opposed to theoretical reasoning, such as in mathematics, where all predicates 

are exact, 1 and a single contradiction destroys the emire theory, knowledge-based 

reasoning has to be able to deal with inexact predicates (e.g. from empirical do

mains) having truth value gaps, and with knowledge bases containing contradictory 

items but being still infonnative. Therefore, partial logics allowing both for truth

value gaps and for inconsistency are natural candidates for modelling knowledge

based reasoning. 
In knowledge representation, two different notions of falr,ity arise in a natural 

way. Certain facts are implicirly false by default by being not verified in any in

tended model of the knowledge base. Others are explicitly false by virtue of a di

rect proof of their falsily, corresponding to their falsification in all intended mod

els. These two kinds of falsity in knowledge representation are cnptured by the two 

negations, called weak and strong, of partial logic.2 In the monotonic base sys

tem of partial logic, weak negation corresponds to classical negation by virtue of a 

straightforward translation of partial logic into classical logic which is discussed in 

section 3. In the nonmonotonic refinements of partial logic, discussed in sections 

4 and 5, weak negation corresponds to negation-as-failure, and hence can be used 

to express local Closed-World Assumptions, default rules, and the like. 

As opposed to the traditional logical notion of a theory being a (possibly deduc

tively closed) set of formulas, the emerging concept of a knowledge base (KB) is 

richer both in terms of the expressive structure of a KB and in terms of the meaning

ful restrictions imposed upon it. Typically, a KB consists of facts and various kinds 

of rules. In this paper, we shall only consider deduction rules. Facts correspond to 

sentences of an appropriately restricted language, and deduction rules correspond 

to non-schematic (Genlzen) sequents. While facts express extensional knowledge, 

rules express in tensional knowledge. This dichotomy of the knowledge represen

tation language also affects the use of the universal quantifier; a generic law, for 

l In the sense of KOmer [ 151. 
2This was already noticed in [26). 
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instance, is rather expressed in the form of a rule and not by means of a universal 
sentence. 

In real world knowledge bases like, for instance, relational or deductive data
bases, it is essential lo be able to infer negative infonnation by means of minimal 
(resp. stable) reasoning, i.e. drawing inferences on the basis of minimal (resp. sta· 
ble) models. Relational databases, being finite sets of tables the rows of which rep
resent atomic sentences, have traditionally been viewed as finite models. On this 
account, answering a query P is rather based on the model relation, Mc. I= F, 
where Ma is the finite interpretation corresponding to the database 6., and not on 
an inference relation. However, especially with respect to the generalization of re
lational databases (e.g. in order to allow for incomplete information), it seems to 
be more adequate to regard a relational database as a set of atomic sentences Aa, 
and to infer a query F whenever it holds in the unique minimal model of A,:.,, i.e. 

Ac. I- F :~ Min(Mod(Ac.)) <;; Mod(F) {} Mc. I= F 

While minimal models are adequate for definite extensional knowledge bases (such 
as relational databases), a refinement of the notion of minimality, called paramin· 
imality, is needed to capture the inclusiveness of disjunctive knowledge. Minimal 
and paraminimal models are discussed in section 4. 

It turns out, that for a deductive knowledge base, corresponding to a set of se
quents, minimal (resp. paraminimal) models are not adequate because they are not 
able to capture the directcdness of rules. We, therefore, propose stable models as 
the intended models of deductive knowledge bases in section 5. We show that Gel
fond's and Lifschitz's notion of an answerset of an extended logic program [II] 
corresponds to a special case of our notion of a stable model of a sequent set. 

Since in practice large knowledge bases cannot be expected to be free of incon
sistent infonnation, one needs a notion of inference which is able to tolerate incon
sistency and at the same time still as logically conservative as possible. In order 
to deal with possibly inconsistent KBs, the simplest way is to refer to minimally 
inconsistent four-valued models as proposed in [20]. In summary, we get an 'or
thogonal' combination of minimally inconsistent paraminimally stable models as 
the preferred models of a deductive knowledge base. 

2 PRELIMINARIES 

A signature er = (Rei, ExRel, Const, F'un) consists of a set of relation symbols 
Rei, a set ExRel £ Rei of exact relation symbols, a set of constant symbols, and a 
set of function symbols. 

The set of all variables, Var, is { xo, x1 , ••• } : we will also use x, y, .. ., how
ever. U(u) denotes the set of all ground terms of er. The logical functors are -, ~ 
, /\, V, I, :i, V, 3; where -, ~,I and ::i are called weak negation, srrong negation, 
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exclusive disjunction, and material implication, respectively.3 L(a) is the smallest 
set containing the atomic fonnulas of a, and being closed with respect to the fol
lowing conditions: if F, G E L(u), then { ~ F, -F, F /\ G, P v G, FIG. F ::i 
G, 3xF, 'r/xP} ~ L(u). 

L0 (a} denotes the corresponding set of sentences (closed formulas). For sub
languages of L(u) fanned by means of a subset :F of the logical functors, we write 
L(u; :F). With respect to a signature a we define the following sublanguages: 
At(u) = L(u; 0), the set of all atomic formulas (also called atoms); Lit( a) = 
L(u; {~}),the set of all literals; Lit0 (u) the set of ground literals (also called Her
brand basis), and XLit(ff) = Lit( er) U {-I : I E Lit( er)}, the set of all ex· 
tended literals. We introduce the following conventions. When £' £ L(a) is 
some sublanguage, £0 denotes the corresponding set of sentences. If the signa
ture er does not matter, we omit it and write, e.g., L instead of L(a). Furthermore, 

X={~F FEX}. 
Let L <;;; L(a) be a nonempty language. An operation C: zt. -+ 2t. is called an 

inference operatian, and the pair (L, C) is said to be an inference system. The cor
responding inference relation I- is defined by X I- F iff FE C(X). An inference 
operation (relation) is called a consequence operation (relation) if it satisfies Inclu
sion (Reflexivity), Idempotence (Transitivity), and Monotony. (£, C) is called a 
deductive system if C is a consequence operation satisfying Compactness. 

A model-theoretic system (L, I, F) is determined by a language£, a set I whose 
elements are called interpretations and a model relation I= <;;; I x L between in
terpretations and fonnulas. With every model-theoretic system(£, I, f=), we can 
associate a model operator Modi, a consequence operation C1, and a consequence 
relation f= 1 in the following way. Let X <;;; L, then the associated model oper
ator is defined as Mod1(X) = {I E I : :r I= X}, where I I= X iff for 
every F E X : :r I== F. The associated consequence operation is defined by 
C1(X) ={FE L: Mod1(X) <;; Mod1(F)},andfinallyX \=I FiffF E C1(X). 
For a subset K ~I the theory of K, denoted by Th(K) is defined by Th(K) = 
{FE L : If= Ff.a. I E K}. A model-theoretic system (L, I, f=) is called cam· 
pact if C1 is compact. An inference system (L, CL) is called correct, resp. com
plete, with respect to the model-theoretic system (L, I, I=) iff CL(X) <;;; C1(X), 
resp. Ci(X) = C1(X). In the case of completeness we also say that (L, I, I=) 
represents (L, CL). 

If X is a set of sets, then Fin(X) denotes its restriction to finite elements. If Y 
is an partially ordered set, then Min(Y) denotes the set of all minimal elements of 
Y, i.e. Min(Y) = {X E YI ,3X' E Y: X' < X}, and Max(Y) denotes the set 
of all maximal elements ofY, i.e. Max(YJ = {X E YI ,3X' E Y: X' > X}. 

3PossibJe extensions of our frrunework mny in addition include negation·as·inccnsistency (~), in
tcnsionW implication(-+}, and rnodaJ operators for definite nnd persistent belief. 
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3 PARTIAL LOGICS WITH TWO KINDS OF NEGATION 

In this section we start with a brief introduclion of partial model-theory, and then 
we present their underlying axiomatics. Since partial logic adopts its name from its 
alternative at the very core of denotational semantics, consisting of a shift from total 
10 partial truth-value assignments, this order of presentation seems most natural. 

More specifically. we begin with a presentation of partial first-order models. 
Then we will discuss some issues of the expressivity of cenain languages for rea
soning on the basis of partial models. An essential feature of partial models is the 
fact that they allow to distinguish between two types of extensional4 negative in
formation, i.e. between the explicit falsity and the 11011-truth of a proposition. 

After this, we will show how partial first-order logics can be translated into clas· 
sical first-order logic. This result does not mean thal partial logic is abundant• but 
rather shows how well-known meta-theoretic theorems can be adopted from clas· 
sical logic. An immediate consequence, which is directly relevant for this paper, is 
compactness. 

In the third subsection we will present Gentzen·style axiomatizations of partial 
logics. Other styles of derivation, like Hilben-style axiomatization and natural de
duction, are also possible. The reasons for us to chose in favour of the Oentzen
style comes down to its meta-theoretical convenience and its brevity. 

3.1 A1odelTheory 

The model-theory of partial logic is slightly deviant from the standard Tarskian one 
of classical logic. The only difference is that the predicate structure is somewhat 
richer. As already stressed above, the central idea of partial logic is the distinction 
between falsity and non-truth. In the partial predicate logics which we will discuss 
this distinction is implemented by assigning a positive and a negative extension to 
each predicate. 

DEFINITION 1 (Interpretation) Let u = (Rel,E:r;Rel, Const,FUn) be a sig· 
nature. A partial u·interpretation I consists of: 

J. A set Uz, the universe or domain ofI; 

4 Roughly speaking, cxrensiomility says lhat the infonnation is only aboul one specific infonnation 
Slllle or model. lnlensional infonnation c:omes from other lnfonnation state which are relaled in one 
way or another to tho lnfonnl\tfon stid:e at hand. An ex.ample of on intcnsional treatment of negation can 
be found in intuitinnisric logic. In this setting, ~.P means !hat every hypolhctical verification of .p will 
lead to a conlmdicdon. In Dtbcr words, for delennining lhe !ruth of ~.p we need 10 rake 'later' stllles of 
infonnntion, which contain more inlonnntion thPD the current one, into account. 

60pponents of pilttial logic may argue that the translation ectually •proves' lhe abundance of partial 
logic. We disregard such an abs1rac1 position, becllllSC for praclicol purposes, portial logic erises as lhe 
moit natural model-theorellc method for inlerpreting the two kinds of extensional negative infonnntion 
that we mentioned above. 
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2. an assignment <f E U:i: to every constant symbol c E Const; 

3. 011 assig11111ent of a functio11 P : u;rcn 4 U:i: to every fi111ctio11 symbol 
f E f\Ln, where ar(f) denotes the arity off; 

4. an assignment of a pair (R1, ilI) to every relation symbol R E Rei such 
that 

R7 u R7 ~ u;·<R>, 

and in the special case of an exact relation symbol R E ExRel, 

RT u IF= U;"(R)' 

where ar(R) denotes the arity of R. 

While many predicates from the ontology" of empirical domains are inexac~ i.e. 
have truth value gaps, analytical predicates (such as equality, or being a prime num
ber), and legally defined predicates (such as being eligible, or having a certain na
tionality} are exact. 

In the sequel we shall often simply say 'interpretation' instead of 'partial inter· 
pretation'. 

The class of all partial u-interpretations is denoted by I 4 (u). We define the 
classes of coherent (sometime also called 3-valued), of total, and of total coherent 
(or 2-valued} a-interpretations by 

Ic(u) ={I E I 4(u) : Rt n Jft: = 0 for all RE Rei} 
I1(a) ={I E /4(a) : RJ: U Ji,I = u;r(Rl for all RE Rel} 
I2(u) = Ic(a) n I 1(a) 

The satisfaction relation I= between an interpretation, a valuation and a formula is 
defined inductively on the complexity of formulas F E L(u) and ~F E L(u). 
Suell a dichotomous induction is needed, because verification and falsification are 
independent truth-value assignments in partial logic. 6 A valuation over an interpre· 
talion I is a function 11 : Var -t Ur, which can naturally be extended to arbitrary 
terms by 

v(J(t1, ... ,t,,)) = jI(v(ti), ... ,v(tn)) 

Note that for a constant c, being a 0-ary function, we have 11( c) = rf. For a tuple 
t1; ... , tn we will also write t when its length is of no relevance. We write µ =~ 
v, if two valuationsµ, v are equal except for the variable :r;; µ(y) = v(y) for all 
yEVar\{x}. 

