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Abstract

While quantum computers hold the promise of significant computational speedups, the
limited size of early quantum machines motivates the study of space-bounded quantum compu-
tation. We relate the quantum space complexity of computing a function f with one-sided error
to the logarithm of its span program size, a classical quantity that is well-studied in attempts
to prove formula size lower bounds.

In the more natural bounded error model, we show that the amount of space needed for a
unitary quantum algorithm to compute f with bounded (two-sided) error is lower bounded by
the logarithm of its approximate span program size. Approximate span programs were intro-
duced in the field of quantum algorithms but not studied classically. However, the approximate
span program size of a function is a natural generalization of its span program size.

While no non-trivial lower bound is known on the span program size (or approximate span
program size) of any concrete function, a number of lower bounds are known on the monotone
span program size. We show that the approximate monotone span program size of f is a lower
bound on the space needed by quantum algorithms of a particular form, called monotone phase
estimation algorithms, to compute f . We then give the first non-trivial lower bound on the
approximate span program size of an explicit function.

1 Introduction

While quantum computers hold the promise of significant speedups for a number of problems,
building them is a serious technological challenge, and it is expected that early quantum computers
will have quantum memories of very limited size. This motivates the theoretical question: what
problems could we solve faster on a quantum computer with limited space? Or similarly, what is
the minimum number of qubits needed to solve a given problem (and hopefully still get a speedup).

We take a modest step towards answering such questions, by relating the space complexity of
a function f to its span program size (see Definition 3.3), which is a measure that has received
significant attention in theoretical computer science over the past few decades. Span programs
are a model of computation introduced by Karchmer and Wigderson [KW93] in an entirely clas-
sical setting; they defined the span program size of a function in order to lower bound the size
of counting branching programs. Some time later, Reichardt and Špalek [RŠ12] related span pro-
grams to quantum algorithms, and introduced the new measure of span program complexity (see
Definition 3.4). The importance of span programs in quantum algorithms stems from the ability to
compile any span program for a function f into a bounded error quantum algorithm for f [Rei09].
In particular, there is a tight correspondence between the span program complexity of f , and its
quantum query complexity – a rather surprising and beautiful connection for a model originally
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introduced outside the realm of quantum computing. In contrast, the classical notion of span
program size had received no attention in the quantum computing literature before now.

Ref. [IJ19] defined the notion of an approximate span program for a function f , and showed
that even an approximate span program for f can be compiled into a bounded error quantum
algorithm for f . In this work, we further relax the definition of an approximate span program for
f , making analysis of such algorithms significantly easier (see Definition 3.6).

Let SU (f) denote the bounded error unitary space complexity of f , or the minimum space
needed by a unitary quantum algorithm that computes f with bounded error (see Definition 2.2).
For a function f : {0, 1}n → {0, 1}, we can assume that the input is accessed by queries, so that
we do not need to store the full n-bit input in working memory, but we need at least log n bits of
memory to store an index into the input. Thus, a lower bound of ω(log n) on SU (f) for some f
would be non-trivial.

Letting SP(f) denote the minimum size of a span program deciding f , and S̃P(f) the min-
imum size of a span program approximating f (see Definition 3.7), we have the following (see
Theorem 4.1):

Theorem 1.1 (Informal). For any Boolean function f , if SU (f) denotes its bounded error unitary

space complexity, and S̃P(f) its approximate span program size, then

SU (f) ≥ log S̃P(f).

Similarly, if S1
U (f) denotes its one-sided error unitary space complexity, and SP(f) its span program

size, then
S1
U (f) ≥ log SP(f).

The relationship between span program size and unitary quantum space complexity is rather
natural, as the span program size of f is known to lower bound the minimum size of a symmet-
ric branching program for f , and the logarithm of the branching program size of a function f
characterizes its classical deterministic space complexity.

The inequality S1
U (f) ≥ log SP(f) follows from a construction of [Rei09] for converting a one-

sided error quantum algorithm for f into a span program for f . We adapt this construction to
show how to convert a bounded (two-sided) error quantum algorithm for f with query complexity
T and space complexity S ≥ log T into an approximate span program for f with complexity Θ(T )

and size 2Θ(S), proving SU (f) ≥ Ω(log S̃P(f)). The connection between SU (f) and log S̃P(f) is
tight up to an additive term of the logarithm of the minimum complexity of any span program
for f with optimal size. This follows from the fact that an approximate span program can be
compiled into a quantum algorithm in a way that similarly preserves the correspondence between
space complexity and (logarithm of) span program size, as well as the correspondence between
query complexity and span program complexity (see Theorem 3.1). While the preservation of the
correspondence between query complexity and span program complexity (in both directions) is
not necessary for our results, it may be useful in future work for studying lower bounds on time
and space simultaneously.

The significance of Theorem 1.1 is that span program size has received extensive attention
in theoretical computer science. Using results from [BGW99], the connection in Theorem 1.1
immediately implies the following (Theorem 4.2):

Theorem 1.2. For almost all Boolean functions f on n bits, S1
U (f) = Ω(n).

If we make a uniformity assumption that the quantum space complexity of an algorithm is at
least the logarithm of its time complexity, then Theorem 1.2 would follow from a lower bound of
Ω(2n) on the quantum time complexity of almost all n-bit Boolean functions. Notwithstanding,
the proof via span program size is evidence of the power of the technique.

In the pursuit of lower bounds on span program size of concrete functions, several nice expres-
sions lower bounding SP(f) have been derived. By adapting one such lower bound on SP(f) to

S̃P(f), we get the following (see Lemma 4.6):
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Theorem 1.3 (Informal). For any Boolean function f , and partial matrix M ∈ (R∪{?})f−1(0)×f−1(1)

with ‖M‖∞ ≤ 1:

SU (f) ≥ Ω

(
log

(
1
2 -rank(M)

maxi∈[n] rank(M ◦∆i)

))
,

where ◦ denotes the entrywise product, and ∆i[x, y] = 1 if xi 6= yi and 0 else.

Above, 1
2 -rank denotes the approximate rank, or the minimum rank of any matrix M̃ such

that |M [x, y] − M̃ [x, y]| ≤ 1
2 for each x, y such that M [x, y] 6= ?. If we replace 1

2 -rank(M) with
rank(M), we get the logarithm of an expression called the rank measure, introduced by Razborov
[Raz90]. The rank measure was shown by Gàl to be a lower bound on span program size, SP
[Gàl01], and thus, our results imply that the log of the rank measure is a lower bound on S1

U . It
is straightforward to extend this proof to the approximate case to get Theorem 1.3.

Theorem 1.3 seems to give some hope of proving a non-trivial – that is, ω(log n) – lower
bound on the unitary space complexity of some explicit f , by exhibiting a matrix M for which
the (approximate) rank measure is 2ω(logn). In [Raz90], Razborov showed that the rank measure
is a lower bound on the Boolean formula size of f , motivating significant attempts to prove lower
bounds on the rank measure of explicit functions. The bad news is, circuit lower bounds have been
described as “Complexity theory’s Waterloo” [AB09]. Despite significant effort, no non-trivial
lower bound on span program size for any f is known.

Due to the difficulty of proving explicit lower bounds on span program size, earlier work has
considered the easier problem of lower bounding monotone span program size, mSP(f). For a
monotone function f , the monotone span program size of f , mSP(f) is the minimum size of
any monotone span program for f (see Definition 5.1). We can similarly define the approximate

monotone span program size of f , mS̃P(f) (see Definition 5.1). Although logmS̃P(f) is not a lower
bound on SU (f), even for monotone f , it is a lower bound on the space complexity of any algorithm
obtained by compiling a monotone span program. We show that such algorithms are equivalent to a
more natural class of algorithms called monotone phase estimation algorithms. Informally, a phase
estimation algorithm is an algorithm that works by performing phase estimation of some unitary
that makes one query to the input, and estimating the amplitude on a 0 in the phase register (see
Definition 5.12). A monotone phase estimation algorithm is a phase estimation algorithm where,
loosely speaking, adding 0s to the input can only make the algorithm more likely to reject (see
Definition 5.13). We can then prove the following (see Theorem 5.14):

Theorem 1.4 (Informal). For any Boolean function f , any bounded error monotone phase estima-

tion algorithm for f has space complexity at least logmS̃P(f), and any one-sided error monotone
phase estimation algorithm for f has space complexity at least logmSP(f).

Fortunately, non-trivial lower bounds for the monotone span program complexity are known
for explicit functions. In Ref. [BGW99], Babai, Gàl and Wigderson showed a lower bound of

mSP(f) ≥ 2Ω(log2(n)/ log log(n)) for some explicit function f , which was later improved to mSP(f) ≥
2Ω(log2(n)) by Gàl [Gàl01]. In Ref. [RPRC16], a function f was exhibited with mSP(f) ≥ 2n

ε
for

some constant ε ∈ (0, 1), and in the strongest known result, Pitassi and Robere exhibited a function
f with mSP(f) ≥ 2Ω(n) [PR17]. Combined with our results, each of these implies a lower bound
on the space complexity of one-sided error monotone phase estimation algorithms. For example,
the result of [PR17] implies a lower bound of Ω(n) on the space complexity of one-sided error
monotone phase estimation algorithms for a certain satisfiability problem f . This lower bound,
and also the one in [RPRC16], are proven by choosing f based on a constraint satisfaction problem
with high refutation width, which is a measure related to the space complexity of certain classes of
SAT solvers, so it is intuitively not surprising that these problems should require a large amount
of space to solve with one-sided error.

For the case of bounded error space complexity, we also prove the following (see Theorem 5.3,
Corollary 5.15):
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Theorem 1.5 (Informal). There exists a function f : {0, 1}n → {0, 1} such that any bounded
error monotone phase estimation algorithm for f has space complexity (log n)2−o(1).

This lower bound is non-trivial, although much less so than the best known lower bound of
Ω(n) for the one-sided case. Our result also implies a new lower bound of 2(logn)2−o(1) on the
monotone span program complexity of the function f in Theorem 1.5.

To prove the lower bound in Theorem 1.5, we apply a new technique that leverages the best
possible gap between the certificate complexity and approximate polynomial degree of a function,
employing a function g : {0, 1}m2+o(1) → {0, 1} from [BT17]1, whose certificate complexity is
m1+o(1), and whose approximate degree is m2−o(1). Following a strategy of [RPRC16], we use this
g to construct a pattern matrix [She09] (see Definition 5.8) and use this matrix in a monotone
version of Theorem 1.3 (see Theorem 5.4). The fact that certificate complexity and approximate

degree of total functions are related by d̃eg1/3(g) ≤ C(g)2 for all g is a barrier to proving a lower

bound better than (log n)2 using this technique, but we also give a generalization that has the
potential to prove significantly better lower bounds (see Lemma 5.11).

Discussion and open problems The most conspicuous open problem of this work is to prove
a lower bound of ω(log n) on SU (f) or even S1

U (f) for some explicit decision function f . It is
known that any space S quantum Turing machine can be simulated by a deterministic classical
algorithm in space S2 [Wat99] so a lower bound of ω(log2 n) on classical space complexity would
also give a non-trivial lower bound on quantum space complexity. If anything, the relationship to
span program size is evidence that this task is extremely difficult.

We have shown a lower bound of 2(logn)2−o(1) on the approximate monotone span program
complexity of an explicit monotone function f , which gives a lower bound of (log n)2−o(1) on
the bounded error space complexity needed by a quantum algorithm of a very specific form: a
monotone phase estimation algorithm. This is much worse than the best bound we can get in the
one-sided case: a lower bound of Ω(n) for some explicit function. An obvious open problem is to
try to get a better lower bound on the approximate monotone span program complexity of some
explicit function.

Our lower bound of (log n)2−o(1) only applies to the space complexity of monotone phase
estimation algorithms and does not preclude the existence of a more space-efficient algorithm for
f of a different form. We do know that phase estimation algorithms are fully general, in the sense
that every problem has a space-optimal phase estimation algorithm. Does something similar hold
for monotone phase estimation algorithms? This would imply that logmS̃P(f) is a lower bound
on SU (f) for all monotone functions f .

In this work, we define an approximate version of the rank method, and monotone rank method,
and in case of the monotone rank method, give an explicit non-trivial lower bound. The rank
method is known to give lower bounds on formula size, and the monotone rank method on monotone
formula size. An interesting question is whether the approximate rank method also gives lower
bounds on some complexity theoretic quantity related to formulas.

Our results are a modest first step towards understanding unitary quantum space complexity,
but even if we could lower bound the unitary quantum space complexity of an explicit function,
there are several obstacles limiting the practical consequences of such a result. First, while an
early quantum computer will have a small quantum memory, it is simple to augment it with a
much larger classical memory. Thus, in order to achieve results with practical implications, we
would need to study computational models that make a distinction between quantum and classical
memories. We leave this as an important challenge for future work.

Second, we are generally only interested in running quantum algorithms when we get an ad-
vantage over classical computers in the time complexity, so results that give a lower bound on the
quantum space required if we wish to keep the time complexity small, such as time-space lower

1An earlier version of this work used a function described in [ABK16] with a 7/6-separation between certificate
complexity and approximate degree. We thank Robin Kothari for pointing us to the improved result of [BT17].
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bounds, are especially interesting. While we do not address time-space lower bounds in this paper,
one advantage of the proposed quantum space lower bound technique, via span programs, is that
span programs are also known to characterize quantum query complexity, which is a lower bound
on time complexity. We leave exploration of this connection for future work.

We mention two previous characterizations of SU (f). Ref. [JKMW09] showed that SU (f) is
equal to the logarithm of the minimum width of a matchgate circuit computing f , and thus our
results imply that this minimum matchgate width is approximately equal to the approximate span
program size of f . Separately, in Ref. [FL18], Fefferman and Lin showed that for every function
k, inverting 2k(n) × 2k(n) matrices is complete for the class of problems f such that SU (f) ≤ k(n).
Our results imply that evaluating an approximate span program of size 2k(n) (for some suitable
definition of the problem) is similarly complete for this class. Evaluating an approximate span
program boils down to deciding if ‖A(x)+|w0〉‖, for some matrix A(x) partially determined by
the input x, and some initial state |w0〉, is below a certain threshold, so these results are not
unrelated2. We leave exploring these connections as future work.

Organization The remainder of this paper is organized as follows. In Section 2, we present the
necessary notation and quantum algorithmic preliminaries, and define quantum space complexity.
In Section 3, we define span programs, and describe how they correspond to quantum algorithms.
In particular, we describe how a span program can be “compiled” into a quantum algorithm (Sec-
tion 3.2), and how a quantum algorithm can be turned into a span program (Section 3.3), with both
transformations moreorless preserving the relationships between span program size and algorithmic
space, and between span program complexity and query complexity. From this correspondence,
we obtain, in Section 4, expressions that lower bound the quantum space complexity of a function.
While we do not know how to instantiate any of these expressions to get a non-trivial lower bound
for a concrete function, in Section 5, we consider to what extent monotone span program lower
bounds are meaningful lower bounds on quantum space complexity, and give the first non-trivial
lower bound on the approximate monotone span program size of a function.

2 Preliminaries

We begin with some miscellaneous notation. For a vector |v〉, we let ‖|v〉‖ denote its `2-norm. In
the following, let A be a matrix with i and j indexing its rows and columns. Define:

‖A‖∞ = max
i,j
|Ai,j |, and ‖A‖ = max{‖A|v〉‖ : ‖|v〉‖ = 1}.

