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Abstract

The main results on quantum walk search are scattered over different, incomparable
frameworks, most notably the hitting time framework, originally by Szegedy, the electric
network framework by Belovs, and the MNRS framework by Magniez, Nayak, Roland and
Santha. As a result, a number of pieces are currently missing. For instance, the electric
network framework allows quantum walks to start from an arbitrary initial state, but it only
detects marked elements. In recent work by Ambainis et al., this problem was resolved for
the more restricted hitting time framework, in which quantum walks must start from the
stationary distribution.

We present a new quantum walk search framework that unifies and strengthens these
frameworks. This leads to a number of new results. For instance, the new framework not only
detects, but finds marked elements in the electric network setting. The new framework also
allows one to interpolate between the hitting time framework, which minimizes the number
of walk steps, and the MNRS framework, which minimizes the number of times elements
are checked for being marked. This allows for a more natural tradeoff between resources.
Whereas the original frameworks only rely on quantum walks and phase estimation, our new
algorithm makes use of a technique called quantum fast-forwarding, similar to the recent
results by Ambainis et al. As a final result we show how in certain cases we can simplify
this more involved algorithm to merely applying the quantum walk operator some number
of times. This answers an open question of Ambainis et al.

1 Introduction

Quantum walk search refers to the use of quantum walks to solve a search problem on a graph.
In the last two decades, this topic has received a great deal of attention, with a rich literature
attesting to the progress on understanding quantum walk algorithmic techniques [AKR05, Sze04,
MNRS11, KMOR16, Bel13, AGJK19, DH17] and developing applications [BŠ06, MSS07, JKM12,
BCJ+13, BJLM13, Mon18, KT17, HM18, Kir18]. Despite this long line of progress, the main
results on quantum walk search lie somewhat scattered in different frameworks, and a number
of pieces are currently missing.

The quantum walk search frameworks that we consider are the hitting time framework orig-
inally due to Szegedy [Sze04], the MNRS framework due to Magniez, Nayak, Roland and San-
tha [MNRS11], the electric network framework due to Belovs [Bel13], and the controlled quan-
tum amplification framework by Dohotaru and Høyer [DH17]. We summarize these frameworks,
as well as the corresponding complexities, in Table 1. In this work we unify these different
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frameworks, leading to a number of new results and missing pieces. For example, algorithms
developed using the electric network framework could only detect marked elements. Our unified
approach can be used to develop algorithms that find marked elements, while incurring at most
a logarithmic overhead.

We also give a conceptual bridge between the recent result of Ref. [AGJK19] and the original
approaches by Szegedy [Sze04] and Krovi, Magniez, Ozols and Roland [KMOR16]. The latter
showed that combining quantum walks with phase estimation or time averaging allows one to
quadratically improve the hitting time of a single marked element, when starting from the sta-
tionary distribution. Ambainis et al. [AGJK19] used a more involved technique called quantum
fast-forwarding [AS19] to improve these results to yield quadratic speedups on the hitting time
of arbitrary sets. In this work we reprove the same result using only simple quantum walks,
thereby proving a conjecture from [AGJK19].

1.1 Different Frameworks

While the frameworks we consider are similar, each has advantages and disadvantages. The
earliest hitting time framework was due to Szegedy [Sze04], inspired by an algorithm of Ambainis
for element distinctness [Amb07]. To illustrate this framework, imagine a classical algorithm that
begins by sampling a state from the stationary distribution π of some random walk, described
by a transition matrix P . The algorithm starts from a vertex distributed according to π, and
simulates the random walk. After every step of the walk it checks whether the current vertex is
“marked”. The algorithm terminates after O(HT(P,M)) steps, with HT(P,M) the hitting time,
or the expected number of steps from π before a marked vertex inM , the marked set, is reached.
As such, the algorithm has a constant probability of having found a marked vertex. To bound
the complexity of this algorithm, let the setup cost S denote the complexity of sampling from π,
the update cost U denote the complexity of simulating a step of the walk, and the checking cost
C denote the complexity of checking whether a vertex is marked. The complexity of the resulting
algorithm is then of order S + HT(P,M)(U + C). The hitting time framework essentially shows
how to construct a quantum algorithm with complexity

S +
√

HT(P,M)(U + C),

where S, U and C are quantum analogues of S, U and C, respectively, denoting the costs in terms
of coherent quantum samples (see Section 2.4 for details). One of the major drawbacks of the
original framework was that the resulting quantum algorithm typically detected the presence
of a marked vertex, without actually finding one. In the special case where there is only a
single marked element, Krovi at al. [KMOR16] showed how to also find the marked element in
the same complexity. To this end they introduced the concept of interpolated walks. Combining
interpolated walks with another technique called quantum fast-forwarding, introduced in [AS19],
Ref. [AGJK19] more recently showed how to also find a marked element in the general case. We
will refer to this final result as the hitting time framework.

The second framework that we consider is the MNRS framework introduced by Magniez,
Nayak, Roland and Santha [MNRS11]. This framework also finds a marked vertex, but it can
be understood as the quantum analogue of a slightly different random walk algorithm. Consider
a random walk that begins in the stationary distribution. Rather than checking if the current
vertex is marked after every step, the walk takes 1/δ steps between checks, where δ is the spectral
gap of P . Since 1/δ is approximately the mixing time of the random walk, this process effectively
samples from the stationary distribution, for each sample checking whether it is marked, and
otherwise generating a new sample. If ε is the probability that a vertex sampled from the
stationary distribution is marked, then a marked element is found with constant probability
after O(1/ε) samples. As such, the complexity of this classical algorithm is S + 1

ε (1δU + C).
The MNRS framework shows how to get a quantum algorithm for finding a marked vertex with
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Framework Complexity

Hitting time framework [Sze04, KMOR16, AGJK19] S +
√

HT(P,M)(U + C)

MNRS framework [MNRS11] S + 1√
ε
( 1√

δ
U + C)

Electric network framework [BCJ+13, Bel13] S(σ) +
√
Cσ,M (U(σ) + C)

Controlled quantum amplification [DH17] S +
√

HT(P, {m})U + 1√
ε
C

Table 1: Comparison of different quantum walk frameworks.

complexity

S +
1√
ε

( 1√
δ
U + C

)
.

Since HT(P,M) ≤ 1
εδ , this requires at least as many steps of the walk as the hitting time

framework. On the other hand, HT(P,M) ≥ 1
ε , and so the number of checks can be significantly

smaller than in the hitting time framework. In fact, this amount of checks performed in the
MNRS framework is easily seen to be optimal by a lower bound on black-box search.1

The third framework that we consider is the electric network framework by Belovs [Bel13]
(published in [BCJ+13]). This is a generalization of the hitting time framework, allowing for
the walker to start from an arbitrary initial distribution σ (such as a single vertex), rather than
necessarily the stationary distribution. If S(σ) is the complexity of sampling (coherently) from
σ, then the resulting quantum algorithm has complexity

S(σ) +
√
Cσ,M (U(σ) + C),

where U(σ) is the complexity of implementing a step of a slightly modified random walk. The
quantity Cσ,M (defined in Section 2.3) is a generalization of the commute time. When both σ
and M correspond to single vertices u and m, then Cσ,M equals the commute time from u to
m, which is the expected number of steps starting from u to reach m and then return to u.
When σ equals the stationary distribution then Cσ,M = HT (P,M), thus retrieving the hitting
time framework. The obvious advantage of the electric network framework is that it does not
necessarily require quantum samples from the stationary distribution of P , which might be very
costly, and can instead begin in a much easier to produce state. A major disadvantage of this
framework, however, is that the quantum algorithm only detects the presence of marked vertices,
as in the original hitting time framework, rather than actually finding marked vertices.

Finally we also consider the controlled quantum amplification framework by Dohotaru and
Høyer [DH17]. They use an extra qubit to control the quantum walk operator2, leading to an
additional degree of freedom. For the case of a unique marked element M = {m}, and starting
from a quantum sample of the stationary distribution, they achieve a complexity

S +
√

HT(P, {m})U +
1√
ε
C,

which has both an optimal number of walk steps (as the hitting time framework) and an optimal
number of checks (as the MNRS framework). The clear downside of this approach is that it is
restricted to cases where there is a single marked element, and we start from the stationary
distribution.

1Consider for instance a quantum walk search algorithm on the complete graph on N vertices. Finding a
single marked element then requires Ω(

√
N) checks by the optimality of Grover’s search algorithm.

2In fact they consider more general operators, but we will focus on their result for quantum walk operators.
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1.2 Contributions

Finding in the electric network framework The electric network framework [Bel13] gen-
eralizes the hitting time framework [Sze04] by allowing for arbitrary initial distributions. The
downside is that algorithms in this framework only detect rather than actually find marked
vertices. On the other hand, the improved hitting time framework of [AGJK19] shows how to
actually find marked vertices in the hitting time framework, provided that the walk starts from
a quantum sample of the stationary distribution. Both works hence provide complementary but
incompatible improvements over the initial hitting time framework.

In Section 4, we fill this gap by generalizing the results of [AGJK19] to the electric network
setting, designing a quantum algorithm that not only detects but also finds marked elements for
any starting distribution σ. This improved version strictly generalizes the results of [AGJK19],
and it loses at most a log factor with respect to the original electric network framework [Bel13].
In particular, we show (see Theorem 13):

Theorem 1 (Informal). For any distribution σ, there is a quantum walk search algorithm that
finds a marked element from M with constant probability in complexity (up to log factors)

S(σ) +
√
Cσ,M (U(σ) + C).

To analyze our new algorithm, we use techniques similar to those employed in [AGJK19]
for finding in the hitting time framework. However, there is an additional difficulty we must
overcome. The hitting time, HT(P,M), has a useful interpretation in terms of the classi-
cal random walk – that is, with high probability, a marked vertex is encountered within the
first O(HT(P,M)) steps – and this fact is crucial in the analysis of the quantum algorithm
in [AGJK19]. In contrast, to the best of our knowledge, the generalized quantity Cσ,M (defined
in Section 2.3) is not well understood. If σ is supported on a single vertex, u, and M contains
a single vertex, m, then Cσ,M is exactly the commute time between u and m. This means that
within the first O(Cσ,M ) steps, with high probability, a walker starting from u has visited m,
and then returned to u. For general σ and M , no such interpretation was known. We prove
that, under certain conditions, a similar interpretation holds: with high probability, a walker
starting from σ will hit M , and then return to the support of σ, within the first O(Cσ,M ) steps.
We can ensure that these conditions hold by using the same graph and walk modification as
used in [Bel13], adding a weighted edge to each vertex in supp(σ). The resulting understanding
of Cσ,M is enough to employ a similar analysis to that of [AGJK19].

A Unified Framework While the electric network framework is a generalization of the hitting
time framework, the MNRS framework is incomparable. Since HT(P,M) ≤ 1

εδ , the hitting time
framework always finds a marked vertex using a number of quantum walk steps (updates) less
than or equal to that used by the MNRS framework. On the other hand, HT(P,M) ≥ 1

ε , and
hence the MNRS framework may make fewer calls to the check operation. When the complexity
of implementing the checking operation is much larger than that of the update operation, the
MNRS framework may hence be preferable to both the hitting time framework and the electric
framework. The controlled quantum amplification framework achieves the best of both worlds,
but only for a unique marked element.