8 Mosl often these two relations are also written in a diffmnt fashion, e.g. I= for veriftcnlion Md =I 
for fnlsificPlion. Such a treatment is needed when the strong negation - is not a.vailnble. In this paper. 
we will not deal with strong negation free sublanguages. 
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DEFINITION 2 (Satisfaction Relation) 

I, 11 \= R(t1, .. ., t,,) iff (v{t1),. .. , v(tn)) E RT 
I, 11 f= "'R(t1, ... , t,,) iff (11(ti ),. .. , 11(ln)) E _RI 

I, 11 I= F /\ G if! I, v I= F and I,,, I= G 
1,vf=FVG iff T,v)=ForI,1,)=G 

I,vf=-F iff I,vt6F 

I, v I= 'lxF iff I, 11 I= F for all fl =x v 
I, v I= 3xF iff I, 11 I= F for certainµ =x v 

All other cases of formula composition are treated by the following DeMorgan
style rewrite rules expressing the falsification of compound formulas: 

N(F/\G) --t NFVNG 
"'3xF(x) --t \fx,..,F(x) 

NNF --t F 

and the definitions for exclusive disjunction, 

F/G --t (F /\ -G) v (G /\ -F) 

and material implication, 

F :> G--1-FVG 

"'(FVG) -t NF/\NG 
"'\fxF(x) -t 3x,..,F(x) 

N -F --t F 

in the sense that for every rewrite rule LHS -+ RHS, we define 

I, v \= LHS iff I, v != RHS 

Notice that conjunction and disjunction, resp. the universal and the existential quan
tifier, are interdefinable via the DeMorgan rules, and consequently, it is sufficient 
in definitions and proofs to treat the functors - , "', /\, V. 

DEFINITION 3 (Model Relation) The model relation between an interpretation 
and a formula FE L(a) is also denoted by p; it is defined by 

1 I= F ijf1, v /= F for every v E Ur Var 

IfI p F for every F E X and I E I. , then I is said to be a *-model of X. 

For * = 4, c, t, 2, Mod. denotes the model operator associated with the system 
{L(a), I.,\=), and!=. and G. denote the corresponding consequence relation and 
operation, i.e. X P. F iff Mod. (X) ~ Mod. (F). A set X is •-satisfiable iff 
Mod, (X) i- 0. 

DEPINITION 4 (Satisfaction Set) Let I E I 4 (o-), and X ~ L{a). Then 

Sah(X) = {v E U:rVar :I,v I= X} 
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DEFINITION 5 (Logical Equivalence) Let F, GE L(o-). The formulas F and G 
are logically *-equivalent, symbolically F =• G, ijffor all I E I. (o-), Sat:r(F) = 
Satr(G). 

Note that this definition of equivalence does not capture uniform substitutability. 
For example p /\ Np =:c q /\ Ng, but N(p /\ Np) ~c N(q /\ "'q). In general, 
substitutability of F by G can be regained by requiring that F =• G and "'G =• 
NF. 

It is not hard to show that the general case of I 4 (o-) can be reduced lo classical 
logic. Because the propositions F and ,..,pare completely independent, they can be 
understood as two different propositions in a two-valued setting. This can be made 
explicit by a dichotomous translation function, which has been given (in a slightly 
different way) by Gilmore [9]. but can also be found in Feierman [6] or Langholm 
[16]. 

DEFINITION 6 (Gilmore translation) The Gilmore translation function g is a pair 
(t,f) with: 

(R(i))t 
(~F)t 

(F /\ G)' 
('lxF)' 
(-F)' 

R,(i) 
pf 

F' /\G' 
VxF' 
~F' 

(R(l))f = Rr(i) 
(~F)r = F' 

(F /\ G)' = prvar 
(\fxF)r = 3xFr 
(-F)r = pt 

where we have introduced the new relation symbols Rt and Rr which are intended 
to capture the truth and the falsity extension of R 

If o- = (Rei, ExRel, Cons, F'unc) is a signature, then we define o-8 to be the signa
ture {Re/8, Rel8, Cons, F'unc) such thatRel8 = E!ERelU{Rt, Rr /RE Rel}. Fur
thermore, if I is a o--interpretation, we write I& for the o-g-interpretation such that 
I and I" coincide with respect to Cans and Fune, and for R E Rei: (Rt?g =RT, 

and (Rr )r' = R.1. By a simple inductive argument it can be shown that 

(I) 'I, v F= F iff T', v I= pt for all 1-valuations v. 

The translation is surjcctive, which implies that we even have the following more 
drastic equivalences: 

PROPOSITION 7 lf X ~ L(o-) and FE L(o-), then 

X /=4 F ~ xt f=2 F'; 
x l=c F ~ x•, y F=z F' with y = {N(G' /\Gr) I GE L(a)}; 

X l=t F ~ X', Z l=2 F' with Z = {G' v Gr I GE L(o-)}.7 
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COROLLARY 8 (Lowenheim-Skolem) Let*== 4, tore. If a formula FE L(a) 
is •-satisfiable, then it also has a countable model, i.e. there exisls I E Mod, (F) 

such that U1 is countable. 

COROLLARY 9 Let* == 4, tor c. 

I. Compacmess; X ~ L(o) is *·satisfiable ijj every finite subset of X is 
•-satisfiable. 

2. Finiteness: X f=, F iffthere is a finite set Y ~ X such that Y f=, F. 

3.2 Propositional Expressivity and Normal Forms 

Let us suppose that we only deal with the sublanguagc Prop(u) := L0 (u;A, V, 

-, -). A a-interpretation I can then be understood as a partial truth-value assign
ment Vz : Ato(a) -) 2{o,i}, The simple reason to do so is that we wish to discuss 
the expressivity of connectives, rather than that of quantifiers. The corresponding 
partial truth-value assignment: V:i:(P) is the subset of {O, l} such that 

1 E Vr(P) iff P E Dr 

0 E V1(P) iff -PE Dr 

In other words, {O, l} stands forover-valued, {O} for falsity, { 1} for truth. and 0 for 
under-valued. The set of all truth-values, {0, {O}, {l }, {O, l }}. will be called four. 
The subsets {0,{0},{l}}, {{O},{l},{0,1}) and {{0},{1}} will be denoted by 
three, three' and two, respectively. 

Of course, this definition settles a 1-1 correspondence between partial interpre
tations and pania! truth-value assignments. For this reason, we will drop the I
index in the sequel of this subsection. For the full collection of partial truth-value 
assignments we write V 4. V 0 , Yt and V 2 refer to the obvious subclasses of partial 
truth-assignments. 

The question arises, whether our propositional language that we work with, is 
expressive enough to describe the content of a partial truth-assignment V E V 4 . 

In other words, can every (extensional) connective be defined in tenns of the con
nectives of the language. This property is also called expressive or functional com
pleteness of the language. In classical logic, we know that the language Lo (a; ~, A) 
is adequate for this purpose. In partial logic this is certainly not the case, by means 
of lhese two connectives we can not express that a proposition is not true: -P can 
not be defined by means of P, - and A alone. 

These issues of expressi vity are not of purely theoretical concern. For example. 
given a subclass of models which behaves computationally very well, then we want 

7Tne stronger VctSioos with G E At(u) nlso hold. 
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lo know the exact language which describes such a class.8 Furthennore, if we want 
to axiomatize an extension of the model class I 2 , then we need to know whether 
connectives are independent or can be defined in tenns of others. We know for 
sure, that the former class requires explicit reference within such an axiom system. 
Last but not least, we also want to have a formal understanding what we really gain 
in expressivity, once we extend a model class. For example, the fonnula -(P V 

~P) has no 2-models, but is c-satisfiable, which makes clear that - really adds 
expressive power to the connectives~ and V. 

In other words, given a class of models. we wish to know the underlying lan
guages of both super- and subclasses. 

Formally, we interpret an n-ary connective 1 as a function [!] from n-tupels of 
truth-values to truth-values. 

b) : vain -+ val 

with val being one of the earlier mentioned truth-value sets: {{O). {l}) i;; val i;; 
{0, {O}, {l}, {0, l} }. For example, the weak negation - is interpreted as the func
tion 

{ {O} iflE.?: 
[-] (x) == {1} otherwise. 

The question arises. whether this weak negation is sufficient as an addition to - and 
A to obtain functional completeness for the classes V,. V1 and V4. The answer is: 
'nearly'. We only need to add some additional nullary connectives u and o, which 
obtain the following denotation: [u] = 0. and [o] == { 0, 1 }. 

The following table presents for all four classes the associated set of connectives 
which yields functional completeness. 

V2 ~. /\ 
Ve u, ........ ,-,/\ 
Vt 0, ........ 1-1/\ 

V4 u,o,.....,, -1/\. 

In the field of partial logic many more expressivity results are known for well
defined subclasses ofV, and V 4 (see [3], [!6], [2), [19) and [23)). An important re
sult is the functional completeness of u, ~,A with respect to the persistent connec
tives over Ve by Blarney in [3].9 A connective 'l' is persistent iff its interpretation 
(!] is monotone over <;;: 

(V'i E {1, ... ,n}: x,;; y;) ~ ['l') (xi, ... ,Xn) ~ ['l'] (y1, ... ,y,.). 

8F..g. Langholm's description of Hom clauses in partial logic [17] in tenns of transfening rhe clas

sicnl semantic properties of such clauses to partial logic, nnd then define the language which has this 
properties over part.in! models. 

9The connective set{"",/\} has complete expressivity over so-cn.l\ed closed persistent connectives 
in Ve (2]. Closed connectives always obtain a classical vulue, {O} or {l}. if nil its arguments have 
classical vnlues. 
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In V 4 we also need o for getting the same complete expressivity over the same class 
of persistent connectives [ 191.1° 

In most cases, functional expressivity of a propositional language can be demon

strated by means o[ so-called normal forms in the language, which specifies the 
class of satisfying truth-value assignments in an obvious way. In this section we 
only discuss the language with complete expressivity for V4, Ve, V, and V 2 . 

DEFINITION 10 If X isa setoffomtulas, then-rX := {'YF IF EX} fora given 
unary connective 'Y· If X = { F1 , • .. , Fn} is a non-empty finite set of formula then 
/\X := F1 /\ ... /\ Fn andV X := F1 V ... V Fn. 11 

A conjunct form is ofonn11la ofthefonn: 

(2) /\ W /\ /\ ~x /\ /\ -Y /\ /\ -~z. such that W, X, Y, Z ~ At0 

A 4-conjunctform is a conjunctfonn as i11 JO with WU Y = XU Z = At0 

and W n Y = X n Z = 0. A c-conj11nct fonn is a 4-conjunct fom1 as in l 0 with 
W n X = 0. Analogously, at-conjunct fonn is obtained by taking Y n Z = 0 and 
fora 2-conjunctform we stipulate Y = Z = 0. 

A disjunct form is a fom1ula of the fonn: 

(3) VwvV ~xvV-YvV-~Zsuchthat w,x,Y,Z <; At0 . 

The notions of *-disjunct fom1 are defined analogously. A disj1111ct fom1 in L( a) is 
said to be a clause. 

A prenexfotmula F E L(cr} has the form Q1 x1 ... Onx.,.G(x1 , ... , x.,., Yi. 
... , Ym), where G is quantifier free and Q; E {II, 3}. G is called the matrix of 
F and is denoted by matrix( F). 