Following [ALSV13], define the ε-rank of a matrix A as the minimum rank of any matrix B such
that ‖A−B‖∞ ≤ ε. For a matrix A with singular value decomposition A =

∑
k σk|vk〉〈uk|, define:

col(A) = span{|vk〉}k, row(A) = span{|uk〉}k, ker(A) = row(A)⊥, A+ =
∑
k

1

σk
|uk〉〈vk|.

The following lemma, from [LMR+11], is useful in the analysis of quantum algorithms.

Lemma 2.1 (Effective spectral gap lemma). Fix orthogonal projectors ΠA and ΠB. Let U =
(2ΠA−I)(2ΠB−I), and let ΠΘ be the orthogonal projector onto the eiθ-eigenspaces of U such that
|θ| ≤ Θ. Then if ΠA|u〉 = 0, ‖ΠΘΠB|u〉‖ ≤ Θ

2 ‖|u〉‖.

In general, we will let ΠV denote the orthogonal projector onto V , for a subspace V .

2Here, A(x) = AΠH(x), where A is as in Definition 3.3, |w0〉 = A+|τ〉 for |τ〉 as in Definition 3.3, and H(x) is as

in Definition 3.4. Then one can verify that w+(x) =
∥∥A(x)+|w0〉

∥∥2
(see Definition 3.4).
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Unitary quantum algorithms and space complexity A unitary quantum algorithm A =

{An}n∈N is a family (parametrized by n) of sequences of 2s(n)-dimensional unitaries U
(n)
1 , . . . , U

(n)
T (n),

for some s(n) ≥ log n and T (n). (We will generally dispense with the explicit parametrization by
n). For x ∈ {0, 1}n, let Ox be the unitary that acts as Ox|j〉 = (−1)xj |j〉 for j ∈ [n], and
Ox|0〉 = |0〉. We let A(x) denote the random variable obtained from measuring

UTOxUT−1 . . .OxU1|0〉

with some two-outcome measurement that should be clear from context. We call T (n) the query
complexity of the algorithm, and S(n) = s(n) + log T (n) the space complexity. By including a
log T (n) term in the space complexity, we are implicitly assuming that the algorithm must maintain
a counter to know which unitary to apply next. This is a fairly mild uniformity assumption (that
is, any uniformly generated algorithm uses Ω(log T ) space), and it will make the statement of
our results much simpler. The requirement that s(n) ≥ log n is to ensure that the algorithm has
enough space to store an index i ∈ [n] into the input.

For a (partial) function f : D → {0, 1} for D ⊆ {0, 1}n, we say that A computes f with
bounded error if for all x ∈ D, A(x) = f(x) with probability at least 2/3. We say that A computes
f with one-sided error if in addition, for all x such that f(x) = 1, A(x) = f(x) with probability 1.

Definition 2.2 (Unitary Quantum Space). For a family of functions f : D → {0, 1} for D ⊆
{0, 1}n, the unitary space complexity of f , SU (f), is the minimum S(n) such that there is a family
of unitary quantum algorithms with space complexity S(n) that computes f with bounded error.
Similarly, S1

U (f) is the minimum S(n) such that there is a family of unitary quantum algorithms
with space complexity S(n) that computes f with one-sided error.

Remark 2.3. Since T is the number of queries made by the algorithm, we may be tempted to
assume that it is at most n, however, while every n-bit function can be computed in n queries,
this may not be the case when space is restricted. For example, it is difficult to imagine an
algorithm that uses O(log n) space and o(n3/2) quantum queries to solve the following problem on
[q]n ≡ {0, 1}n log q: Decide whether there exist distinct i, j, k ∈ [n] such that xi+xj+xk = 0 mod q.

Phase estimation For a unitary U acting on H and a state |ψ〉 ∈ H, we will say we perform T
steps of phase estimation of U on |ψ〉 when we compute:

1√
T

T−1∑
t=0

|t〉U t|ψ〉,

and then perform a quantum Fourier transform over Z/TZ on the first register, called the phase
register. This procedure was introduced in [Kit95]. It is easy to see that the complexity (either
query or time) of phase estimation is O(T ) times the complexity of implementing a controlled call
to U . The space complexity of phase estimation is log T + log dim(H). We will use the following
properties:

Lemma 2.4 (Phase Estimation). If U |ψ〉 = |ψ〉, then performing T steps of phase estimation of
U on |ψ〉 and measuring the phase register results in outcome 0 with probability 1. If U |ψ〉 = eiθ|ψ〉
for |θ| ∈ (π/T, π], then performing T steps of phase estimation of U on |ψ〉 results in outcome 0
with probability at most π

Tθ .

We note that we can increase the success probability to any constant by adding some constant
number k of phase registers, and doing phase estimation k times in parallel, still using a single
register for U , and taking the majority. This still has space complexity log dimH +O(log T ).
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Amplitude estimation For a unitary U acting on H, a state |ψ0〉 ∈ H, and an orthogonal
projector Π on H, we will say we perform M steps of amplitude estimation of U on |ψ〉 with
respect to Π when we perform M steps of phase estimation of

U(2|ψ〉〈ψ| − I)U †(2Π− I)

on U |ψ〉, then, if the phase register contains some t ∈ {0, . . . ,M − 1}, compute p̃ = sin2 πt
2M , which

is an estimate of ‖ΠU |ψ〉‖2 in a new register. The (time or query) complexity of this is O(M) times
the complexity of implementing a controlled call to U , implementing a controlled call to 2Π − I,
and generating |ψ〉. The space complexity is log T + log dimH + O(1). We have the following
guarantee [BHMT02]:

Lemma 2.5. Let p = ‖ΠU |ψ〉‖2. There exists ∆ = Θ(1/M) such that when p̃ is obtained as above
from M steps of amplitude estimation, with probability at least 1/2, |p̃− p| ≤ ∆.

We will thus also refer to M steps of amplitude estimation as amplitude estimation to preci-
sion 1/M .

3 Span Programs and Quantum Algorithms

In Section 3.1, we will define a span program, its size and complexity, and what it means for a span
program to approximate a function f . In Section 3.2, we will prove the following, which implies
that the first part of Theorem 1.1 is essentially tight.

Theorem 3.1. Let f : D → {0, 1} for D ⊆ {0, 1}n, and let P be a span program that κ-
approximates f with size K and complexity C, for some constant κ ∈ (0, 1). Then there exists a
unitary quantum algorithm AP that decides f with bounded error in space S = O(logK + logC)
using T = O(C) queries to x.

Finally, in Section 3.3, we prove the following theorem, which implies Theorem 1.1:

Theorem 3.2. Let f : D → {0, 1} for D ⊆ {0, 1}n and let A be a unitary quantum algorithm using
T queries, and space S to compute f with bounded error. Then for any constant κ ∈ (0, 1), there
is a span program PA with size s(PA) ≤ 2O(S) that κ-approximates f with complexity Cκ ≤ O(T ).
If A decides f with one-sided error, then PA decides f .

3.1 Span Programs

Span programs were first introduced in the context of classical complexity theory in [KW93],
where they were used to study counting classes for nondeterministic logspace machines. While
span programs can be defined with respect to any field, we will consider span programs over R
(or equivalently, C, when convenient, see Remark 3.10). We use the following definition, slightly
modified from [KW93]:

Definition 3.3 (Span Program and Size). A span program on {0, 1}n consists of:

• Finite inner product spaces {Hj,b}j∈[n],b∈{0,1} ∪ {Htrue, Hfalse}. We define H =
⊕

j,bHj,b ⊕
Htrue ⊕Hfalse, and for every x ∈ {0, 1}n, H(x) = H1,x1 ⊕ · · · ⊕Hn,xn ⊕Htrue.3

• A vector space V .

• A target vector |τ〉 ∈ V .4

3We remark that while Htrue and Hfalse may be convenient in constructing a span program, they are not necessary.
We can always consider a partial function f ′ defined on (n+ 1)-bit strings of the form (x, 1) for x in the domain of
f , as f(x), and let Hn+1,1 = Htrue and Hn+1,0 = Hfalse.

4Although V has no meaningful inner product, we use Dirac notation, such as |τ〉 and 〈ω| for the sake of our
fellow quantum computing researchers.
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• A linear map A : H → V .

We specify this span program by P = (H,V, |τ〉, A), and leave the decomposition of H implicit.
The size of the span program is s(P ) = dimH.

To recover the classical definition from [KW93], we can view A as a matrix, with each of its
columns labelled by some (j, b) ∈ [n]× {0, 1} (or “true” or “false”).

Span programs were introduced to the study of quantum query complexity in [RŠ12]. In the
context of quantum query complexity, s(P ) is no longer the relevant measure of the complexity of
a span program. Instead, [RŠ12] introduce the following measures:

Definition 3.4 (Span Program Complexity and Witnesses). For a span program P = (H,V, |τ〉, A)
on {0, 1}n and input x ∈ {0, 1}n, we say x is accepted by the span program if there exists |w〉 ∈
H(x) such that A|w〉 = |τ〉, and otherwise we say x is rejected by the span program. Let P0 and
P1 be respectively the set of rejected and accepted inputs to P . For x ∈ P1, define the positive
witness complexity of x as:

w+(x, P ) = w+(x) = min{‖|w〉‖2 : |w〉 ∈ H(x), A|w〉 = |τ〉}.

Such a |w〉 is called a positive witness for x. For a domain D ⊆ {0, 1}n, we define the positive
complexity of P (with respect to D) as:

W+(P,D) = W+ = max
x∈P1∩D

w+(x, P ).

For x ∈ P0, define the negative witness complexity of x as:

w−(x, P ) = w−(x) = min{‖〈ω|A‖2 : 〈ω| ∈ L(V,R), 〈ω|τ〉 = 1, 〈ω|AΠH(x) = 0}.

Above, L(V,R) denotes the set of linear functions from V to R. Such an 〈ω| is called a negative
witness for x. We define the negative complexity of P (with respect to D) as:

W−(P,D) = W− = max
x∈P0∩D

w−(x, P ).

Finally, we define the complexity of P (with respect to D) by C(P,D) =
√
W+W−.

For f : D → {0, 1}, we say a span program P decides f if f−1(0) ⊆ P0 and f−1(1) ⊆ P1.

Definition 3.5. We define the span program size of a function f , denoted SP(f), as the minimum
s(P ) over families of span programs that decide f .

We note that originally, in [KW93], span program size was defined

s′(P ) =
∑
j,b

dim(col(AΠHj,b)) =
∑
j,b

dim(row(AΠHj,b)).

This could differ from s(P ) = dim(H) =
∑

j,b dim(Hj,b), because dim(Hj,b) might be much larger
than dim(row(AΠHj,b)). However, if a span program has dim(Hj,b) > dim(row(AΠHj,b)) for some
j, b, then it is a simple exercise to show that the dimension of dim(Hj,b) can be reduced without
altering the witness size of any x ∈ {0, 1}n, so the definition of SP(f) is the same as if we’d used
s′(P ) instead of s(P ). In any case, we will not be relying on previous results about the span
program size as a black-box, and will rather prove all required statements, so this difference has
no impact on our results.

While span program size has only previously been relevant outside the realm of quantum
algorithms, the complexity of a span program deciding f has a fundamental correspondence with
the quantum query complexity of f . Specifically, a span program P can be turned into a quantum
algorithm for f with query complexity C(P,D), and moreover, for every f , there exists a span
program such that the algorithm constructed in this way is optimal [Rei09]. This second direction
is not constructive: there is no known method for converting a quantum algorithm with query
complexity T to a span program with complexity C(P,D) = Θ(T ). However, if we relax the
definition of which functions are decided by a span program, then this situation can be improved.
The following is a slight relaxation of [IJ19, Definition 2.6]5.

5Which was already a relaxation of the notion of a span program deciding a function.
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Definition 3.6 (A Span Program that Approximately Decides a Function). Let f : D → {0, 1}
for D ⊆ {0, 1}n and κ ∈ (0, 1). We say that a span program P on {0, 1}n κ-approximates f if
f−1(0) ⊆ P0, and for every x ∈ f−1(1), there exists an approximate positive witness |ŵ〉 such that

A|ŵ〉 = |τ〉, and
∥∥∥ΠH(x)⊥ |ŵ〉

∥∥∥2
≤ κ

W−
. We define the approximate positive complexity as

Ŵ+ = Ŵ κ
+(P,D) = max

x∈f−1(1)
min

{
‖|ŵ〉‖2 : A|ŵ〉 = |τ〉,

∥∥∥ΠH(x)⊥ |ŵ〉
∥∥∥2
≤ κ

W−

}
.

If P κ-approximates f , we define the complexity of P (wrt. D and κ) as Cκ(P,D) =

√
Ŵ+W−.

If κ = 0, the span program in Definition 3.6 decides f (exactly), and Ŵ+ = W+. By [IJ19], for
any x,

min

{∥∥∥ΠH(x)⊥ |ŵ〉
∥∥∥2

: A|ŵ〉 = |τ〉
}

=
1

w−(x)
.

Thus, since W− = maxx∈f−1(0)w−(x), for every x ∈ f−1(0), there does not exist an approximate

positive witness with
∥∥∥ΠH(x)⊥ |ŵ〉

∥∥∥2
< 1

W−
. Thus, when a span program κ-approximates f , there

is a gap of size 1−κ
W−

between the smallest positive witness error
∥∥∥ΠH(x)⊥ |ŵ〉

∥∥∥2
of x ∈ f−1(1), the

smallest positive witness error of x ∈ f−1(0).

Definition 3.7. We define the κ-approximate span program size of a function f , denoted S̃Pκ(f),

as the minimum s(P ) over families of span programs that κ-approximate f . We let S̃P(f) =

S̃P1/4(f).

We note that the choice of κ = 1/4 in S̃P(f) is arbitrary, as it is possible to modify a span
program to reduce any constant κ to any other constant without changing the size or complexity
asymptotically. This convenient observation is formalized in the following claim.

Claim 3.8. Let P be a span program that κ-approximates f : D → {0, 1} for some constant κ.
For any constant κ′ ≤ κ, there exists a span program P ′ that κ′-approximates f with s(P ′) =

(s(P ) + 2)
2
log 1

κ′
log 1

κ , and Cκ′(P
′, D) ≤ O (Cκ(P,D)).

We prove Claim 3.8 in Appendix A. We have the following corollary that will be useful later,
where mS̃Pκ is the monotone approximate span program size, defined in Definition 5.1:

Corollary 3.9. For any κ, κ′ ∈ (0, 1) with κ′ < κ, and any Boolean function f ,

S̃Pκ(f) ≥ S̃Pκ′(f)
1
2

log 1
κ

log 1
κ′ − 2.

If f is monotone, we also have

mS̃Pκ(f) ≥ mS̃Pκ′(f)
1
2

log 1
κ

log 1
κ′ − 2.

Proof. Let P κ-approximate f with optimal size, so s(P ) = S̃Pκ(f). Then by Claim 3.8, there is
a span program P ′ that κ′-approximates f with size

S̃Pκ′(f) ≤ s(P ′) =
(
S̃Pκ(f) + 2

)2
log 1

κ′
log 1

κ .