In Section 5, we present a new framework that unifies all these individual approaches. For
the sake of intuition, we first describe this framework when the initial state π is used, which
can be seen as a unification between the hitting time framework, the MNRS framework and the
controlled quantum amplification framework. To this end, recall that the hitting time framework
is the quantum analogue of a random walk algorithm that takes HT(P,M) steps of the random
walk described by P , checking at each step if the current vertex is marked. In contrast, the
MNRS framework is the quantum analogue of a random walk algorithm that takes 1

δ steps of P ,
thus approximately sampling from the stationary distribution π, and then checks if the sampled

4



vertex is marked. Since ε is the probability that a sampled vertex is marked, this process is
repeated 1

ε times.
We can define a natural interpolation between both classical algorithm. To this end, take any

t, and consider a classical random walk that repeatedly takes t steps, and then checks whether
the current vertex is marked. The expected number of iterations is then HT(P t,M), the hitting
time of the t-step random walk, described by transition matrix P t. This classical algorithm finds
a marked vertex in complexity S + HT(P t,M)(tU + C). We give a quantum analogue of this
algorithm, generalized to arbitrary initial distributions (see Theorem 27).

Theorem 2 (Informal). For any t ∈ N and any distribution σ, there is a quantum walk search
algorithm that finds a marked element from M with constant probability in complexity (up to
log factors)

S(σ) +
√
Cσ,M (P t)(

√
tU(σ) + C).

Setting t = 1 we recover our previous theorem, Theorem 1. When σ = π, then Cσ,M (P t) =
HT(P t,M), and hence we find the quantum analogue of the aforementioned random walk al-
gorithm. As such, when σ = π and t = 1, we recover the hitting time framework. When
σ = π and t = 1

δ , we recover the MNRS framework, since a 1/δ-step random walk essentially
samples from π at every step, and so HT(P 1/δ,M) ∈ O

(
1
ε

)
. When there is a unique marked

element {m}, and t = εHT(P, {m}), we recover the controlled quantum amplification frame-
work. To see this, we use a result from [DH17, Section 6] which proves that HT(P t, {m}) = 1/ε
if t ∈ Ω(εHT(P, {m})). For multiple marked elements, and other intermediate values of t, we
obtain new types of algorithms. We summarize these special cases in the table below.

New quantum walk search framework: S(σ) +
√
Cσ,M (P t)(

√
tU(σ) + C)

Hitting time framework σ = π, t = 1

MNRS framework σ = π, t = 1
δ

Electric network framework any σ, t = 1

Controlled quantum amplification σ = π, M = {m}, t = εHT(P,M)

Table 2: The new quantum walk search framework.

A simpler algorithm for the hitting time and electric network framework Similar
to the recent work by Ambainis et al. [AGJK19], our new quantum algorithm makes use of a
somewhat involved technique called quantum fast-forwarding. For the case t = 1 (recovering
the hitting time and electric network framework), we show that a much simpler algorithm works
with essentially the same complexity. This algorithm works by (classically) choosing random
interpolation parameters, and applies the interpolated quantum walk operator an appropriately
chosen number of steps, starting from |

√
σ〉. It was already conjectured in [AGJK19] that this

simpler approach would work (but only for the hitting time framework). In Section 6, we prove
that this simple algorithm indeed finds a marked vertex, with at most a logarithmic overhead
over the complexity of the more involved fast-forwarding algorithm. Interestingly, our proof
relies on the proof of correctness of the fast-forwarding algorithm.

Related independent work While finalizing this manuscript, the authors became aware
of the concurrent and independent work of Stephen Piddock, who developed an alternative
refinement of Belovs’ results for finding marked elements in the electric network framework
[Pid19].
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2 Preliminaries

2.1 Random walks

Let Y be a random variable over a finite state space X, with |X| = n. For y ∈ X, we let
Pr(Y = y) denote the probability that Y = y. We can describe the corresponding probability
distribution by a vector σ ∈ Rn, where σy = Pr(Y = y). For S ⊆ X and a probability
distribution σ, we let σ(S) =

∑
u∈S σu denote the probability that Y ∈ S, and we let σ|S be the

normalized restriction of σ to S, defined as (σ|S)u = σu/σ(S) for all u ∈ S. A sequence of random
variables Y = (Yt)

∞
t=0 over X is a Markov chain if for all t ≥ 1, Yt is independent of Y0, . . . , Yt−2

given Yt−1. For any distribution σ over X and random variable Z that is a function of Y , we let
Prσ(Z = z) denote the probability that Z takes value z when Y0 is distributed as σ. Any Markov
chain is described by a stochastic transition matrix P , with Py,y′ = Pr(Yt = y′ | Yt−1 = y). If
σ(t) describes the probability distribution of Yt, then this implies that σ(t) = σ(t−1)P .

We consider weighted, undirected graphs G = (X,E,w) on vertex set X, with |X| = n; edge
set E ⊆ X × X with (u, v) ∈ E if and only if (v, u) ∈ E, and |E| = 2m; and edge weights
w : E → R≥0. If an edge is not present, we will usually think of it as having edge weight zero.
The total weight is then W =

∑
u,v∈X wu,v, and the total weight of edges leaving a node u is

wu =
∑

v∈X wu,v. A random walk on G is described by a Markov chain over X with transition
matrix P , defined by

Pu,v =
wu,v
wu

.

In words, a random walk from a vertex u picks a random neighbor v with probability proportional
to the edge weight wu,v. This random walk describes a special kind of Markov chain, a so-called
reversible Markov chain [LPW17]. In fact, it can be shown that any reversible Markov chain
can also be described as a random walk on a weighted graph, simply by choosing wu,v = wv,u =
2πuPu,v. As such we will interchangeably use the terms “random walk” and “reversible Markov
chain”. If the graph is connected and non-bipartite, the random walk is called ergodic and
its probability distribution converges to a unique limiting distribution called the stationary
distribution π ∈ Rn, defined as

πu =
wu
W
.

This is the unique left eigenvector of P with eigenvalue 1. While the transition matrix P
of a reversible Markov chain is not necessarily symmetric, a closely related matrix called the
discriminant matrix D(P ) is symmetric. For ergodic and reversible Markov chains it can be
defined as

D(P ) :=
√
P ◦ P T = diag

(√
π
)
P diag

(√
π
)−1

, (1)

with the ◦-product and square root acting elementwise and diag(
√
π) being the diagonal matrix

with entries (diag(
√
π))u,u =

√
πu. The second equality implies that P and D(P ) share the same

eigenvalues, which we denote by 1 = λ0 > λ1 ≥ · · · ≥ λn−1 > −1. The convergence time or
mixing time of P to the stationary distribution is characterized, up to log factors, by the inverse
of the spectral gap δ of the transition matrix, which is defined as δ = min{1− |λ1|, 1− |λn−1|}.

For a subset M ⊆ X, the hitting time τM is the random variable representing the minimum
t such that Yt ∈ M , i.e., the first time at which the random walk hits M . With slight abuse of
notation, we will also call HT(P,M) = Eπ(τM ) the hitting time of set M , corresponding to the
expected hitting time when starting from the stationary distribution π. We similarly define τMS
to be the first time at which the random walk has hit M , and then S. As such, when S = {s}
is a singleton, the quantity Es(τMs ) denotes the expected commute time from s to M .

2.2 Interpolated walks

Interpolated walks form an important tool in quantum walk search algorithms [KMOR16]. Quite
literally, such walks are an interpolation between the original random walk P , and the absorbing
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random walk PM in some set M , which corresponds to the walk that halts when it hits M
(equivalently, the walk obtained after adding self-loops of infinite weight to the elements in M).
For an interpolation parameter s ∈ [0, 1], the interpolated walk P (s) is then defined as

P (s) = (1− s)P + sPM .

If P is an ergodic reversible Markov chain, then so is P (s) for every s ∈ [0, 1) [KMOR16,
Proposition 12].

2.3 Electric networks

An electric network is described by a weighted, undirected graph G = (X,E,w) (for an intro-
duction to the connection between random walks on graphs and electric networks, see [DS84]).
The edge weights in G are interpreted as conductances associated to the edges. An edge that is
not present has weight zero, and hence also zero conductance. A central notion is that of a flow.

Definition 3. Let M ⊂ X be a set of marked vertices, and let σ be a distribution supported
on unmarked vertices. A unit flow from σ to M is a function p : X ×X → R such that:

• pu,v = 0 if wu,v = 0;

• pu,v = −pv,u for all u, v;

• for all u 6∈M ,
∑

v pu,v = σu; and

•
∑

u∈M
∑

v/∈M pu,v = −1.

The effective resistance Rσ,M from σ to M is

Rσ,M = min
p

∑
u,v∈X:u<v

p2u,v
wu,v

(2)

where the minimum runs over all unit flows from σ to M . For an S disjoint from M we define

RM,S = RS,M := min
σ : supp(σ)⊆S

Rσ,M

In the special case when S = {s} and M = {t} are singletons, we simply write Rs,t := R{s},{t}.

Note that there is a unique σ-M flow that minimizes the expression in (2). To see this,
note that if two distinct flows p and p′ achieve the same minimum, then their average is again a
σ-M flow, but with an even smaller value, which leads to a contradiction. In the special cases
where σ = π or supp(σ) = {s}, the effective resistance Rσ,M has a well-known combinatorial
interpretation.

Theorem 4 ([CRR+96, Bel13]). In a weighted graph of total weight W , for any vertex s and
subset M ⊆ X, we have WRs,M = Cs,M , where Cs,M is the commute time from s to M .
Furthermore, we have WRπ,M = HT(P,M), with HT(P,M) the hitting time from π to M .

Since we could only find in the literature a proof of the first statement for the case where M is
a singleton, we extend the existing proofs to the more general case in Appendix B.

In the same vein we define the quantity Cσ,M = WRσ,M for any distribution σ and subset
M , and define CS,M analogously. Similar to the above theorem, we will later prove a connection
of this more general quantity to the behavior of a random walk.
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2.4 Quantum walks and quantum walk search algorithms

Let D(P ) denote the discriminant matrix of a random walk on a weighted graph, as defined in
(1). We can associate a quantum walk operator to this random walk, which is a unitary operator
for which the following holds.

Definition 5 (Quantum walk operator). For any reversible Markov chain P on a finite state
space X, a quantum walk operator W (P ) is a unitary on HA ⊗ HX , such that |0̄〉 ∈ HA,
span{|u〉 : u ∈ X} ⊆ HX , and for all u ∈ X it holds that

(〈0̄| ⊗ 〈u|)W (P )(|0̄〉 ⊗ IX) = 〈u|D(P ) and (〈0̄| ⊗ IX)W (P )(|0̄〉 ⊗ |u〉) = D(P )|u〉.

We note that this definition is more general than the usual notion of Szegedy’s quantum walk
operator [Sze04]. Nevertheless, this definition perfectly fits Szegedy’s framework and its later
extensions, and enables obtaining all major results (but with increased generality and clarity).

In case HX = span{|u〉 : u ∈ X} we can simply write (〈0̄| ⊗ I)W (P )(|0̄〉 ⊗ I) = D(P ) and
such a unitary is called a block-encoding of D(P ). But as indicated by our definition, all of our
results also apply if W (P ) is a block-encoding of a matrix M that can be block-diagonalised
with D(P ) being one of its diagonal blocks – this generalization is relevant for example in
applications where a data-structure is attached to each vertex (for more details see [GSLW19]).
Thus, for simplicity in the presentation we will use a slight abuse of notation and simply write
(〈0̄| ⊗ I)W (P )(|0̄〉 ⊗ I) = D(P ), when (〈0̄| ⊗ I)W (P )(|0̄〉 ⊗ I) = M and M is block-diagonal,
and the block corresponding to the subspace span{|u〉 : u ∈ X} is D(P ).