PROPOSITrON 11 (Propositional Normal Form) Every propositional fonnulo is 
4-equivalent to either a disjunction of 4-conjunct forms, ..l, o or u. Analogously, 
such a fom1ula is 3-equivalent to .L, u or a disjunction of 3-conjunct /onus, and 
I-equivalent to .L, o or a disjunction oft-conjunct forms. 

In general, it is not possible to obtain precise predicate logical version of propo
sition 11. Most often, so-called prenex nonnal forms are used to define versions of 
the normal fonn result above for the predicate logical case. 

PROPOSITION 12 (Prenex Normal Fonn) For every fonnula F(xi, ... , Xn) E 
L(a) there are prenexfommlas G(x1, ... , x.,.), H(x1, ... ,.-en) E L(u) such that 

10This result for persistence gives us immedintely nn answer to the question for which class of for
mulas 2-solisfiability is the same as c~salisfiabUity: al11he formulas which can be defined in tenns of u, 
~and A. 

110f course, this is not a well-defined formula. but becnuseof communuivity of v and A this choice 
is unique op to logicnl equivalence. 

rl\l\\ 11\1..1..\J\J\\.;) "Ti I H\ I 'l'\\J ~\\")\I \J\ N:l,l\\\ \\J\' \.<\ 

I. F =4 G, and F '=4 H; 

2. matrix(G) = V X, X is a set of conjunct forms, matrix(H) = f\ Y, Y is 

o set of disjunct forms. 

3.3 Proof Theory 

In this subsection we will present sequent calculi for partial logics. As mentioned 
earlier, other styles of derivation calculi are also possible. There are several rea
sons to chose for the sequential style. First, they make the axiomatic differences 
between different partial logics and classical logic immediately visible. Second, 
meta-theoretic proofs about the relations between deduction and model-theory, such 
as correctness and completeness proofs, benefit from a sequential proof theory. 
Third, in many cases sequential systems tum out to be shorter.12 For example, 
general completeness results for functionally complete languages, can be easily be 
transformed to completeness proofs for poorer sublanguages. 

DEFINITION 13 (Sequent) A sequent sis an expression ofthefonn 

F1, ... ,Fm:::} G1, ... 1Gn 

where F;, G; E L(a) for i = l, ... , m and j = l, ... , n. The body of s, de
noted by Bs, is given by {F1 , ... , Fm}, a11d lhe head of s, dcnoled by H s, is given 
by {Gi, ... ,Gnl· Seq(a) denotes the class of all sequents s such that Hs, Bs <; 
L(cr). 

DEFINITION 14 (Model of a Sequent) Let I E h Then, 

I)=F1, ... ,Fm => G1, ... ,Gn if! n Sotz(Fi) ~ LJ Satz(G;) 
i$m i!:n 

For S <;;; Seq, Mod.(S) and Sf=, s are defined analogously as in Definition 3. 

DEFINITION 15 (Sequential inference) A sequential inference rule R has the 

fonn 

S1 ... Sn 

Sn+l 

withsi E Seq(u)foralli E {l, ... ,n}. Thee/ementsof{s1, ... ,sn}arecal/ed 
the assumptions of R. and sn+1 is called the conclusion of R lfn "' IJ, that is rules 
without assumptions, we say that R is axiomatic, and simply write s1. A sequential 
system s is a set of sequential inference rules. Every conclusion of an axiomatic 

12 Jn partial predicate logic, this advantage of sequential systems doe& not become shwply evident. 
A branch of partial logic. which surely benefits in this respect from sequential nxiomarization is parti!l.I 
modnl logic, as have been shown in Jaspnrs [!31. 
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rule i11 s is said to bes-derivable in 0-steps. If m > 0 then a sequent s is said to 
be s-derivable i11 m steps if there exists a rule •1t·~··•• E s such that far all i E 
{1, ... , k} thesequeflts s; are s-derivable in less than m steps. A sequem is called 
s-derivable if it is s-derivable in a certain finite number of steps. These seque11ts 
X => Y are called s-sequents, a11d we write I-, X => Y. 

Below we will present sequential systems for the partial logics which have been 
discussed earlier. As usual, we distinguish structural rules from introduction rules. 
Structural rules are syntactically independent of the logic which we are axiomatiz
ing. Introduction rules stipulale the meaning oflogical functors in a proof-theoretic 
fashion. Logical functors are introduced both in lhe head of a sequent (L-inlro
duction) and in the body ofa sequent (R-introduction). Furtbennore, we distinguish 
between rules which introduce a new compound proposition as being true and those 
which define the falsity of a new compound proposition which then appears in the 
scope of the strong negation~ wilhin the conclusion of the rule.13 Every introduc
tion rule is specified by an abbreviation of the form Xv")I, where x E {L, R} (left 
or right), v E {true, false} and 1' specifies the connective or quantifier which is 
introduced. 

Below we give a presentation of lhe rules which are relevant for the axiomati
zalion of partial logic. Instead of Xu {F} we write X, F. 

Structural Rules 

F=>F 

X => Y,X ~ X',Y;; Y' 
X :?Y 

X, F => Y X' => F, Y' 
x.x' => Y,Y' 

START 

MON 

CUT 

This set of structural rules will be called struc. 

13 In (8] so-<allcd quadrants have been introduced, which can be understood as a kind of four-pluccd 
sequcnts: XIX' =? YIY'. The troth-conditional reading of such a quodrant is that all models which 
verify all mernbert of X and falsify all mcmbm of X', verify at leost one member of Y or falsify 
at least one member of Y'. This approoch maku falsi!Y introduction possible within lhe derivntional 
foI111at and is therefore somewhat more elegant. lfwe wish to axionu11izc ....,_free sublanguages, such o. 
choice would even be ncccssmy in order to obtllin complete inference sysrems in a sequential fashion. 
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Truth Rules 

X=>F,Y 
X,-F::=,Y 
X,F,G=> Y 
X,F /\G=> Y 

X,.L =i-Y 

Ltrue_ 

Lt.rue/\ 

Ltrue .l 

X, F{t/x] =l- y (1) L""'V 
X,VxF=> Y 

( l) = t substitutable 
for:.r:ioF 

X,F=> Y 
X => ~F,Y 

X =:- F, Y X' => G, Y' 
X,X1 => FAG,Y,Y1 

x => o, y 

X => F[c/x), Y (2) 
X =>V:z:F,Y 

(2) "' c is a closed term 
not occurring in X u Y 

133 

Rtruerv 

RLrueA 

R'""•o 

Rtruev 

Furthermore, L <ru• - and R ''"•- are the rules which evolve from substituting -
for~ in the rules L"""~ and Rtru•-, respectively. For the 0-ary connective u we 
have only one rule; the same as as for l.: L"""u = X, u => Y. All these rules 
together are called true. 

Falsity Rules 
X,F=:-Y 

X,~~F=>Y 
X,~F => Y X',-G =:- Y' 
x,x',-(F /\G) => Y, yr 

X,-u =>Y 

X, -F(c/:z:) =:- Y (2) 
X,~V:z:F=> Y 
(I) and (2) as in 

true above. 

Lr .. lae......., 

Lral1eA 

Lfa.l••u 

1,.la.IHV 

X=>F,Y 
X => ~~F,Y 

X =>~F,-G,Y 
X => ~(F /\ G), Y 

X =>~l..Y 

X =i- ~Flt/x], Y (1) 
X =>~V'XF,Y 

Reuse,..., 

RfalnA 

Rf&IH l. 

Rrat1ev 

Rral••o is the same as Rfalse .L with J. replaced by o. For - we have the same rules 
as for-. Simply substitute -F for the occurrences-Fin Lfal••~ and Rfal••- and 
we obtain Lfal••- and Rial••- respectively. The complete set of these falsity rules 

will be called false. 

We define lhe following sequential systems: 

2 

c = 

4 

struc U (true\ {Rtru•o, L\ru•u}) 

struc U (true\ {R""•~, R""•o}) U (false\ {Rfaloeo}) 

strucU (true\ {Ltru•-,L1'•0 u}) U (false\ {Lf•t••u}) 

(c n t) u {Lvu, Rwo Iv, w E {true, false}} 

Below we will presenl completeness results of these systems with respect to the 
corresponding model-theoretic consequence relations. This completeness only 
holds when we presuppose lhe absence of exact predicates within the underlying 
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signature. If a contains exact predicates, we need to strengthen the systems c and 
4 with a straighlforward compensation for the loss of {R""0 -}. Let L(a,,) be the 
sub language of L(a) which consists of all the proposition that only contain exact 
predicates. The systems c-ex and 4-ex evolve from adding the rule R~~u·~ to c and 
4, respectively. This additional rule has the following form: 

X,F=:, Y FE L(a.,) 
X=:,~F,Y 

Rtrue ex ~ 

OBSERVATION 16 The differences between 2, c, t, and 4 can also be described 
by means of relativized versions of contraposilion. In 2 we have that 

h X =:- Y ~ f-2 -Y =:- -X 

This is a Jann of contraposition for strong negation. ln all the other systems we 
obtain this comraposition rule al least for the weak negation. The systems c and t 
have mixed versions of the rule of co11trapositio11: 

f-. X =:- Y <=* f-, ~Y =? -X 
f-, X * Y <=* f-1 -Y =:, ~X 

The following proposition presents the completeness of the sequential systems 
of the previous paragraph. In fact, for the logic whose underlying language is func
tionally complete, these results can be already obtained by means of the translation 
of definition 6. 

PROPOSITION 17 (Completeness) Let s be 4, c, t or 2, and let • refer to the as
sociated model class, 4, c, t or 2, respectively. If a is a signature with 110 exact 
predicates, then for allji11ire sets X, Y c;; L(a) we have: 

f-, x * y if! F. x * y 
If a contains exact predicates, 1hen the completeness result only holds for 2 and t 
For4 and c, we have 

f-3_., X :} Y if! Fe X * Y and h-c. X ='t Y if! F• X =:- Y 

The partial results of soundness are the left-to-right directions of the equivalences in 
the above proposition. These results can be checked by a straightforward induction 
on the length of derivation. 

In order to give an ordinary Henkin-style proof of these completeness theorems, 
we need to define the notion of saturated sets. This is a generalization of the notion 
of maximally consistent sets, which is needed to prove the completeness for partial 
logics with poorer expressiviry. Especially, when the weak negation is lacking, the 
requirement of maximal consistency is too slrong. 
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DEFINITION 18 (Saturation) Lets be a sequential inference system. A set X <:::; 
L(a) is called s-saturated ifffor all finite sets X', Y' <:::; L(a) and X' <:::; X: 

(4) If f-, X' => Y' then Y' nX i' 0· 

A set X <:::; L(a) is called s-term-saturated iff X is saturated and for every 3xF E 
X rhere exists a constanr c in a such that F[x/c] EX. 

Note that for every s-samrated X there exists no finite X' <:::; X such that f-, 
X' =;. 0. This property captures the s-consistency of X.14 Taking Y' in 18 to 
be a singleton tells us that s-saturated sets are closed under s-deduction. If Y' has 
multiple elements, the definition tells us that every 'disjunctive' conclusion from 
X breaks down into at least one element of X. In other words, the information in 
X does not contain disjunctive uncertainty. Complete certainty is captured by the 
defintion of term-saturation. 

A further relevant observation here is that if a sequential systems contains struc 
and a rule :-: ~ ~ , thens-saturatedsets are the same as maximallys-consistent 

~ ' 
sets. 

LEMMA 19 (Generalized Lindenbaum Lemma) Let X and Y be two finite sub
sets ofthe language L(a), and lets E {2,c,t,4}, Iflf, X => Y, then there exists 
a s-saturated set Z \; L( a) such that X <:::; Z and Y n Z = 0. 