The first result follows. The second is similar, but also includes the observation that if P is
monotone, so is P ′.
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Remark 3.10. It can sometimes be useful to construct a span program over C. However, for
any span program over C, P , there is a span program over R, P ′, such that for all x ∈ P0,
w−(x, P ′) ≤ w−(x, P ), for all x ∈ P1, w+(x, P ′) ≤ w+(x, P ), and s(P ′) ≤ 2s(P ). We define
P ′ as follows. Without loss of generality, suppose Hj,b = spanC{|j, b, k〉 : k ∈ Sj,b}. Define
H ′j,b = spanR{|j, b, k, a〉 : k ∈ Sj,b, a ∈ {0, 1}}. Define

A′|j, b, k, 0〉 = Re (A|j, b, k〉) |0〉+ Im (A|j, b, k〉) |1〉

A′|j, b, k, 1〉 = Re (A|j, b, k〉) |1〉 − Im (A|j, b, k〉) |0〉.

Finally, let |τ ′〉 = |τ〉|0〉.
Suppose |w〉 is a witness in P . Then

|τ〉 = A|w〉 = ARe(|w〉) + iAIm(|w〉)
= Re(ARe(|w〉)) + iIm(ARe(|w〉)) + iRe(AIm(|w〉))− Im(AIm(|w〉)).

Since we can assume |τ〉 is real, we have

|τ〉 = Re(ARe(|w〉))− Im(AIm(|w〉)) and Im(ARe(|w〉)) + Re(AIm(|w〉)) = 0.

Define |w′〉 = Re(|w〉)|0〉+ Im(|w〉)|1〉. Then

A′|w′〉 = Re(ARe(|w〉))|0〉+Im(ARe(|w〉))|1〉+Re(AIm(|w〉))|1〉−Im(AIm(|w〉))|0〉 = |τ〉|0〉 = |τ ′〉.

Note that we have ‖|w〉‖ = ‖|w′〉‖. A similar argument holds for negative witnesses.
Thus, we will restrict our attention to real span programs, but still allow constructions of span

programs over C (in particular, in Section 3.3 and Section 5.2.1).

3.2 From Span Programs to Quantum Algorithms

In this section, we will prove Theorem 3.1, which states that if a span program approximately
decides a function f , then we can compile it to a quantum algorithm for f . While we hope that
Theorem 3.1 will have applications in designing span program algorithms, its only relevance to the
contents of this paper are its implications with respect to the tightness of the first lower bound
expression in Theorem 4.1, and so this section can be safely skipped.

Theorem 3.1 is similar to [IJ19, Lemma 3.6], the difference here is we let an approximate

positive witness for x be any witness with error,
∥∥∥ΠH(x)⊥ |w〉

∥∥∥2
, at most κ/W−, whereas in [IJ19],

it is required to have error as small as possible. This relaxation could potentially decrease the
positive complexity Ŵ+, since we now have more freedom in selecting positive witnesses, but more
importantly, it makes it easier to analyze a span program, because we needn’t find the approximate
positive witness with the smallest possible error. Importantly, this change in how we define a span
program that approximates f does not change the most important property of such a span program:
that it can be compiled into a quantum algorithm for f . To show this, we now modify the proof
of [IJ19, Lemma 3.6] to fit the new definition. We will restrict to span programs on binary strings
{0, 1}n, but the proof also works for span programs on [q]n for q > 2.

Proof of Theorem 3.1. For a span program P on {0, 1}n and x ∈ {0, 1}n, define

U(P, x) = (2Πker(A) − I)(2ΠH(x) − I),

which acts on H. To prove Theorem 3.1, we will show that by performing phase estimation of
U(P, x) on initial state |w0〉 = A+|τ〉, and estimating the amplitude on having |0〉 in the phase
register, we can distinguish 1- and 0-inputs of f with bounded error.

By Corollary A.2 and Claim 3.8, we can assume without loss of generality that P has been
scaled so that it κ-approximates f for some κ < 1/4, |w0〉 = A+|τ〉 is a unit vector, and W− ≤ 2.
The scaled span program still has size KO(1) and complexity O(C).

We first modify the proof of [IJ19, Lemma 3.2] to get the following lemma:
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Lemma 3.11. Let P be a span program that κ-approximates f , with ‖|w0〉‖2 = 1. Fix any
Θ ∈ (0, π), and let ΠΘ be the projector onto the eiθ-eigenspaces of U(P, x) with |θ| ≤ Θ. For any
x ∈ f−1(1),

‖ΠΘ|w0〉‖2 ≤ Θ2Ŵ+ +
4κ

W−
.

Proof. Suppose x ∈ f−1(1) and let |ŵx〉 be an approximate positive witness with
∥∥∥ΠH(x)⊥ |ŵx〉

∥∥∥2
≤

κ
W−

and ‖|ŵx〉‖2 ≤ Ŵ+. Note that since A|ŵx〉 = |τ〉, Πrow(A)|ŵx〉 = A+A|ŵx〉 = A+|τ〉 = |w0〉, so

Πrow(A)ΠH(x)|ŵx〉+ Πrow(A)ΠH(x)⊥ |ŵx〉 = |w0〉.

Since ΠH(x)⊥ΠH(x)|ŵx〉 = 0, we have, by the effective spectral gap lemma (Lemma 2.1):

∥∥ΠΘΠrow(A)ΠH(x)|ŵx〉
∥∥2 ≤ Θ2

4

∥∥ΠH(x)|ŵx〉
∥∥2

∥∥∥ΠΘ

(
|w0〉 −Πrow(A)ΠH(x)⊥ |ŵx〉

)∥∥∥2
≤ Θ2

4
‖|ŵx〉‖2

‖ΠΘ|w0〉‖2 +
∥∥∥ΠΘΠrow(A)ΠH(x)⊥ |ŵx〉

∥∥∥2
− 2〈w0|ΠΘΠrow(A)ΠH(x)⊥ |ŵx〉 ≤

Θ2

4
Ŵ+

‖ΠΘ|w0〉‖2 − 2 ‖ΠΘ|w0〉‖
∥∥∥ΠH(x)⊥ |ŵx〉

∥∥∥ ≤ Θ2

4
Ŵ+

‖ΠΘ|w0〉‖2 − 2 ‖ΠΘ|w0〉‖
√

κ

W−
≤ Θ2

4
Ŵ+.

This is satisfied only when

‖ΠΘ|w0〉‖ ≤
√

κ

W−
+

√
κ

W−
+

Θ2

4
Ŵ+ ≤ 2

√
Θ2

4
Ŵ+ +

κ

W−

‖ΠΘ|w0〉‖2 ≤ Θ2Ŵ+ +
4κ

W−
.

We will let Θ2 = 1−4κ

2Ŵ+W−
. Then when f(x) = 0, we have

‖Π0|w0〉‖2 =
1

w−(x)
≥ 1

W−
=: q0,

by [IJ19, Lemma 3.3]. On the other hand, when f(x) = 1, we have:

‖ΠΘ|w0〉‖2 ≤ Θ2Ŵ+ + 4
κ

W−
=

1− 4κ

2W−
+

4κ

W−
=

1 + 4κ

2W−
=: q1.

We want to distinguish these two cases using 1/Θ steps of phase estimation, and then estimating
the amplitude on having an estimate of 0 in the phase register to precision:

∆ =
q0 − q1

2
=

1− 4κ

4W−
.

This will allow us to distinguish between amplitude ≥ q0 and amplitude ≤ q1. Since κ < 1
4

is a constant, ∆ = Ω(1/W−), and thus we use O(1/∆) = O(W−) = O(1) (recall that we are
assuming the span program has been scaled) calls to phase estimation, each of which requires

O(1/Θ) = O

(√
Ŵ+W−

)
= O(C) controlled calls to U (for more details, see the nearly identical

proof of [IJ19, Lemma 3.2]). Since U(P, x) can be implemented in cost one query, the query
complexity of this algorithm is O(C).
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The algorithm needs a single register of dimension dimH = KO(1) to apply U(P, x), O(1) regis-
ters of dimension 1/Θ to act as phase registers in phase estimation, and O(1) registers of dimension
O(1/∆) to act as phase registers in the amplitude estimation, for a total space requirement of

log dimH +O

(
log

1

∆

)
+O

(
log

1

Θ

)
= O(logK) +O(logC).

To complete the proof, we note that the algorithm is unitary, since it consists of phase estimation,
composed unitarily with amplitude estimation.

3.3 From Quantum Algorithms to Span Programs

In this section, we will show how to turn a unitary quantum algorithm into a span program,
proving Theorem 3.2, which implies Theorem 1.1. The construction we use to prove Theorem 3.2
is based on a construction of Reichardt for turning any one-sided error quantum algorithm into a
span program whose complexity matches the algorithm’s query complexity [Rei09, arXiv version].
We observe that a similar construction also works for two-sided error algorithms,6 but the resulting
span program only approximately decides f .

The algorithm Fix a function f : D → {0, 1} for D ⊆ {0, 1}n, and a unitary quantum algorithm
A such that on input x ∈ f−1(0), Pr[A(x) = 1] ≤ 1

3 , and on input x ∈ f−1(1), Pr[A(x) = 1] ≥ 1−ε,
for ε ∈ {0, 1

3}, depending on whether we want to consider a one-sided error or a bounded error
algorithm. Let p0(x) = Pr[A(x) = 0], so if f(x) = 0, p0(x) ≥ 2/3, and if f(x) = 1, p0(x) ≤ ε.

We can suppose A acts on three registers: a query register span{|j〉 : j ∈ [n]∪{0}}; a workspace
register span{|z〉 : z ∈ Z} for some finite set of symbols Z that contains 0; and an answer register
span{|a〉 : a ∈ {0, 1}}. The query operator Ox acts on the query register as Ox|j〉 = (−1)xj |j〉 if
j ≥ 1, and Ox|0〉 = |0〉. If A makes T queries, the final state of A is:

|Ψ2T+1(x)〉 = U2T+1OxU2T−1 . . . U3OxU1|0, 0, 0〉

for some unitaries U2T+1, . . . , U1. The output bit of the algorithm, A(x), is obtained by measuring
the answer register of |Ψ2T+1(x)〉. We have given the input-independent unitaries odd indicies so
that we may refer to the t-th query as U2t.

Let |Ψ0(x)〉 = |Ψ0〉 = |0, 0, 0〉 denote the starting state, and for t ∈ {1, . . . , 2T + 1}, let
|Ψt(x)〉 = Ut . . . U1|Ψ0〉 denote the state after t steps.

The span program We now define a span program PA from A. The space H will represent
all three registers of the algorithm, with an additional time counter register, and an additional
register to represent a query value b.

H = span{|t, b, j, z, a〉 : t ∈ {0, . . . , 2T + 1}, b ∈ {0, 1}, j ∈ [n] ∪ {0}, z ∈ Z, a ∈ {0, 1}}.

We define V and A as follows, where c is some constant to be chosen later:

V = span{|t, j, z, a〉 : t ∈ {0, . . . , 2T + 1}, j ∈ [n] ∪ {0}, z ∈ Z, a ∈ {0, 1}}

A|t, b, j, z, a〉 =


|t, j, z, a〉 − |t+ 1〉Ut+1|j, z, a〉 if t ∈ {0, . . . , 2T} is even
|t, j, z, a〉 − (−1)b|t+ 1, j, z, a〉 if t ∈ {0, . . . , 2T} is odd (i.e., Ut+1 = Ox)
|t, j, z, a〉 if t = 2T + 1, a = 1, and b = 0√
cT |t, j, z, a〉 if t = 2T + 1, a = 0, and b = 0

0 if t = 2T + 1 and b = 1.

For t ≤ 2T , A|t, b, j, z, a〉 should be intuitively understood as applying Ut+1 to |j, z, a〉, and in-
crementing the counter register from |t〉 to |t + 1〉. When t is even, this correspondence is clear

6A preliminary version of this result appeared in [Jef14], but there was an error in the proof, which is fixed by
our new definition of approximate span programs.
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(in that case, the value of b is ignored). When t is odd, so Ut+1 = Ox, then as long as b = xj ,
(−1)b|t+ 1, j, z, a〉 = |t+ 1〉Ut+1|j, z, a〉. We thus define

Hj,b = span{|t, b, j, z, a〉 : t ∈ {0, . . . , 2T} is odd, z ∈ Z, a ∈ {0, 1}}.

For even t, applying Ut+1 is independent of the input, so we make the corresponding states available
to every input; along with states where the query register is set to j = 0, meaning Ox acts input-
independently; and accepting states, whose answer register is set to 1 at time 2T + 1:

Htrue = span{|t, b, j, z, a〉 : t ∈ {0, . . . , 2T} is even, b ∈ {0, 1}, j ∈ [n], z ∈ Z, a ∈ {0, 1}}
⊕ span{|t, b, 0, z, a〉 : t ∈ {0, . . . , 2T}, b ∈ {0, 1}, z ∈ Z, a ∈ {0, 1}}
⊕ span{|2T + 1, b, j, z, 1〉 : b ∈ {0, 1}, j ∈ [n] ∪ {0}, z ∈ Z}.

The remaining part of H will be assigned to Hfalse:

Hfalse = span{|2T + 1, b, j, z, 0〉 : b ∈ {0, 1}, j ∈ [n] ∪ {0}, z ∈ Z}.

Note that in defining A, we have put a large factor of
√
cT in front of A|2T + 1, 0, j, z, 0〉, making

the vectors in Hfalse very “cheap” to use. These vectors are never in H(x), but will be used as the
error part of approximate positive witnesses, and the

√
cT ensures they only contribute relatively

small error.
Finally, we define:

|τ〉 = |0, 0, 0, 0〉 = |0〉|Ψ0〉.

Intuitively, we can construct |τ〉, the initial state, using a final state that has 1 in the answer
register, and using the transitions |t, j, z, a〉− |t+ 1〉Ut+1|j, z, a〉 to move from the final state to the
initial state. In the following analysis, we make this idea precise.

Analysis of PA We will first show that for every x there is an approximate positive witness with
error depending on its probability of being rejected by A, p0(x).

Lemma 3.12. For any x ∈ {0, 1}n, there exists an approximate positive witness |w〉 for x in PA
such that:

‖|w〉‖2 ≤ 2T + 2, and
∥∥∥ΠH(x)⊥ |w〉

∥∥∥2
≤ p0(x)

cT
.

In particular, if f(x) = 1, ∥∥∥ΠH(x)⊥ |w〉
∥∥∥2
≤ ε

cT
.

Proof. Let Qx be the linear isometry that acts as

Qx|j, z, a〉 = |xj , j, z, a〉 ∀j ∈ [n] ∪ {0}, z ∈ Z, a ∈ {0, 1},

where we interpret x0 as 0. Note that for all |j, z, a〉, and t ∈ {0, . . . , 2T}, we have

A(|t〉Qx|j, z, a〉) = |t, j, z, a〉 − |t+ 1〉Ut+1|j, z, a〉.

