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1 Introduction

Background. Using quantum effects to speed up computation has been araoinresearch-topic for
the past two decades. Most known quantum algorithms have teesloped in the setting of quantum
guery complexity, which is the quantum generalization ofisien tree complexity. Here an algorithm
is charged for each “query” to the input-elements, whileiimtediate computation is free (séel[15] for
more details). This model facilitates the proof of lower bds, and often, though not always, quantum
query upper bounds carry over to quantum time complexity. déotain specific functions one can obtain
large quantum-speedups in this model. For example, Goadgbrithm [23] can search anbit database
(looking for a bit-position of a 1) usin@(y/n) queries, while any classical algorithm neéds:) queries.

If one considers partial functions there are even expoakesypieed-ups [19, 34, B3, 7].

A more recent crop of quantum speed-ups have come from tigwibased oguantum walks Such
algorithms typically solve a search problem by embeddimgstbarch on a graph, with “marked” vertices,
which contain a solution, and doing a quantum walk on thiplgithat converges rapidly to a superposition
over only the marked vertices. An important example is Amis& quantum algorithm for solving the
element distinctnegzoblem [3]. In this problem one is given query access to patin € [¢]™, and the goal
is to find a pair of distinct andj in [n] such thatr; = x;, or report that none exists. Ambainis’s quantum
walk solves this inO(n?/?) queries, which is optimal[1]. Classicall)(n) queries are required. Two
generalizations of this are thedistinctnesgproblem, where the objective is to find distirigt. . . , i, € [n]
suchthatr;, = --- = x;,, and thek-sumproblem, where the objective is to find distiri¢t. . . , iy, € [n] such
thatx;, +---+x;, =0 mod ¢. Ambainis’s approach solves both problems using*/*+1)) quantum
queries. Recently, Belovs gave a betiet®/4)-query algorithm fork-distinctness for any fixe# [8] (which
can be made also time-efficient for= 3 [11]). In contrast, Belovs anépalek proved that Ambainis’s
O(n*/+1)-query algorithm is optimal fok-sum [10/[T4].

Parallelization. Here we consider to what extent such algorithms capdballelized Doing operations in
parallel is a well-known way to trade hardware for time, sfdbeg up computations by distributing the work
over many processors that run in parallel. This is beconveg ore prominent in classical computing due
to multi-core processors and grid computing. In the caseiahtym computing there is an additional reason
to consider parallelization, namely the limited lifetimiequibits due tadecoherencebecause of unintended
interaction with their environment, qubits tend to loseirtlggiantum properties over a limited amount of
time, called thedecoherence timend degrade to classical random bits. One way to fight this &pply

the recipes of quantum error-correction and fault-tole@n/vhich can counteract the effects of sufficiently
well-behaved decoherence. Another way is to try to paraflels much as possible, so that the computation
is completed before the qubits have decohered too much.

We know of only a few results about parallel quantum algamgh most of them in the circuit model
where “time” is measured by the depth of the circuit. A paiacly important and beautiful example is the
work of Cleve and Watrous [17], who showed how to implemeststhgubit quantum Fourier transform
using a quantum circuit of dept(logn). As a consequence, they were able to parallelize the quantum
component of Shor’s algorithm: they showed that one carofachit integers by means of af(log n)-
depth quantum circuit with polynomial-time classical pesd post-processing. There have also been a
number of papers about quantum versions of small-deptisicidsBoolean circuit classes like AC and
NC [29,[21[25[ 35]. Beals et al.l[5] show how the quantum dirmodel can be efficiently simulated by

It is known that parallelism is in fagtecessaryto do quantum error-correction against a constant noigse-rbecause noise
happens in parallel, sequential operations cannot keepttagtve build-up of errors.



the more realistic model of a distributed quantum compugee @lso[22]). Another example, the only one
we know of in the setting of query complexity, is Zalka’s tigimalysis of parallelizing quantum searth![36,
Section 4]. Suppose one wants to search-dmt database, with the ability to doqueries in parallel in one
time-step. An easy way to make use of this parallelism is ¢avvthe database asdatabases af /p bits
each, and to run a separate copy of Grover’s algorithm on e&itiose. This finds a 1-position with high
probability usingO(1/n/p) p-parallel queries, and Zalka showed that this is optimabug ¢onstant factor.

Our results. Here we focus on parallel quantum algorithms in the settinguantum query complexity.
Consider a functiory : D — {0, 1}, with D C [¢]". For the standard (sequential) query complexity, we
let Q(f) denote the bounded-error quantum query complexity of every inputc € D. In thep-parallel
guery model, for some integer > 1, an algorithm can make up toquantum queries in parallel in each
timestep. In that case, we I&¥!l(f) denote the bounded-errprparallel complexity off. As always in
query complexity, all intermediate input-independent patation is free. Note thad(f)/p < Q”ll(f) <
Q(f) for every function.