The standard Lindenbaum lemma can be obtained by taking Y = 0 in the gen
eral formulation above. Because saturation is the same as maximal consistency for 
systems with the L-TRUE rule for negation, !he classical result is the same as saying 
!hat every consistent set is a subset of a maximal consistent set. 

The generalization of the classical Lindenbaum lemma is due to Aczel and 
Thomason . The generalization of the classical result evolved from independent 
succesful attempts to prove the completeness of intuitionistic predicate logic (I; 
24]. 

Most often, the proof of the generalized Lindenbaum lemma is presented by 
making use of syntactic expressivity of the language that one works with. In fact, 
the set of rules struc is enough lo obtain the result (14). If If, X => Y, and 
{ Fi};eN is an enumeration of the language, we define the following sequence of 
sets of formulas: 

Xo 

Xn+t 

x 

{ 
x,,,u{F,,) 

Xn 

if 1,f, Xn, F,,, =:- Y 

otherwise. 

14 If I- 11 X' => 0 then r- X' ::::> F for all F by application of MON. Note lhnt a sequential system s 
which contain the rules struc is conistent iff I/a ta=> 0. 
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The limit of this sequence is ans-saturated set, which contains X and does not in

tersect Y. 

In the completeness proofs of partial predicate logics, we need term-saturated 

sets instead of saturated sets. The (cheap) trick to obtain these term-saturated sets 

is to extend the language with a countably infinite number of additional constants 

(also called paramete1:1"). Let L(a') be such an extension of L(a), and let X and 

Y be two finite subsets of the latter language. 

COROLLARY 20 lflf, X => Y then there exists a11 s-tem1-saturated Z c;; L(a') 

such that X <;; Z and 2 n Y = 0. 

This result immediately follows from lemma l 9 and by taking a unique fresh 

parameter as an instantiation for each existentially quantified formula to obtain the 

desired term-saturated set. 

The following lemma, which is also called the truth lemma, tells us that a lerm

saturated set verifies exactly those formulas which it contains. To formulate this 

result properly, we associate with every s-term-saturnted set X <; L(a) an inter

pretation Ix 
U7 'x = the set of all closed terms of o-; 

J7 'x = f for all functions and constants f; 

p7'x = {£j P(i) EX}; 

P1x == {fJ ~P(i) EX} for all predicates P. 

LEMMA 21 (Truth Lemma) Lets be a system which contains the rules struc, and 
let X be s-term-saturated: 

l'x f= F *> F E X. 

The proof of this lemma consists of a fairly straightforward induction on the con

struction of formulas. In fact every connective or quantifier only uses its GWn intro

duction rules. This settles the completeness result also for poorer languages over 

the different model classes. • 

The final argument of the completeness result is an immediate consequence of 

Lemma 19, Corollary20and Lemma2I. Suppose that X and Y are finite subsets of 

L(a) and I(. X => Y. According to Corollary 20 there exists ans-term-saturated 

set Zin a parametrized superlanguage L(a') such that X ~ Zand Y n Z = 0. 

Lemma 21 above tells us that I'z I= F for all F E X and Pz ~ G for all G E Y. 

In other words, ~. X => Y where * refers to the associated model class.15 

16 1t is not hard to verify that1~ E J,(o-) for all s-tenn·satumted sets Z. 
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4 MINIMAL REASONING 

In this section we study several versions of nonmonotonic reasoning based on par

tial logic. In the first subsection nonmonotonic reasoning is analysed in an abstract 

setting. This is done by using the concept of a deductive frame and its semanti

cal counterpart, a model-theoretic frame. On this level of abstraction one can give 

a characterization of several kinds of partial propositional logic. The second sub

section is devoted to Herbrand models. Several theorems are generalized to partial 

logics, in particular the proposition about canonical models of universal theory. In 

the third subsection minimal models are investigated. Then, a new class of models 

is introduced, the <P-paraminimal models of a universal theory which are a general

ization of the good models of [22]. Subsection 4.4 concludes with an investigation 

of compactness properties of the introduced non monotonic model operators. 

4.1 Inference Frames and Model-Theoretic Frames 

Let L be a language and C : 2 L ---t 2 L an inference operation. A condition on 

C is said to be pure if it concerns the operation alone without regard to its inter

relations to classical consequence operation and truth-functional connectives. The 

most important pure conditions are the following. 

X £; Y £; C(X) => C(Y) ~ C(X) 
X <;; Y <;; C(X) => C(X) <;; C(Y) 

X \;; Y \;; C(X) =;. C(X) = C(Y) 

C(C(X)) £; C(X) 

(Cut) 

(Cautious Monotony) 
(Cumulativity) 
(ldempotence) 

An inference operation C is cumulative iff C satisfies inclusion, cut and cau

tious monotony. Besides the three conditions of cut, cautious monotony and cumu

lativity [18] emphasizes several mixed conditions of inference: supraclassicality, 

distributivity, and rationality. C is said to be supraclassical if it extends the usual 

consequence operation Cn of classical logic, i.e. Cn(X) ~ C(X) for all X <;; L. 

Obviously, these mixed conditions can be formulated for any logic.16 For this pur

pose we use the following definition (l2] 

DEFINITION 22 

I. (L, Ci, C) is said to be an inference frame iffthefollawing conditions are 

satisfied: 

(a) Lis a language. 

(b) CL is a11 inference operation 011 L satisfying inclusion, idempotence 

and monotony. 

16This point of view wns assumed in [7] 
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(c) C is a11 inference operation on L extending CL, i.e. Ci(X) ~ C(X). 

2. An inference frame (L, CL. C) satisfies 

(a) left absorption iffCL(C(X)) == C(X); 

(b) congruence or right absorption if! CL(X) = C1,(Y) =;. C(X) 
C(Y); 

( c) full absorption if! it satisfies left absorption and congruence. 

If full absorptia11 holds, CL is called a monotonic basis for C. 

3. An inference frame (L, CL, C) is said to be a deductive frame if it is compact 
and satisfies fall absorption. In this case, CL is called a deductive basis for 
c. 

If CL is compact then the system (L, CL, C) is called a compac/ inference frame. 
A semantics of an inference frame can be introduced by a model-theoretic frame. 

DEFINITION 23 (L, I, P, <!>) is a model·theoretic fnune if! 

I. ( £, I, I=) is a model-theoretic system; 

2. <!> : zL -t zM isafunctor such that <!>(X) s; M od1(X). <l.i is called model 
operator. 

Every model operator cl! corresponds to an inference operation Ceo(X) 
Th(if1(X)). C"' extends C1 and satisfies left absorption, and hence (L,C1,C'I!) 
is an inference frame. 

A model operator 41 is said to be invariant with respect to a model-theoretic sys
tem (L,I, F) iff for all X <;; L, <T!(X) == if1(C1(X)). A model-theoretic frame 
(L, I, f=, <J.i) is said to be compact if C1 satisfies compactness; it is called invariant 
if the model operator<!> is invariant wrt (L,I, Fl· 

PROPOSITION 24 If if1 is invariant for the compact model-theoretic system 
(L, I, p) then (L, C1, C~) is a deductive frame. 

In order to obtain a semantics for a nonmonotonic inference system (L, C) we pro
ceed in two steps: first we have to find an appropriate deductive basis (L, CL, C); 
then we have to construct a model-theoretic semantics for the deductive system 
(L, CL) which will finally yield a model-theoretic frame representing the deduc
tive frame (L, CL, C). 

A set X ~Lis said to be deductively closed iff CL(X) == X. X is deductively 
consistent (in short, d·co11sistenl) if CL(X) 'f L. A deductive system (L, CL) is 
called explosive iff there exists a finite subset Y <;; L such that C L(Y) = L. CL is 
negation explosive if there is a unary functor n : L -t L in the language such that 
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for every X ~ L. and every F E L, the following holds: C L(X U { F)) = L iff 
n(F) E CL(X). A set X <;; Lis maximally d-consistem if CL(X) I- Land for 
every proper superset Y of X it holds that CL(Y) == L. 

OBSERVATION 25 The deductive systems (Lo(O"), C,). where* E {2, c, 4}. are 
explosive and negation explosive. 

Proof. We consider only the case * = c, the other cases are analogous. Let F 
be an arbitrary sentence and G := F /\ -F. Obviously, Cc(G) == £0(<7). To 
prove that Cc is negation explosive let n(F) ==d•finition -F. In general we have 
Modc{X) == 0 if and only if Cc(X) = L. Let Cc(X U {F}) == L. then Modc(X U 
{F}) = 0. We prove, thatX Fe -F. Assume, X \6c -F, then there is a coherent 
model Ip X such that I~ -F, hence T p F. But then Mod.(X u {F}) /-
0. a contradiction. Conversely, assume X l=c -F. It is sufficient to show that 
Modc(X U {F)) = 0. Assume Modc(X U {F}) I- 0; then there is a coherent 
interpretation I such that I I= X, F. From this follows X ~c -F, a contradiction. 

Ill 

PROPOSITION 26 /f(L, CL) is explosive then everyd-consistent subset of L can 
be extended to a maximally d-consistent set. 

Closed sets can be used to represent models, and to build model-theoretic seman
tics for deductive systems. Let (L, C1) be a deductive system and Cs(L) = {X <;; 
L : CL(X] = X}. For every subset M c;; Cs(L) the following model-theoretic 
system(£, M, p) can be introduced. Define for FE Land m E M: m I= F iff 
FE m. The model-theoretic system (L, M, I=) represents a semantics for (L, CL) 
iff CM = CL; then it is called a Lindenbaum-Tarski-semantics (L-semantics) for 
(L, CL). Obviously, a subset M ~ Cs(L) represents a L-semantics for (L, CL) 
iff for all consistent X f;; Lit holds that CL(X) == n{Y : X ~ Y II Y E M}. 
This observation implies the following proposition. 

PROPOSITION 27 A subset M ~ Cs(L) representsasemanticsfor(L, CL) iffor 
every d-consistent subset X ~ Land F I/. CL(X) there is an extension X ~ m, 
m E M such that F t{. m. 

For the cons!rUction of a semantics it is sufficient to select a subset of Cs(L) rep
resenting the models. X is said to be relatively maximal (abbreviated r-maximal) 
iff there is a formula F E L such that F r/. Cl(X) and for every proper superset 
Y of X the condition F E CL(Y) is satisfied. Obviously, every r-maximal set is 
deductively closed. Let rmax(L) ~ C s(L} be the set of all relatively maximal 
subsets wrt (L, CL). 

PROPOSITION 28 (Lindenbaum· Tarski) let ( L, CL) be a deductive sys1em, X £ 
L, and F I/. CL(X), then there exists a maximal extension Y 2 X, such that 

Fr/.Y. 
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OBSERVATION 29 rmax(L) is smallest subsystem ofCs(L) representing a se

mantics for (L, CL). We call it the Lindenbaum-Tarski standard semamics (LT
semalllics). 

DEFINITION 30 The inference opemtions C4 , Cc. C,, C2 can be characteriud 

as follows. We restrict our consideration to the case of propositional logic. Let 
Ax4 (Prop) be the following set offornmlas: 

1. F ::> {G :::i F) 
2. (F ::> (G :::> H)) :::> {{F :::i G) :::i (F :::i H)) 
3. (F :::i (G :::i H)) ::i (G ::i (F :::i H)) 
4. (F :::i G) ::i (-G ::i -F) 
5. ~-F':JF 

6. F:>N-F 
7. ,..,,..,p ::> F, - - F :> F 
8. F ':J "'~F, F :> - - F 
9. (F /\G) ::> F 

JO. (F /\G) :> G 
ll. (F ::i (G ::i H)) ::i ((F /\ G) :::i H) 
12. (NF :>~ (F /\ G) 
13. (~G::i~(F/\G) 

14. ((-F ::> H) ::i ((~G ::> H) :> (~ (F /\ G) :> H)) 

Ax1(PrQJ>) = Ax4 (Prop) U {-F ::i "'F/F E Fm(Prop)};Axc(Prop) 

Ax,(Prop) U {"'F :> -F/F E Fm(Prop)};Ax2(Prop) = Axc(Prop) U 
Ax1(Prop). 