Let Πa =
∑

j∈[n]∪{0},z∈Z |j, z, a〉〈j, z, a| be the orthogonal projector onto states of the algorithm
with answer register set to a. We will construct a positive witness for x from the states of the
algorithm on input x, as follows:

|w〉 =

2T∑
t=0

|t〉Qx|Ψt(x)〉+ |2T + 1〉|0〉Π1|Ψ2T+1(x)〉+
1√
cT
|2T + 1〉|0〉Π0|Ψ2T+1(x)〉.
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To see that this is a positive witness, we compute A|w〉, using the fact that Ut+1|Ψt(x)〉 = |Ψt+1(x)〉:

A|w〉 =
2T∑
t=0

(|t〉|Ψt(x)〉 − |t+ 1〉Ut+1|Ψt(x)〉) + |2T + 1〉Π1|Ψ2T+1(x)〉+ |2T + 1〉Π0|Ψ2T+1(x)〉

=
2T∑
t=0

|t〉|Ψt(x)〉 −
2T∑
t=0

|t+ 1〉|Ψt+1(x)〉+ |2T + 1〉|Ψ2T+1(x)〉

=
2T+1∑
t=0

|t〉|Ψt(x)〉 −
2T+1∑
t=1

|t〉|Ψt(x)〉 = |0〉|Ψ0(x)〉 = |τ〉.

We next consider the error of |w〉 for x, given by
∥∥∥ΠH(x)⊥ |w〉

∥∥∥2
. Since Qx|j, z, a〉 ∈ H(x) for all

j, z, a, and |2T + 1, 0〉Π1|Ψ2T+1(x)〉 ∈ Htrue ⊂ H(x), ΠH(x)⊥ |w〉 = 1√
cT
|2T + 1〉|0〉Π0|Ψ2T+1(x)〉, so

∥∥∥ΠH(x)⊥ |w〉
∥∥∥2

=
1

cT
‖Π0|Ψ2T+1(x)〉‖2 =

p0(x)

cT
.

Finally, we compute the positive witness complexity of |w〉:

‖|w〉‖2 =

2T∑
t=0

‖Qx|Ψt(x)〉‖2 + ‖Π1|Ψ2T+1(x)〉‖2 +
1

cT
‖Π0|Ψ2T+1(x)〉‖2

≤
2T∑
t=0

‖|Ψt(x)〉‖2 + ‖|Ψ2T+1(x)〉‖2 = 2T + 2.

Next, we upper bound w−(x) whenever f(x) = 0:

Lemma 3.13. For any x that is rejected by A with probability p0(x) > 0,

w−(x) ≤ (c+ 4)T

p0(x)
.

In particular, if f(x) = 0, w−(x) ≤ c+4
2/3 T , so W− ≤ c+4

2/3 T .

Proof. We will define a negative witness for x as follows. First, define

|Ψ0
2T+1(x)〉 = Π0|Ψ2T+1(x)〉,

the rejecting part of the final state. This is non-zero whenever p0(x) > 0. Then for t ∈ {0, . . . , 2T},
define

|Ψ0
t (x)〉 = U †t+1 . . . U

†
2T+1|Ψ

0
2T+1(x)〉.

From this we can define

〈ω| =
2T+1∑
t=0

〈t|〈Ψ0
t (x)|.

We first observe that

〈ω|τ〉 = 〈Ψ0
0(x)|0, 0, 0〉 = 〈Ψ0

2T+1(x)|U2T+1 . . . U1|0, 0, 0〉 = 〈Ψ0
2T+1(x)|Ψ2T+1(x)〉 = p0(x).

Thus

〈ω̄| = 1

p0(x)
〈ω|
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is a negative witness. Next, we show that 〈ω|AΠH(x) = 0. First, for |t, xj , j, z, a〉 ∈ Hj,xj (so
t < 2T is odd), we have

〈ω|A|t, xj , j, z, a〉 = 〈ω|(|t, j, z, a〉 − (−1)xj |t+ 1〉|j, z, a〉)
= 〈Ψ0

t (x)|j, z, a〉 − (−1)xj 〈Ψ0
t+1(x)|j, z, a〉

= 〈Ψ0
t+1(x)|Ut+1|j, z, a〉 − (−1)xj 〈Ψ0

t+1(x)|j, z, a〉
= 〈Ψ0

t+1(x)|Ox|j, z, a〉 − (−1)xj 〈Ψ0
t+1(x)|j, z, a〉 = 0.

The same argument holds for |t, 0, 0, j, z, a〉 ∈ Htrue. Similarly, for any |t, b, j, z, a〉 ∈ Htrue with
t ≤ 2T even, we have

〈ω|A|t, b, j, z, a〉 = 〈ω|(|t, j, z, a〉 − |t+ 1〉Ut+1|j, z, a〉)
= 〈Ψ0

t (x)|j, z, a〉 − 〈Ψ0
t+1(x)|Ut+1|j, z, a〉 = 0.

Finally, for any |2T + 1, b, j, z, 1〉 ∈ Htrue, we have

〈ω|A|2T + 1, b, j, z, 1〉 = 〈ω|2T + 1, j, z, 1〉 = 〈Ψ0
2T+1(x)|j, z, 1〉 = 0.

Thus 〈ω|AΠH(x) = 0 and so 〈ω̄|AΠH(x) = 0, and 〈ω̄| is a negative witness for x in P . To compute
its witness complexity, first observe that 〈ω|A = 〈ω|AΠH(x)⊥ , and

AΠH(x)⊥ =
T∑
s=1

∑
j∈[n]∪{0},z∈Z,a∈{0,1}

(|2s− 1, j, z, a〉+ (−1)xj |2s, j, z, a〉)〈2s− 1, x̄j , j, z, a|

+
∑

j∈[n]∪{0},z∈Z

√
cT |2T + 1, j, z, 0〉〈2T + 1, 0, j, z, 0|

so, using 〈Ψ0
2s−1(x)|j, z, a〉 = 〈Ψ0

2s(x)|U2s|j, z, a〉 = (−1)xj 〈Ψ0
2s(x)|j, z, a〉, we have:

〈ω|AΠH(x)⊥ =
T∑
s=1

∑
j∈[n]∪{0},z∈Z,a∈{0,1}

(〈Ψ0
2s−1(x)|j, z, a〉+ (−1)xj 〈Ψ0

2s(x)|j, z, a〉)〈2s− 1, x̄j , j, z, a|

+
∑

j∈[n]∪{0},z∈Z

√
cT 〈Ψ0

2T+1(x)|j, z, 0〉〈2T + 1, 0, j, z, 0|

=
T∑
s=1

∑
j∈[n]∪{0},z∈Z,a∈{0,1}

2(−1)xj 〈Ψ0
2s(x)|j, z, a〉)〈2s− 1, x̄j , j, z, a|

+
∑

j∈[n]∪{0},z∈Z

√
cT 〈Ψ0

2T+1(x)|j, z, 0〉〈2T + 1, 0, j, z, 0|.

Thus, the complexity of 〈ω̄| is:

‖〈ω̄|A‖2 =
1

p0(x)2

∥∥∥〈ω|AΠH(x)⊥

∥∥∥2

=
1

p0(x)2

T∑
s=1

∑
j∈[n]∪{0},
z∈Z,
a∈{0,1}

4
∣∣〈Ψ0

2s(x)|j, z, a〉
∣∣2 +

1

p0(x)2

∑
j∈[n]∪{0},

z∈Z

cT
∣∣〈Ψ0

2T+1(x)|j, z, 0〉
∣∣2

=
4

p0(x)2

T∑
s=1

∥∥|Ψ0
2s(x)〉

∥∥2
+

cT

p0(x)2

∥∥|Ψ0
2T+1(x)〉

∥∥2
.

Because each Ut is unitary, we have
∥∥|Ψ0

2s(x)〉
∥∥2

=
∥∥|Ψ0

2T+1(x)〉
∥∥2

= p0(x), thus:

‖〈ω̄|A‖2 =
4T

p0(x)
+

cT

p0(x)
≤ 4 + c

2/3
T when f(x) = 0.
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We conclude the proof of Theorem 3.2 with the following corollary, from which Theorem 3.2
follows immediately, by appealing to Claim 3.8 with κ = 9

10 and κ′ any constant in (0, 1).

Corollary 3.14. Let c = 5, in the definition of PA. Then:

• s(PA) = 2S+O(1)

• If A decides f with one-sided error, then PA decides f with complexity C ≤ O(T ).

• If A decides f with bounded error, then PA
9
10 -approximates f with complexity Cκ ≤ O(T ).

Proof. We first compute s(PA) = dimH using the fact that the algorithm uses space S =
log dim span{|j, z, a〉 : j ∈ [n] ∪ {0}, z ∈ Z, a ∈ {0, 1}}+ log T :

dimH = (dim span{|t, b〉 : t ∈ {0, . . . , 2T + 1}, b ∈ {0, 1}})2S−log T = 2S+O(1).

We prove the third statement, as the second is similar. By Lemma 3.13, using c = 5, we have

W− ≤
5 + 4

2/3
T =

27

2
T.

By Lemma 3.12, we can see that for every x such that f(x) = 1, there is an approximate positive
witness |w〉 for x with error at most:

ε

cT
=

1/3

5T
≤ 1

15T

27
2 T

W−
=

9

10

1

W−
.

Furthermore, ‖|w〉‖2 ≤ 2T + 2, so Ŵ+ ≤ 2T + 2. Observing Cκ =

√
W−Ŵ+ ≤

√
27T (T + 1)

completes the proof.

4 Span Programs and Space Complexity

Using the transformation from algorithms to span programs from Section 3.3, we immediately have
the following connections between span program size and space complexity.

Theorem 4.1. For any f : D → {0, 1} for D ⊆ {0, 1}n, we have

SU (f) ≥ Ω
(

log S̃P(f)
)

and S1
U (f) ≥ Ω (log SP(f)) .

Theorem 4.1 is a corollary of Theorem 3.2. Theorem 3.1 shows that the lower bound for SU (f) in
Theorem 4.1 is part of a tight correspondence between space complexity and log s(P ) + logC(P ).

Theorem 2.9 of [BGW99] gives a lower bound of SP(f) ≥ Ω(2n/3/(n log n)1/3) for almost all
n-bit Boolean functions. Combined with Theorem 4.1, we immediately have:

Theorem 4.2. For almost all Boolean functions f : {0, 1}n → {0, 1}, S1
U (f) = Ω(n).

Ideally, we would like to use the lower bound in Theorem 4.1 to prove a non-trivial lower bound
for SU (f) or S1

U (f) for some concrete f . Fortunately, there are somewhat nice expressions lower

bounding SP(f) [Raz90, Gàl01], which we extend to lower bounds of S̃P(f) in the remainder of
this section. However, on the unfortunate side, there has already been significant motivation to
instantiate these expressions to non-trivial lower bounds for concrete f , with no success. There has
been some success in monotone versions of these lower bounds, which we discuss more in Section 5.

For a function f : D → {0, 1} for D ⊆ {0, 1}n, and an index j ∈ [n], we let ∆f,j ∈
{0, 1}f−1(0)×f−1(1) be defined by ∆f,j [y, x] = 1 if and only if xj 6= yj . When f is clear from
context, we simply denote this by ∆j . The following tight characterization of SP(f) may be found
in, for example, [Lok09].
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Lemma 4.3. For any f : D → {0, 1} for D ⊆ {0, 1}n,

SP(f) = minimize
∑
j∈[n]

rank(Λj)

subject to ∀j ∈ [n],Λj ∈ Rf
−1(0)×f−1(1)∑

j∈[n]

Λj ◦∆j = J,

where J is the f−1(0)× f−1(1) all-ones matrix.

By Theorem 4.1, the logarithm of the above is a lower bound on S1
U (f). We modify Lemma 4.3

to get the following approximate version, whose logarithm lower bounds SU (f) when κ = 1
4 .

Lemma 4.4. For any κ ∈ [0, 1), and f : D → {0, 1} for D ⊆ {0, 1}n,

S̃Pκ(f) ≥ minimize
∑
j∈[n]

rank(Λj) (1)

subject to ∀j ∈ [n],Λj ∈ Rf
−1(0)×f−1(1)∥∥∥∥∥∥

∑
j∈[n]

Λj ◦∆j − J

∥∥∥∥∥∥
∞

≤
√
κ.

Proof. Fix a span program that κ-approximates f with s(P ) = S̃Pκ(f), and let {〈ωy| : y ∈ f−1(0)}
be optimal negative witnesses, and {|wx〉 : x ∈ f−1(1)} be approximate positive witnesses with∥∥ΠH(x)|wx〉

∥∥2 ≤ κ
W−

. Letting Πj,b denote the projector onto Hj,b, define

Λj =
∑
y

|y〉〈ωy|AΠj,ȳj

∑
x

Πj,xj |wx〉〈x|,

so Λj has rank at most dimHj , and so
∑

j∈[n] rank(Λj) ≤ s(P ) = S̃Pκ(f).
We now show that {Λj}j is a feasible solution. Let |err(x)〉 be the positive witness error of

|wx〉, |err(x)〉 = ΠH(x)⊥ |wx〉 =
∑n

j=1 Πj,x̄j |wx〉. Then we have:

〈y|
n∑
j=1

Λj ◦∆j |x〉 = 〈ωy|A
∑

j:xj 6=yj

Πj,xj |wx〉 = 〈ωy|A

|wx〉 − ∑
j:xj=yj

Πj,xj |wx〉 − |err(x)〉


= 〈ωy|τ〉 − 〈ωy|A

∑
j:xj=yj

ΠH(y)Πj,xj |wx〉 − 〈ωy|A|err(x)〉

= 1− 0− 〈ωy|A|err(x)〉∣∣∣∣∣∣1− 〈y|
n∑
j=1

Λj ◦∆j |x〉

∣∣∣∣∣∣ ≤ ‖〈ωy|A‖ ‖|err(x)〉‖ =

√
w−(y)

κ

W−
≤
√
κ.

Above we used the fact that 〈ωy|AΠH(y) = 0. Thus, {Λj}j is a feasible solution with objective

value ≤ S̃Pκ(f), so the result follows.

As a corollary of the above, and the connection between span program size and unitary quantum
space complexity stated in Theorem 4.1, the logarithm of the expression in (1) with κ = 1

4 is a lower
bound on SU (f), and with κ = 0, it is a lower bound on S1

U (f). However, as stated, it is difficult
to use this expression to prove an explicit lower bound, because it is a minimization problem. We
will shortly give a lower bound in terms of a maximization problem, making it possible to obtain
explicit lower bounds by exhibiting a feasible solution.
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A partial matrix is a matrix M ∈ (R ∪ {?})f−1(0)×f−1(1). A completion of M is any M ∈
Rf−1(0)×f−1(1) such that M [y, x] = M [y, x] whenever M [y, x] 6= ?. For a partial matrix M , define
rank(M) to be the smallest rank of any completion of M , and ε-rank(M) to be the smallest rank
of any M̃ such that |M [y, x] − M̃ [y, x]| ≤ ε for all y, x such that M [y, x] 6= ?. Let M ◦∆i to be
the partial matrix defined:

M ◦∆i[y, x] =

{
M [y, x] if ∆i[y, x] = 1
0 if ∆i[y, x] = 0.

Then we have the following:

Lemma 4.5. For all Boolean functions f : D → {0, 1}, with D ⊆ {0, 1}n, and all partial matrices
M ∈ (R ∪ {?})f−1(0)×f−1(1) such that max{|M [y, x]| : M [y, x] 6= ?} ≤ 1:

S1
U (f) ≥ Ω

(
log

(
rank(M)

maxi∈[n] rank(M ◦∆i)

))
.