For example, it is well-known that we can compute the parft? bits using one quantum query |16],
hence for then-bit parity function we have?!l(f) < [n/2p]. Sincen/2 < Q(f) for parity [6,[20], that
upper bound is tight. As mentioned above, Zalka [36] showed®@”!l (f) = ©(\/n/p) if f is then-bit
OR function (or the corresponding search problem). An ex¢ére€ase of the parallel model is where we
setp large enough so th&p”!l( f) becomes 1; such algorithms are called “nonadaptive,” secthey make
all their queries in parallel, not adapting them to the rssaf earlier queries. Montanarb_[28] showed
that such nonadaptive quantum algorithms cannot improvehrouer classical algorithms: every Boolean
function that depends om input bits need® > n/2 nonadaptive quantum queries for exact computation,
andp > Q(n) for bounded-error computation.

In the next few sections we will prove matching upper and lobh@&unds on the-parallel complex-
ity Q7ll(f) for a number of more complicated problents({(n/p)?/3) queries for element distinctness and
O((n/p)k/*+1) for the k-sum problenf]l Our upper bounds are obtained by parallelized quantum walk
algorithms, and our lower bounds are based on a modificafitmecadversary lower bound method com-
bined with some recent results by Belovs et al. about usirgatied “learning graphs”, both for upper and
for lower bounds([9, 13, 10, 14]. The modification we need tdenia surprisingly small, and technically
we need to do little more than adapt the recent progress arestal algorithms to the parallel case. Still,
we feel this extension is important because (1) we are thietéirdo so, (2) parallel quantum algorithms
are important and yet received little attention before, @)dhe fact that the extension is easy and natural
increases our confidence that the adversary method combiittedearning graphs is the “right” approach
in the sequential as well as the parallel case.

Finally, in Sectiorl b we prove some more “structural” resuite., bounds fo€?!l(f) that hold for all
Boolean functionsf : {0,1}" — {0,1}. Specifically, based on earlier results in the sequentialehdue
to Beals et al.[[6], we show that f is not too large ther?!l( f) is polynomially related to its classical
deterministicp-parallel counterpart. We also observe t@éﬂ(f) ~ n/2p for almost allf.

2 Preliminaries

We useln] = {1,....n}, () = {S € [n] : [S] = k}, (U]) == {S C [n] : S| < K}, and(}) :=
|([§nl]c)| = Zgzo (2)

The constant hidden in th@ depends ofk.




Sequential and parallel query complexity. In this paper we focus on parallel quantum algorithms in the
setting of quantum query complexity. In theparallel setting, in each timestep we can make up $ach
queries in parallel. Precisely, a query to an input [¢]" corresponds to the following unitary map on two
guantum registers:

‘i, b> — ‘Z, b+ $i>.

Here the firstz-dimensional register contains the index [n] of the queried element, and the value of that
element is added (ifi,) to the contents of the secongtdimensional) register. It might be important for an
algorithm to not make a query at all for a part of its supenmsistate. This will be even more relevant for
the parallel model. In order to enable this we extend theipuswunitary map to the case= 0 by

10,6) = 0, ).

In each timestep we can make ugtquantum queries in parallel, each on its own two registessalvays
in query complexity, all intermediate input-independeoinputation is free.

Consider a functiory : D — {0,1}, with D C [¢]". Whenp = 1 we have the standard sequential
query complexity, and we l&D.(f) denote the quantum query complexity pivith error probability< e
on every inputr € D. For generap, let Qﬁ”(f) be thep-parallel complexity off. Note thatQ.(f)/p <
Qﬁ”(f) < Q:(f) for every function. The exact value of the error probabilitdoes not matter, as long as
it is a constant 1/2. We usually fixe = 1/3, abbreviatingQ(f) = Q1/3(f) andQ*!(f) = Q’l’ug(f)
already used in the introduction.

We will use an extension of the adversary bound for the us@iential £ 1-parallel) quantum query
model. Anadversary matrle for f is a real-valued matrix whose rows are indexedfby (0) and whose
columns are indexed by E Let A; be the Boolean matrix whose rows are mdexedrbg ()
and whose columns are mdexed;&)}e f 1(1), and such that\;[z,y] = 1if x; # y;, andA;[z,y] = 0
otherwise. The (negative-weights) adversary bouanﬁsrgiven by the following expression:

1]

ADV = 1
(f) e maxjepn) [|T 0 Ayl @

wherel ranges over all adversary matrices for o’
denotes the operator norm associated ta$h@orm. This lower bound was introduced by Hayer eﬂ_E]] [24],
generalizing Ambalnlﬂzﬂ They showed

Q-(f) 2 (1 - VAT )ADV (). @

Recently, Reichardt et al. [82,126] showed this lower bowaktually tight:Q(f) = ©(ADV(f)) for all f.