To gain some intuition, we recall the usual construction for Szegedy’s quantum walk operator
[Sze04]. It starts from the classical walk perspective: a step of a classical random walk from
vertex u consists of sampling a new vertex v according to the distribution Pu,· given by the u-th
row of P . An analogous quantum operation is a unitary V (P ) on span{|u, v〉 : u, v ∈ X ∪ {0̄}}
defined by

|0̄〉|u〉 7→ V (P )|0̄〉|u〉 =

(∑
v∈X

√
Pu,v|v〉

)
|u〉, (3)

and acting arbitrarily (but unitarily, and controlled on the second register) on the rest of the
state space. Using such a unitary, one can simulate the classical random walk by measuring the
state and re-initializing the first register to 0̄ in every step. Using the unitary swap operator
Shift : |u, v〉 7→ |v, u〉 (for u, v ∈ X), we can now define the operator

V (P )† ShiftV (P ), (4)

where the dagger † denotes the Hermitian conjugate. One can now verify that this operator is
indeed a quantum walk operator, as defined in Definition 5.

In order to understand the relationship between our perspective and most previous works on
Szegedy-type quantum walks, we note that a Szegedy-type quantum walk is usually implemented
as the following sequence of gates:

. . .

W (P )︷ ︸︸ ︷
V (P )† ShiftV (P )([2|0̄〉〈0̄| − I]⊗ I)V (P )† Shift V (P )([2|0̄〉〈0̄| − I]⊗ I)V (P )†︸ ︷︷ ︸

Ref

. . .

This can be viewed [Sze04, MNRS11] as a sequence of unitaries . . .ShiftRefShiftRef . . .,
where Ref is a reflection around the span of the states in the right-hand side of (3). We instead
look at it as the sequence . . .W (P ) ([2|0̄〉〈0̄| − I] ⊗ I)W (P ) ([2|0̄〉〈0̄| − I] ⊗ I) . . .. There are
various advantages of our treatment:

• It directly reveals the discriminant matrix, which is at the core of the analysis
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• It enables the use of new techniques such as fast-forwarding or block-encoding

• There is no need to work with pairs of vertices |u〉|v〉

• The similarities and differences compared to the classical walk are more apparent

Analogous to the case of classical random walk algorithms, quantum walk search algorithms
are assumed to have access to the following (possibly controlled) black-box operations (and their
inverses):

• Check(M): checks whether a vertex u is marked. Complexity C(M) or C. Described by
the mapping

∀u ∈ X, b ∈ {0, 1} : |u〉|b〉 7→

{
|u〉|b〉 if u /∈M
|u〉|b⊕ 1〉 if u ∈M.

• Setup(π): generates the superposition |
√
π〉 =

∑
u∈X
√
πu|u〉. Complexity S(π) or S.

• Update(P ): implements a (controlled) walk operatorW (P ), as in Definition 5. Complexity
U(P ) or U.

Remark 6. In the literature the update cost is often defined as the cost implementing the
unitary V (P ) described in (3), which is compatible with our cost notion due to (4). However,
in some papers the update cost is defined as the cost of implementing Ref, which is harder to
compare directly. Still it seems unlikely that Ref can be implemented much more efficiently
than W (P ), so we do not devote much attention to this minor conflict in the definitions. When
we cite such a paper we re-express their bounds in terms of our cost functions, c.f., Belovs’
original paper [Bel13] on electrical network based quantum walks.

Implementing interpolated quantum walks. We can derive other operations by combining
the above black-box operations. Say that we wish to implement a quantum walk corresponding
to the interpolated walk P (s). Let θ = arccos(

√
s)/2, and

V =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
, X =

(
0 1
1 0

)
, Y =

(
0 1
−1 0

)
.

Then
−Y V XV |0〉 =

√
s|0〉+

√
1− s|1〉, −Y V V |0〉 = |1〉.

Let cW (P ) be a controlled version of the “update unitary” W (P ) controlled by the first qubit,
and C be the “check unitary” flipping the first qubit for marked vertices. Then the operator

[IA ⊗ (V ⊗ IX)C (V Y ⊗ IX)] cW (P ) [IA ⊗ (Y V ⊗ IX)C (V ⊗ IX)]

is a quantum walk operator3 corresponding to D(P (s)). This shows that we can implement
Update(P (s)) using one call to Update(P ), two calls to Check(M) and 4 elementary gates. We
can hence bound the complexity

U(P (s)) ∈ O(U(P ) + C(M)).

3In order to show that it satisfies the requirements of Definition 5, note that the subspace span(|0〉, |1〉) ⊗
span{|u〉 : u ∈ X} is invariant under the action of C.
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2.5 Quantum fast-forwarding

Similar to interpolated walks, quantum fast-forwarding [AS19] has proven to be a useful tool for
quantum walk search algorithms. For example, the most recent developments [AGJK19] in the
hitting time framework (Theorem 8) are based on this technique.

Theorem 7 (Quantum fast-forwarding [AS19]). Let ε ∈ (0, 1), t ∈ N and let P be any reversible

Markov chain on state space X. There is a quantum algorithm with complexity O
(√

t log 1
εU
)
,

where U is the cost4 of implementing a quantum walk operator W (P ) (and its inverse), that
implements a unitary U on span{|a, x〉 : a ∈ A, x ∈ X} for some finite set A 3 {0̃}, such that
for any |ψ〉 ∈ span{|x〉 : x ∈ X},∥∥(〈0̃| ⊗ I)U |0̄〉|ψ〉 − |0̃〉D(P )t|ψ〉

∥∥2 ≤ ε.
The resulting unitary U can be equivalently described as a (1, log |A|, ε)-block-encoding of

D(P )t [CGJ19, GSLW19]. For completeness we will later reprove this theorem, and give an
explicit quantum circuit solving this problem, that will play a crucial role in Section 6.

3 Quantum walk frameworks

In this section we survey the different quantum walk search frameworks.

3.1 Hitting time framework

The hitting time framework is the quantum analogue of arguably the simplest random walk
search algorithm:5

1. Use Setup(π) to sample a vertex u according to π.

2. Repeat HT times:

(a) Check if the current vertex is marked using Check(M).
(b) Sample a neighbour of the current vertex using Update(P ), and make that the current

vertex.

If HT ∈ Ω(HT(P,M)), then this algorithm finds a marked vertex with constant probability. Its
complexity is S + HT(U + C).

The quantum analogue of this framework was first introduced by Szegedy [Sze04], giving a
quadratic speedup over the update and checking costs of the classical algorithm. His algorithm,
however, only detected the presence of a marked vertex, rather than actually finding one. Later
work by Ambainis et al. [AGJK19] resolved this issue, describing a quantum walk algorithm
that effectively finds a marked vertex with constant probability. We summarize their result in
the theorem below.

Theorem 8 (Hitting time framework). Let P be any reversible Markov chain on a finite state
space X, M ⊂ X a marked set, and HT a known upper bound on HT(P,M). Then there is a
quantum algorithm that outputs a vertex x from M with constant probability in complexity

O
(
S
√

log(HT) +
√

HT(U + C)
√

log(HT) log log(HT)
)
.

4For simplicity we assume that U is at least the number of qubits on whichW (P ) act. This is a fair assumption
because if W (P ) uses fewer gates than qubits, then there must be some unused qubits.

5In the case of classical algorithms, the subroutines Setup, Update, and Check are assumed to: sample a vertex
according to π; sample a neighbour of the current vertex u; and check if the current vertex is marked. Note that
the costs S and U of the classical operations might be significantly cheaper than their quantum counterparts S
and U (since the quantum checking operation is just the reversible version of the classical checking operation, it
will never be significantly harder).
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3.2 MNRS framework

While the hitting time framework is optimal in terms of the number of quantum walk steps, it
may be suboptimal in the number of calls to Check(M). In contrast, the MNRS framework uses
an optimal number of calls to Check(M), at the expense of possibly more calls to Update(P ).
This framework is again best understood using a random walk perspective. Specifically, consider
a classical algorithm that, rather than checking after every step, only checks after every 1

δ steps:

1. Use Setup(π) to sample a vertex u according to π.

2. Repeat 1
ε times:

(a) Check if the current vertex is marked using Check(M).
(b) Repeat 1

δ times:
Sample a neighbour of the current vertex using Update(P ), and make that the
current vertex.

If δ is a lower bound on the spectral gap of P , then by taking 1
δ steps between checks, each

random walk vertex that is checked is approximately distributed as an independent sample from
π. Hence, if ε ≤ π(M), then after 1

ε samples from π a marked vertex will be sampled with
constant probability. The total complexity of this classical algorithm is S + 1

ε (1δU + C). If
ε = π(M) and δ equals the spectral gap of P , then it holds that

1

ε
≤ HT(P,M) ≤ 1

εδ
. (5)

Hence this approach is often suboptimal in the number of steps with respect to the algorithm in
the previous section6, but it may be better in the number of checks. This algorithm will hence
be preferable in cases where the checking cost C is much larger than the update cost U .

The quantum analogue of this classical algorithm was introduced by Magniez, Nayak, Roland
and Santha [MNRS11], who showed the following:

Theorem 9 (MNRS framework). Let P be any reversible Markov chain on a finite state space
X, M ⊂ X a marked set, ε a known lower bound on π(M) and δ a known lower bound on the
spectral gap of P . Then there is a quantum algorithm that outputs a vertex x from M with
constant probability in complexity

O
(
S +

1√
ε

(
1√
δ
U + C

))
.

3.3 Controlled quantum amplification framework

Dohotaru and Høyer [DH17] showed that an optimal payoff between update cost and checking
cost can be obtained for the special case where there is a single marked element M = {m}.
Specifically, consider the following classical algorithm:

1. Use Setup(π) to sample a vertex u according to π.

2. Repeat 1/ε times:

(a) Check if the current vertex is marked using Check(M).
(b) Repeat εHT times:

Sample a neighbour of the current vertex using Update(P ), and make that the
current vertex.

6E.g., consider the graph consisting of two cliques on n/2 nodes, and a single edge between them. For a single
marked element we get that π(m) ∈ Θ(1/n), δ(P ) ∈ Θ(1/n2) and HT ∈ Θ(1/n2), so that 1/(εδ)� HT.
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If ε ∈ Θ(π(m)), HT ∈ Ω(HT(P, {m})), and there is a unique marked element M = {m}, then
the above algorithm returns m with constant probability. This can be proven using the following
lemma.

Lemma 10 ([DH17, Section 6]). Consider a reversible Markov chain P with stationary distri-
bution π, and a single marked element m. If τ ∈ Ω(π(m)HT(P,m)), then

HT(P τ ,m) ∈ O
(

1

π(m)

)
.

If we set τ = εHT then HT(P τ ,m) exactly describes the expected number of repetitions
of step 2. in the above algorithm that are required to find a marked element. The algorithm
has complexity of the order S + HTU + 1

εC. This corresponds to the update complexity of the
classical algorithm in the hitting time framework, and the checking complexity of the classical
algorithm in the MNRS framework.

In their controlled quantum amplification framework, Dohotaru and Høyer [DH17] construct
a quantum analogue of the above result.