Rules: Modusponens: {(F, F :> G/G): F, G fonnulas }. 

OBSERVATION 3 I (Completeness Theorem) Let X ~ Fm(Prop) and* E 

{2, c, 4, t}. D,(X) is the smallest set containing XU Ax.(Prop) and closed with 
respect to modus ponens. Define X I-* F if! FE D.(X). Then, 

Xp.F if! Xl-.F. 

Proof. (sketch for f=4 ): A set X of formulas is said to be complete iffthe following 

conditionsarefullil!ed:F fl' Xiff-F E X,FAG EX iff{F,G} <;;; X,FvG EX 

iff{F,G}nX ;"0.~ -F EXiffF E x.~~FE XiffF Ex.~ (FAG) Ex 

iff {~ F,~ G} nX f 0,~ (FVG) EX iff {~ F,~ G} £; X.If X is complete 

then the set I = {l E Lit0(u) : l E X} is a partial model of X. To prove the 

completeness theorem we assume X F< F but X \(4 F. By proposition 28 there 

is a maximal set Y 2 XU Ax4 such that Y \14 F. It can be shown that Y is 

complete and deductively closed. This implies F ii! Y, hence -F E Y. Then 

there exists a model I != Y such that I ~ F. This is a contradiction to X f= 4 F. 

II 
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Deductive frames can be semantically characterized as follows [4]. 

PROPOSITION 32 Let :F = (L, CL, C) be a deductive frame. Then there ex

ists a model-theoretic frame S = (L, M, I=, <I>) such that <Ji is invariam and S 

represents :F. 

The subsequent schema summarizes the general method for constructing a seman

tics for a given inference system. The main point here is to find the right deductive 

basis in the set {CL : (L, CL, C) is a deductive frame}. In many cases a deductive 

basis (L, CL) can be chosen to be mallimal [5]. 

(£,C) 

.JJ. 
Construction of a deductive frame 

JJ 
(L,CL,C) 

.JJ. 
Construction of a model-theoretic frame 

.JJ. 
(L,M,f=,iJ.>) 

such that Ci =CM, and C = C~ 

4.2 Herbrand Models 

A partial Herb rand interpretation in \he language L(o-) is one for which the uni

verse equals U(u), and the function symbols have their canonical interpretation. 

In this section we study model-theoretic frames based on Herbrand interpretations. 

Let J~ (er) be the set of all Herbrand interpretations in !,(er), with* E {4, c, t, 2}. 

and Mod,!! (X) = II/ n Mod.(X), X <:::; L~). The corresponding consequence 

relation 1=!1 is defined by X 1=!1 F {}Mod, (X) ~ Mod.(F). 

DEFINITION 33 (Diagram) The diagram of a er-interpretation I is defined as 

Dz = {l E Lit0 (er) : I!= l}.17 

OBSERVATION 34 Partial Herbrand interpretations can be identified with their 

diagrams. 

Proof. Let I= (U(a), (JZ)JEF•n• (RZ)RE!lel) be a Herbrand interpretation and 

ti, ... , tn E U(a). Then I I= R(t1 , .. ., t,..) iff (tf, ... , t;} E RI and I I= 
17Noticc that, strictly speaking, we define the ground diagram, nnd not the foll diagram. 
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~R(t1 , ••• , tn) iff (tf, ... , tf,) E f!_I. From this follows that Dr represents the 
setRiufir. II 

Herbrand interpretations over a can be considered as subsets of Lit0 (u). Then 
the set If (a) coincides with 2Lito{u); I~ (a) = {..7 c;; Lito(o) : s.Lh. there is 

no l E Ato(cr) satisfying {1, ~I} c;; J}; 1r (er) = {J : for all l E At0 (a) : 

{I,~!} n J 7' 0}; and If (o) = 1:1 (a) nI,(o). A consistent set X s;: L(a) does 
not always have a Herbrand model. 

OBSERVATION 35 There are consistent sets X <;; L0(a) without a Herbrand 
model: X = {P(a). Vx(P(x) ::> P(f(1:)), 3x(-P(x))}. 

Let er= (Rei, ExRel, Const,Fun) be a signature, I a partial a-interpretation, 
and U, c;; Uz. The restriction oJI to U1 is a partial interpretation J, denoted by 
J = 7. .). U1 , which is defined by the following conditions: 

l. the subset Ui is closed with respect to the functions {t:r : f E Fun}, and 
{c7: c E Const} s;: U1; 

2. for every R E Rei U ExRel: RJ = RI n u;r(R) and _RJ = i°F n u:r(R>, 

J is said to be a substructure of 7. if there is a subset U, s;: Uz such that .:! = I .j. 
U1. 

PROPOSITION 36 letVx, ... x,,,A(x1, ... , Xm, Y1, ... , Yn) = B(y,, ... , Yn) E 
L(o) be a u11iversalformula,A(x, iJ) qua111ifier free, I. E Modc(o-). and 1, µ I= 
B(Y1> ... , y,,), µan evaluation and µ(yi) = ai, ... , µ(yn) = a,,. Let J be a 
substructure o/Z such that { a1, ... , a,,} £:; U :r. Then :!, µ I= B(yi, ... , y,. ). 

Proof. Assume I,µ I= B(y1, .. . , Yn). and denote this condition by the expres-
sion I I= B[a1, ... , an]· Since B[a1 , • .. , an) is universal it follows that for nll 
b1, ..• , b,, E Ur the condition I I= A[b1,. . .,b.,,, a1 , •.. a,,) is satisfied. Because 
the formula A(x, y) does not contain quantifiers it follows J I= A[b1, ... , bm, 
a.1,. .. an], provided {bi. .. ., b,,,, a1 ,. .. an} c;; U J. This implies p B[a.1,. . ., 

~· . 
COROLLARY 37 Let I E Ic(a), FE L0(o) a universal sentence, and Jc;; 1 a 
substructure o/I. Then I I= F implies J F F. 

PROPOSITION 38 Let S c;; L(a) be a universal theory of signature c; and 
Canst( a) :/. 0. If S has a coherent model then it has a cohere/!/ Herbrand model. 

Proof. Let I be a model ofMod,(S). A Herbrand model lo is defined as follows. 
(I} U(Io) = U(o). 

(2) (ti. ... , t,,) E Rr• iff I j::: R(t1,. . ., tn) and (t1,. . ., tn) E R10 iff 
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1 F ~R(t 1 , ... , tn). where RE Rel(a). 
E'rom (2) follows for every quantifier free formula A(x1, ... , x,.) and terms ti, ... 
tn E U(a): 

(3)Io F A(t,, ... ,tn)iffI F A(t1 , ... ,tn).Now,letA E S,andA 
Vx 1 •.. XkG(x 1 ,. . ., x.). Assume, 10 ~ Vx1 ••• XkG(x), then there is an evalua
tion v such that 10 , v ~ l/XG(x). By definition this is equivalent to the existence 
of variable free terms t 1,. .• , in such that 10 f= -G ( t 1 ,. .. , tn); by condition (3) 

this is equivalent to 1 ~ G(t1, •.. , tn)· But then I~ Vx1 ••• XnG(x) which is a 

contradiction lo the assumption. 1111 

OBSERVATION 39 The relation f=ti is not axiomatizable, i. e. there are decidable 
sets X c;; L(a) such that {F: X Fti F} is not recursively enwnerable. 

Proof. Let? A be the axioms of Peano Arithmetic in the signature o = (0, +, o, s); 

then PA f=~ F iff F is true in the standard model of arithmetic. This gives a 
contradiction to Giidel's incompleteness theorem. II 

PROPOSITION 40 Let S be a universal theory, and F = 3xG(x) a closed exis

tential formula. Then S f=~ Giff S l=c F. 

Proof. The implication (His trivial. We show(--+). Assume S )==~ F, but S !;toe 
3xG(x). then there is a partial model 1 E Mode(S) such that I If' 3XG(x), and 
hence I I= \Ix - G(x). Then SU {VX - G(x)} has a model and by Proposition 

38 there is a Herbrand model lo for Su {l/X - G(x) }. Since lo f= S this implies 
S ~,'.' F, a contradiction. 11 

Proposition 40 cannot be generalized 10 universal sentences. 

OBSERVATION 41 For every language L(o), a containing a relational symbol 
of arity 2 l, there exists a universal theory S i:;; L(o) and a universal sentence F 
such that S Ff<•) F but S !;toe F. 

Proof. W.l.o.g., we assume that er contains a unary relational symbol P(x). Let 

S = {P(t): t E U(a)}, then Sf=~ VxP(x), but, obviously, S V=c VxP(x). II 

DEFINITION 42 (Persistent Formula) A formula FE L(a) is called persistent 
if for arbitrary pania/ Herbrand interpretations I, J over a satisfying I c;; J, 
and eve0• substitution 8 : Var -t Vz the condition 11= Fll implies J I= FB. 

OBSERVATION 43 Every formula FE L(a;-, II, v,3, V) is persiste11t. 

Proof. (Inductively on the complexity of F). Let l E Lit( er) and 1 F !8; then 
l8 E I and hence LB E J for every extension J 2: I. Let 11= (G V H)B; then 
11= Ge or Z F H9. By induction hypothesis it holds J F GB or J I= HO, and 
hence If= (G V H)B. Similarly, this is proved for F = G /I H. 
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Now let be F = 3xG(x, ii) and.>. : Var --+ U (u) is a substitution such that 

1 F G(,\(Y).O(jj)). By induction hypothesis .J F C{,\(F), O(jj)), and this im

plies.] I= 3xG(x,O(y)). Finally, F = \fXG(x,O(Y)). Then, foreverysubstitulion 

,\ : x--+ U(I) 1 F G(,\(x), O(jj)). By induction hypothesis I 1 I= G(,\(x), O(j])), 

and since U1 = U:1 it follows J p VXG(x, 8(fj)). • 

PROPOSITION 44 let S be a universal theory, and F = 3xG(x) a closed exis
tential sentence. Then the following conditions are equivalenr: 

I. Sf=J. 

2. Therearevariablefreesubstitutions01, ... ,8,.suchthatS Fe V,-;,nG(O,(x)). 

Proof. Assume S Fe F; since F is an existential sentence this is equivalent to 

S J=f F. This is the case if and only if for every Herbrand model I of S there is a 

substitution 8z such that I Fe GOz. From this follows that S Ff V{GOr: I is 

an Herbrand model of S}. By the compactness theorem for L, tnere is a finite set 

6 of Herbrand models of S such that S Fe V { GB7 : 1 E 6}. • 

Proposition 44 can also be proved for Ft and 1= .. For F 2 this proposition is 

Herbrand's theorem. 

4.3 Minimal Models 

In tne sequel we introduce several versions of minimal models; we assume that all 

interpretations under consideration are Herbrand interpretations. 

DEFINITION 45 (Extension) Let I and I' be two interpretations. We say that 
T.' extends I, symbolically I :5 I', if D1 <; D1" 

This ordering of interpretations corresponds to the intuitive notion of infomiation 
growth. It has also been called knowledge ordering in the literature. 

DEFINITION 46 (Minimally Inconsistent Models) Let lnc(I) = D7 nffz: mea-
sure the inconsistency of a four-valued interpretation I. The11 

Mod~;(X) = {1 E Mod.{1 (X) : ·31' E Mod~1 (X), s.th. lnc(I') c lnc(I)} 

is the class ofmi11imally i11conslstent models of X <::; L(a). 

Minimally inconsistent models were introduced in (20]. Like plain four-valued 

models they tolerate inconsistency, but they are, in a sense, logically more conser

va~ve as the following example shows. 