Quantum walks. We will analyze our algorithms in the quantum walk framewof§27], which we now
briefly describe. Given a reversible Markov procésen state spac®’, and a subset/ C V of marked
elements, we define three costs: the setup &gt the cost to construct a superposition over all states
> vev VTu|v), Wherer is the stationary distribution aP; the checking costC, is the cost to check if a

30ne also often sees this defined as a matrix whose rows anueslare both indexed by the set all inputs, and that is regjuire
to be 0 onz, y-entries wheref (x) = f(y). Both definitions of an adversary matrix give the same loveamial.

“It is often denoted ADV (/) instead of AD\(f), but we will later use superscript to indicate parallelismwe drop the+’
in order to prevent too many superscripts.



statev € V is in M; and the update costl, is the cost to perform the map)(0) — |v) >, oy vV Poulu).
Then, if§ is the spectral gap aP, ande is a lower bound or} |, ., m, WheneverM is nonempty, we can
determine ifM is nonempty with bounded error probability in cost

1 1
O|S+— (—U+C>>.
( VE\VS
If S, U andC denote query complexities, then the above expression thedsounded-error query complex-

ity of the quantum walk algorithm. If, instead, these thrests denote-parallel query complexities, then
the above expression gives the bounded-esrparallel query complexity of the quantum walk algorithm.

3 Lower bounds for parallel qguantum query complexity

3.1 Adversary bound for parallel algorithms

We start by extending the adversary bound for the usual s¢éiglguantum query algorithms jeparallel
algorithms. ForJ C [n], letz; be the stringe restricted to the entries ifi. Let A ; be the Boolean matrix
whose rows are indexed hyc f~1(0) and whose columns are indexed#py f~'(1), and that has & at
position (z, y) iff z; # ys (i.e.,x; # y, for atleast ong € J). ForJ = (), A is the all-O matrix. Define
the following quantity:

ADVp”(f) = max I’

r maXJe([SnD IIT o Ayl

®3)

The following fact implies that we only need to consider skts ([z}) in the above definition.
Fact 1 For every set/ C K C [n], we havg|Tl' o Aj|| < 2[|T" o Ag]|.
Proof. We use they,-norm for matrices, which is defined as follows:

A) = i
P(A) = min 7

(X)e(Y),

wherer(X) denotes the maximum squared length among the rows,afndc(Y") denotes the maximum
squared length among the columnsYof Note that the identity and the all-1 matrix both hayenorm
equal to 1, and (A ® B) = v2(A)y2(B). SinceA ; can be written as the all-1 matrix of the appropriate
dimensions, minus identity tensored with a smaller all-1rinathe triangle inequality impliess (A ;) < 2.
The~s-norm satisfied| A o B|| < ||A||y2(B) by [26, Lemma A.1]. Observe theto A; = (T o Ag) o Aj.
Hence we have

Mo Ayl =[[(TeoAk)oAs|| <|[ToAxya(Ar) < 2T o Akl

Therefore we also have the following alternative definitiop to a multiplicative constant,

L
ADV?I(f) = max | .
P max oy [0 Al




Theorem 2 For everyf : D — {0,1}, with D C [¢]", we haveQ?!l(f) = O(ADVZIl(f)).

Proof. In order to derivep-parallel lower bounds from sequential lower bounds, olesé¢hat we can
make a bijection between input € [¢]” and a larger stringX indexed by all sets/ € ([Z];) such that

X7 = (xj)jes. Thatis, each index¥ of X corresponds to up tp indices;j of . We now define a new
function F : D’ — {0, 1}, whereD’ is the set ofX as above, in 1-to-1 correspondence with the elements of
x € D,andF(X) is defined agf(:n)ﬁ One query taX can be simulated by parallel queries ta;, and vice
versa, So we have

Q'I(f) = Q(F).
We haveQ(F) = ©(ADV (F)) by [32,[26]. Now Eq.[(IL) applied té" gives the claimed lower bound of
Eq. [3) on@?! (). 0

Sometimes we can even use the same adversary matigbtain optimal lower bounds fdr as well as
for f. A simple example of this is the-bit OR-function. Lefl" be then-dimensional all-one$ x n matrix,
with the row corresponding to inpdt* and the columns indexed by all weight-1 inputs. THéHW = /n
and||T" o Aj|| = 1 forall j € [n], and henc&)(OR) = Q(ADV (OR)) = Q(y/n). To getp-parallel lower
bounds, we define a new functidn : X — {0,1} as in the proof of Theoref 2. We can use exactly
the same adversary matrix with then columns still indexed by the weight-1 inputs fo(which induce
1-inputs toF'). Now J will range over all subsets df.| of size at mosp, andA ; will be the matrix whose
(z,y)-entry is 1 if there is at least ong € J such thatz; # y;. Note that|T o A;|| = +/|J] for all
J. HenceQ”!(OR) = Q(ADV(F)) = Q(y/n/p). This is optimal and was already proved by Zalkal [36,
Section 4].