Theorem 11 (Controlled quantum amplification framework). Let P be any reversible Markov
chain on a finite state space X, m ∈ X a unique marked element, HT a known upper bound
on HT(P, {m}), and ε a known lower bound on π(m). Then there is a quantum algorithm that
outputs m with constant probability in complexity

Õ
(
S +
√

HTU +
1√
ε
C

)
.

3.4 Electric network framework

A main drawback of all the aforementioned frameworks is that they require the quantum walk
to start from a quantum sample of the stationary distribution, which may in general be much
more difficult to construct than, say, a distribution that is supported on a single vertex. Belovs
[Bel13] showed that one can combine quantum walks with tools from electric network theory
to get rid of this restriction, proving the theorem below. For an arbitrary distribution σ, we
let S(σ) denote the complexity of generating the initial state |

√
σ〉 =

∑
u

√
σu|u〉, which can

be much smaller than the setup cost S = S(π) for generating the quantum sample |
√
π〉 of the

stationary distribution.
We also define Λ(σ,C), for some choice of C, as a unitary that acts as:

|0〉|u〉 7→
√
πu|0〉+

√
σu/C|1〉√

πu + σu/C
|u〉, (6)

and let R(σ) be its implementation cost (again including controlled/inverse versions). We define
U(σ) = U + R(σ). With these costs, we can describe Belovs’ framework as follows.

Theorem 12 (Electric network framework [Bel13]). Let P be any reversible Markov chain on
a finite state space X, M ⊂ X a marked set, σ a distribution on X, and C a known upper
bound on Cσ,M . Then there is a quantum algorithm that decides if M 6= ∅ with bounded error
in complexity

O
(
S(σ) +

√
C(U(σ) + C)

)
.

Recall that if σ = π then C = HT (P,M). In addition, R(σ) becomes trivial in this case, so
that this recovers the hitting time framework (except that it only detects marked elements).
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4 Finding in the electric network framework

The major drawback of the electric network framework is that it only allows for detecting marked
vertices, rather than actually finding one – in fact, if we only want to detect a marked vertex,
the electric network framework is a strict generalization of the hitting time framework. In this
section, we describe a quantum algorithm that reproduces the electric network framework, but
in addition actually finds marked elements, making it a strict generalization of the hitting time
framework.

Recall that we are given a weighted graph G over X with total edge weightW , a distribution
σ over X, and a subset M ⊂ X of marked elements. The quantity Rσ,M denotes the effective
resistance from σ to M , and we define Cσ,M = WRσ,M . We will prove the following.

Theorem 13 (Electric network framework). Let P be any reversible Markov chain on a finite
state space X, M ⊂ X a marked set, σ a distribution on X, and C a known upper bound on
Cσ,M . There is a quantum algorithm that finds a marked element from M , or decides that it is
empty, with bounded error in complexity

O
(√

logC S(σ) +
√
C logC log logC(U(σ) + C)

)
.

In earlier work, Belovs [Bel13] showed that it is possible to detect the presence of marked
vertices in O

(√
C
)
quantum walk steps (Theorem 12). Our work strengthens this result by also

finding a marked element, at the cost of an additional log factor. Our algorithm and analysis
runs along the same lines as [AGJK19]. As described in Section 4.2, the algorithm combines
quantum fast-forwarding with a quantum walk derived from an interpolated Markov chain. The
analysis, described in Section 4.2.3 reduces the success probability of our quantum algorithm
to the probability that a classical random walk starting from σ hits M , and then returns to
the support of σ, within O(Cσ,M ) steps of the walk, similar to the analysis in [AGJK19]. In
order to lower bound this quantity, we extend the known combinatorial interpretation of the
quantity Cσ,M from the case where σ is a singleton (Theorem 4) to a more general setting. This
is described in Section 4.1.

Remark 14. A similar result, but restricted to the special case where the graph is a tree, can
be found in the quantum algorithm for backtracking by Montanaro [Mon18]. Starting from the
root of a binary tree, this algorithm incurs an additional log factor for actually finding a solution,
rather than simply detecting one. The extension however crucially relies on the tree structure
of the graph, essentially performing a binary search, and hence seems restricted to this special
class of graphs.

4.1 Combinatorial interpretation of CS,M and Cσ,M

In Theorem 4 we mentioned the classic result that for any vertex s and subset M , the electric
quantity Cs,M = WRs,M equals the commute time Es(τMs ) from s toM . A similar interpretation
however seems to be lacking for the more general quantity Cσ,M = WRσ,M . While one could
expect that a similar relation should hold, at least for the special case where σ = π|S equals the
stationary distribution on some subset S, we provide a counterexample in Appendix A. There
we show that in certain cases Cπ|S ,M = WRπ|S ,M is not equal to the commute time Eπ|S (τMS )
from π|S to M and back to S.

Nevertheless, we do succeed in proving a one-way bound, showing that a variant of the
commute time can indeed be bounded by the electric quantity Cπ|S ,M , which will prove sufficient
for our purpose.

Claim 15. Let S ⊆ X \M , and p ∈ R, T ∈ N such that 2
T ≤ π(S)p ≤ 1/CS,M . Then with

probability at least p/2 the random walk started from σ = π|S first hits M , and then returns to
S, in the first T steps.
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The conditions on σ might seem a bit strong, we can however adapt any graph, similar to what
is implicitly done in Belovs’ algorithm [Bel13], to ensure that they do hold for p = 1

2 , T = 4Cσ,M .
The main technical contribution in the proof of Claim 15 is the following lemma, which we

prove in Appendix B. We let τM denote the hitting time of M , which is the random variable
representing the number of steps to reach M (i.e., the minimum i such that Yi ∈ M), and τ+S
the first return time to S (i.e., the minimum i > 0 such that Yi ∈ S).

Lemma 16. Let S,M ⊆ X be disjoint sets, then

Prπ|S (τM < τ+S ) =
1

CS,Mπ(S)

(
≥ 1

Cπ|S ,Mπ(S)

)
.

This generalizes the classic fact that the probability that a reversible Markov chain starting
at s visits t before returning to s is 1/(Cs,tπs). We can then combine this with the following
classic lemma, a proof of which can be found in [LPW17, Lemma 21.13].

Lemma 17 (Kac’s Lemma). For any irreducible and reversible Markov chain it holds that

Eπ|S (τ+S ) =
1

π(S)
.

The proof of the main claim then easily follows.

Proof of Claim 15. We use a union bound on the events that τM < τ+S and τ+S < T , the union
of which implies the claimed statement. From Lemma 16 we know that Prσ(τM < τ+S ) =
1/(CS,Mπ(S)) ≥ p. A bound on Prσ(τ+S < T ) easily follows from Kac’s lemma (Lemma 17).
Combined with Markov’s inequality this lemma implies that

Prσ(τ+S < T ) ≥ Pr(τ+S < 2/(π(S)p)) > 1− p/2.

The claim then follows by a union bound:

Prσ((τM < τ+S ) ∧ (τ+S < T )) ≥ Prσ(τM < τ+S ) + Prσ(τ+S < T )− 1 > p/2.

4.2 Quantum walk algorithm

Our algorithm combines quantum fast-forwarding with interpolated quantum walks. Similar to
[AGJK19], the analysis of the algorithm then follows from a “box-stretching” argument, which
builds on our combinatorial Claim 15. To ensure the conditions of this claim, we will consider
an interpolated walk on a slightly modified graph, implicitly used in [Bel13].

4.2.1 Modified graph and Belovs’ quantum walk

The input to the search problem is a weighted graph G = (X,E,w), a subset of marked elements
M ⊂ X and an initial distribution σ over X. We assume access to these through black-box
operations Check(M), Setup(σ), and the operator Λ(σ,C), as defined in Section 3.4, with C an
upper bound on Cσ,M .

We will consider a slightly modified graph G′ = (X ′, E′, w′), with total weight W ′, initial
distribution σ′ and marked elements M ′. In Lemma 19 we will prove that we can implement a
quantum walk on G′ using only the original black-box operations mentioned earlier. The graph
G′ essentially consists of two copies of the original graph, and is defined by

X ′ = {0, 1} ×X,
E′ = {((0, u), (0, v)), (u, v) ∈ E} ∪ {((0, u), (1, u)), u ∈ supp(σ)},
w′(0,u),(0,v) = wu,v, ∀(u, v) ∈ E, w′(0,u),(1,u) = σuW/C, ∀u ∈ X.
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Figure 1: Modified graph.

We illustrate this construction in Figure 1 below. The modified initial state σ′ is defined as
σ′(1,u) = σu, and zero elsewhere, and the marked elements M ′ ⊆ V ′ correspond to the set
{0} ×M .

These particular choices ensure that (i) S′ := supp(σ′) is disjoint from M ′, (ii) σ′ is pro-
portional to π′ on its support, with π′ the stationary distribution on G′, and (iii) the commute
time between σ′ and M ′ in G′ does not increase too much. We prove the second and third
points in the following lemma, letting R′σ′,M ′ and C ′σ′,M ′ = R′σ′,M ′W

′ denote the effective re-
sistance and commute time, respectively, between σ′ and M ′ on G′. We also use the fact that
W ′ = W + 2W

∑
u σu/C = W + 2W/C.

Lemma 18. We have π′(S′) = 1/(C + 2), moreover if ρ is a probability distribution on S =

supp(σ) such that
∑

u∈S
ρ2u
σu

= 1/p, then C ′ρ′,M ′ = (Cρ,M/C + 1/p)(C + 2). Therefore,

1

C ′S′,M ′π
′(S′)

≥ 1

2
min

{
p,

C

Cρ,M

}
.

Proof. Since W ′ = W + 2W/C, and w′(1,u) = Wσu/C, we get that

π′(1,u) =
w′(1,u)

W ′
=
Wσu
W ′C

=
σu

(1 + 2/C)C
=

σu
(C + 2)

=⇒ π′(S′) =
1

(C + 2)
.

Now observe that

R′ρ′,M ′ = Rρ,M +
∑
u

ρ2u
Wσu/C

= Rρ,M +
C

Wp
,

yielding

C ′ρ′,M ′ = W ′R′ρ′,M ′ = (W + 2W/C)(Rρ,M + C/(Wp)) = (C + 2)(Cρ,M/C + 1/p).

Finally,

1

C ′S′,M ′π
′(S′)

≥ 1

C ′ρ′,M ′π
′(S′)

=
1

Cρ,M/C + 1/p
≥ 1

2 max{Cρ,M/C, 1/p}
=

1

2
min{p, C/Cρ,M}.

Now we apply the above lemma with ρ = σ, which gives p = 1. If C ∈ Θ(Cσ,M ) and
Cσ,M = Ω(1), then we see that C ′σ′,M ′ ∈ Θ(Cσ,M ), so the commute time does not increase
significantly. Moreover, if C ≥ Cσ,M , then for T := d4C ′σ′,M ′e ≤ 8(C + 2) + 1 we have

2

T
≤ π′(S′)/2 ≤ 1

C ′σ′,M ′
.

In this case, all conditions of Claim 15 are satisfied with respect to p′ = 1
2 .

Finally, we show that we can efficiently implement a quantum walk corresponding to the
random walk P ′ on G′:
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Lemma 19. The cost of Update(P ′) is U(P ′) ∈ O(U(P ) + R(σ)) = O(U(σ)), where U(P ) is the
cost of implementing the original quantum walk operatorW (P ), and R(σ) is the cost of Λ(σ,C),
defined in Section 2.3.