In [Raz90], Razborov showed that the expression on the right-hand side in Lemma 4.5 is a lower
bound on the logarithm of the formula size of f (Ref. [Gàl01] related this to SP(f)). Later, in
[Raz92], Razborov noted that when restricted to non-partial matrices, this can never give a better
bound than n. Thus, to prove a non-trivial lower bound on S1

U (f) using this method, one would
need to use a partial matrix. We prove the following generalization to the approximate case.

Lemma 4.6. For all Boolean functions f : D → {0, 1}, with D ⊆ {0, 1}n, and all partial matrices
M ∈ (R ∪ {?})f−1(0)×f−1(1) such that max{|M [y, x]| : M [y, x] 6= ?} ≤ 1:

SU (f) ≥ Ω

(
log

(
1
2 -rank(M)

maxi∈[n] rank(M ◦∆i)

))
.

Proof. Let {Λj}j be an optimal feasible solution for the expression from Lemma 4.4, so

S̃Pκ(f) ≥
∑
j∈[n]

rank(Λj), and

∥∥∥∥∥∥
∑
j∈[n]

Λj ◦∆j − J

∥∥∥∥∥∥
∞

≤
√
κ.

Let M j be a completion of M ◦∆j with rank(M ◦∆j) = rank(M j). Then for any x, y such that
M [y, x] 6= ?:∣∣∣∣∣∣

∑
j∈[n]

M j ◦ Λj

 [y, x]−M [y, x]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈[n]

M [y, x]∆j [y, x]Λj [y, x]−M [y, x]

∣∣∣∣∣∣
≤ |M [y, x]|

∥∥∥∥∥∥
∑
j∈[n]

∆j ◦ Λj − J

∥∥∥∥∥∥
∞

≤
√
κ.

Thus

√
κ-rank(M) ≤ rank

∑
j∈[n]

M j ◦ Λj

 ≤ ∑
j∈[n]

rank(M j ◦ Λj).

Using the fact that for any matrices B and C, rank(B ◦ C) ≤ rank(B)rank(C), we have
√
κ-rank(M) ≤

∑
j∈[n]

rank(Λj)rank(M j) ≤ S̃Pκ(f) max
j∈[n]

rank(M ◦∆j).

Setting κ = 1
4 , and noting that by Theorem 4.1, SU (f) ≥ log S̃P(f) = log S̃P1/4(f) completes the

proof.

Unfortunately, as far as we are aware, nobody has used this lower bound to successfully prove
any concrete formula size lower bound of 2ω(logn), so it seems to be quite difficult. However, there
has been some success proving lower bounds in the monotone span program case, even without
resorting to partial matrices, which we discuss in the next section.
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5 Monotone Span Programs and Monotone Algorithms

A monotone function is a Boolean function in which y ≤ x implies f(y) ≤ f(x), where y ≤ x should
be interpreted bitwise. In other words, flipping 0s to 1s either keeps the function value the same,
or changes it from 0 to 1. A monotone span program is a span program in which Hi,0 = {0} for
all i, so only 1-valued queries contribute to H(x), and H(y) ⊆ H(x) whenever y ≤ x. A monotone
span program can only decide or approximate a monotone function.

Definition 5.1. For a monotone function f , define the monotone span program size, denoted
mSP(f), as the minimum s(P ) over (families of) monotone span programs P such that P decides

f ; and the approximate monotone span program size, denoted mS̃Pκ(f), as the minimum s(P )

over (families of) monotone span programs P such that P κ-approximates f . We let mS̃P(f) =

mS̃P1/4(f).

In contrast to SP(f), there are non-trivial lower bounds for mSP(f) for explicit monotone
functions f . However, this does not necessarily give a lower bound on SP(f), and in particular,
may not be a lower bound on the one-sided error quantum space complexity of f . However, lower
bounds on logmSP(f) or logmS̃P(f) do give lower bounds on the space complexity of quantum
algorithms obtained from monotone span programs, and as we will soon see, logmSP(f) and

logmS̃P(f) are lower bounds on the space complexity of monotone phase estimation algorithms,
described in Section 5.2. The strongest known lower bound on mSP(f) is the following:

Theorem 5.2 ([PR17]). There is an explicit Boolean function f : D → {0, 1} for D ⊆ {0, 1}n
such that

logmSP(f) ≥ Ω(n).

We will adapt some of the techniques used in existing lower bounds on mSP to show a lower
bound on mS̃P(f) for some explicit f :

Theorem 5.3. There is an explicit Boolean function f : D → {0, 1} for D ⊆ {0, 1}n such that for
any constant κ,

logmS̃Pκ(f) ≥ (log n)2−o(1).

In particular, this implies a lower bound of 2(logn)2−o(1) on mSP(f) for the function f in Theo-
rem 5.3. We prove Theorem 5.3 in Section 5.1. Theorem 5.3 implies that any quantum algorithm
for f obtained from a monotone span program must have space complexity (log n)2−o(1), which is
slightly better than the trivial lower bound of Ω(log n). In Section 5.2, we describe a more natural

class of algorithms called monotone phase estimation algorithms such that logmS̃P(f) is a lower
bound on the quantum space complexity of any such algorithm computing f with bounded error.
Then for the specific function f from Theorem 5.3, any monotone phase estimation algorithm for
f must use space (log n)2−o(1).

5.1 Monotone Span Program Lower Bounds

Our main tool in proving Theorem 5.3 will be the following.

Theorem 5.4. For any Boolean function f : D → {0, 1}, D ⊆ {0, 1}n, and any constant κ ∈ [0, 1):

mS̃Pκ(f) ≥ max
M∈Rf−1(0)×f−1(1):‖M‖∞≤1

√
κ-rank(M)

maxj∈[n] rank(M ◦∆j,1)
,

where ∆j,1[y, x] = 1 if yi = 0 and xi = 1, and 0 else.

When, κ = 0, the right-hand side of the equation in Theorem 5.4 is the (monotone) rank
measure, defined in [Raz90], and shown in [Gàl01] to lower bound monotone span program size.
We extend the proof for the κ = 0 case to get a lower bound on approximate span program size.

19



We could also allow for partial matrices M , as in the non-monotone case (Lemma 4.6) but unlike
the non-monotone case, it is not necessary to consider partial matrices to get non-trivial lower
bounds.

Proof. Fix a monotone span program that κ-approximates f with size mS̃Pκ(f). Let {〈ωy| :
y ∈ f−1(0)} be optimal negative witnesses, and let {|wx〉 : x ∈ f−1(1)} be approximate positive

witnesses with
∥∥∥ΠH(x)⊥ |wx〉

∥∥∥2
≤ κ

W−
. Letting Πj,b denote the projector onto Hj,b, define

Λj =
∑

y∈f−1(0)

|y〉〈ωy|AΠj,ȳj

∑
x∈f−1(1)

Πj,xj |wx〉〈x| =
∑

y∈f−1(0):
yj=0

|y〉〈ωy|AΠj,1

∑
x∈f−1(1):
xj=1

Πj,1|wx〉〈x|,

so Λj has rank at most dimHj , and so
∑

j∈[n] rank(Λj) ≤ s(P ) = mS̃Pκ(f). Furthermore, Λj is
only supported on (y, x) such that yj = 0 and xj = 1, so Λj ◦ ∆j,1 = Λj . Denoting the error of
|wx〉 as |err(x)〉 = ΠH(x)⊥ |wx〉 =

∑
j:xj=0 Πj,1|wx〉, we have

〈y|
∑
j∈[n]

Λj |x〉 =
∑

j:yj=0,xj=1

〈ωy|AΠj,1|wx〉 = 〈ωy|A
∑
j:yj=0

Πj,1

∑
j:xj=1

Πj,1|wx〉

= 〈ωy|A(|wx〉 − |err(x)〉) = 〈ωy|A|wx〉 − 〈ωy|A|err(x)〉∣∣∣∣∣∣1− 〈y|
∑
j∈[n]

Λj |x〉

∣∣∣∣∣∣ ≤ 1− 1 + ‖〈ωy|A‖ ‖|err(x)〉‖ ≤
√
W−

√
κ

W−
=
√
κ.

Then for any M ∈ Rf−1(0)×f−1(1) with ‖M‖∞ ≤ 1, we have:∥∥∥∥∥∥M −M ◦
∑
j∈[n]

Λj

∥∥∥∥∥∥
∞

≤ ‖M‖∞

∥∥∥∥∥∥J −
∑
j∈[n]

Λj

∥∥∥∥∥∥
∞

≤
√
κ.

Thus

√
κ-rank(M) ≤ rank

M ◦∑
j∈[n]

Λj

 ≤ ∑
j∈[n]

rank(M ◦ Λj)

=
∑
j∈[n]

rank(M ◦∆j,1 ◦ Λj) ≤
∑
j∈[n]

rank(M ◦∆j,1)rank(Λj)

≤ mS̃Pκ(f) max
j∈[n]

rank(M ◦∆j,1).

To show a lower bound on mS̃P(f) for some explicit f : {0, 1}n → {0, 1}, it turns out to be
sufficient to find some high approximate rank matrix M ∈ RY×X for finite sets X and Y , and
a rectangle cover of M , ∆1, . . . ,∆n, where each ∆i ◦M has low rank. Specifically, we have the
following lemma, which, with rank in place of approximate rank, has been used extensively in
previous monotone span program lower bounds.

Lemma 5.5. Let M ∈ RY×X with ‖M‖∞ ≤ 1, for some finite sets X and Y and X1, . . . , Xn ⊆ X,
Y1, . . . , Yn ⊆ Y be such that for all (x, y) ∈ X × Y , there exists j ∈ [n] such that (x, y) ∈ Xj × Yj.
Define ∆j ∈ {0, 1}Y×X by ∆j [y, x] = 1 if and only if (y, x) ∈ Yj ×Xj. There exists a monotone
function f : D → {0, 1} for D ⊆ {0, 1}n such that for any constant κ ∈ [0, 1):

mS̃Pκ(f) ≥
√
κ-rank(M)

maxj∈[n] rank(M ◦∆j)
.
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Proof. For each y ∈ Y , define ty ∈ {0, 1}n by:

tyj =

{
0 if y ∈ Yj
1 else.

Similarly, for each x ∈ X, define sx ∈ {0, 1}n by:

sxj =

{
1 if x ∈ Xj

0 else.

For every (y, x) ∈ Y ×X, there is some j such that yj ∈ Yj and xj ∈ Xj , so it can’t be the case
that sx ≤ ty. Thus, we can define f as the unique monotone function such that f(s) = 1 for every
s ∈ {0, 1}n such that sx ≤ s for some x ∈ X, and f(t) = 0 for all t ∈ {0, 1}n such that t ≤ ty

for some y ∈ Y . Then we can define a matrix M ′ ∈ Rf−1(0)×f−1(1) by M ′[ty, sx] = M [y, x] for all
(y, x) ∈ Y ×X, and 0 elsewhere. We have ε-rank(M ′) = ε-rank(M) for all ε, and rank(M ′◦∆j,1) =
rank(M ◦∆j) for all j. The result then follows from Theorem 5.4.

We will prove Theorem 5.3 by constructing an M with high approximate rank, and a good
rectangle cover. Following [RPRC16] and [PR17], we will make use of a technique due to Sherstov
for proving communication lower bounds, called the pattern matrix method [She09]. We begin with
some definitions.

Definition 5.6 (Fourier spectrum). For a real-valued function p : {0, 1}m → R, its Fourier
coefficients are defined, for each S ⊆ [m]:

p̂(S) =
1

2m

∑
z∈{0,1}m

p(z)χS(z),

where χS(z) = (−1)
∑
i∈S zi. It is easily verified that p =

∑
S⊆[m] p̂(S)χS.

Definition 5.7 (Degree and approximate degree). The degree of a function p : {0, 1}m → R is

defined deg(p) = max{|S| : p̂(S) 6= 0}. For any ε ≥ 0, d̃egε(p) = min{deg(p̃) : ‖p− p̃‖∞ ≤ ε}.

Pattern matrices, defined by Sherstov in [She09], are useful for proving lower bounds in commu-
nication complexity, because their rank and approximate rank are relatively easy to lower bound.
In [RPRC16], Robere, Pitassi, Rossman and Cook first used this analysis to give lower bounds on
mSP(f) for some f . We now state the definition, using the notation from [PR17], which differs
slightly from [She09].

Definition 5.8 (Pattern matrix). For a real-valued function p : {0, 1}m → R, and a positive integer

λ, the (m,λ, p)-pattern matrix is defined as F ∈ R{0,1}λm×([λ]m×{0,1}m) where for y ∈ {0, 1}λm,
x ∈ [λ]m, and w ∈ {0, 1}m,

F [y, (x,w)] = f(y|x ⊕ w),

where by y|x, we mean the m-bit string containing one bit from each λ-sized block of y as specified

by the entries of x: (y
(1)
x1 , y

(2)
x2 , . . . , y

(m)
xm ), where y(i) ∈ {0, 1}λ is the i-th block of y.

For comparison, what [She09] calls an (n, t, p)-pattern matrix would be a (t, n/t, p)-pattern
matrix in our notation. As previously mentioned, a pattern matrix has the nice property that
its rank (or even approximate rank) can be lower bounded in terms of properties of the Fourier
spectrum of p. In particular, the following is proven in [She09]:

Lemma 5.9. Let F be the (m,λ, p)-pattern matrix for p : {0, 1}m → {−1,+1}. Then for any
ε ∈ [0, 1] and δ ∈ [0, ε], we have:

rank(F ) =
∑

S⊆[m]:p̂(S) 6=0

λ|S| and δ-rank(F ) ≥ λd̃egε(p)
(ε− δ)2

(1 + δ)2
.
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This shows that we can use functions p of high approximate degree to construct pattern matrices
F ∈ R{0,1}λm×([λ]m×{0,1}m) of high approximate rank. To apply Lemma 5.5, we also need to find a
good rectangle cover of some F .

A b-certificate for a function p on {0, 1}m is an assignment α : S → {0, 1} for some S ⊆ [m]
such that for any x ∈ {0, 1}m such that xj = α(j) for all j ∈ S, f(x) = b. The size of a certificate
is |S|. The following shows how to use the certificates of p to construct a rectangle cover of its
pattern matrix.

Lemma 5.10. Let p : {0, 1}m → {−1,+1}, and suppose there is a set of ` certificates for p of
size at most C such that every input satisfies at least one certificate. Then for any positive integer
λ, there exists a function f : {0, 1}n → {0, 1} for n = `(2λ)C such that for any κ ∈ (0, 1) and
ε ∈ [
√
κ, 1]:

mS̃Pκ(f) ≥ Ω
(

(ε−
√
κ)2λd̃egε(p)

)
.

Proof. For i = 1, . . . , `, let αi : Si → {0, 1} for Si ⊂ [m] of size |Si| ≤ C be one of the ` certificates.
That is, for each i, there is some vi ∈ {−1,+1} such that for any x ∈ {0, 1}m, if xj = αi(j) for all
j ∈ Si, then p(x) = vi (so αi is a vi-certificate).

We let F be the (m,λ, p)-pattern matrix, which has ‖F‖∞ = 1 since p has range {−1,+1}.
We will define a rectangle cover as follows. For every i ∈ [`], k ∈ [λ]Si , and b ∈ {0, 1}Si , define:

Xi,k,b = {(x,w) ∈ [λ]m × {0, 1}m : ∀j ∈ Si, wj = bj , xj = kj}

Yi,k,b = {y ∈ {0, 1}λm : ∀j ∈ Si, y(j)
kj

= bj ⊕ αi(j)}.

