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Some problems on log-convex approximation of certain integrals
by

J. van de Lune & M. Voorhoeve

ABSTRACT

In this paper we establish some convexity properties in n of the sums

n k s
U_(s) r‘;kzl B >0

and

T (s) =U(s) ~5= (s> 1).

A conjecture is formulated which implies Znter alia

T2(s) < T__ () T () (= 2).
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1. APPROXIMATION OF fé x° dx BY RIEMANN UPPER SUMS.

In [2] the first named author proved that the canonical Riemann upper
sums ‘
n :
_ ks |
0,() =g 16D
corresponding to the integral fé x° dx, where s is fixed and positive, tend
decreasingly to the limit 1/(s+1) as n > o,

Doornbos [4; pp. 254-255] proved this statement very elegantly in a
more direct way whereas van Lint [4; pp. 255-256] showed that the statement
is a special case of a more general theorem.

In spite of all these proofs we present here two more proofs.

FIRST PROOF. We write o_(s) = I  k° and want to show that
0n(s) 0n+1(s)

s+1 s+1 ?
n

> (n2z1).
(n+1)

After croésmultiplication we see that we may just as well show that

n s n+l s '
(1) (n+1) ) ((k(+1))” - n ) (kn)° > 0.

k=1 k=1
Observe that the left hand side of (1) may be written as
2 s‘ s s
Z {k((n~k+1) (n+1))” - n((n~k+1)n)~ + (n-k) ((n-k) (n+1))"}
k=1

from which it is clear that it suffices to show that
(2) k((n-k+1) (0+1))° + (n-k) ((n=k) (0+1))° > n((n-k+1)n)®

for 1 £k £ n-1.

Obviously (2) may be written as

F



k((n=k+1) (n+1))° + (n-k) ((n-Kk) (n+1))°®
n

> ((n-k+1)n)®

so that, by the arithmetic-geometric-mean-inequality (A = G), it suffices

to show that

((n—k+1)(n+1>)ks<(n§k>(n+1>>(““k)s > ((n=k+1)m) ™
or, equivalently

((a=k+1) (1)) (@) (@ 1) ™ F > ((@-k+1)n)™
which may be simplified to

(=) " E @) > (n-k+1)* Kp?
or

1

(1 + .I_l_)n > (] + __nlk)n—k’ (1 <k < n—l).

. l\n . . . . .
Since (1 + ;) is increasing in n, this completes our proof.

SECOND PROOF. Again we shall show that

a ,
L {k((ak+1) (@+1))® - n((ak+Dn)® + (n-k) ((a-k) (n+1))°} > 0.
k=1 '

This time we will establish this inequality by showing the deeper statement
that for every k ¢ {1,2,...,n} all coefficients c s in the power series

H
expansion of

k((ak+1) (n+1))° - n((ak+D)n)° + (n-k) ((n-k) (n+1))° = L ¢ _s

(as an entire function of s) around the point s = 0, are non-negative. The
r-th coefficient cr satisfies

-]

" r! c .= k(log(n—k+l)(n+1))r—-n(log(n—-k+l)n)r+(n—k)(log(n—k)(n+1)r

]



so that c = 0,
n,0

We will show that if 1 £ k < n-1, then

k(log(n-k+1) (n+1))* + (n-k) (log(n-k) (n+1))"

— > (log(n-k+1)n)*

for all r = 1.
Again, by the arithmetic-geometric-mean-inequality, it suffices to show
- that

(Log (n=k+1) (n+1)) ¥ (Log(n-k) (m+1))* ¥ > (log(n=k+1)n)™.

Replacing k by n-k we still have to show that

[Log(k+1) + log(n+1)\* | [Llog(k+1) +log(n+D)\©
\ log(k+1) + log n log k + log(nt+l) /

for 1 £k < n-1,

One may verify that this inequality is equivalent to

’{ log(1l + %) -k log(l +-%) 1—n
1 - } < {l - .
log(k+1) + log(n+1) 1og(k+l)d-log(n+l)j

The validity of this inequality may be verified numerically for n < 10,
1 £k £ n-1, and its validity for n > 10, 1 < k £ n-1, is an easy consequence

of the following

LEMMA. Let T be a constant 23. Then the function

i
log(1 +§)

p(x) = {l - ————T————}‘X

18 Tnereasing for x 2= 4,

PROOF QF LEMMA. Define




1
log(1+2)

P(x) := log ¢(x) = —x log(l ~————)
= -x log(T - log(x+l) +log x) + x log T
so that
1,1
Ppr(x) = - Bl x log(T - log(1 +;1{—)) + log T

T - log(1l +;(—)

= —! = log(T - log(1 +;l{-)) - 1og,—I.1- .

Ger1) (T - Log(1 +1))

Hence, it suffices to prove that y¢'(x) > O:

log(l +3). ¥
- log(l - 7 ) > ]
(x+1) (T - log(1l +-}—§—))

. ' u? . .
Since -log(l-u) = u + - + ... >u for 0 <u < 1, it suffices to show that

log(l +1 1

X >
T

D) (T- Log(1+))

or

1
1
log(l +-)
—)
T

1
log(l + —};) 3

(x+1) (1 -

Hence, it suffices to show that

I 1

2x° (e+1) (1= )

1
X



x-1 1

7 % X-1 °
2x X

which is equivalent to
T x2 ~(T+Dx + 1= 2x2.

It follows that it suffices to show that
Tx - (T + 1) 2 2x

or

3
XZ1+F§.

Since T 2 3 we have 1 + T%E-s 4 and since, by assumption, X 2 4, the proof

is complete.
We conclude this section by stating the following

CONJECTURE .1.1. For any fixed s > 0 the sequence {Un(s)}:;1 is logarithmically

convex.