Proof. In the following we will identify P with |0〉〈0|⊗P (and similarly for D(P )). Observe that

P ′ = diag

(
πu

πu + σu/C

)
P +

∑
u∈supp(σ)

σu/C

πu + σu/C
(|0, u〉〈1, u|+ |1, u〉〈0, u|),

and therefore D(P ′) =
√
P ′ ◦ P ′T expressed in terms of D(P ) =

√
P ◦ P T is

D(P ′) = diag

(√
πu

πu + σu/C

)
D(P )diag

(√
πu

πu + σu/C

)

+
∑
u

√
σu/C

πu + σu/C
(|0, u〉〈1, u|+ |1, u〉〈0, u|).

As in (6) let Λ(σ,C) be a unitary that uses a single-qubit “flag” register a and acts as

|0̄〉A′ |u〉X 7→
√
πu|0̄〉a +

√
σu/C|1〉a√

πu + σu/C
|u〉X .

We will use a new qubit register b, and represent the vertices as (0, u) 7→ |0〉b|u〉, (1, u) 7→ |1〉b|u〉.
We will denote by c̄abW (P ) the operator W (P ) conditioned on the qubit state |0〉a|0〉b, and by
c̄bΛ the operator Λ(σ,C) conditioned on the qubit state |0〉b, and using a as the output qubit.
Let

W (P ′) := (IA ⊗ (c̄bΛ
†))c̄abW (P )(IA ⊗ (SWAPab ⊗ IX)c̄bΛ),

then

(〈0|a ⊗ I)W (P ′)(|0〉a ⊗ I) = |0〉〈0|b ⊗
[
diag

(√
πu

πu + σu/C

)
W (P )diag

(√
πu

πu + σu/C

)]

+ (|0〉〈1|b + |1〉〈0|b)⊗ IA ⊗

[∑
u

√
σu/C

πu + σu/C
|u〉〈u|

]
,

and thereforeW (P ′) is a walk operator ofD(P ′) wheneverW (P ) is a walk operator ofD(P ).

4.2.2 Interpolated walk and algorithm

The transformation described in Section 4.2.1 can be applied to any input graph G and any
distribution σ, with negligible impact on Cσ,M , or the update cost U. This justifies focusing our
analysis on the case where σ = π|S and 1/Cσ,M ≤ π(S) ≤ 2/Cσ,M , ensuring that the conditions
of Claim 15 are satisfied for p = 1/2 and T ≥ 4Cσ,M . Moreover, this ensures that M and
S = supp(σ) are disjoint, and furthermore, that we can easily reflect around supp(σ).7 We
assume these conditions for the remainder of this section.

For a Markov chain P , and parameter q = (qS , qM ) ∈ [0, 1)2, we consider the interpolated
Markov chain P (q), defined by (here δuv is the Kronecker delta)

P (q)u,v =


(1− qS)Pu,v + qSδuv if u ∈ supp(σ)

(1− qM )Pu,v + qMδuv if u ∈M
Pu,v else.

7To see the second point, note that in the modified graph of Section 4.2.1 this amounts to reflecting around
the states whose first register is 1.
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Equivalently,
P (q) = (1− qS − qM )P + qSPsupp(σ) + qMPM , (7)

with Psupp(σ) and PM absorbing walks, as defined in Section 2.2. We denote by D(q) the
discriminant matrix of P (q). Starting from the state |

√
σ〉, our algorithm will apply T steps of

quantum fast-forwarding of P (q) for appropriately chosen q, and increasing T .

Algorithm 1 Fast-forwarding-based search algorithm
Search(P, σ,M, T ).

1. Let Q =
{

1, 2−1, 2−2, . . . , 2−dlog(14T )e
}
, and prepare the state

|ψ〉 =
∑
t∈[T ]

∑
qM∈Q

1√
T |Q|

|t〉|q = (1− T/2, 1− qM )〉|
√
σ〉.

2. Let U be the operator that applies quantum fast-forwarding, controlled on the first two
registers, mapping |t〉|q〉|

√
σ〉 to |1〉|t〉|q〉Dt(q)|

√
σ〉 + |0〉|Γ〉 for some arbitrary |Γ〉, with

precision O
(

1
log T

)
.

3. Apply O
(√

log T
)
rounds of amplitude amplification on U and |ψ〉, conditioned on the first

register. Finally, measure the last register.

In Lemma 25 of Section 4.2.3 we will prove that there exists some T ′ ∈ O(Cσ,M ), such that for
all T ′′ ≥ T ′ the algorithm returns a marked vertex with constant probability. Combined with
the following lemma, which bounds the complexity of the algorithm, this proves Theorem 13.

Lemma 20. The complexity of Algorithm 1 is

O
(√

log T S(σ) +
√
T log T log log T (U(σ) + C)

)
.

Proof. For the complexity of step 1., note that creating |ψ〉 only requires O(log T ) elementary
gates, and a call to Setup(σ) costing S(σ). For the complexity of step 2., note that by Theorem 7,
the operators U and U † require O

(√
T log log T

)
calls to Update(P (q)), which implements a

block-encoding of W (q) = W (P (q)). We can implement such a block-encoding, using a block-
encoding of P , W (P ), which, by assumption (see also Lemma 19), can be implemented in
O(U(σ)) complexity; the operation Check(M), costing C; and an analogous operation that
checks if a vertex is in S = supp(σ), which can be done in O(1) cost, by our assumptions on the
structure of G (such an implementation ofW (q) is straightforward, as we discuss in Section 2.4).
Thus, the total cost of step 2. is O

(√
T log log T (U(σ) + C)

)
.

By [BHMT02] we can implement step 3. using O
(√

log T
)
reflections around U |ψ〉. A single

such reflection can be implemented by O(1) calls to U and U †, and the preparation circuit of
|ψ〉 and its inverse – yielding a total complexity (neglecting constants):√

log T
(
S(σ) +

√
T log log T (U(σ) + C)

)
=
√

log TS(σ) +
√
T log T log log T (U(σ) + C).

4.2.3 Correctness of Algorithm 1

Similar to the argument in [AGJK19], we use a careful choice of the parameters of the interpo-
lated walk to ensure a constant success probability of Algorithm 1. As discussed in the previous
section, we can assume without loss of generality that σ = π|S for some S ⊆ X, and that
1/Cσ,M ≤ π(S) ≤ 2/Cσ,M .
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The key quantity is
∥∥ΠMD

t(q)|
√
σ〉
∥∥2, where ΠM is the orthogonal projector onto marked

vertices – this is the probability of finding a marked vertex in step 2. of the algorithm (that is,
before amplitude amplification). We can bound this quantity in terms of the classical Markov
chain P (q) as follows, generalizing [AGJK19, Lemma 8]:

Lemma 21. Let (Yi(q))
∞
i=0 be a Markov chain evolving according to P (q) with initial state

Y0(q) distributed according to σ = π|S , and let D(q) be the associated discriminant matrix.
Then for any t, t′ ∈ N such that t′ > t we have that∥∥ΠMD

t(q)|
√
σ〉
∥∥ ≥ PrY0(q)∼σ

(
Yt(q) ∈M,Yt′(q) ∈ S

)
.

We will not use this lemma directly, but we state it here for the sake of intuition. Its proof
closely follows that of [AGJK19, Lemma 8] (see also the proof of Corollary 24).

By this lemma it suffices to show that with certain probability, for appropriate choice of t
and t′, the t-th vertex is marked and the t′-th vertex is again in the initial support S. We will
be able to ensure these conditions by appropriately tweaking the parameters q = (qS , qM ).

The sequence of random variables (Yi)
∞
i=0 is supported on infinite sequences of vertices from

X, which represent paths of the random walk. However, in light of Lemma 21, given such a
sequence, we will only care about which states in the sequence are in S, and which are in M .
Following a similar abstraction in [AGJK19], we model a path of the random walk as a sequence
of boxes, with gray boxes representing vertices in S, black boxes representing vertices inM , and
white boxes representing vertices in neither S nor M . We depict such a sequence of boxes in
Figure 2. In a slight abuse of notation, we will refer to y = (y0, y1, . . . ) drawn from (Yi)

∞
i=0 as

a sequence of boxes. A gray or black box at position i then denotes the event that Yi ∈ S or
Yi ∈ M , respectively. The indicated times ht and ct in Figure 2 denote the random variables
corresponding to the hitting time (first time to reachM) and commute time (first time to return
to S after reaching M), respectively.

ht ct
. . .

Figure 2: Sequence of boxes y = (y0, y1, . . . ) drawn from the random variable (Yi)
∞
i=0. Gray

boxes, called S-boxes, correspond to yk ∈ S; black boxes, calledM -boxes, correspond to yk ∈M .
The hitting time from S to M is denoted by ht, the commute time by ct.

In the following we define rS = 1/(1− qS) and rM = 1/(1− qM ), representing the expected
number of steps that the interpolated walk remains at a vertex in S or M respectively. Given
parameters r = (rS , rM ) and a sequence of boxes y = (y0, y1, . . . ), we denote by γ(r) the sequence
derived from y by replacing each M -box with rM M -boxes, and each S-box with rS S-boxes.
Since rM is the expected number of steps a walker would stay at a marked vertex in an absorbing
walk with parameter qM (and similarly for rS), γ(r) loosely models a path of the interpolated
random walk P (q). We denote by ht(rS ,rM ) and ct(rS ,rM ) the hitting time and commute time of
the sequence γ(r).

ht(rS ,rM ) ct(rS ,rM )

. . .

Figure 3: If y is the sequence of boxes shown in Figure 2, then the above sequence represents
γ(rS ,rM ) for rS = 2 and rM = 3.

For integers a < b, we will be interested in bounding the quantities

M (r)
y [a, b] = |{t ∈ [a, b] : γ

(r)
t ∈M}| and S(r)

y [a, b] = |{t ∈ [a, b] : γ
(r)
t ∈ S}|.

When r = (1, 1) we will omit the (r) superscript.
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Lemma 22. Let y = (y0, y1, . . . , yT , . . . ) denote a sequence of boxes, for some T ∈ N, such that

• y0 ∈ S,

• ct ≤ T ,

• Sy[0,ht] = 1.

If we set rS = T/2, then there exists rM ∈ R = {1, 2, 4, . . . , 2dlog(14T )e} such that

M (r)
y [0, 2T ] ≥ T/2 and S(r)

y [7T, 15T ] ≥ T/4.

We note that R = {1/qM : qM ∈ Q} for Q the set defined in Algorithm 1.

Proof. We first choose rM ∈ {1, 2, 4, . . . , 2dlog(14T )e} such that 7T ≤ ct(1,rM ) ≤ 14T . To see that
this is possible, note that ct(1,1) = ct ≤ 14T by assumption, and increasing rM strictly increases
ct(1,rM ), so there is some largest possible rM such that ct(1,rM ) ≤ 14T . Since doubling rM can
at most double ct(1,rM ), we must also have 7T ≤ ct(1,rM ).

The increase in the commute time when transforming y to γ(1,rM ), given by ct(1,rM ) − ct,
comes from adding ct(1,rM ) − ct new M -boxes to γ(1,rM ) before ct(1,rM ), meaning that

M (1,rM )
y [0, ct(1,rM )] ≥ ct(1,rM ) − ct ≥ ct(1,rM ) − T.

Note that for any positive integer k, we have M (1,rM )
y [0, ct(1,rM ) − k] ≥ M

(1,rM )
y [0, ct(1,rM )]− k.