We first note that this is a rectangle cover. Fix any y ∈ {0, 1}λm, x ∈ [λ]m and w ∈ {0, 1}m. First
note that for any i, if we let b be the restriction of w to Si, and k the restriction of x to Si, we
have (x,w) ∈ Xi,k,b. This holds in particular for i such that αi is a certificate for y|x ⊕ w, and by

assumption there is at least one such i. For such an i, we have y
(j)
xj ⊕ wj = α(j) for all j ∈ Si, so

y ∈ Yi,k,b. Thus, we can apply Lemma 5.5.

Note that if (x,w) ∈ Xi,k,b, and y ∈ Yi,k,b, then (y|x ⊕ w)[j] = y
(j)
xj ⊕ wj = αi(j) for all j ∈ Si,

so p(y|x ⊕ w) = vi. Letting ∆i,k,b[y, (x,w)] = 1 if y ∈ Yi,k,b and (x,w) ∈ Xi,k,b, and 0 else, we
have that if y ∈ Yi,k,b and (x,w) ∈ Xi,k,b, (F ◦∆i,k,b)[y, (x,w)] = p(y|x ⊕ w) = vi, and otherwise,
(F ◦∆i,k,b)[y, (x,w)] = 0. Thus rank(F ◦∆i,k,b) = rank(vi∆i,k,b) = 1. Then by Lemma 5.5, there

exists f : {0, 1}n → {0, 1} where n =
∑`

i=1(2λ)|Si| ≤ `(2λ)C such that:

mS̃Pκ(f) ≥
√
κ-rank(F )

≥ λd̃egε(p)
(ε−

√
κ)2

(1 +
√
κ)2

, by Lemma 5.9.

We now prove Theorem 5.3, restated below:

Theorem 5.3. There is an explicit Boolean function f : D → {0, 1} for D ⊆ {0, 1}n such that for
any constant κ,

logmS̃Pκ(f) ≥ Ω((log n)2−o(1)).

Proof. By [BT17, Theorem 38], there is a function p with d̃eg1/3(p) ≥ C(p)2−o(1), which is, up to the
o(1) in the exponent, the best possible separation between these two quantities. In particular, this

function has d̃eg1/3(p) ≥ M2−o(1), and C(p) ≤ M1+o(1), where C(p) is the certificate complexity
of p, for some parameter M (see [BT17] equations (64) and (65), where p is referred to as F ), and
p is a function on M2+o(1) variables (see [BT17], discussion above equation (64)). Thus, there are

at most
(
M2+o(1)

M1+o(1)

)
possible certificates of size M1+o(1) such that each input satisfies at least one of

them.
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Then by Lemma 5.10 there exists a function f : {0, 1}n → {0, 1} for n ≤
(
M2+o(1)

M1+o(1)

)
(2λ)M

1+o(1)

such that for constant κ < 1/36 and constant λ:

logmS̃Pκ(f) ≥ Ω(d̃eg1/3(p) log λ) ≥M2−o(1).

Then we have:

log n ≤ log

(
M2+o(1)

M1+o(1)

)
+M1+o(1) log(2λ) = O(M1+o(1) logM) = M1+o(1).

Thus, logmS̃Pκ(f) ≥ (log n)2−o(1), and the result for any κ follows using Corollary 3.9.

Since for all total functions p, d̃eg1/3(p) ≤ C(p)2, where C(p) is the certificate complexity of p,

Lemma 5.10 can’t prove a lower bound better than logmS̃P(p) ≥ (log n)2 for any n-bit function.
We state a more general version of Lemma 5.10 that might have the potential to prove a better
bound, but we leave this as future work.

Lemma 5.11. Fix p : {0, 1}m → {−1,+1}. For i = 1, . . . , `, let αi : Si → {0, 1} for Si ⊆ [m]
be a partial assignment such that every z ∈ {0, 1}m satisfies at least one of the assignments. Let
pi denote the restriction of p to strings z satisfying the assignment αi. Then for every positive
integer λ, there exists a function f : {0, 1}n → {0, 1}, where n =

∑`
i=1(2λ)|Si| such that for any

κ ∈ (0, 1) and ε ∈ [
√
κ, 1]:

mS̃Pκ(f) ≥ Ω

(
(ε−

√
κ)2λd̃egε(p)

maxi∈[`]

∑
S⊆[m]\Si:p̂i(S) 6=0 λ

|S|

)
.

To make use of this lemma, one needs a function p of high approximate degree, such that for
every input, there is a small assignment that lowers the degree to something small. This generalizes
Lemma 5.10 because a certificate is an assignment that lowers the degree of the remaining sub-
function to constant. However, we note that a p with these conditions is necessary but may not
be sufficient for proving a non-trivial lower bound, because while

∑
S:p̂i(S)6=0 λ

|S| ≥ λdeg(pi), it may
also be much larger if pi has a dense Fourier spectrum.

Proof. Let F be the (m,λ, p)-pattern matrix. Let {Xi,k,b×Yi,k,b}i,k,b be the same rectangle covered
defined in the proof of Lemma 5.10, with the difference that since the αi are no longer certificates,
the resulting submatrices of F may not have constant rank.

Let ∆i,k,b =
∑

y∈Yi,k,b |y〉
∑

(x,w)∈Xi,k,b 〈x,w|. Then

F ◦∆i,k,b =
∑

y∈Yi,k,b,(x,w)∈Xi,k,b

p(y|x ⊕ w)|y〉〈x,w|.

Note that when y ∈ Yi,k,b and (x,w) ∈ Xi,b,k, y|x ⊕ w satisfies αi, so p(y|x ⊕ w) = pi(y
′|x′ ⊕ w′),

where y′, x′ and w′ are restrictions of y ∈ ({0, 1}λ)m, x ∈ [λ]m and w ∈ {0, 1}m to [m] \ Si. Thus,
continuing from above, and rearranging registers, we have:

F ◦∆i,k,b =
∑

y′∈({0,1}λ)[m]\Si

∑
x′∈[λ][m]\Si ,

w′∈{0,1}[m]\Si

pi(y
′|x′ ⊕ w′)|y′〉〈x′, w′| ⊗

∑
ȳ∈({0,1}λ)Si :
ȳ|k=b⊕αi

|ȳ〉〈k, b|

= Fi ⊗ J2(λ−1)|Si|,1

where Fi is the (m,λ, pi)-pattern matrix, and Ja,b is the all-ones matrix of dimension a by b, which
always has rank 1 for a, b > 0. Thus

rank(F ◦∆i,k,b) = rank(Fi)rank(J2(λ−1)|Si|,1) = rank(Fi) =
∑

S⊆[m]\Si:p̂i(S)6=0

λ|S|,
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by [She09]. This part of the proof follows [RPRC16, Lemma IV.6].
Then by Lemma 5.5 and Lemma 5.9, we have:

mS̃Pκ(f) ≥ Ω

( √
κ-rank(F )

maxi,k,b rank(F ◦∆i,k,b)

)
≥ Ω


(
ε−
√
κ

1+
√
κ

)2
λdegε(p)

maxi
∑

S⊆[m]\Si:p̂j(S)6=0 λ
|S|

 .

5.2 Monotone Algorithms

In Theorem 5.3, we showed a non-trivial lower bound on logmS̃P(f) for some explicit monotone

function f . Unlike lower bounds on log S̃P(f), this does not give us a lower bound on the quantum
space complexity of f , however, at the very least it gives us a lower bound on the quantum space
complexity of a certain type of quantum algorithm. Of course, this is naturally the case, since a
lower bound on mS̃P(f) gives us a lower bound on the quantum space complexity of any algorithm
for f that is obtained from a monotone span program. However, this is not the most satisfying
characterization, as it is difficult to imagine what this class of algorithms looks like.

In this section, we will consider a more natural class of algorithms whose space complexity is
lower bounded by mS̃P(f), and in some cases mSP(f). We will call a quantum query algorithm
a phase estimation algorithm if it works by estimating the amplitude on |0〉 in the phase register
after running phase estimation of a unitary that makes one query. We assume that the unitary
for which we perform phase estimation is of the form UOx. This is without loss of generality,
because the most general form is a unitary U2OxU1, but we have (U2OxU1)t|ψ0〉 = U †1(UOx)t|ψ′0〉
where |ψ′0〉 = U1|ψ0〉, and U = U1U2. The weight on a phase of |0〉 is not affected by this global

(t-independent) U †1 . Thus, we define a phase estimation algorithm as follows:

Definition 5.12. A phase estimation algorithm A = (U, |ψ0〉, δ, T,M) for f : D → {0, 1}, D ⊆
{0, 1}n, is defined by (families of):

• a unitary U acting on H = span{|j, z〉 : j ∈ [n], z ∈ Z} for some finite set Z;

• an initial state |ψ0〉 ∈ H;

• a bound δ ∈ [0, 1/2);

• positive integers T and M ≤ 1√
δ
;

such that for any M ′ ≥M and T ′ ≥ T , the following procedure computes f with bounded error:

1. Let Φ(x) be the algorithm that runs phase estimation of UOx on |ψ0〉 for T ′ steps, and then
computes a bit |b〉A in a new register A, such that b = 0 if and only if the phase estimate
is 0.

2. Run M ′ steps of amplitude estimation to estimate the amplitude on |0〉A after application of
Φ(x). Output 0 if the amplitude is > δ.

The query complexity of the algorithm is O(MT ), and, the space complexity of the algorithm is
log dimH+ log T + logM + 1.

We insist that the algorithm work not only for M and T but for any larger integers as well,
because we want to ensure that the algorithm is successful because M and T are large enough,
and not by some quirk of the particular chosen values. When δ = 0, the algorithm has one-sided
error (see Lemma 5.17).

We remark on the generality of this form of algorithm. Any algorithm can be put into this form
by first converting it to a span program, and then compiling that into an algorithm, preserving
both the time and space complexity, asymptotically. However, we will consider a special case of
this type of algorithm that is not fully general.
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Definition 5.13. A monotone phase estimation algorithm is a phase estimation algorithm such
that if Π0(x) denotes the orthogonal projector onto the (+1)-eigenspace of UOx, then for any
x ∈ {0, 1}n, Π0(x)|ψ0〉 is in the (+1)-eigenspace of Ox.

Let us consider what is “monotone” about this definition. The algorithm rejects if |ψ0〉 has high
overlap with the (+1)-eigenspace of UOx, i.e., Π0(x)|ψ0〉 is large. In a monotone phase estimation
algorithm, we know that the only contribution to Π0(x)|ψ0〉 is in the (+1)-eigenspace of Ox, which
is exactly the span of |j, z〉 such that xj = 0. Thus, only 0-queries can contribute to the algorithm
rejecting.

As a simple example, Grover’s algorithm is a monotone phase estimation algorithm. Specifi-
cally, let |ψ0〉 = 1√

n

∑n
j=1 |j〉 and U = (2|ψ0〉〈ψ0| − I). Then UOx is the standard Grover iterate,

and |ψ0〉 is in the span of eiθ-eigenvectors of UOx with sin |θ| =
√
|x|/n, so phase estimation can

be used to distinguish the case |x| = 0 from |x| ≥ 1. So Π0(x)|ψ0〉 is either 0, when |x| 6= 0, or
|ψ0〉, when |x| = 0. In both cases, it is in the (+1)-eigenspace of Ox.

It is clear that a monotone phase estimation algorithm can only decide a monotone function.
However, while any quantum algorithm can be converted to a phase estimation algorithm, it is
not necessarily the case that any quantum algorithm for a monotone function can be turned into a
monotone phase estimation algorithm. Thus lower bounds on the quantum space complexity of any
monotone phase estimation algorithm for f do not imply lower bounds on SU (f). Nevertheless, if we
let mSU (f) represent the minimum quantum space complexity of any monotone phase estimation
algorithm for f , then a lower bound on mSU (f) at least tells us that if we want to compute f with
space less than said bound, we must use a non-monotone phase estimation algorithm.

Similarly, we let mS1
U (f) denote the minimum quantum space complexity of any monotone

phase estimation algorithm with δ = 0 that computes f (with one-sided error).
The main theorem of this section states that any monotone phase estimation algorithm for f

with space S can be converted to a monotone span program of size 2Θ(S) that approximates f ,
so that lower bounds on mS̃P(f) imply lower bounds on mSU (f); and that any monotone phase
estimation algorithm with δ = 0 and space S can be converted to a monotone span program of size
2Θ(S) that decides f (exactly) so that lower bounds on mSP(f) imply lower bounds on mS1

U (f).
These conversions also preserve the query complexity. We now formally state this main result.

Theorem 5.14. Let A = (U, |ψ0〉, δ, T,M) be a monotone phase estimation algorithm for f with
space complexity S = log dimH + log T + logM + 1 and query complexity O(TM). Then there is
a monotone span program with complexity O(TM) and size 2 dimH ≤ 2S that approximates f . If
δ = 0, then this span program decides f (exactly). Thus

mSU (f) ≥ logmS̃P(f) and mS1
U (f) ≥ logmSP(f).

We prove this theorem in Section 5.2.1. As a corollary, lower bounds on mSP(f), such as the

one from [PR17], imply lower bounds on mS1
U (f); and lower bounds on mS̃P(f) such as the one in

Theorem 5.3, imply lower bounds on mSU (f). In particular:

Corollary 5.15. Let f : {0, 1}n → {0, 1} be the function described in Theorem 5.3. Then
mSU (f) ≥ (log n)2−o(1). Let g : {0, 1}n → {0, 1} be the function described in Theorem 5.2. Then
mS1

U (g) ≥ Ω(n).

We emphasize that while this does not give a lower bound on the quantum space complexity
of f , or the one-sided quantum space complexity of g, it does show that any algorithm that uses
(log n)c space to solve f with bounded error, for c < 2, or o(n) space to solve g with one-sided
error, must be of a different form than that described in Definition 5.12 and Definition 5.13.

In a certain sense, monotone phase estimation algorithms completely characterize those that
can be derived from monotone span programs, because the algorithm we obtain from compiling a
monotone span program is a monotone phase estimation algorithm, as stated below in Lemma 5.16.
However, not all monotone phase estimation algorithms can be obtained by compiling monotone
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span programs, and similarly, we might hope to show that an even larger class of algorithms can be
converted to monotone span programs, in order to give more strength to lower bounds on mSU (f).

Lemma 5.16. Let P be an approximate monotone span program for f with size S and complexity
C. Then there is a monotone algorithm for f with query complexity O(C) and space complexity
O(logS + logC).

Proof. Fix a monotone span program, and assume it has been appropriately scaled. Without
loss of generality, we can let Hj = Hj,1 = span{|j, z〉 : z ∈ Zj} for some finite set Zj . Then,
Ox = I−2ΠH(x), which is only true because the span program is monotone. Let U = 2Πrow(A)−I.
Then UOx = (2Πker(A) − I)(2ΠH(x) − I) is the span program unitary, described in Section 3.2.
Then it is simple to verify that the algorithm described in [IJ19, Lemma 3.6] (and referred to
in Section 3.2) is a phase estimation algorithm for f with query complexity O(C) and space
complexity O(logS + logC).