3.2 Belovs’s learning graph approach

Recently Belovs[[9] gave a new approach to designing quamtigmrithms via the optimality of the ad-
versary method: he introduced so-calledrning graphsto prove upper bounds on the adversary bound,
and hence upper bounds on quantum query complexity. Weistadee for certificate structures These
are defined as follows, slightly simplified compared to Défimis 1 and 3 of Belovs and Rosmanriis|[13] (in
particular, for usM denotes a minimal certificate, while in|13] it denotes theasesupersets of a minimal
certificate).

Definition 1 LetC be a set of incomparable subsetg:0f We say is al-certificate structuréor a function
f:D — {0,1}, withD C [g]", if for everyz € f~1(1) there exists an\/ € C such that for ally € D,
ynm = xpr implies f(y) = 1. We sayC is k-boundedf [M| < k for all M € C.

The learning graph complexity @f is defined as follows, in its primal formulation as a minintiaa
problem (we will see an equivalent dual formulation soongt& = {(S,5) : S C [n],j € [n]\S}. For
e=(S,7) € £, weuses(e) = S andt(e) = SU{j}.

®Note that forp > 1 the new functionF is partial, even if the underlying is a total function.



LGC(C) =min [> we 4
ec&

2
s.t.zwgl forall M eC  (5)
We
ec&
Yo b(M)= > (M) forallM €C,0 #SC[n],MZS (6)
ec&:t(e)=S ec:s(e)=S
> 0(M)=1 forall M eC  (7)
e=(0,5)e€
(M) € R,we > 0 forallec £andM € C  (8)

Conditions[(6) and{7) define the notionsflofw andunit flow. For eachl/, 6. (M) is aflowfrom () to M
on the graph with vertice§S C [n]|} and edgeg{S, SU{j}} : (S,J) € £} if 6.(M) satisfies conditior {6).
Moreover,d. (M) is aunit flowif it also satisfies conditiori (7).

Belovs showed that the learning graph complexit¢ girovides an upper bound on ADY), and hence
onQ(f), for any functionf having that same certificate structure. This upper boundtiglways optimal,
because it only uses part of the description of the funchhamely its 1-certificate structure. For example the
k-distinctness problem has quantum query complexity’/*) [8], even though it has the same 1-certificate
structure as th&-sum problem, whose quantum query complexit@(&k/(’““)) [10,[14].

However, Belovs and Rosmarnis [13] proved that for the spelzias of functions induced lcombined
with anorthogonal array it turns out the upper bound LGCY is optimal.

Definition 2 An orthogonal arrayof lengthk is a setT C [¢]*, such that for every < [k] and every
T1y..o,Tim1,Tit1, - - -, Tk there exists exactly ong € [¢] such that(zq, ..., x;) € T.

Theorem 3 (Belovs-Rosmanis)Let C be a 1-certificate structureg > 2|C|, and let eachM € C be
equipped with an orthogonal arrayy, of length|M|. Define a Boolean functiorf : [¢]" — {0,1} as
follows: f(z) = 1 iff there exists an\/ € C such thatey, € Tys. ThenQ(f) = ©(LGC(C)).

For example, the element distinctness problem ED on inpat[¢]" is defined to be 1 iff there exist
distincti, j € [n] such thate; = «;. This function is induced by the 2-bounded 1-certificatactireC =
([g}), equipped with associated orthogonal arrdys;, = {(v,v) : v € [q]}. HenceQ(ED) = ©(LGC(C)).

Belovs and Rosmanis [113] use duality of convex programs éwshat an equivalent dual definition of
the learning graph complexity as a maximization problenmnésfollowing:

LGC(C) =max | > ay(M)? (9)
MeC
St (ag(e) (M) — ey (M))* < 1 foralle € £ (10)
MeC
as(M)=0 wheneverM C S
as(M) e R forall S C [n]jandM € C

In particular, that means we can prolesver bounds on LGQ) (and hence, for the functions described
in TheoremB, or)(f)) by exhibiting a feasible solutiofag(M)} for this maximization problem and
calculating its objective value.



Before stating a similar result farparallel query complexity, we first adapt learning graghieviously,
edges were of type = (S, ), whereS C [n] andj € [n] \ S. Now edges are of type = (S, J), where
S Cn],J C[n]\SandlJ| <p.

Definition 3 The p-parallel learning graph complexity LGﬁC) of C is defined ad GC(C) where we
replace the edge sétwith &, = {(5,J) : S C [n|,J C [n]\ S, |J| < p}.
Its dual expression is analogous. In particular, consttaffd) is modified to

D (ag(e) (M) = ayey (M))* < 1forall e = (S, J) € &,
MeC

wheres(e) = S andt(e) = S U J. We will refer to this modified constraint as “parall¢0)”

As for the special case gf= 1, thep-parallel learning graph complexity 6fprovides an upper bound
on ADVPl(f), and hence o@?!l( ), for any functionf having that same certificate structure.

Lemma 4 LetC be a certificate structure for a functioh ThenADV?!l(f) < LGCPI(C).