Setting k = ct(1,rM ) − 3T/2 thus implies that

M (1,rM )
y [0, 3T/2] ≥ T/2.

Next we choose rS = T/2. By the conditions Sy[0, ht] = 1 and y0 ∈ S, the unique S-box in
y before ht is y0, so the second S-box in y is at ct, and similarly, the second S-box in γ(1,rM )

is at ct(1,rM ). Thus, there are rS − 1 = T/2 − 1 new boxes added to γ(1,rM ) before ct(1,rM ) to
get γ(rS ,rM ), meaning that the ≥ T/2 M -boxes in the first 3T/2 boxes of γ(1,rM ) must all occur
within the first 2T boxes of γ(rS ,rM ), so

M (rS ,rM )
y [0, 2T ] ≥ T/2.

Similarly, since the first S-box in γ(1,rM ) is extended to T/2 S-boxes to get to γ(rS ,rM ), the
second S-box is displaced by T/2− 1, meaning ct(rS ,rM ) = ct(1,rM ) + T/2− 1, so

15T/2− 1 ≤ ct(rS ,rM ) ≤ 29T/2− 1.

In γ(rS ,rM ), there is a sequence of rS = T/2 S-boxes beginning at ct(rS ,rM ), so we have:

S(rS ,rM )
y [7T, 15T ] ≥ T/2.

For a fixed Markov process P , and parameters r = (rS , rM ), let (Y
(r)
i )∞i=0 be the Markov

chain evolving according to P (q), the absorbing chain with qS = 1− 1
rS

and qM = 1− 1
rM

(i.e.,
Y (r) = Y (q)).

For a sequence y, for any choice of r = (rS , rM ), we associate two slightly different sequences
of boxes to y:

• As previously defined, γ(r) is derived from y by replacing eachM - resp. S-box with a fixed
number of copies rM resp. rS .

• y(r) is derived from y by replacing each M - resp. S-box with an independently random
number of copies that are geometrically distributed with mean rM resp. rS . Note that if y
is distributed according to the random variable (Yi)

∞
i=0, then y

(r) is distributed according
to (Y

(r)
i )∞i=0.
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Lemma 22 allows us to say something about the probability that γ(r)t ∈ M and γ
(r)
t′ ∈ S

under uniform random r ∈ R, t ∈ [0, 2T ], and t′ ∈ [7T, 15T ], assuming certain conditions on
y are satisfied (we will shortly argue that these conditions are satisfied with high probability
when starting from the distribution σ = π|S). Since we are actually concerned with proving
statements about the absorbing walk, we would like to say something similar for y(r) in place
of γ(r). Fortunately, these two sequences are very similar, leading to the following corollary of
Lemma 22.

Corollary 23. Set rS = T/2, and let rM ∈ R, t ∈ {1, . . . , 30T} and t′ ∈ {1, . . . , 30T} be chosen
uniformly at random. Let Y = (Yi)

∞
i=0 be the Markov chain evolving according to Markov

process P (not necessarily reversible) starting in any distribution κ supported on S, with Y (r)

the absorbing Markov chain, coupled to Y , as defined above. Let E be the event that: ct ≤ T
and SY [0,ht] = 1, where ht and ct are the hitting time and commute time in Y . Then

Et,t′,rM
(

Pr
Y

(r)
0 ∼κ(Y

(r)
t ∈M,Y

(r)
t+t′ ∈ S | E)

)
= Ω(log−1 T ).

Proof. By Lemma 22, we know that if E holds then there exists some rM ∈ R, chosen with
probability 1/|R| = Ω(log−1 T ), such that with probability 1 we have

|{i ∈ [0, 2T ] : γ
(r)
i ∈M}| = M

(r)
Y [0, 2T ] ≥ T/2

and
|{i ∈ [7T, 15T ] : γ

(r)
i ∈ S}| = S

(r)
Y [7T, 15T ] ≥ T/4.

We will show that for any y in the support of Y such that E holds, given this choice of r,
Prt,t′(y

(r)
t ∈M,y

(r)
t+t′ ∈ S) is constant, completing the proof. Using the similarities between y(r)

and γ(r), we now wish to lower bound |{i ∈ [0, 7T/2] : y
(r)
i ∈ M}| and |{i ∈ [7T/2 + 1, 30T ] :

y
(r)
i ∈ S}|.

In going from y to γ(r), we replace each S-box with a block of rS S-boxes, whereas when
going from y to y(r), we replace each S-box with a block of S-boxes whose length is geometrically
distributed with mean rS (and similarly forM -boxes). We can equivalently derive y(r) from γ(r)

by replacing each block of rS S-boxes with a block of S-boxes whose length is given by a
geometric sample. Define rS [a, b] to be the mean over all such geometric samples replacing an
S-block of γ(r) that has non-trivial overlap with the interval [a, b]. Define rM [a, b] similarly.

We will assume the following 6 conditions:

rM [1, 2T ], rM [1, 7T ], rM [7T, 15T ] ∈ [rM/2, 2rM ],

rS [1, 2T ], rS [1, 7T ], rS [7T, 15T ] ∈ [rS/2, 2rS ].
(8)

We use [AGJK19, Lemma 10], which states that any sum of i.i.d. geometric random variables
will be within a factor 2 of its expected value with probability at least 7/16. While for instance
the sums rM [1, 2T ] and rM [1, 7T ] are not strictly independent, clearly the event that rM [1, 2T ] ∈
[rM/2, 2rM ] cannot decrease the probability that rM [1, 7T ] ∈ [rM/2, 2rM ]. Hence the probability
that all 6 conditions hold is at least (7/16)6, and we will assume that this is the case for the rest
of the proof.

Since rS/2 ≤ rS [0, 2T ] ≤ 2rS and rM/2 ≤ rM [0, 2T ] ≤ 2rM , it holds that

|{i ∈ [0, 7T/2] : y
(r)
i ∈M}| ≥M

(r)
y [0, 2T ]/2 ≥ T/4. (9)

To see this, notice that in the interval [0, 2T ] of γ(r), we remove at most half of the ≥ T/2
M -boxes to get y(r), so there are at least T/4 remaining. We at most double the ≤ 3T/2 S-
boxes, so the remaining ≥ T/4 M -boxes from γ(r)’s interval [0, 2T ] all appear within the first
2T + 3T/2 = 7T/2 of y(r). From (9), we immediately have

|{i ∈ [1, 30T ] : y
(r)
i ∈M}| ≥ T/4,

20



so the probability that a uniform random t ∈ {1, . . . , 30T} satisfies y(r)t ∈M is at least 1/120.
Next, since rM [0, 7T ], rM [7T, 15T ] ∈ [rM/2, 2rM ] and rS [0, 7T ], rS [7T, 15T ] ∈ [rS/2, 2rS ],

|{i ∈ [7T/2, 30T ] : y
(r)
i ∈ S}| ≥ |{i ∈ [7T, 15T ] : γ

(r)
i ∈ S}|/2 = S(r)

y [7T, 15T ]/2 ≥ T/8. (10)

To see this, note that in the interval [7T, 15T ] of γ(r), we remove at most half of the ≥ T/4
S-boxes to get y(r), so there are at least T/8 remaining, although they might no longer be
contained within the interval [7T, 15T ]. However, since the position of any element in y(r) is at
least half and at most double its position in γ(r), these T/8 S-boxes will be within the interval
[7T/2, 30T ] of y(r).

From (10), we want to conclude that Prt,t′(y
(r)
t+t′ ∈ S|y(r)t ∈ M) is constant. In fact, by

(9), we have that with constant probability t ≤ 7T/2 and y
(r)
t ∈ M . Hence it is sufficient to

lower bound Prt,t′(y
(r)
t+t′ ∈ S|t ≤ 7T/2, y

(r)
t ∈ M) by a constant. To do so, we note that for any

t ∈ [1, . . . , 7T/2] the range of possible values of t+ t′ contains [7T/2, 30T ]. Hence, by (10),

Prt,t′(y
(r)
t+t′ ∈ S|t ≤ 7T/2, Y

(r)
t ∈M) ≥ (T/8)/(30T ) = 1/240.

This bound only holds conditioned on the events in (8), but we already argued that these also
hold with constant probability.

This corollary allows us to prove the following statement.

Corollary 24. Set rS = T/2, and let rM ∈ R and t ∈ {1, . . . , 30T} be chosen uniformly at
random. Let qS = 1 − 1

rS
and qM = 1 − 1

rM
, and let D(q) be the discriminant of P (q) for a

reversible ergodic Markov process P on X with stationary distribution π, and σ = π|S for some
S ⊂ X with 1/Cσ,M ≤ π(S) ≤ 2/Cσ,M . If T ≥ 4Cσ,M then

Et,rM
[∥∥ΠMD

t(q)|
√
σ〉
∥∥2] ∈ Ω(log−1 T ).

Proof. Let Y (r) = Y (q) be the Markov chain of the absorbing walk P (q) starting from the
distribution σ. Then we can define Y as the Markov chain evolving according to P , coupled
to Y (r) as above. That is, Y follows the same sequence as Y (r), except that it omits repeated
elements that result from using the absorbing self-edges.

Let E denote the event that ct ≤ T , where ct is the commute time of Y , and SY [0, ht] =
1. Then by Claim 15 we know that E holds with probability at least 1/4. Combined with
Corollary 23, taking t′ uniformly at random from {1, . . . , 30T}, this allows us to conclude

Et,t′,r
(

Pr
Y

(r)
0 ∼σ(Y

(r)
t ∈M,Y

(r)
t′ ∈ S)

)
≥ 1

4
Ω(log−1 T ). (11)

Next, we compute:

Et,rM
[∥∥ΠMD

t(q)|
√
σ〉
∥∥2] =

1

|R|
∑
rM∈R

1

30T

30T∑
t=1

∥∥ΠMD
t(q)|
√
σ〉
∥∥2

≥ 1

|R|
∑
rM∈R

(
1

30T

30T∑
t=1

∥∥ΠMD
t(q)|
√
σ〉
∥∥)2

=
1

|R|
∑
rM∈R

1

30T

30T∑
t=1

∥∥ΠMD
t(q)|
√
σ〉
∥∥ 1

30T

30T∑
t′=1

∥∥∥ΠMD
t′(q)|

√
σ〉
∥∥∥

≥ 1

|R|
∑
rM∈R

1

30T

30T∑
t=1

1

30T

30T∑
t′=1

∣∣∣〈√σ|Dt(q)ΠMD
t′(q)|

√
σ〉
∣∣∣, (12)
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by the Cauchy-Schwarz inequality. Let π′ denote the stationary distribution of P (q). Since P (q)
is just a twice interpolated walk, its stationary distribution has the form

π′ = aπ|S + bπ|M + cπ|X\(M∪S) = aσ + bπ|M + cπ|X\(M∪S),

for some positive constants a, b and c, whose precise values are not important for our purposes
(see [KMOR16] for an analysis of the stationary distribution of interpolated walks). Furthermore,
we observe that D(q)t = diag(π′)1/2P (q)tdiag(π′)−1/2, so, since |

√
σ〉 is supported on S:

〈
√
σ|D(q)tΠM = 〈

√
σ|diag(aσ)1/2P (q)tdiag(bπ|M )−1/2

=
√
a/b

∑
u∈S

σu〈u|P (q)tdiag(π|M )−1/2.

Similarly,
ΠMD(q)t

′ |
√
σ〉 =

√
b/adiag(π|M )1/2P (q)t

′∑
u∈S
|u〉.