The algorithm is a monotone phase estimation algorithm because U = 2Πrow(A) − I is a re-
flection, and |ψ0〉 = |w0〉 = A+|τ〉 is in the (+1)-eigenspace of U , row(A). Since U is a re-
flection, the (+1)-eigenspace of UOx is exactly (ker(A) ∩ H(x)) ⊕ (row(A) ∩ H(x)⊥), and so
Π0(x)|w0〉 ∈ row(A) ∩H(x)⊥ ⊂ H(x)⊥.

5.2.1 Monotone Algorithms to (Approximate) Monotone Span Programs

In this section, we prove Theorem 5.14. Throughout this section, we fix a phase estimation
algorithm A = (U, |ψ0〉, δ, T,M) that computes f , with U acting on H. For any x ∈ {0, 1}n and
Θ ∈ [0, π], we let ΠΘ(x) denote the orthogonal projector onto the span of eiθ-eigenvectors of UOx
for |θ| ≤ Θ. We will let Πx =

∑
j∈[n],z∈Z:xj=1 |j, z〉〈j, z|.

We begin by drawing some conclusions about the necessary relationship between the eigenspaces
of UOx and a function f whenever a monotone phase estimation computes f . The proofs are
somewhat dry and are relegated to Appendix B.

Lemma 5.17. Fix a phase estimation algorithm with δ = 0 that solves f with bounded error.
Then if f(x) = 0,

‖Π0(x)|ψ0〉‖2 ≥
1

M2
,

and for any d <
√

8/π, if f(x) = 1, then∥∥Πdπ/T (x)|ψ0〉
∥∥2

= 0,

and the algorithm always outputs 1, so it has one-sided error.

Lemma 5.18. Fix a phase estimation algorithm with δ 6= 0 that solves f with bounded error.
Then there is some constant c > 0 such that if f(x) = 0,

‖Π0(x)|ψ0〉‖2 ≥ max{δ(1 + c), 1/M2}

and if f(x) = 1, for any d <
√

8/π,∥∥Πdπ/T (x)|ψ0〉
∥∥2 ≤ δ

1− d2π2

8

.

To prove Theorem 5.14, we will define a monotone span program PA as follows:

Htrue = span{|j, z〉 : j ∈ [n], z ∈ Z} = H
Hj,1 = Hj = span{|j, z, 1〉 : z ∈ Z}

A|j, z, 1〉 =
1

2
(|j, z〉 − (−1)1|j, z〉) = |j, z〉

A|j, z〉 = (I − U †)|j, z〉
|τ〉 = |ψ0〉. (2)

We first show that Π0(x)|ψ0〉 is (up to scaling) a negative witness for x, whenever it is nonzero:
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Lemma 5.19. For any x ∈ {0, 1}n, we have

w−(x) =
1

‖Π0(x)|ψ0〉‖2
.

In particular, Π0(x)|ψ0〉/ ‖Π0(x)|ψ0〉‖2 is an optimal negative witness for x when Π0(x)|ψ0〉 6= 0.

Proof. Suppose Π0(x)|ψ0〉 6= 0, and let |ω〉 = Π0(x)|ψ0〉/ ‖Π0(x)|ψ0〉‖2. We will first show that this
is a negative witness, and then show that no negative witness can have better complexity. First,
we notice that

〈ω|τ〉 = 〈ω|ψ0〉 =
〈ψ0|Π0(x)|ψ0〉
‖Π0(x)|ψ0〉‖2

= 1.

Next, we will see that 〈ω|AΠH(x) = 0. By the monotone phase estimation property, OxΠ0(x)|ψ0〉 =
Π0(x)|ψ0〉, and so Ox|ω〉 = |ω〉, and thus Πx|ω〉 = 0, where Πx is the projector onto |j, z〉 such
that xj = 1. Note that H(x) = span{|j, z, 1〉 : xj = 1, z ∈ Z} ⊕ span{|j, z〉 : j ∈ [n], z ∈ Z}. Thus
ΠH(x) = ΠHtrue + Πx ⊗ |1〉〈1|. We have:

〈ω|A(Πx ⊗ |1〉〈1|) = 〈ω|Πx = 0.

Since |ω〉 is in the (+1)-eigenspace of UOx, we have UOx|ω〉 = |ω〉 so sinceOx|ω〉 = |ω〉, U |ω〉 = |ω〉.
Thus

〈ω|AΠHtrue = 〈ω|(I − U †)⊗ 〈1| = (〈ω| − 〈ω|)⊗ 〈1| = 0.

Thus |ω〉 is a zero-error negative witness for x. Next, we argue that it is optimal.
Suppose |ω〉 is any optimal negative witness for x, with size w−(x). Then since 〈ω|Πx =

〈ω|A(Πx ⊗ |1〉〈1|) must be 0, Ox|ω〉 = (I − 2Πx)|ω〉 = |ω〉, and since 〈ω|AΠHtrue = 〈ω|(I − U †)
must be 0, U |ω〉 = |ω〉. Thus |ω〉 is a 1-eigenvector of UOx, so

‖Π0(x)|ψ0〉‖2 ≥
∥∥∥∥ |ω〉〈ω|‖|ω〉‖2

|ψ0〉
∥∥∥∥2

=
|〈ω|ψ0〉|2

‖|ω〉‖2
=

1

‖|ω〉‖2
.

We complete the proof by noticing that since 〈ω|AΠHtrue = 0, we have 〈ω|A = 〈ω|〈1|, and w−(x) =
‖〈ω|A‖2 = ‖|ω〉‖2.

Next we find approximate positive witnesses.

Lemma 5.20. For any Θ ≥ 0, the span program PA has approximate positive witnesses for any x
with error at most ‖ΠΘ(x)|ψ0〉‖2 and complexity at most 5π2

4Θ2 .

Proof. We first define a vector |v〉 by:

|v〉 = (I − (UOx)†)+(I −ΠΘ(x))|ψ0〉.

Note that I − (UOx)† is supported everywhere except the (+1)-eigenvectors of (UOx)†, which are
exactly the (+1)-eigenvectors of UOx. Thus, (I −ΠΘ(x))|ψ0〉 is contained in this support.

Next we define
|w〉 =

(
|ψ0〉 − (I − U †)|v〉

)
|1〉+ |v〉.

Then we have:

A|w〉 = |ψ0〉 − (I − U †)|v〉+ (I − U †)|v〉 = |ψ0〉 = |τ〉.

So |w〉 is a positive witness, and we next compute its error for x:∥∥∥ΠH(x)⊥ |w〉
∥∥∥2

=
∥∥∥Πx̄

(
|ψ0〉 − (I − U †)|v〉

)∥∥∥2

=
∥∥∥Πx̄|ψ0〉 −Πx̄(I − U †)(I − (UOx)†)+(I −ΠΘ(x))|ψ0〉

∥∥∥2
.
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Above, Πx̄ = I −Πx. We now observe that

Πx̄(I −OxU †) = Πx̄

(
Πx̄ − (Πx̄ −Πx)U †

)
= Πx̄(I − U †).

Thus, continuing from above, we have:∥∥∥ΠH(x)⊥ |w〉
∥∥∥2

=
∥∥∥Πx̄|ψ0〉 −Πx̄(I −OxU †)(I −OxU †)+(I −ΠΘ(x))|ψ0〉

∥∥∥2

= ‖Πx̄|ψ0〉 −Πx̄(I −ΠΘ(x))|ψ0〉‖2 = ‖Πx̄ΠΘ(x)|ψ0〉‖2

≤ ‖ΠΘ(x)|ψ0〉‖2 .

Now we compute the complexity of |w〉. First, let UOx =
∑

j e
iθj |λj〉〈λj | be the eigenvalue

decomposition of UOx. Then

(I − (UOx)†)+ =
∑
j:θj 6=0

1

1− e−iθj
|λj〉〈λj |

and I −ΠΘ(x) =
∑

j:|θj |>Θ

|λj〉〈λj |.

We can thus bound ‖|v〉‖2:

‖|v〉‖2 =
∥∥∥(I − (UOx)†)+(I −ΠΘ(x))|ψ0〉

∥∥∥2
=

∥∥∥∥∥∥
∑

j:|θj |>Θ

1

1− e−iθj
〈λj |ψ0〉|λj〉

∥∥∥∥∥∥
2

=
∑

j:|θj |>Θ

1

4 sin2 θj
2

|〈λj |ψ0〉|2 ≤
π2

4Θ2
.

Next, using Ox + 2Πx = I − 2Πx + 2Πx = I, we compute:∥∥∥|ψ0〉 − (I − U †)|v〉
∥∥∥2

=
∥∥∥|ψ0〉 − (I −OxU † − 2ΠxU

†)(I −OxU †)+(I −ΠΘ(x))|ψ0〉
∥∥∥2

=
∥∥∥|ψ0〉 − (I −ΠΘ(x))|ψ0〉+ 2ΠxU

†(I − (UOx)†)+(I −ΠΘ(x))|ψ0〉
∥∥∥2

≤

‖ΠΘ(x)|ψ0〉‖+ 2

∥∥∥∥∥∥ΠxU
†
∑

j:|θj |>Θ

1

1− e−iθj
〈λj |ψ0〉|λj〉

∥∥∥∥∥∥
2

≤

‖ΠΘ(x)|ψ0〉‖+ 2

√√√√ ∑
j:|θj |>Θ

1

4 sin2 θj
2

|〈λj |ψ0〉|2


2

≤
(
‖ΠΘ(x)|ψ0〉‖+

π

Θ
‖(I −ΠΘ(x))|ψ0〉‖

)2
≤ π2

Θ2
.

Then we have the complexity of |w〉:

‖|w〉‖2 =
∥∥∥|ψ0〉 − (I − U †)|v〉

∥∥∥2
+ ‖|v〉‖2

≤ π2

Θ2
+

π2

4Θ2
=

5π2

4Θ2
.

We conclude with the following two corollaries, whose combination gives Theorem 5.14.

Corollary 5.21. Let A = (U, |ψ0〉, 0, T,M) be a monotone phase estimation algorithm for f with
space complexity S = log dimH+ log T + logM + 1 and query complexity O(TM). Then there is a
monotone span program that decides f (exactly) whose size is 2 dimH ≤ 2S and whose complexity
is O(TM).
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Proof. If f(x) = 0, then by Lemma 5.17, we have ‖Π0(x)|ψ0〉‖2 ≥ 1
M2 , so by Lemma 5.19, w−(x) ≤

M2. Thus W− ≤M2.

If f(x) = 1, then by Lemma 5.17, we have
∥∥Π2/T (x)|ψ0〉

∥∥2
= 0, so by Lemma 5.20, there’s an

exact positive witness for x with complexity O(T 2). Thus W+ ≤ O(T 2), and so the span program
PA from (2) has complexity O(TM). The size of the span program PA is dimH = 2 dimH.

Corollary 5.22. Let A = (U, |ψ0〉, δ, T,M) be a monotone phase estimation algorithm for f with
space complexity S = log dimH + log T + logM + 1 and query complexity O(TM). Then there is
a constant κ ∈ (0, 1) such that there exists a monotone span program that κ-approximates f whose
size is 2 dimH ≤ 2S and whose complexity is O(TM).

Proof. If f(x) = 0, then by Lemma 5.18, we have ‖Π0(x)|ψ0〉‖2 > δ(1+c) for some constant c > 0.
Thus, by Lemma 5.19, W− ≤ 1

(1+c)δ .

If f(x) = 1, then by Lemma 5.20, setting Θ = dπ/T for d = 2
π

√
c

1+c , (where c is the constant

from above), by Lemma 5.20 there is an approximate positive witness for x with error

ex =
∥∥∥Π2
√

c
1+c

/T (x)|ψ0〉
∥∥∥2

and complexity O(T 2). By Lemma 5.18, we have

ex ≤
δ

1− d2π2

8

=
δ

1− c
2(1+c)

=
δ(1 + c)

1 + c− c/2
≤ 1

1 + c/2

1

W−
.

Thus, letting κ = 1
1+c/2 < 1, we have that PA κ-approximates f . Since the positive witness

complexity is O(T 2), and by Lemma 5.18, we also have W− ≤ O(M2), the complexity of PA is
O(TM). The size of PA is dimH = 2 dimH.
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[RŠ12] B. Reichardt and R. Špalek. Span-program-based quantum algorithm for evaluating
formulas. Theory of Computing, 8(13):291–319, 2012. 1, 8

[She09] Alexander A. Sherstov. The pattern matrix method. SIAM Journal on Computing,
40(6):19692000, 2009. 4, 21, 24

[Wat99] J. Watrous. Space-bounded quantum complexity. Journal of Computer and System
Sciences, 59(2):281–326, 1999. 4

A Proof of Claim 3.8

In this section, we prove Claim 3.8, restated below:

Claim 3.8. Let P be a span program that κ-approximates f : D → {0, 1} for some constant κ.
For any constant κ′ ≤ κ, there exists a span program P ′ that κ′-approximates f with s(P ′) =

(s(P ) + 2)
2
log 1

κ′
log 1

κ , and Cκ′(P
′, D) ≤ O (Cκ(P,D)).

Let |w0〉 = A+|τ〉. We say a span program is normalized if ‖|w0〉‖ = 1. A span program can
easily be normalized by scaling |τ〉, which also scales all positive witnesses and inverse scales all
negative witnesses. However, we sometimes want to normalize a span program, while also keeping
all negative witness sizes bounded by a constant. We can accomplish this using the following
construction, from [IJ19].

Theorem A.1. Let P = (H,V, |τ〉, A) be a span program on {0, 1}n, and let N = ‖|w0〉‖2. For a
positive real number β, define a span program P β = (Hβ, V β, |τβ〉, Aβ) as follows, where |0̂〉 and
|1̂〉 are not in H or V :

Hβ
j,b = Hj,b, Hβ

true = Htrue ⊕ span{|1̂〉}, Hβ
false = Hfalse ⊕ span{|0̂〉}

V β = V ⊕ span{|1̂〉}, Aβ = βA+ |τ〉〈0̂|+
√
β2 +N

β
|1̂〉〈1̂|, |τβ〉 = |τ〉+ |1̂〉.

Then we have the following:

•
∥∥(Aβ)+|τβ〉

∥∥ = 1;

• for all x ∈ P1, w+(x, P β) = 1
β2w+(x, P ) + 2;

• for all x ∈ P0, w−(x, P β) = β2w−(x, P ) + 1.

Corollary A.2. Let P be a span program on {0, 1}n, and P β be defined as above for β =
1√

W−(P )
. If P κ-approximates f , then P β

√
κ-approximates f , with W−(P β) ≤ 2, Ŵ+(P β) ≤

W−(P )Ŵ+(P ) + 2 and s(P β) ≤ s(P ) + 2.

Proof. First note that by Theorem A.1, W−(P β) ≤ 2. Let |w〉 be an approximate positive witness

for x in P , with
∥∥∥ΠH(x)⊥ |w〉

∥∥∥2
≤ κ

W−(P ) and ‖|w〉‖2 ≤ Ŵ+(P ). Define

|w′〉 =
1

β(1 + κ)
|w〉+

β√
β2 +N

|1̂〉+
κ

1 + κ
|0̂〉.
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One can check that Aβ|w′〉 = |τβ〉.∥∥∥ΠHβ(x)⊥ |w′〉
∥∥∥2

=
1

β2(1 + κ)2

∥∥∥ΠH(x)⊥ |w〉
∥∥∥2

+
κ2

(1 + κ)2
≤ 1

β2(1 + κ)2

κ

W−(P )
+

κ2

(1 + κ)2

=
κ+ κ2

(1 + κ)2
≤ 2κ(1 + κ)

W−(P β)(1 + κ)2
=

1

W−(P β)

2κ

1 + κ
≤

√
κ

W−(P β)
,

where we have used W−(P β) ≤ 2. We upper bound Ŵ+(P β) by noting that:∥∥|w′〉∥∥2 ≤ 1

β2(1 + κ)2
Ŵ+(P ) +

β2

β2 +N
+

κ2

(1 + κ)2

≤W−(P )Ŵ+(P ) + 2.