Proof. The proof is a straightforward adaptation of the proof_ of,[TBeorem 9], but we repeat it here for
completeness. Letwg s : (S,J) € &} and{fg ;(M) : (S,J) € E,, M € C} be an optimal solution to the
primal formulation of LGC/(C).

We will use this solution to construct a feasible solutioth®dual expression of oprparallel adversary
of Eq. (3), which is the following:

ADV?I(f) =min | max Z ||t} I (11)
x€lq] Je([;]])
n
s.t. |ug, ) € C* forallz € [¢]",J € <£ L)
Z (g |y, s) =1 forallz € f~*(1),y € f~'(0)
Jix g £y g

The dimensiork of the vectorgu,, ;) can be anything, and is implicitly minimized over.
For eache € f~1(1), let M, € C be such that for every € [¢]", zar, = yaz, implies f(y) = 1. For
everyz € DandJ € (L";) define the following state in spéi)|a) : S C [n], a € [¢]°}:

0 My .
zsg[n]\J S:’/%) |S, $S> if f([L') =1

x,J) +—

We now verify that{|u, ;) }. ; is a feasible solution to the dual formulation of AB\(f):

Sl lus) =Y y o ) s (12)

(] [n] SCln\Jaws— ws,.J
JG(S )z sy JE(Sp)irﬁéyJ = ES=Ys

= > > 05,7 (Mz). (13)

SClnl:zs=ys Je([’ﬂf);xﬂéw



To see that this expression is equal tave need only notice that Eq. (13) is the sum of the flow on ajlesd
across the cut induced by the 4&t C [n] : x5 = ys}, and the total flow across a cut is alwalssince
(M) is a unit flow. Thus the constraint frodn_{11) is satisfied &nd, ;) }. s is a feasible solution.

We can now lower bound AD¥M () by the objective value of the feasible solutidpu, ;)}..s. First
note that for any: € f~1(1), by constraint[{b), we have:

S et Y Y fsOhS

ws, j
Je(l2) Je(lzly SSinl\J

We can therefore compute the objective value as:

ADVPI(f) < max |HuxJ>H2 < |max({ 1, wg, s
o ) se(2))y SShl\
< > we=Lerle),
e€ép
where) _ w, > 1 follows from)__0.(M,) =1, e(fvvﬁ < 1, and Jensen’s inequality. O

We now generalize Theorem 3 to theparallel case.

Theorem 5 LetC be a certificate structure; > 2|C|, and let eachV/ € C be equipped with an orthogonal
array Ty, of length|M|. Define a Boolean functioffi : [¢]" — {0, 1} as follows: f(x) = 1 iff there exists
an M e C such thatr); € Tyy. Then@?ll(f) = o(LGcPl(€)).

Proof. For the upper bound, we ha@?! (f) = O(LGC?!(C)) by TheoreniR and Lemnfa 4.

For the lower bound we omit the parts that follow directlyrfrdhe proof of [18, Theorem 5]. In
particular, we start similarly from a feasible solution hetdual [®) and construct an adversary maltix
(defined in AppendikA) such that

P> 5 3 aa(M)2

MeC
The next lemma (proved in AppendiX A) generalizes a resathff13] that applied to singletos.

Lemma 6 For every.J C [n], the matrixI" satisfies|I" o A || < 2 na Z — asus(M))2.

WhenJ has size at mogt, the latter maximized quantity is at mdsbecause of the constraint parallel[4(10)
(applied to edgés, J') € &, with J' = J \ S). Therefore

Lcerle
= oy T 5] = 2 sstec’o)




4 Parallel quantum query complexity of specific functions

4.1 Algorithms

In this section we give upper bounds for element distinatreesdk-sum in thep-parallel quantum query
model. We show these upper bounds by giving quantum walkigtgus.

Thep-parallel algorithm we present for element distinctnedsaised on the sequential query algorithm
for element distinctness of Ambainis [3]. Ambainis’s aligfom uses a quantum walk on a Johnson graph,
J(n,r), which has vertex sét = {S C [n] : |S| = r} and edge se{{S, S’} CV :|S\ S| =1}. In
Ambainis’s algorithm each state € V' represents a set of queried indices. The algorithm seelateasSst
containing(, z;) and(j, z;) such that # j andz; = z;. Such a vertexs is said to bemarkedin J(n,r).

Theorem 7 The element distinctness problem|g}t hasQ”!l(ED) = O((n/p)*/?).

Proof. We modify Ambainis’s quantum walk algorithm slightly to fittd thep-parallel query model. Con-
sider a walkJ(n, r/p)P, onp copies of the Johnson graptin,r/p). Vertices are-tuples(Si, Sa, ..., Sp)
where, for eachi € [p], S; C [n] and|S;| = r/p. Two vertices(S1, Sa, ..., Sp) and(Sy, 55, ..., S,) are
adjacent if, for each € [p], |5; \ S| = 1. We consider a state5;, Sa, . . . , S,) markedif a pair of colliding
elements is i J?_, S;. Since the stationary distribution j&, where is the uniform distribution over
subsets ofn] of sizer /p, the probability that a state is marked is at least (r2/n?).