EXAMPLE 47 (Disjunctive Syllogism) Four-valued inference does not respect 

the Disjunctive Syllogism, but minimally inconsistent inference does: 

{pV q, ~q} ~' p, but {p V q, ~q} Fmi p. 
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Notice that whenever X <; Lhasa coherent model, then Modm, (X) = Mode(X ), 

i.e. Fe can be viewed as a restriction of Fmi to coherent knowledge bases. 

DEFINITION 48 (Minimal Models) ler X ~ L(u), and• E (c, 4, mi}. Then 
Mod;."(X) = Min(Mod~1 (X)) is the class of all minimal •-models of X with re

spect to:;. Similarly, Mod;,"ax(X) = Max(Mod~ (X)) is the class of all maximal 

•-models of X. 

The following systems are important model-theoretic frames: (L, I!/, p, Mod:'), 

where• E {c,4}. and Lis a sublanguage of L(a), and furthermore (L,Ii1 , 

F. Mod~,). 

OBSERVATION 49 There are theories T \;;; L(a) which are c-satisfiable, i.e. 

Mode(T) 7' 0, bur do not have minimal models: Mod;"(T) == 0. 

Proof. Let T< be the theory of linear ordering with first but without last element; P 
is a unary predicate satisfying the following property: 3xP(x)A 'v'v\fu(P(u)A11 > 
u :::> ?(11)), i.e. Pisa noncmpty cofinal segment of the linear ordering. Then every 

partial model of this theory is not minimal. II 

OBSERVATION 50 Let K ~If. An inteipretationI EI~' is said to be minimal 

in Kif I E K. and there is no :J E K such thal .J < 1. Then the following holds: 

An interpretation 1 E 1:1 is minimal in I~ 1fI is 2-valued. 

From the results of section 3 the following observation can be easily derived. 

OBSERVATION 51 For every set S of universal sente11ces /here is a set of clauses 

Cl(S) such that Mod. (S) =Mod, (Cl(S)), * E { 4, c, t}. 

PROPOSITION 52 Let S be a universal theory in L(u). Every partial model from 

I~ of S is an extension of a minimal coherent model of S and can be extended to 
a maximal coherent model of S. 

Proof. Let S be given; we may assume that Sis a set of clauses. Let I be a coherent 

model of Sand fl(I) = {:J: J \;;;I, J F S}. We show that every decreasing 

chain Io ;;:> 11 ;;:> .•. ;;:> I,. ... in (fl(I), <;::) has a lower bound. Using Zorn's 

lemma this implies the existence of a minimal element, which is a minimal partial 

coherent model of S. Assume I* = n,.e,., In, and 1n J= S for every n E w. We 

show that I* F S. Choose C E S, and 

C= E, v ... vE,v-F, v ... -Fiv-G, v . .. v-G,,, v--H, v ... v--H,., 

where EP, Fq, G" H, E At( a). Assume 1* ~ C; this is the case if and only if 

I* F -\fX( V Ep V V -Fq v V -Gr v V -~H,). 
p<k q9 r$m B~n 
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implying that 

I* F- 3x( /\-EPA/\ --Fq A /\ - - G, A/\ -(--H,)) 
p5k qsz r:Sm a$n 

which is equivalent to 

1* f= 3x( /\ -Er A/\ --Fq A f\ c, 11 f\ -H,). 
p$k q$1 r:Sm ss;n 

There is an evaluation(): Var -t U(u), such that 

1* F /\ -EpB A/\ --FqfJ A /\ G,IJ A /\ -H.B. 
p~k q$l r~m s~n 

From this follows that ( { E,B} U {-F.B}) nI* = 0. This implies the existence of 
a numberm E w such that Im n ( {EpB} U {-F,B}) = 0. On the other hand, since 
I* I= /'l.«m G,(} A As<n -H,(}, then by persistence of formulas without weak 
negation for every extension .1 2 1* it holds .1 I= /\ G ,!! /\ /\ ~ H ,e. Altogether, 
wemayconcludeI,,, I= f\. 9 -E,8/\f\q9 --Fq8/\f\rs,m GrfJ/\f\,;, 1 ~H,8. 
But then Im !;" VXC, and this is a contradiction. The proof for the existence of 
maximal models is analogous. II 

Proposition 52 holds also for 4-valued and for total models. Let Mod;'"' (T) be 
the set of maximal •-models of T •* = c, 4. 

PROPOSITION 53 Let S be a universal theory in L(a), and ti.+(S) = {l E 
Lito(u) : S f=-, I}. t,-(s) = {l E Lit0 (u) : Sf=-, -/}. Then: 

f. nMod:"(S) = t,+(S). 

2. Lito(a) - LJMod;""~(S) = t,-(s). 

Proof. {I) Let! E n Mod;"(S), then l EI for every I E Mod~ (S), since every 
1 E Mod!f (S) is an extension of some .J E Mod;'(S). Hence, l E Ll.+(S). If 
I E f'.+(S), then l EI for every I E Mod!f (S) and it follows I E n Mod:"(S). 

{2) Let! E Lito(cr)-U Mod:;'"'(S), then for every I E Mod~ (S): l ~I, since 
I can be extended to a maximal model .J E Modi" (S). It follows that! E L'. - (S). 
Now, Jet l E t. -(S), then S I= -I. This implies l 't 1 for every model I F- S 
and in particulas 11!' LJ Mod::'"'(S), hence l E Lit0 (u) - U Mod:,""'(S). II 

DEFINITION 54 (Paraminimal Models) Let X <;:; L(a), * = c, 4, mi, and K <;:; 

Mod~ (X). Then, 

Mod:"(K,X) = Min({I E Mod~(X): LJK <;;;I}) 

PARTIAL LOGICS WITH TWO KINDS OF NEGATION 147 

is the set of all minimal •-supermodels of K. The set Mod~m (K, X) ofparamini
mal •-models over K is the smallest set of *-models of X containing Kand being 
closed with respect to the condition: 

(n) if M <;;; Mod~m(K, X) then Mod:;'(M,X) ~ Mod~m(K, X). 

If in condition (a) the set M is assumed to be finite then the resulting set, de
noted by Mod!pm(K, X), is the set of.finitely based paraminimal •-models over 
K. Finally, the set of paraminimal •-models of X is defined by Mod~m(X) = 

Mod~'"(Mod~(X), X), and the set of finitely based para.minimal •-models by 
Mod{P=(X) == Mod£pm(Mod:"(X), X). 

The paraminimal model operator is the basis of the following model-theoretic 
frames: (L,J~, f=,Mod~m). where> E {c, 4}, and (L,I,ii, )=,Mod:;.",'). 

Let ( L, M, F-, .P) be a model-theoretic frame based on a partial logic£ •. The set 
of <l?-paraminimal models of X, denoted by Mod~m(<l?,X), is defined by 
Mod~m(<li(X), X). We introduce the following notation: ctrm(X) 
Th(Mod!pm(Mod~'(X), X)). Obviously, C[m(X) <;;; C{•m(X) ~ C:'(X). 

Our notion of a paraminimal •-model is a generalization of the 'good models' 
defined in [22] for classical theories. In the next section we will combine the idea 
of paraminimality with the idea of stability which is essential for an adequate in
terpretation of nonpersistent sequents, resp. generalized logic programming rules. 

Paraminimal models can be classified with respect to a rank notion. We set 
Mod~m(O,X) = 0; Moct:m(l, X) = Mod:;'(X); and forn;:::: 1, 

Mod~m(a+I,X) = Mod~m(o,X)ULJ{Mod:(K, X): K ~ Mod!m(a,X)} 
and finally for limit ordinals, 

Mod~m{>.,X) = LJ Mod~m(.8,X) 
f3<>. 

A paraminimal model 1 E Mod~m (X) has rank a, denoted by rk(l) = a, iff 
1EMod~m(a+1, X) - Mod~m(o, X). Thep-rankof X, abbreviatedprk(X), 
is defined by prk(X) = sup{rk(I) : I E Mod~m(X) }. 

EXAMPLE 55 Let T"' {a VbVcVd, a/\b :J cAd/l.e/l.f, cAd :J eV f}. Then 
the largest paraminimal model ofT is abcdef; since it is the minima! supermodel 
of the two minimal models a and bit has rank 1. There are exactly two paraminimal 
modeJs of rank 2: cdej and bcdef, consequently prk(T) = 2. 

OBSERVATION 56 Lei X <;:; Prop(i7) contain persistent formulas only. Then 
prk(X) ~ 1. 

Proof. Let Min, (I) be the set of all minimal submodels of I, and K be a set of 
submodels ofl being models of X. If I is a minimal supermodel of K then by the 
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persistence of X it holds that I = UK. We show that the rank hierarchy stabi
lizes at I, i.e. Mod="'(!, X) = Mod~"'(2, X). Let I E Mod~"'(2, X). then there 
is a set M of submodels of I such that M <;;; Mod~m(l, X) and I is a minimal 
supermodel of M. By the above remark I= UM. Furthermore, every J EM 
can be represented by :J = LJMin.(J}. From this follows that I= LJMin(I), 
i.e. rk(I) = l. • 

If Y is a partially ordered set, then we can select those elements from Y which 
are minimal upper bounds of certain minimal elements of Y by means of an oper
ator 

PMin1(Y) = {X E Y J ,3X' E Y: X' < X & Minx,(Y) = Minx(Y)} 

where Minx (Y) = { X' E Min(Y} : X' :S X}. We obtain the following corol
lary. 

COROLLARY 57 Let X <; Prop( o) contain persistent fonnulas only. Then, 

Mod~m(X) = PMin1 (Mod!'(X}) 

Eventually, an important question is: which of the inference relations J=:; for x = 
m, pm, and y = 4, c, mi, is the natural choice for knowledge systems. We shall see 
below that the answer to this questions depends also on the logical eicpressiveness 
of the language of knowledge bases. In the simplest case, where only ate11sional 
knowledge, corresponding to sentences from L(~, A, V), is represented the pre
ferred inference relation is based on paraminimal models, i.e. I=::.": (resp. J=:~m if 
only consistent KBs are admitted), as the following example illustrates. 

EXAMPLE 58 (Inclusive Disjunction) LetX = {q(c), p(a) Vp(b)}. From this 
KB we want to be able to infer -p(c), but not -p(a) V -p(b). However, X ~. 
-p(c), for*= c,mi, butX !=:' -p(c), since 

Mod:'(X) = { {q(c),p(a)}, {q(c),p(b)}} 

and also, X I=:' -p(a)V-p(b), which is not wanted. Therefore, we need paramin
imal reasoning: 

Mocfl:m(X) = {{q(c),p(a)}, {q(c),p(b)}, {q(c),p(a),p(b)}} 

and hence, X ~~"' -p(a) V -p(b). 

4.4 Compactness Properties 

We conclude this section with the investigation of compactness properties. Let 
:F = (L, I, I= 4i) be a model-theoretic frame. Cifl is semantically compact if 
for every set X s; L the following holds: if <I>(Xr) op 0 for every finite subset 
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X f <;;; X then \l>(X) # 0. In classical logic compactness and semantical com
pactness coincide. For arbitrary model-theoretic frames this is not longer true. The 
following facts clarify the relation between compactness and semantical compact
ness. <P is strongly semantical compact iff for every set X <;; L and fonnula tfi E L 
the following holds: if <P(X1) nMod(<b) f. 0 for every finite subset X1 <;;; X then 
<P(X) n Mod(tfi) f. 0. The following proposition shows the interrelation between 
these properties. 

PROPOSITION 59 Let :F = (L, 1, j=, <P) be a model-theoretic frame. 

/. Assume (L,C1) is explosive. /fCifl is compact then it is semantically com
pact. 