Finally, s(P β) = s(P ) + 2 because of the two extra degrees of freedom |0̂〉 and |1̂〉.

Proof of Claim 3.8. We will first show how, given a span program P such that ‖|w0〉‖2 ≤ 1, and
P κ-approximates f , we can get a span program P ′ such that ‖|w′0〉‖

2 ≤ 1, W−(P ′) ≤W−(P )2, P ′

κ2-approximates f , Ŵ+(P ′) ≤ 4Ŵ+(P ), and s(P ′) = s(P )2.
Define P ′ as follows, where S is a swap operator, which acts as S(|u〉|v〉) = |v〉|u〉 for all

|u〉, |v〉 ∈ H:

H ′j,b = Hj,b ⊗H, A′ = (A⊗A)

(
IH⊗H + S

2

)
, |τ ′〉 = |τ〉|τ〉.

Observe that for any |u〉, |v〉 ∈ H, we have

A′(|u〉|v〉 − |v〉|u〉) = 0, and A′|u〉|u〉 = A|u〉 ⊗A|u〉.

Note that A′(|w0〉|w0〉) = |τ ′〉, so
∥∥∥A′+|τ ′〉∥∥∥ ≤ ‖|w0〉|w0〉‖ ≤ 1.

If 〈ω| is a negative witness for x in P , it is easily verified that 〈ω′| = 〈ω| ⊗ 〈ω| is a negative
witness in P ′, and∥∥〈ω′|A′∥∥2

=

∥∥∥∥1

2
(〈ω|A)⊗ (〈ω|A) +

1

2
(〈ω|A)⊗ (〈ω|A)

∥∥∥∥2

= ‖〈ω|A‖4 ,

so w−(x, P ′) ≤ w−(x, P )2, and W−(P ′) ≤W−(P )2.
If |w〉 is an approximate positive witness for x in P , then define

|w′〉 = |w〉|w〉 −ΠH(x)⊥ |w〉ΠH(x)|w〉+ ΠH(x)|w〉ΠH(x)⊥ |w〉 −ΠH(x)|w〉Πker(A)|w〉.

We have

A′|w′〉 = A|w〉A|w〉 − 1

2

(
AΠH(x)|w〉 ⊗AΠker(A)|w〉+AΠker(A)|w〉 ⊗AΠH(x)|w〉

)
= |τ〉|τ〉 = |τ ′〉.

We can bound the error as:∥∥∥ΠH′(x)⊥ |w′〉
∥∥∥2

=
∥∥∥(ΠH(x)⊥ ⊗ I)|w′〉

∥∥∥2
=
∥∥∥ΠH(x)⊥ |w〉|w〉 −ΠH(x)⊥ |w〉ΠH(x)|w〉

∥∥∥2

=
∥∥∥ΠH(x)⊥ |w〉ΠH(x)⊥ |w〉

∥∥∥2
≤ κ2

W−(P )2
≤ κ2

W−(P ′)
.

Next, observe that

(ΠH(x) + ΠH(x)⊥)⊗ (ΠH(x) + ΠH(x)⊥)−ΠH(x)⊥ ⊗ΠH(x) + ΠH(x) ⊗ΠH(x)⊥

= ΠH(x) ⊗ΠH(x) + ΠH(x) ⊗ΠH(x)⊥ + ΠH(x)⊥ ⊗ΠH(x)⊥ + ΠH(x) ⊗ΠH(x)⊥

= ΠH(x) ⊗ I + I ⊗ΠH(x)⊥

so |w′〉 = ΠH(x)|w〉 ⊗ |w〉+ |w〉 ⊗ΠH(x)⊥ |w〉 −ΠH(x)|w〉 ⊗Πker(A)|w〉.
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Thus, using the assumption ‖|w0〉‖ ≤ 1, and the fact that Πrow(A)|w〉 = |w0〉:∥∥|w′〉∥∥2
=
∥∥∥ΠH(x)|w〉|w〉+ |w〉ΠH(x)⊥ |w〉 −ΠH(x)|w〉Πker(A)|w〉

∥∥∥2

=
∥∥∥ΠH(x)|w〉Πrow(A)|w〉+ |w〉ΠH(x)⊥ |w〉

∥∥∥2

=
∥∥ΠH(x)|w〉|w0〉

∥∥2
+
∥∥∥|w〉ΠH(x)⊥ |w〉

∥∥∥2
+ 2

∥∥ΠH(x)|w〉
∥∥2 〈w0|ΠH(x)⊥ |w〉

≤ Ŵ+(P ) + Ŵ+(P )
κ

W−(P )
+ 2Ŵ+(P )

√
κ

W−(P )
≤ (1 + κ+ 2

√
κ)Ŵ+(P ).

Note that we could assume that Ŵ−(P ) ≥ 1 because ‖w0‖ ≤ 1.
We complete the proof by extending to the general case. Let P be any span program that

κ-approximates f . By applying Theorem A.1 and Corollary A.2, we can get a span program, P0,
with ‖|w0〉‖ = 1, W−(P0) ≤ 2, Ŵ+(P0) ≤ C(P )2 + 2, and s(P0) = s(P ) + 2, that

√
κ-approximates

f . We can then apply the construction described above, iteratively, d times, to get a span program

Pd that
√
κ

2d
= κ2d−1

-approximates f , with

s(Pd) = s(P0)2d = (s(P ) + 2)2d ,

W−(Pd) ≤ 22d , and Ŵ+(Pd) ≤ 4dŴ+(P0) ≤ 4dC(P )2 + 2 · 4d.

Setting d = log

(
log 1

κ′
log 1

κ

)
+ 1 gives the desired κ′.

B Proofs of Lemma 5.17 and Lemma 5.18

We will prove the lemmas as a collection of claims. Fix T ′ ≥ T and M ′ ≥M with which to run the
algorithm. Suppose Φ(x) outputs |ψ(x)〉 =

√
px|0〉A|Φ0(x)〉+

√
1− px|1〉A|Φ1(x)〉, and let p̃ denote

the estimate output by the algorithm. We will let UOx =
∑

j e
iσj(x)|λxj 〉〈λxj | be an eigenvalue

decomposition.

Claim B.1. If f(x) = 0 then ‖Π0(x)|ψ0〉‖2 ≥ 1
M2 .

Proof. Since the algorithm computes f with bounded error, the probability of accepting x is at
most 1/3, so p̃ ≤ δ with probability at most 1/3.

Amplitude estimation is just phase estimation of a unitary WΦ such that |ψ(x)〉 is in the span
of e±2iθx-eigenvectors of WΦ, where px = sin2 θx, θx ∈ [0, π/2) [BHMT02]. One can show that the
probability of outputting an estimate p̃ = 0 is sin2(M ′θx)/(M ′2 sin2(θx)), so

1

3
≥ sin2(M ′θx)

M ′2 sin2(θx)
.

If M ′θx ≤ π
2 , then this would give:

1

3
≥ (2M ′θx/π)2

M ′2θ2
x

=
4

π2
,

which is a contradiction. Thus, we have:

M ′θx >
π

2
⇒ 2θx

π
>

1

M ′
⇒ sin θx >

1

M ′
⇒ √

px >
1

M ′
.

Since Φ(x) is the result of running phase estimation, we have

px =
∑
j

|〈λxj |ψ0〉|2
sin2(T ′σj(x)/2)

T ′2 sin2(σj(x)/2)
≤ ‖ΠΘ(x)|ψ0〉‖2 +

π2

T ′2Θ2
,
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for any Θ. In particular, if ∆ is less than the spectral gap of UOx, we have ‖Π∆(x)|ψ0〉‖ =
‖Π0(x)|ψ0〉‖, so

1

M ′2
< ‖Π0(x)|ψ0〉‖2 +

π2

T ′2∆2
.

This is true for any choices T ′ ≥ T and M ′ ≥M , so we must have:

1

M2
≤ ‖Π0(x)|ψ0〉‖2 .

Claim B.2. If f(x) = 1 and δ = 0, then for any d <
√

8
π ,
∥∥Πdπ/T (x)|ψ0〉

∥∥2
= 0.

Proof. Suppose towards a contradiction that
∥∥Πdπ/T (x)|ψ0〉

∥∥2
> 0. Then px > 0, and some

sufficiently large M ′ ≥ M would detect this and cause the algorithm to output 0, so we must
actually have

∥∥Πdπ/T (x)|ψ0〉
∥∥2

= 0. In fact, in order to sure that no large enough value M ′ detects
amplitude > 0 on |0〉A, we must have px = 0 whenever f(x) = 1. That means that when f(x) = 1,
the algorithm never outputs 0, so the algorithm has one-sided error.

Claim B.3. There is some constant c such that if f(x) = 0 and δ > 0 then ‖Π0(x)|ψ0〉‖2 > δ(1+c).

Proof. Recall that p̃ ∈ {sin2(πm/M ′) : m = 0, . . . ,M ′ − 1}. We will restrict our attention to
choices M ′ such that for some integer d,

sin2 dπ

M ′
≤ δ < sin2 (d+ 1/3)π

M ′
.

To see that such a choice exists, let τ be such that δ = sin2 τ , and note that the condition holds
as long as d ≤ τM ′

π < d+ 1/3 for some d, which is equivalent to saying that b3τM ′

π c = 0 mod 3. If
K = b1

2
π
3τ c, then for any M ′ ≥M , and ` ≥ 0, define:

M` = M ′ + `K.

Then for any ` > 0,
3τ

π
M` −

3τ

π
M`−1 =

3τ

π
K ∈

[
1

2
− 3τ

π
,
1

2

]
,

so there must be one ` ∈ {0, . . . , 6} such that b3τ
π M`e = 0 mod 3. In particular, there is some

choice M` satisfying the condition such that (using some M ′ ≤ 1√
δ
):

√
δM` ≤

√
δ

(
1√
δ

+ 6
π

6τ

)
= 1 +

π sin τ

τ
≤ 1 + π. (3)

We will use this value as our M ′ for the remainder of this proof.
Let px = sin2 θx for θx ∈ [0, π/2]. Let z be an integer such that ∆ = θx−πz/M ′ has |∆| ≤ π

2M ′ .
Then the outcome p̃ = sin2 πz

M ′ has probability:

1

M ′2

∣∣∣∣∣
M ′−1∑
t=0

ei2t(θx−πz/M
′)

∣∣∣∣∣
2

=
1

M ′2

∣∣∣∣∣
M ′−1∑
t=0

ei2t∆

∣∣∣∣∣
2

=
sin2(M ′∆)

M ′2 sin2 ∆
≥ 4

π2
,

since |M ′∆| ≤ π
2 . Thus, by correctness, we must have sin2(πz/M ′) > δ ≥ sin2 dπ

M ′ . Thus z > d, so

(d+ 1)π

M ′
≤ zπ

M ′
= θx −∆ ≤ θx +

π

2M ′
.
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Thus:

(d+ 1/3)π

M ′
+

2π

3M ′
≤ θx +

π

2M ′

sin

(
(d+ 1/3)π

M ′
+

π

6M ′

)
≤ sin θx

sin

(
(d+ 1/3)π

M ′

)
cos

π

6M ′
+ cos

(
(d+ 1/3)π

M ′

)
sin

π

6M ′
≤ √px

√
δ

√
1− sin2 π

6M ′
+
√

1− δ sin
π

6M ′
≤ √px

When sin2 π
6M ′ ≤ 1− δ, which we can assume, the above expression is minimized when sin2 π

6M ′ is
as small as possible. We have, using M ′ ≤ 1+π√

δ
, from (3):

sin2 π

6M ′
≥ 4

36M ′2
≥ δ

9(1 + π)2
.

Thus, continuing from above, letting k = 1
9(1+π)2

, we have:

√
δ
√

1− kδ +
√

1− δ
√
kδ ≤ √px

δ(1− kδ) + (1− δ)kδ + 2δ
√
k(1− δ)(1− kδ) ≤ px

Next, notice that (1− kδ)(1− δ) is minimized when δ = 1+k
2k , but δ ≤ 1

2 <
1+k
2k , so we have, using

k < 1 and δ ≤ 1/2:

δ(1 + k(1− 2δ) + 2
√
k
√

(1− k/2)(1− 1/2)) ≤ px
δ(1 + 0 +

√
k) ≤ px.

Since Φ(x) is the result of running phase estimation of UOx for T ′ ≥ T steps, we have:

px =
∑
j

|〈λxj |ψ0〉|2
sin2(

T ′σj(x)
2 )

(T ′)2 sin2(
σj(x)

2 )
,

so in particular, for any Θ ∈ [0, π), we have

px ≤ ‖ΠΘ(x)|ψ0〉‖2 +
∑

j:|σj(x)|>Θ

|〈λxj |ψ0〉|2
1

(T ′)2 sin2(Θ
2 )
.

≤ ‖ΠΘ(x)|ψ0〉‖2 + ‖(I −ΠΘ(x))|ψ0〉‖2
π2

(T ′)2Θ2
.

In particular, for any Θ < ∆ where ∆ is the spectral gap of UOx, we have ‖ΠΘ(x)|ψ0〉‖ =
‖Π0(x)|ψ0〉‖, so for any T ′ ≥ T , we have

‖Π0(x)|ψ0〉‖2 +
π2

(T ′)2∆2
≥ px ≥ δ(1 +

√
k).

Since this holds for any T ′ ≥ T , we get

‖Π0(x)|ψ0〉‖2 ≥ δ(1 +
√
k).

The proof is completed by letting c =
√
k.
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Claim B.4. If f(x) = 1 and δ > 0 then
∥∥Πdπ/T (x)|ψ0〉

∥∥2
(1− d2π2/8) ≤ δ.

Proof. If |λ〉 is an eiθ-eigenvector of UOx for some |θ| ≤ dπ/T <
√

8/T , then the probability of
measuring 0 in the phase register upon performing T steps of phase estimation is:

px(θ) :=
1

T 2

∣∣∣∣∣
T−1∑
t=0

eitθ

∣∣∣∣∣
2

=
sin2 Tθ

2

T 2 sin2 θ
2

.

Let ε(x) = 1− sin2 x
x2

for any x. It is simple to verify that ε(x) ≤ x2/2 for any x, and ε(x) ∈ [0, 1]
for any x. So we have:

px(θ) ≥ (Tθ/2)2(1− ε(Tθ/2))

T 2(θ/2)2(1− ε(θ/2))
≥ 1− ε(Tθ/2) ≥ 1− T 2θ2

8
.

Thus, we conclude that

px ≥
∥∥Πdπ/T (x)|ψ0〉

∥∥2
(

1− T 2

8

d2π2

T 2

)
=
∥∥Πdπ/T (x)|ψ0〉

∥∥2
(

1− d2π2

8

)
.

If this is > δ, then with some sufficiently large M ′ ≥ M , amplitude estimation would detect this
and cause the algorithm to output 0 with high probability.
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