The setup cost, in terms pfparallel queries, is onlg = O(r/p), since we must query elements in
the initial superposition over all states, but we query theat a time. Similarly, now the update requires
that we query and unquegyelements, but we can accomplish this in twparallel queries, st = O(1).
Also, C = 0. Finally, the spectral gap of p copies ofJ(n,r/p) is exactly the spectral gap of one copy of
J(n,r/p), that isQ(p/r).

We can now calculate theparallel query complexity of element distinctness as

1 1 ron r T n
0 s+—<—u+c>> :0<—+—< —)> :o<—+—>.
( Ve Vs p r\Vp p D
Settingr to the optimal value oh?/3p'/? gives an upper bound @¥((n/p)?/3). O

It is straightforward to generalize our element distinsgapper bound tb-sum.
Theorem 8 Thek-sum problem oy hasQ”!! (k-sum) = O((n/p)*/(F+1).

Proof. Once again, we walk opcopies ofJ(n,r/p), but now we consider a stats, Ss, . . ., .S,) marked
if there are queried indice§, x;,), ..., (ix,x;,) € (Ui_; Si such that for alla,b € [k], iq # iy, and
Z;‘f’:l z;; =0 (mod q). The proportion of marked states irldnstance is thus at least= Q(r* /n*). All
other parameters are as in the proof of Thedrem 7. We can derttpaifollowing upper bound fde-sum:

(- (G- 9) -5 (7)) -0 (7o)

Settingr to the optimal value of*/(#+1)pl/(*+1) gives an upper bound @ ((n/p)*/ (K1), o



4.2 Lower bounds

We now combine ideas of Sectibn 8.2 to prgwparallel lower bounds for element distinctness &rglim,
matching our upper bounds of Sectjonl4.1 if the alphabetgigesufficiently large. Our proofs are general-
izations of the sequential lower bounds|inl[13, Section 4].

Theorem 9 For ¢ > 2(}), element distinctness ¢g™ hasQ?l (ED) = Q((n/p)?/?).

Proof. Recall that element distinctness is induced by the 1-ceatdi structur€ = (["}) equipped with
associated orthogonal arréyg ;3 = {(v,v) : v € [¢]}. By Theorenib, it suffices to prove the lower bound
on thep-parallel learning graph complexity of ED. For this, it so#fé to exhibit a feasible solution to the
dual [9) and to lower bound its objective function. Note ttheg elements of are now of the forn{(.S, .J),
whereS C [n] andJ C [n] \ S with |J| < p. Define

= g7 max((n/p)** — j/p,0)
( )y=0if MCS
as(M) = g otherwise

To show that this is a feasible solution, the only constraiatneed to verify is parallel-(10). So fix a set
S C [n] of some sizes, and a set/ C [n] \ S with |J| < p. Let L denote the left-hand side of parallel-
(I0), which is a sum over all;) certificates) € C. With respect tae = (S, J), there are four kinds of

M ={i,j}:
1.4,5 € S. Thenay) (M) = aye) (M) = 0, so theseV/ contribute O tol..

2.i€ 8,7 € J. There ares|J| < sp suchM, and each contributes? to L, because,)(M) = as
andat(e)(M) = 0.

3.4,j ¢S, i,j € J. There argl]) < (%) suchM, and each contributes? to L.

4. iandlorj ¢ SU.J. There arew(n — s —|.J|) < n* suchM, and each contributger, — | s(|* to L.

p 1 1
HenceL < <sp + <2>> o2 +n?las — a8+|J‘\2 < p(n*3p'/3 +p/2)m +n? 5 <1,

where we used that, = 0if s > n?/3p'/3, a, < ap = and|a, — o g|? < 1/4n2. This proves

S S
2p2/3n1/3

constraint paralleE(0) holds. The objective value fas fieasible solution ig/(3) o2 = Q((n/p)*/?). O

Theorem 10 For g > 2(}), thek-sumproblem ong]" hasQP!l (k-sum) =  ((n/p)*/*+D) |

Proof. The proof strategy is the same as in Theokém 9. We now uséicadistructure = (["}) with the

orthogonal arrayi” = {(v1,...,v) : )¢ v; = 0 mod ¢}. This induces thé-sum problem in the way
mentioned in Theorefd 5. We define the following solution ®@dhal for LGC!!(C):

= k/2 max((n/p)k/ (k+1) —3j/p,0)
( ) =0ifMCS
as(M) = a)g otherwise

L

10



Fix somee = (S, J) with S C [n] of sizes, and disjointJ C [n] of size at mosp. Again let L denote the
left-hand side of constraint parall¢l-{10). In order toaidish that the above solution is feasible, we want
to showZ < 1. With respect tee, we can distinguish different kinds &ff = {i1,. .., }, depending on
i:=|MnSjandj:=|M N J|:

1. i+ j < k. There arg($) (/) suchM, and each contributes |a, — a4 |? < 1/4n* to L.
2. i+ j = k. There are($) (/') suchM, and each contributes? to L if i < k, and 0 ifi = k.