2. Assume (L, C1 } is negation explosive. Then Cifl is strongly compact if and 
only if it is compact. 

Let C be an inference operation on the language L, and C 1 be thejinitary restriction 
ofC,i.e.dom(G) = {X: X <; L,X isfinite},an<lC1(X) =C(X)forallfinite 
subsets X of L. Let C be monotonic, and Ao(C1 }(X) = UYeFin(.Xl C1(Y). Ao 
can be considered as an operator extending finilary inference operatton to infinitary 
ones, and if G is monotonic then .6.0 ( C 1) :S C. If C is monotonic and compact 
then .6..o(C1) = C, ie. G is uniquely defined by its finitary restriction via Ao. In 
case C is not compact, but monotonic, .6..0 ( C) gives an approximation of C from 
below. If C does not satisfy monotony then there is no well-defined operator .6. 
allowing to reconstruct the operation 0 from its finitary restriction 01. To analyse 
this phenomenon we use the following notions from [I 2]. 

DEFINITION60 Let(L,CL)beadeductivesystem. V(L,CL) = {G: (L,Ci,C} 
is a deductive frame}; 'D1(L,Ci) = {C : G isjinitaiy and (L,GL, C) is a de
ductive frame}; I(L, CL)= {C: (L,CL,C) is an inference frame}. 

l. Afunctor.6.: 'D1(L,Ci)-+ :Z:(L,CL) issaidtobeanextensionoperator 
if for every C E 'D(L, CL) the conditions dom(.6.(G)) = 2L and .6.(C) .(. 
Fin(L) =Care satisfied . .6.. is called deductive ifim(A) s V(L, CL). 

2. A11 inference operatio11 C : 2L -+ 2L is A-compact if!C ~ .6.(C1 ); C is 
completely .6.-compact if!C = .6.(C1 ). 

Abstract compactness properties can be expressed by conditions compcond( CL. 
C, Fin(L)) depending on C, CL and the finite subsets of the language L. Impor
tant compactness properties are summarized in the following definition [4]. 

DEFINITION 61 Let (L, CL, G) be a deductive frame. 

I. C is weakly compact ifffor every X s; L, tf> E O(X) there is a finite subset 
A<; Ci(X) such that tfi E G(A). 
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2. C is weakly supracompact ifffor every X <;; L, l/l E C(X) and every finite 
A<;; C'i(X) there is a finite set B, A<;; B <;; CL(X) such that I/! E C(B). 

3. Let F be an inference operation defined for finite sets only. Ll.wsc(F)(X) = 
{l/l :for every finite A <;;; CL(X) there is a.finite B such that A <;; B <;; 
CL(X) and</> E F(B) }. 

The concepts in the preceding definition are modifications and generalizations 
of compactness notions introduced and studied in [7]. The operator Aw" was in
troduced and presented in [4]. In lhe following we show that the extension operator 
t.,,,.c is suitable for analysing minimal reasoning in partial propositional and par
tial predicate logic. 

The set Prop(<r) of propositional sentences over <r is defined by Prop(<r) = 
Lo(a : {/\, V, ~. - }). Let V <;; Lit0 (a) and Prop(V) the smallest set of formulas 
inL(<r) containing Vand closed with respect to /I, v, ~.-.Obviously, Prop( a) = 
Prop(Lito(a)). Given FE Prop(O') then lit(F) =the setofliterals fromLit0 (a) 
appearing in F, and lit(X) = LJ{lit(F) : F EX}. To simplify the notation Jet 
Mod(X) be the set of all coherent Herbrand models of X, X c;;; Prop( a). For a 
setl/ <;; Lit0 (u) letModv(X) = {.TnV: .TE Mod(X)}. The deductive frame 
under consideration is defined by (Prop(a), I!1 , I=, Mod;;"). 

PROPOSITION 62 Let V c;;; Lito(a ), F E Prop(V), and 1 E I~. Then 1 I= F 
if and only if I n V I= F. 

Proof. We may assume that F is in negation form. The proof is inductively on the 
complexity of F. We consideronly the case F := -A. Let I I= -A, then A rt 1, 
hence A rt I n V, this implies In V I= -A. Conversely, let 1 n V I= -A, then 
A rt 1 n V; by assumption A E V, hence A jt' I, and this implies I I= A, hence 
I I= -A. The remaining cases are straightforward. II 

PROPOSITION 63 lfV <;; Lito(O'), F E Prop(V), then X I= F if and only if 
Modv(X) <;; Mod({F}). 

PROPOSITION 64 Let X c;;; Prop(a), V <;; lit(X) a.finite subset. Then there is 
a.finite subset B <;; Cc(X), such that lit(B) = V and Modv(X) = Modv(B). 

Proof. Modv(X) = {In V : I E Mod(X)} is a finite set of cardinality :5 
zcard(V). For every 3 E Modv(X) let d(,J) == /\ J /I/\ {-l : l E V - ..7}, and 
F = V{d(J) : .J E Modv(X)}. Then B = {F} satisfies the desired condition. 

• 
Obviously, the model operator Mod;;" is semantically compact, since for every 

set X the condition Modc(X) f 0 implies Mod~(X) I' 0. In [21] it is shown 
that c-:; is not deductively compact. The following simpler example is due to J. 
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Dietrich. Let Lit0 (a) be infinite, and {Pi : i E w} an enumeration of Lit0 (a). 
The set X is defined as follows X = {P1 /\ ... /\ p; /I (Pi+i V po) : 1 :::; i < w }. 
Then X I=;;' -(Po tt pi). If I E Mod;;'{X) then 1 I= -po,m I= PI• hence 
I I= -(po tt pi). For every finite subset X1 <;; X holds X1 \;6~ -(p0 t+ pi). 

PROPOSITION 65 The deductive frame (Prop( a), Cc, C{!' ), is weakly supracom

pact. 

Proof, Let X \=;," F, A<;; C,(X), A finite and lit(A) U lit(F)"' {11, ... ,I,}= 
V. By Proposition 64 there is a finite subset Bi;; Cc(X) such that lit(B) = {l1, 
... ,ls} and Modv(X) = Modv(A u B).Let 3 E Modv(A u B), then .J ~ V. 
:J can be ex.tended to a model I 2 ,J, I E Mod(X). By Proposition 52 lhere is a 
minimal model 11 E ModV'(X) such that11 c;:; 1. By assumption 11 I= F. It is 
,Jc;:; 11, since ,J is a minimal model of AU B. Then.JI= F iffl1 I= F, hence 
AUBp:;'F. II 

PROPOSITION 66 Let X c;:; Prop( a) and FE Prop(O'). Fol/awi11g conditions 
are equivalent: 

l. X 1=::' F, 

2. for every finite subset A <:;: C,(X) there exists a finite subset B c;;; Cc(X) 
such that lit(B) <;;; lit( A) and AU B I=:;' F. 

Proof, The implication (1) => (2) follows immediately from proposition 65. 
We show (2) => (1). Using the preciding propositions we construct a sequence 
Ai. A2, ... , of finite sets A; ~ C'c(X) such that lit(F) c;;; lit( Ai), lit( A;) <;; 
lit(A;+d. lit(LJiEw) = lit(X), and Mod1i!(A;J(A;) = Mod1;<(A;)(X). Denote 
l(i) = lit(A;). Obviously, C0 (UiEw A1) = Cc(X). By assumption for every 
A; there is a B; <;; C0 (X) such that lit(B;) <;; lit(A1), and A; u B; I=~ F. 
It is Mod1c;J(A;) = Mod1(;)(A; U B;), and since lit(B,) <;; lit(A1) it follows 
Mod{ A;) =Mod( A; u B;). This implies A; I=;;' F, i == 1, 2, .... 

We show that X 1=::' F. Assume that this is not the case. Then there is a I E 
Mod~(X) such that I IF F. Then In l(i) is not minimal for A; for every i E w. 
Let .T; "'In l(i) and Q(i) = {..7 : ,J E ModlliJ(A;) and ..7 is minimal for A;, 
.J <;; 1;,J i'l;}. Obviously,J' I= Fforevery,J E !1(i),i Ew. By assumption, 
thesetsl1(i) arenonemptyforeeveryi E w. Foreachk E wletA(k) = {.Jnl(k): 
3 E uj>i n(j) }. Let be A =Uk>! A(k). For ..7 E A let be dom(.J) = l(k) iff 
:J E A(k) and for .J1, ..72 E A: 'J1 r; 32 if dom(3i) <;; dom(.J,) and 31 = 
:12 n dom(31). Then (A,!;;;) is a tree orfinite valency. Furthermore, if 3 E A{k) 
and j < k then ,Jn l(j) E A(j), hence.Jn l(j) [;;; ,J. By Konig's lemma there is 
an infinite branch 13 in (A,[;), and let/( = U 13. Obviously, K I= F, because for 
every ..7 E f!(i); :J I= F, and ..7 n l(j) I= F for every j < i. From this follows 
K f I. Furthermore, K I= X, since /( I= A;, for every i E w. We show that 
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K ~ I. Assume this is not the case. Then there is a v E X B(u) such that v E K 
but v rf I. Then there is a i E w such that v E l(i). By construction, there is a 
.J E D.(j),j:?: i, such that Kn l(i) =.Jn 1(i); but J ~ In l(j). This gives a 
contradiction. It follows JC ~ I, which is a contradiction to !he minimality of I. 

Ill 

PROPOSITION 67 {Corollary) Let (Prop( u ), Cc, C;:') be the deductive frame of 
minimal reasoning in partial propositional logic of coherent models. Then c;' is 
completely l1wsc·C0111pact, ie. c;' = fi..,,c(( C;') f ). 

5 SEQUENTS AND STABLE MODELS 

Traditionally, Gentzen sequents are used in a schematic way in sequent calculi, such 
as in 3.3, in order to express valid transitions from one argument schema to another. 
In other words, a sequent in a sequential inference rule stands for a whole class of 
propositional substitution instances. 

In this section, we propose 10 use sequents in a non-schematic way for the pur
pose of representing rule knowledge. A sequent here is not a schematic but a con
crete expression representing some piece of knowledge. 

We define the following classes of sequents. 

!. Seq1 (u) = {s E Seq(u) / Bs,Hs ~ Lit(u)}. 

2. Seq2 (u) = {s E Seq(u) / Hs <;; Lit(u), Bs ~ XLit(u)}. 

3. Seq3(u} = {s E Seq(u) I H s r;; L(<Y; -. /\, v),Bs r;; L(a; -, -, /\, Y, I, :J 
)). 

4. Seq.(cr) = {s E Seq(u) I Hs ~ L(<Y;-,/\,Y,3,\1), Bs ~ L(u;-,~ 
,/\,Y,/,:J,3,\1)}. 

We also define S' = { s E S I card( H s) = 1} for every class of sequents S. For 
S ~ Seq(<Y), and*= 4, c, t, 2, we define the model operators 

Mod.(S) - {I E l,(a): I I= s for alls ES} 
Mod~ (S} = {I EI~ (<Y) : 1 )= s for alls E S} 
Mod;,;i(S) = {I E Modf (S} : -.3I' E Modf (S) s.th. 

Inc(I') C Inc(I)} 

and their minimal reasoning refinements 

Mod:(S) = Min(Mod~ (S)) 
Mod~m(S) = Mod~(Mod~'(S),S) 

The associated inference relations are defined as follows: 

S 'F; F iff Mod~(S) <;; Mody(F) 

wherex = H,m,pm, andy = 4,c, t,2,mi, and FE L(u). 
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OBSERVATION 68 Let B => H be any sequent. Then.for any I E 14 , 

I'f=B=>H if!I'p.j\B:JVH 

This observation seems to imply that there is no big difference between sequents 
and material implications, since for F, G E L, it holds that 

Mod,(F => G) = Mod,(F :JG) 

However, for other model operators, such as stable modelsMod:n• (see below), this 
is not the case. 

EXAMPLE 69 Sequents differ from material implication: 

Mod;,"'(-p :J q) = {{p}, {q}} of. Mod~"(-p => q) = { {q}} 

OBSERVATION 70 Let S ~ Seq be a set of sequents. Then, 

Mod~ (S} =Mod~ ([S]) 

where (S] is the Herbrand instamiation of S. 