Thus,∣∣∣〈√σ|Dt(q)ΠMD
t′(q)|

√
σ〉
∣∣∣ =

∑
u∈S

σu〈u|P (q)tdiag(π|M )−1/2diag(π|M )1/2P (q)t
′∑
u∈S
|u〉

=
∑
u∈S

σu〈u|P (q)tΠMP (q)t
′∑
u∈S
|u〉

= PrY0(q)∼σ(Yt(q) ∈M,Yt′+t(q) ∈ S).

Recall that Y (r) = Y (q). Thus continuing, from (12), and using (11), we have:

Et,rM
[∥∥ΠMD

t(q)|
√
σ〉
∥∥2] =

1

|R|
∑
rM∈R

1

30T

30T∑
t=1

1

30T

30T∑
t′=1

PrY0(q)∼σ
(
Yt(q) ∈M,Yt′+t(q) ∈ S

)
= Et,t′,rM

(
PrY0(q)∼πS

(
Yt(q) ∈M,Yt+t′(q) ∈ S

))
∈ Ω(log−1 T ).

From this corollary, we can straightforwardly prove our final lemma. Combined with Lemma 20
this proves Theorem 13.

Lemma 25. There exists T ′ ∈ O(Cσ,M ) such that, for all T ≥ T ′, Algorithm 1 returns a marked
element with constant probability.

Proof. By the above Corollary 24 we know that for all T ≥ T ′, for some T ′ ∈ O(Cσ,M ), it holds
that

1

T

∑
t∈[T ]

1

|Q|
∑
qM∈Q

∥∥ΠMD
t(q)|
√
σ〉
∥∥2 =

1

T

∑
t∈[T ]

1

|R|
∑
rM∈R

∥∥ΠMD
t(q)|
√
σ〉
∥∥2 ∈ Ω(log−1 T ).

As a consequence, measuring the state

|1〉
( ∑
t∈[T ]

∑
qM∈Q

1√
T |Q|

|t〉|q〉Dt(q)|πS〉
)

+ |0〉|Γ〉

returns a marked element with probability Ω(log−1 T ). In step 2. of the algorithm we approxi-
mate this state up to sufficient precision O

(
log−1 T

)
. Applying O

(√
log T

)
rounds of amplitude

amplification then indeed suffices to retrieve a marked element with constant probability.
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4.3 A generalization of Belovs’ algorithm

Now we sketch a generalization of Algorithm 1.

Corollary 26. Let σ, ρ be probability distributions on S = supp(σ) ⊆ X, and p := 1/
∑

u∈S
ρ2u
σu

,
then there is a quantum algorithm that finds a marked element from M in expected complexity

O
(√

1/p
[
log(Cρ,M )S(σ) +

√
Cρ,M (U(σ) + C)

]
polylog(Cρ,M/p)

)
.

Proof. Suppose that pCρ,M ≤ C ∈ O(pCρ,M ), then by Lemma 18 and Claim 15 we have that the
walk started from σ′ on the modified graph first hits M ′ and then returns to S′ with probability
at least p/4 within the first T = d4p(C + 2)e = O(Cρ,M ) steps. The analysis in Section 4.2.3
shows that Algorithm 1 finds a marked element with probability Ω(p) if we enhance the precision
by a factor of ∼ p in step 2. After applying

√
1/p additional rounds of amplitude amplification

we find a marked element with probability Ω(1).
Finally note that we do not need to a priori know ρ or the values of p and Cρ,M . We can

do binary search to find multiplicative constant approximations of p and Cρ,M , only incurring a
logarithmic overhead and providing an expected runtime as claimed.

Intuitively this improvement is somewhat analogous to the HT+ to HT improvement in
the complexity of finding marked elements using quantum walks [AGJK19]. There the HT+

complexity corresponds to “fair” sampling of a marked vertex from π|M , whereas here the runtime√
Cσ,M corresponds to the “democratic” requirement thatM should be reachable from the entire

σ – but one does not actually need to hit the marked set from everywhere! It is enough if we
hit it with high probability from a large fraction of the initial states, cf. Lemma 16. Indeed,
if C = Cσ|Q,M then for ρ := σ|Q we get p = σ(Q), and so we get an efficient algorithm with
runtime ∼

√
C as long as p is not too small, while the quantity

√
Cσ,M is less relevant.

To illustrate that this result can be helpful in some cases, we consider the following example.
Suppose that G is a regular graph, with marked set M and hitting time HT. Suppose that
we can remove an edge of G without affecting the hitting time much. Take, say 3 copies of
G, and cyclically connect to each other the vertices adjacent to the removed edges, so that the
graphs form a triangle, with a single edge between each pair of the copies of G. Suppose that we
unmark the marked vertices of one copy, and set the weight of the three new edges very small, so
that the hitting time in the new graph can be arbitrary large. If the vertices are also permuted
there is no apparent structure left, and previous quantum walk algorithms seem to fail in finding
or even detecting marked vertices faster than Õ(

√
HT′), where HT′ is the hitting time of the

new graph. However, our algorithm can find a marked vertex in time Õ(
√

HT). Thus our walk
actually finds a marked vertex much faster than the hitting time Õ(

√
HT′) of the new graph.

5 The MNRS framework and the electric network framework

In this section we describe our second main result, which is a quantum walk search algorithm
that generalizes the MNRS framework, the hitting time framework, the controlled quantum am-
plification framework, and (our extension of) the electric network framework. It is summarized
in the following theorem.

Theorem 27. For any reversible Markov chain P on state space X, any marked set M ⊂ X,
any t ∈ N, and any distribution σ on X, there is a quantum algorithm that finds a marked
element with bounded error in complexity

O
(√

log(C(t))S(σ) +
√
C(t) log(C(t)) log log(C(t))(

√
tU
√

log(C(t)) + R(σ) + C)
)

= Õ
(
S(σ) +

√
C(t)(

√
tU(σ) + C)

)
,
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where C(t) is a known upper bound on Cσ,M (P t), S(σ) is the cost of Setup(σ), U is the cost of
the walk operator W (P ), R(σ) is as in Theorem 12, U(σ) = U + R(σ), and C is the cost of the
Check(M) operation.

Using standard techniques, we can also handle the case where Cσ,M (P t) is unknown, at the
cost of an additional log(Cσ,M (P t)) factor on the first term, giving, for any t, an algorithm with
complexity (neglecting log factors):

S(σ) +
√
Cσ,M (P t)(

√
tU(σ) + C).

Setting t = 1, we recover the electric network framework. In the special case where σ equals
the stationary distribution π of P , and thus also of P t, we have Cπ,M (P t) = HT(P t,M) and
R(σ) ∈ O(1), and so the complexity of the algorithm is (neglecting log factors):

S +
√

HT(P t,M)(
√
tU + C).

Setting t = 1 recovers the hitting time framework (Theorem 8), and setting t = 1/δ recovers
the MNRS framework. To see this, note that since 1

δ is at least the mixing time of P , a single
step of P 1/δ approximately samples from π, which finds a marked vertex with probability ε,
so HT(P 1/δ,M) = O(1/ε). If in addition there is a unique marked element M = {m}, we
can choose t ∈ Ω(εHT(P, {m})) to retrieve the controlled quantum amplification framework.
This immediately follows from Lemma 10 which shows that HT(P t, {m}) ∈ O(1/ε) if t ∈
Ω(εHT(P, {m})). If we could extend this bound to larger sets, then we find an immediate and
strict extension of their framework.

Proof of Theorem 27. We will apply Theorem 13 to the reversible Markov chain P t. This gives
an algorithm for finding an element x ∈M with complexity:

S(σ)
√

log(C(t)) +
√
C(t) log(C(t)) log log(C(t))(Ut + Rσ + C), (13)

where Ut is the complexity of implementing the walk operator W (P t), and Rσ is as described
above Theorem 12. We need only describe how to implement a walk operatorW (P t), and upper
bound its complexity Ut.

By Theorem 7, since D(P t) = D(P )t, there is an ε-approximate walk operator W (P t) for
P t with complexity O

(√
t log(1/ε)U

)
. We will call this operator a number of times

τ =
√
C(t) log(C(t)) log log(C(t)).

Hence if we set ε = Θ( 1τ ) then this ensures that the algorithm is correct with bounded error.
This gives

Ut = O
(√

tU
√

log τ
)

= O
(√

tU
√

log(C(t))
)
.

Plugging this into (13) completes the proof.

6 Alternative algorithm for finding in the hitting time framework

Our quantum walk algorithm relies on the use of quantum fast-forwarding. This makes it more
complicated than the original quantum walk algorithms in e.g. [Sze04, MNRS11, Bel13]. In
this section we show that the correctness of our algorithm implies the correctness of a much
simpler algorithm, at least in the regimes corresponding to the hitting time framework and the
electric network framework. Namely, if we simply pick a random interpolation parameter, run
the corresponding quantum walk for about

√
C steps, and finally measure the walk register, then
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we find a marked element with constant probability. This algorithm was proposed in [AGJK19,
Section 4] for the hitting time framework, but was only conjectured to be correct.

To derive this result, we literally “dissect” the more complicated fast-forwarding algorithm
(Algorithm 1) by considering an explicit construction of the quantum fast-forwarding routine.
The structural properties of this quantum circuit then imply that the simpler routine should also
succeed. To illustrate this, we give a proof of the correctness of the fast-forwarding technique,
Theorem 7, as this is the main tool used in Algorithm 1.

Proof of fast-forwarding scheme, Theorem 7. In order to describe our construction we recall
some well-known properties of quantum walks. One of the important basic observations is
that for any unitaryW for which D := (〈0̄|⊗I)W (|0̄〉⊗I) is a Hermitian matrix it holds [Chi10,
GSLW19, AGJK19] that

(〈0̄| ⊗ I)
(

([I − 2|0̄〉〈0̄|]⊗ I)W †([I − 2|0̄〉〈0̄|]⊗ I)W
)n

(|0̄〉 ⊗ I) = T2n(D), (14)

where T2n(x) is the 2n-th Chebyshev polynomial of the first kind.
An intriguing property of Chebyshev polynomials is that [SV14]

xt =
t∑
i=0

2−t
(
t

i

)
T2i−t(x). (15)

For t, d ∈ N even numbers, now define the polynomial

pt,d(x) =

d
2∑

n=− d
2

2−t
(

t
t
2 + n

)
T2n(x),

which is simply the sum in (15) truncated. By Chernoff’s bound and (15) it follows that for all
ε > 0, d ≥

⌈√
2t ln(2/ε)

⌉
, and x ∈ [−1, 1] :

|xt − pt,d(x)| ≤ ε.