Note thato, = 0 if s > nf/(E+Dpl/ 41 anda, < o = %. Hence we can upper bourdby

E—1k—1—i k—1
s\ (|J] 2 s || 2
> 3 ()5 e o+ () ()

7=0
k-1 k—1 k/(k+1),,1/(k+1) k-1 2%k /(k+1)
_ <S+‘J‘>]as—as+|ﬂ2+ <s+\J\>a§§ n - (n p +1;) (n/p) <1
= 14 k—1 4n 4n
This shows that our solution is feasible. Its objective e (Z) a2 =0 ((n/p)k/(k"’l)). O

5 Some general bounds

In this section we will relate quantum and classiegdarallel complexity. For the sequential model£ 1)
it is known that quantum bounded-error query complexityt tsest a 6th power less than classical determin-
istic complexity, for all total Boolean functions][6]. Hevee will see to what extent we can prove a similar
result for thep-parallel model.

We start with a few definitions, referring to [15] for more aliét and background. Let : {0,1}" —
{0,1} be a total Boolean function. Fére {0,1}, ab-certificatefor f is an assignmer®’ : S — {0,1}
to a subsetS of the n variables, such thaf(x) = b wheneverz is consistent withC'. Thesizeof C'is
|S]. Thecertificate complexity”, (f) of f onz is the size of a smallest(z)-certificate that is consistent
with z. The certificate complexityof f is C(f) = max, C,(f). The 1-certificate complexityof f is
CW(f) = maxy f(s)=1} C=(f). Givenaninput: € {0,1}" and subseB C [n] of indices of variables, let
2P denote thex-bit input obtained fromx by flipping all bitsz; whose index is in B. Theblock sensitivity

bs(f,z) of f at inputz, is the maximal integek such that there exist disjoint sefl, ..., By satisfying
f(z) # f(«B) for all i € [k]. Theblock sensitivityof f is bs(f) = max, bs(f,z). Nisan [30] proved that
bs(f) < C(f) < bs(f)*. (14)

Via a standard reduction [31], Zalka®(/n/p) bound for the OR-function implies:

Theorem 11 For everyf : {0,1}" — {0,1} we haveQ?!!(f) = Q(\/bs(f)/p).

We now prove a general upper bound on determinjsii@rallel complexity:

Theorem 12 For everyf : {0,1}" — {0,1} andp < C(f) we haveD?!l(f) < [CY (f)/plbs(f).

11



Proof. Beals et al.[[6, Lemma 5.3] give a deterministic decisiom fi@ f that runs for at mosbs(f)
rounds, and in each round queries all variables of a 1-aatéifor the function and substitutes their values
into the function. They show that this reduces the functma tonstant. By parallelizing the querying of
the certificate we can implement every round using at et () /p] p-parallel steps. O

Quantum and classicatparallel complexity are polynomially related;ifis not too big:
Theorem 13 For everyf : {0,1}" — {0,1}, ¢ > 1,p < bs(f)"/<, we haveD?!l (f) < O(QPI (f)5+4/(c= 1),

Proof. We can assumé@(f) = C(f) (else considet— f). By Eq. [I3) we have < bs(f)'/c < CD(f),
so we can apply Theorelm]12. We also ha) (f) < bs(f)2. Note that the assumption gris equivalent
top < (bs(f)/p)"/ (=1, Also using Theorerf 11, we obtain

DPI(Fy < [CW () /plbs(f) < Obs(£)?/p) < O((bs(f)/p)>+?/ =Dy < O(QPI(f)0+4/ (=),

|

For example, ifp < bs(f)'/3 thenQ”!l(f) can be at most an 8th power smaller thafl(f). This
theorem leaves open the possibility of superpolynomiasdsgweerD?l (f) andQP!l( f) for largep; while
we do not believe this will occur for total functions, we da kaow how to prove this.

We end with an observation about random Boolean functionsn &am [18] showed that am-bit
input stringz: can be recovered with high probability using2 + O(y/n) quantum queries. This implies
Q(f) <n/2+0(y/n)forall f: {0,1}" — {0,1}. Ambainis et al.[[4] proved an essentially matching lower
bound for random functions: almost gllhaveQ(f) > (1/2 — o(1))n. Since trivially Q(f) < pQ~!(f),
we obtain they-parallel lower bound)?!l (f) > (1/2 — o(1))n/p for almost allf. This result is essentially
optimal, because we can straightforwardly parallelize Bam'’s algorithm to compute using roughly
n/2p p-parallel quantum queries, as follows:

1. WithT = n/2 + O(y/nlog(1/¢)) and B = 3"1_ (") being the number of € {0, 1}" with weight
ly| < T, set up thex-qubit superposition\/l—g S yeionynlyl<r 1U)-

2. Apply the unitary|y) — (—1)*Y|y). We can implement this usingl’/p]| p-parallel queries for
ly| < T': the first batch ofp queries would query the firgt positions wherg, has a one and put the
answer in the phase; the second batch would query theprmoditions, etc.