OBSERVATION 71 Let S ~ Seq3 (u), and F E Lo(O') be a closed exislential 
senlence. Then, 

S )=.F if! [S] 'r=.F 

5.1 Paraminimal Models for Persistent Sequents 

A sequent s E Seq3 is called persistent, if all body formulas F E Bs are persis
tent. For instance, all sequcnts from Seq1 are persistent. For a set S of persistent 
sequents, its paraminimal models, Mod~m(S). are the intended models, and thus 
l=~m (resp. 1=::,":l are the natural inference relations for consistent (resp. inconsis
tent) knowledge bases consisting of persistent sequents. 

EXAMPLE 72 Let S = { =;. q(b); => p(a),p(b); p(x) ~ -q(x)}. Since 

Mod:;,'7(S) = Mod~"'(S) = {{q(b),p(a),~q(a))) 
we obtain for • = c, mi 

S H"' -q(a) A -p(b) 

OBSERVATION 73 For a sequenr set S ~ Seq~, where the head of a sequent 
consists of a single literal, and its body of a set of literals, the notions of minimal 
and of paraminimal models coincide, and there is a unique minimal model, denoted 
Ms. Fonnal/y, 

Mod~m(S) = Mod:;'(S) ={Ms} 
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Proof. We have to show tha1 the interpretation .Ms = n Mod!1 (S) is a model of 
S. Obviously, if it is a model, it is the least one. 

Let (B =? l) E)SJ and Ms f= B. By persistence of B we have M' I= B for 

every M' E Mod4 (S). This implies that l E M' for every M' E Modf (S), and 
hence l E Ms. II 

5.2 Stable Models for Non-Persistent Sequents 

When a knowledge base consists of a set of sequents S <;; Seq3, where body for

mulas may be non-persistent, it may have (para)minimal models which are not in

tended. This is illustrated by the following example. 

EXAMPLE 74 (Specific Closed-World Assumption) 
Let S = {=;. q(c); =? p(a),p(b); -p(x) =? ~p(:r)}. 

The last sequent, from -p(t) conclude~ p(t) for any term t. expresses a specific 

Closed-World Assumption. Since we want to infer ~p(c), the following paramin
imal models are not intended models: 

Mi = {q(c),p(c), p(a), ~p(b)} 
M2 = {q(c),p(c),p(b), ~p(a)) 
M3 = {q(c),p(c),p(a),p(b)} 

Therefore, we need a more refined preference criterion which allows to select the 

intended models of a set of sequents from its Hcrbrand models. 

DEFlNITION75 [Mi.M2] ={ME I1/: .M, SM S M2} 

Recall that wrt a class of interpretations K, we write K F F iff I I= F for all 

I E K. We denote the set of all sequents from a sequent set S which are applicable 
inKby 

SK= {s E [SJ: K != Bs} 

The following definition of a stable model is inspired by the definition of a srable 
closure of a set ofrules in (27). 

DEFINITION 76 (Stable Model) Let*= c,4. M E Mod1/ (S) is called a min

imally stable *-model ofS <;; Seq3 (a). symbolically ME Mod'.;"(S), if there is 
a chain o[Herbrand i11te1pre1a1ions Mo$ ... SM" such that .M = .M,, and 

I. Mo= 0. 

2. For successor ordinals a with 0 < a $ 1<, M,,, is a minimal extension of 

M,,_ 1 satisfying the heads of all sequents whose bodies hold in [M ,,_ 1, M], 
i.e. M,, E Min{I E II/: 12'. M,,_i,I f: V Hs,fa. s E S[M._,,Mj} 
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3. For limil ordinals.>. $ K, 

Mi.= LJMa 
o«>. 

Paraminimally sJable coherenl models are defined accordingly (replacing in the 

definition all occurences of 'minimal', resp. 'Min', by 'paraminimal', resp. 

'PMin1 '). The set of minimally stable *-models of Sis denoted by Mod~'(S), and 

the set of paraminimally stable models of S by Mod~"" (S). A further interesting 

class of models is defined by Mod~m(ModZ"(S), S). 
Minimally inconsistent stable models are defined by 

Mod;,,i(S) ={I E Moct;(S): -i31' E Mod;(S) s.th. lnc(I') c Inc(I)} 

where*= ms,pms. 

EXAMPLE 74 (continued) Only the following three paraminimal models of Sare 

stable: 

M4 = {q(c),~p(c),p(a),~p(b)} 

Ms = {q(c), ~p(c),p(b), ~p(a)} 
M6 = {q(c),~p(c),p(a),p(b)} 

and hence, S f=~m• ~p(c). 

Thus, l=~m• (resp. f=!:.':''l will be our preferred inference relation for knowledge

based reasoning. 

EXAMPLE 77 (Default Rules) A default (resp. exception tolerant) rule can be 

expressed by a combination of weak and strong negation. E.g., the rule 'birds (nor

mnlly) fly' is expressed as 

b(x) /\ -~ f(x) =? f(x) 

If the knowledge base S contains in addition the facts that Tweety and Opus are 

birds, b(T) /\b(O), but Opus does nol fly,~ j(O), we can infer by stable reasoning 

that Tweety flies; 

S !=!:.".;'' f(T) 

Pararninimally stable reasoning supports inclusive disjunctive infonnation as the 

following example shows. 

EXAMPLE 78 (Inclusive Disjunction) Let S = { =? pV q; -(p/\q) =? rV s). 

Then, 

Mod;'(S) = {pr,ps,qr,qs,pq} 

Mod~m(S) = {pr,ps, qr, qs,pq,prs, qrs,pqr,pqs, pqrs} 

Mod:"'(S) = {pr,ps,qr,qs} 

Mod~m>(S) = {pr,ps,qr,qs,pq,prs,qrs} 
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Stable models do not e>'.ist in all cases. For instance, S "' { -p ~ p} has exaclly 
one minimal model, Mod~' (S) = { {p) ). which is not stable, however. A sequent 
set, rcsp. logic program, without stable models will be called rmstable. 

EXAMPLE 79 S = {p :::J q => r; r => p) is unstable. 

OBSERVATION 80 Stable reasoning is not cumulative. 

Proof. The following counterexample is due lo [25]. Let S = {-r => q; -q => 
r; -p => p; -r => p}. SinceMod:"(S) = {{p,q)). and S' !==:"' p,q, but 
Mod;"'(S U {p}) = {{p, Q}, {p, r} }, and hence SU {p} IFZ'" q. Ill 

5.3 Extended logic Programs as Sequent Sets 

A sequent set S ~ Seq; corresponds to an extended logic program ( ELP) 

Ils == { l +- B : ( B =? I) E S) 

The other way around, an extended logic program TI corresponds to a sequent set 
Sn ~ Seq; with 

Sn = {B => l : (I+- B) En} 

For B ~ XLit( u), lei B- denote the set of literals which occur weakly negated in 
B, i.e. B- := {I E Lit(u) : -I E B}, and let B+ = {1 E Lit(a) : l E B}. It 
holds that for any B \::; XLito. and any "I E If, 

I I= B iff B+ ~ Dx & B- n DI = 0 

DEFINITION 81 (Immediate Consequence Operator) let IT be an extended logic 
program, and I~ Lit be the diagram of I E If. Then 

Tn(I) = {! E Lita: 3(! +- B) E [TI], s.th. I I= B} 

is called the immediate consequence operator associated with IT. 

DEFINITION 82 (Gelfond-Lifschitz 1990) Let M i;:: Lit, and IT be an ELP. 
Then the Gelfond-Lifschitz transformation of IT with respect to M is defined as 

ITM == {l ;.... B+ : (I ;.... B) E [Il). and B- n M = 0} 

Mis called an answer set ofTI, ifMod;,"(ITM) = {M}. and M = D.M. 

We shall show below that the definition of answer sets is just a specialization of 
our notion of a stable model. The same holds for the definition of stable models of 
normal logic programs in [!OJ. Since these definitions are based on the Gelfond
Lifschitz-transfonnation ITM requiring a specific rule syntax they are not vety gen
eral; as a consequence, Gelfond and Lifschitz are not able to treat negation-as-
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failure as a logical functor, and to allow for arbitrary formulas in the body of a rule. 
The interpretation of negation-as-failure as weak negation in partial logic according 
to our stable semantics seems to be the first general logical treatment of nonmono
tonic logic programs. 18 It was already proposed by Wagner in [26; 28], but without 
the full generality of the stable semantics proposed in the present paper. 

PROPOSITION 83 An answer set of an extended logic program n is the dia-
gram of a minimally stable coherent model of the correspo11dillg sequent set Sn. 

Proof sketch: Lei M ~ Lit be an answer set of an extended logic program Il, i.e. 
Mod~(nM) = {M), where M = DM. For ITM = {l +-BE [Il]: M f= B}, 
the immediate consequence operator Tn"' generates M as the supremum of the 
following chain: 

M,, = LJ MpuTn,.,(LJ Mp)) 
fJ<o /J<o 

It is easy to sec for all rnles l +- B E [TI), that M" p l whenever [Mo--1. M] I= 
B: simply because l E Trr., (Uii<a Mp) whenever U/J<o Mp I= B. It is also 
clear that M0 is a minimal (in fact, the least) such extension of Ma-t · 11 

PROPOSITION 84 Let M E Mod;,"(S) be a minimally stable coherent model 
of a sequent set S ~ Seq;, then M = D .M is an answer set of the corresponding 
extended logic program ITs. 

Proof. Let Mod:,"((ITs)M) == {M'). We have to show that M' == M. Denoting 
M' = DM., we first prove that M' s M. Let l E M', i.e. there is (I+- B') E 
nM, such that .M I= B'. Then there is a corresponding rule (I +- B) E [ITs], 
such that B' = s+, and B- n M = 0, and consequently M I= B, implying that 
/EM. 

Assume that M is generated by Mo ~ ... ~ MK. We show by induction on 
a that M" C M' for a < 1<. For a = 0, we have Mo = 0 C M'. For a sucessor 
ordinal<> ;: f3 + 1, Jet !-E M/J+l - MfJ. This means that l E (k : (A => k) E 
[S] & [Mp- 1,M] I= A}. Consequently,thereissorneru!e(l ;-- B) E [IIs].such 
that [MfJ, M] I= B, implying that (I +- B+) E (Ils)M. Since by the induction 
hypthesis Mp ~ M', it follows that M' I= B+, and consequently,! EM'. 

Finally, let a=\ be a limes ordinal. Then M>. = LJpo M/J ~ M', since by 
the induction hypothesis for all j3 < \, M/1 ~ M'. • 

OBSERVATION 85 Since an ELP Il may have several minimal models, it holds 
that in general Mod:," (n) -./ Mod~m (TI). However, 

Mod;'' (TI) = Mod~'"' (IT) 

18There have been many meta·logicol (notably modal logic) proposals, though. 
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Proof. There is exactly one minimal extension of M,,_1 satisfying all heads of 
sequents from SfM.-i.MJ· namely M,, == {l E Lita : (I t- B} E S[.M.-i . .MJ}. 

• 
6 CONCLUSION 

Partial model theory, being a natural generalization of classical model theory, is 
able to capture many important distinelions arising in knowledge-based reasoning, 
such as explicit falsity vs. non-truth, or exact vs. inexact predicates. At the object 
level, these distinctions can be expressed by means of the two negations of panial 
logic. While the strong negation is useful to express the explicit falsity or incompat
ibility of some piece of infonnation, the weak negation, as a non-persistent functor, 
can be used to express specific Closed-World Assumptions and default rules. 

We have shown in this paper how the fundamental notions of minimal, paramin
imal and stable models in partial logic can be used to define the semantics of knowl
edge bases including relational and deductive databases, and exlended logic pro
grams. 
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Univ. Leipzig, Germany. 
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