Since Tn(x) = T−n(x), by (14), for all even t we get that

pt,d(D) =

d
2∑

n=− d
2

2−t
(

t
t
2 + n

)
(〈0̄|⊗I)

(
([I − 2|0̄〉〈0̄|]⊗ I)W †([I − 2|0̄〉〈0̄|]⊗ I)W

)|n|
(|0̄〉⊗I). (16)

Let ` ∈ N, we define Ck := ([I − 2(Ik−1 ⊗ |1〉〈1| ⊗ I`−k)⊗ |0̄〉〈0̄|]⊗ I) as the controlled reflection
operator controlled by the kth qubit, where Im denotes the identity operator on m qubits. Let

U(`) :=

`−1∏
k=0

(
CkW

†CkW
)2k

=

2`−1∑
n=0

|n〉〈n| ⊗
(

([I − 2|0̄〉〈0̄|]⊗ I)W †([I − 2|0̄〉〈0̄|]⊗ I)W
)n
. (17)

Now we use the linear combination of unitaries (LCU) [CW12, BCC+14] technique. Suppose

that d < 2`+1, and R is a unitary such that R :
√
α|0〉 7→

√
2−t
(
t
t/2

)
|0〉+

∑ d
2
n=1

√
21−t

(
t

t
2
+n

)
|n〉,

where α ∈ [1− ε, 1] is a normalizing factor. A simple LCU calculation shows, that we have

pt,d(D) = α(〈0|R† ⊗ 〈0̄| ⊗ I)U`(R|0〉 ⊗ |0̄〉 ⊗ I),

and therefore setting |0̃〉 := |0〉 ⊗ |0̄〉 and

U := (R† ⊗ I)U`(R⊗ I) (18)
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we get ∥∥Dt − α(〈0̃| ⊗ I)U(|0̃〉 ⊗ I)
∥∥ ≤ ε.

We note that the case of odd t can be handled completely analogously using odd counter-
parts of (14)-(17). The α factor is also trivial to remove using simple techniques [GSLW19];
alternatively one can apply the triangle inequality and use the slightly weaker error-bound∥∥Dt − (〈0̃| ⊗ I)U(|0̃〉 ⊗ I)

∥∥ ≤ 2ε.

Now we are ready to prove the main statement of this section. We first recall the main
technical corollary (Corollary 24) underlying Theorem 13: let T ≥ cCσ,M for a sufficiently large
constant c, set rS = (T/30)/2 = T/60 and let the other interpolation parameter rM ∈ R =
{1, 2, 4, . . . , 2dlog(14T )e} and time parameter t ∈ [T ] be chosen uniformly at random. Let U be a
block-encoding of D(q)t = (〈0̄|⊗I)U(|0̄〉⊗I), with D(q) the discriminant matrix of P (q) defined
in (7). Then measuring the state U(|0̄〉 ⊗ |

√
σ〉) returns a marked element with probability at

least Ω
(

1
log(T )

)
. This is precisely why Algorithm 1 is correct.

In particular we can use the unitary in (18) when ε = Θ
(

1
log(T )

)
is small enough. Note

that since we are only interested in the measurement statistics of the second register we can
also use U`(R ⊗ I) instead of U . Then measuring the first part of the first register commutes
with U`, so we can measure this register already before applying U`, without modifying the
measurement statistics. Now we have the following algorithm: Apply R on the first half of the
first register, then measure it. Finally apply U` and measure the second register. But this is
again equivalent to first (classically) sampling n ∈ [−d

2 ,
d
2 ] distributed ∝ 2−t

(
t

t
2
+n

)
, and then

applying 2n quantum walk steps to the initial state and measuring the second register. This
works in the case when t is even; one can also handle odd t analogously by slightly tweaking the
circuit U . In fact one can show that sampling an even t ∈ [T ] uniformly at random also works
in the algorithm of [AGJK19], which is an alternative solution.

We summarize the resulting algorithm:

Algorithm 2 Simple quantum walk algorithm

1. pick rM ∈ R and t ∈ [T ] uniformly at random

2. sample n according to 2−t
(

t
t/2+n

)
, conditioned on |n| ∈ O

(√
T log(T )

)
and having the

same parity as t

3. apply |n| steps of the interpolated quantum walk W (P (q)) with qM = 1 − 1
rM

and qS =

1− 60
T to the state |

√
σ〉

4. measure the second register

Theorem 28. There exists a constant c such that if T ≥ cCσ,M then Algorithm 2 returns a
marked vertex with probability Ω

(
1

log T

)
.

Repeating this procedure Ω(log T ) times returns a marked vertex with constant probability.
This yields an algorithm that only uses ordinary (interpolated) quantum walks and finds a
marked element with constant probability. If T ∈ Θ(Cσ,M ), the algorithm has complexity
O
(
(S(σ) +

√
Cσ,M logCσ,M (U(σ) + C)) log(Cσ,M )

)
. In the case of σ = π, we are in the hitting

time framework, and this complexity becomes O
(
(S +

√
HT log HT(U + C)) log(HT)

)
.
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A Counterexample

It is a classic result that the combinatorial commute time Es(τ ts) equals the electric quantity
Cs,t = WRs,t. We show that this result can be extended to the case where t is a set M , rather
than a singleton (see Appendix B). Similarly one could expect that something of the form
Eπ|S (τMS ) = WRπ|S ,M should hold. We show here that in fact this does not hold in general.
Similarly we show that Prπ|S (τM < τ+S ) 6= 1

Cπ|S,Mπ(S)
, whereas this does hold when S is a

singleton.
Let G be a path on three nodes u− v −w with unit weights. Let S = {u, v} and M = {w},

so that π|S = 1
3eu + 2

3ev and π(S) = 3/4. The optimal (and only) π|S-M flow pushes value 1/3
along the edge (u, v), and value 1 along the edge (v, w). The effective resistance thus equals
Rπ|S ,M = 1

32
+ 1 = 10

9 . Since W = 4, this shows that WRπ|S ,M = 40
9 and 1

Cπ|S,Mπ(S)
= 3/10.

On the other hand, we can easily calculate that

Prπ|S (τM < τ+S ) =
1

3
>

1

Cπ|S ,Mπ(S)
,

since the only possibility is to start from v and take the edge (v, w), which happens with
probability 2

3
1
2 = 1

3 . Similarly, we can show that the combinatorial commute time

Eπ|S (τMS ) =
39

9
< WRπ|S ,M .

To see this, note that Eπ|S (τMS ) = Eπ|S (τM ) + 1, with Eπ|S (τM ) the expected hitting time of M
(after the walk hits M , it necessarily jumps back to S). On its turn, Eπ|S (τM ) = 1

3Eu(τM ) +
2
3Ev(τM ) and Eu(τM ) = 1 + Ev(τM ) (a walk from u necessarily jumps to v after one step). To
calculate Ev(τM ), note that Ev(τM ) = 1

2 + 1
2(Ev(τM ) + 2), since with probability 1/2 we jump

to M in 1 step, and otherwise we go to u and then back to v, taking 2 steps. This implies that
Ev(τM ) = 3 and hence Eπ|S (τMS ).

B Proof of s-M and S-M commute times

In this appendix we prove Claim 15. It follows by generalizing [LPW17, Proposition 9.5], where
the theorem is proven for the special case of S and M being singletons. It builds on voltages,
which are dual to electric flows. Any voltage is described by a function h : X → R that is
harmonic on all nodes that are not sources or sinks, i.e.,

h(u) =
∑
v∈X

Pu,vh(v)
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for every u which is neither a source (that is, u 6= s) nor a sink (that is u 6∈M). The quantities
Cπ|S ,M and CS,M are described in Definition 3.

Lemma 16. Let S,M ⊆ X be disjoint sets, then

Prπ|S (τM < τ+S ) =
1

CS,Mπ(S)

(
≥ 1

Cπ|S ,Mπ(S)

)
.

Proof. First we prove the claim for a singleton S = {s}, in which case the claim becomes

Prs(τM < τ+s ) =
1

Cs,Mπs
.

Define the boundary voltages hB(s) = 0 and hB(u ∈ M) = 1. By standard results [Bol13],
this implies that a total current of magnitude i = 1/Rs,M will flow from s toM , and the resulting
voltage can be uniquely described as the escape probability

h(u) = Pru(τM < τs),

as shown in [LPW17, Proposition 9.1] (see also [DS84]). Using that h(s) = 0 and iu,v =
(h(v)− h(u))/wu,v by Ohm’s law, we can now rewrite

Prs(τM < τ+s ) =
∑

v∈X\{s}

P (s, v) Prv(τM < τs)

=
∑

v∈X\{s}

ws,v
ws

(h(v)− h(s)) =
∑

v∈X\{s}

is,v
ws

=
i

ws
,

with i the total current. Since i = 1/Rs,M = W/Cs,M and πs = ws/W , this implies that
Prs(τM < τ+s ) = 1/(Cs,Mπs).

Now we reduce the general case to the singleton case. For this we consider the graph G′ where
we replace S by a single vertex s′, so that for u, v /∈ S we set w′uv := wuv, w′s′v :=

∑
s∈S wsv,

and w′s′s′ :=
∑

s,r∈S wsr. Clearly then W ′ = W , π′(s′) = π(S) and R′s′,M = RS,M . The latter
deserves a little explanation. One can see that in the optimal S →M flow for any two vertices
s1, s2 ∈ S and v /∈ S we have is1,v/ws1,v = is2,v/ws2,v. Therefore, after merging the flows
(currents) on the merged edges (s1, v), (s2, v) the dissipated power

(is1,v + is2,v)
2

ws1,v + ws2,v
= (is1,v + is2,v)

is1,v + is2,v
ws1,v + ws2,v

= (is1,v + is2,v)

(
is1,v
ws1,v

=
is2,v
ws2,v

)
=

i2s1,v
ws1,v

+
i2s2,v
ws2,v

remains unchanged. So merging the flows / distributing flows proportionally to the edge weights
gives a mapping between the optimal flows (S → M and s′ → M) without changing the
objective.

Finally, observe that

Prπ|S (τM < τ+S ) =
∑
s∈S

π(s)

π(S)

∑
v∈X\S

P (s, v) Prv(τM < τS)

=
∑
s∈S

ws
w(S)

∑
v∈X\S

ws,v
ws

Prv(τM < τS)

=
∑

v∈X\S

∑
s∈S

ws,v
w(S)

Prv(τM < τS)

=
∑

v∈X\S

P ′(s′, v) Pr′v(τM < τs′)

= Prs′(τM < τ+s′ ),

and so
Prπ|S (τM < τ+S ) = Prs′(τM < τ+s′ ) =

1

C ′s′,Mπ(s′)
=

1

CS,Mπ(S)
.
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B.1 Special case where S = {s}

For the special case where S is a singleton, this gives a tight characterization of the commute
time. This easily follows from combining Lemma 16 with the expression below. This expression
is proven in [Lov96, Proposition 2.3] or [AF02, Corollary 2.8] for the case whereM is a singleton,
but it is easily extended to the more general case.

Lemma 29. Let s be disjoint from M . Then

Prs(τM < τ+s ) =
1

Es(τ sM )πs
.

Proof. Let q = Prs(τM < τ+s ). Then by Kac’s Lemma (Lemma 17) we know that Es(τ+s ) = 1/πs.
Necessarily, when starting from s, τ+s ≤ τ sM , and furthermore Prs(τ

+
s = τ sM ) = q. Now if

τ+s < τ sM , we know that the Markov chain is “restarted” at timestep τ+s (that is, it is distributed
the same as when it started, namely, it is at s), and hence

Es(τ sM − τ+s ) = qEs(τ sM − τ+s |τ sM = τ+s ) + (1− q)Es(τ sM − τ+s |τ sM > τ+s )

Es(τ sM )− Es(τ+s ) = (1− q)Es(τ sM ).

We can therefore rewrite q = Es(τ+s )/Es(τ sM ) = 1/(E(τ sM )πs), proving the claim.

Combining this lemma with our Lemma 16 shows that

Prs(τM < τ+s ) =
1

Cs,Mπs
=

1

Es(τ sM )πs
,

and therefore Es(τ sM ) = Cs,M . This generalizes the classic fact that Cs,t = Es(τ st ), as we
mentioned in Theorem 4.
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