3. Apply a Hadamard transform to all qubits and measure.

To see the correctness of this algorithm, note that theidmaaif n-bit stringsy that have weight- T
is < . Hence the state obtained in step 2 is very close to the %ezye{m}n(_l)w-ym whose

Hadamard transform is exactly).
Accordingly, for this type of “quantum oracle interrogatjo parallelization gives the optimal facter-
speed-up. And fop = n/2 + O(y/n), onep-parallel query suffices.

Corollary 14 For all p < n, almost allf : {0,1}" — {0,1} satisfyQ?!l(f) = (1/2 4 o(1))n/p.

12



6

Conclusion and future work

This paper is the first to systematically study the power amitdtions of parallelism for quantum query
algorithms. Itis motivated in particular by the need to re&loverall computing time when running quantum
algorithms on hardware with quickly decohering quantura.bit

We leave open many interesting questions for future wonkexample:

e There are many other computational problems wheparallel complexity is unknown, for example
finding a triangle in a graph or deciding whether two givennmnas multiply to a third one. For both
of these problems, however, even the sequential quantuny qamplexity is still open.

e We suspect Theoref 113 is not optimal, and conjecture It f) and Q”!l(f) are polynomially
related also for large. Montanaro’s resulf [28] about the weakness of maximalhalpel (=nonadap-
tive) guantum algorithms is evidence for this. Even for thguential modelf{ = 1) the correct bound
is open; the best relation known is a 6th power [6] but theesmranswer may well be a square.

Acknowledgement. We thank Jerémie Roland for helpful discussions.
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A Proof of Lemmal@

We need to go further into the details of the proof [of][13, THeeo 5]. First we use a variation of the
adversary bound from [14] that allows the duplication of ramd column indices. Concretely, rows and
columns of " are now indexed byz,a) and (y,a), respectively, where: € f=1(0), y € f~*(1) and
a belongs to some finite set. Thek; is now defined such thah;[(x,a), (y,b)] = 1if z; # y;, and
Aj[(x,a), (y,b)] = 0 otherwise.

Second]' is the submatrix of a larger matrﬁ((defined below) that is indexed by the elementgfx C
and of [¢q]". ThenA; is naturally extended to alt,y € [¢|" andM € C by A;[(x, M), (y, M)] = 1if
zj # y;, andA;[(z, M), (y, M')] = 0 otherwise. Since{l' o A ;|| < IT o Ay|, we only need to upper
bound the latter.

Consider the Hilbert spacg?. Let Iy denote the orthogonal projector onto the vecﬁ(l, 1,...,1),

and Ey = I — Ej its orthogonal complement. For evesyC [n], let Es = ®j¢,, Es;, wheres; = 1 if
j € S,ands; = 0 otherwise. Note thabs Es: = Es if S = 5’, andEgEg = 0 otherwise. Defind' as

[ = (Gum)mee, With Gy = > as(M)Es,
SCn)

where thevs(M) come from a feasible solution to the dual (9).1[13, Lemma hdjss that the submatrik

satisfies
1
_ 2
0> /5 > ao(d)?.
MecC

However, upper boundingf o Al requires some additional steps. We first review the approah3]
for the special case of = {j}. Define a linear mag; on matrixI' by its action on block€Zs, for every
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S C [n]. First, lety be such thap(Ey) = Ep andp(Er) = —Ep. Theny;(Es) = B, ® ... Q@ Ey;,_, ®
o(bs;) @ B, ,, @ ... Eg,. An alternative definition is

o(Es) = {Es, if j &5;

—FEq\j; otherwise.

The mapyp; was introduced because it satisfiég o A; = ¢;(Eg) o A;. This comes from the observation
thatp(Fy) o Ay = Ej o Ay, sinceE; =1— Eyandlo A; = 0. The approach of [13] then consists of
applyingy; to T’ before computing the norm @fo A,;.

We now generalize; to subsets/ C [n] as

Eg, it JZS;
psBs)=4- > Eg, otherwise.
§1.8\JCS'CS

Theny; satisfies the following fact, which is an extension of theecas= {;}.

Fact 15 Let.J C [n] be any subset. Thdho A; = ¢ (') 0 A .

Therefore we can upper bourid o A || by 2||¢(I)|| using also Fadfll. It remains to compute the
latter norm. We first compute ; (Gr):

GM Z /BS Es, WhereBS(M) = as(M) — aSUJ(M).
SC|n]

Observe thaBs(M) = 0if J C S. Now rewrite(¢;(I'))*¢(I') as

(s M) es(T) = > (0s(Ga)*0s(Gur) = > (Z Bs(M )

Mec SC[n] \MeC

Since the differenEs project onto orthogonal subspaces, we can conclude

losE)ll = VI es ) s B = max |5 Bs(a1
MeC
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