The reasons for this conjecture will become clear in the next section.

* 2. APPROXIMATION OF fé x° dx BY TRAPEZOIDAL SUMS.

In [2] it was shown that for any fixed s > | the canonical trape-

zoidal sums
1.1 ngl

T (s) i=5is ] %+

n 2 °n k=0 K
corresponding to the integral fé xsdx, tend decreasingly to its limit
1/(s+1) as n > =, In [4; p. 257] Jagers gave a different proof of this state--
ment.

&

In [3] it was shown that for any fixed s ¢ IN the sequence {Tn(s)}:=l



is convex (in n) and it was stated as a conjecture that this sequence is
even logarithmically convex.

In this section we will present another still deeper conjecture from
which the above conjecture is a trivial consequence.

We would like to show that for any fixed s > 1 the sequence {Tn(s)}or::1

is strictly log—convex, i.e.
T2(s) < T__ ()T (s) (= 2).
n n-1 n+l ?

In terms of cn(s), defined in section 1, this inequality may also be writ-

ten as

s+1

s+1 (n+1)

S
{ZGH(S) -1n 12

20n_1(s)'--(n—1)S 20n+1(s)—'(n+1)S '
ns+1 |

|
1 (n-1)

or, equivalently

D_(s) := n2$+2{20n_1(s) - (n—l)s}{Zo (s) - (n+l)s}

n+1
- (nz-l){ZGn(s)-ns} > 0.

so that we would like to show that Dn(s) >0 for s > 1 and n = 2.
Clearly Dn(s) is an entire function of s and its power series expansion

around the point s = 1 may be written as
D (s) = T _k
Dn(s) kzl cn’k(s .

Since Dn(s) is an exponential polynomial in s one may easily write down an

explicit formula for the coefficients o i.e.
H

1 _ (k)
k! ¢ = Dn i,

n,k

where



D_(s) = n2{4

n+l

—ZZ
£=1

n
WECRN )

1

n—-1 nt+l

D) (k1n%)®
k=1 £=1

g 2
Y (kl(a“-1))°
k=1 £=1

n—1 2 s
- 2 z (kn " (nt+1))"” +
k=1

(1(a-1)n?)® + ((n—1>n2<n+1>>s} ¥

n
-4 Y (k(o-Dn(n+1))° +
k=1

+ ((n—l)n(n+1))s}.

Numerical computations indicate that Dék)(l) >0 fork=21and n = 2.

A closer look at our numerical experiments leads us even to the still

stronger

CONJECTURE 2.1. (i)

(ii)

for every fixed n 2

Da(l) > 0 for all n 2 2

increasing.,

Similar observations

sequence {Un(s)};o==1 is log-convex.

More positively we have the following

THEOREM 2.1. For any fixed a € (0,1) the sequence

© oo
{mzl U mal

18 log—conmvex (in n).

PROOF. Consider the sum

)
S (a) :=
o k=1

1
n~ka

and ob§erve that

' &) yy1® .
2 the sequence {Dn (1)}k=1 is

led us to the conjecture that for any fixed s > 0O the -



- T T3 k.m
S (a) = ) = =) =) (@) =
n k=1 ® 1-a& k=1 ® @=0
n
_ S ml ¢ kam _ © m
= ) a = Yy & =) U (ma-,
m=0 k=1 m=0

whereas on the other hand we have

n .00
Sn(a) = Z [ e (n ka)udu = J e nueau{l_Feau_k..._ke(n-l)au}du =
k=1 0 0
- e -1 —u e n
= J nu,au du = J e du.
U1 au _au
0 -0 ' n
l-e
—u -1 1 +
Since e > 0 and the function — is log~convex on R , it

X
x(l-e )
follows from the general theory of log-comvex functions (see ARTIN [11]) that

the sequence {Sn(a)}:=l is log-convex (in n).

THEOREM 2.2. For any fixed a € (0,1) the sequence

- .
{mZO T (ma’}

18 log-comvex (in n).

PROOF. Similarly as in the proof of theorem 2.1 it may be shown that

o au
oo au n
m _ 1 -ue -1 aue +1
(3) z Tn(m)a T2 J ¢ au n au du.
m=0 2
0 n
, © -1
1 é§+ 1 . +
In [3] it was shown that the function % i is log-convex on R and the
theorem follows as above. ég-l ‘

REMARK. Since a positive linear combination of log—convex sequences is again
log—convex, the previous two theorems would immediately follow from our

conjectures 1.1 and 2.1,



We conclude this note by proving some formulas which relate the sequence

© R .
{Tn(m)}m=1 in some sense to Euler's gamma—function.

First recall that Euler's gamma~function may be represented as

T(s+1) = s°e °V/2ns eu(s), (s > 0)
where
° -st
(e I
u(s) = J S {——-——t o 2}dt, (s > 0)
0 e —1 .

is Binet's function (c.f. [5; p. 2161).

Hence,
=ldt, (s > 0).

By letting n tend to infinity in (3) we find that

[ au
z 1 a0 J Jue 1 du (= log(l—a))
m+1 au a
m=0
‘ 0
and subtracting this from (3) it follows that
w -t ‘t
- 1 m e a et-l 1e®+1 ¢t
Z (Tn(m)—ma =J 2 T {E T 1}dt.
m=0 —
0 n
e -1
Observing that
X
le+lx_]= X +.§—]
X 2
e -1 e -1




10

[T “Grwnx 1.1
= J du J e { - = + =}xndx =
: X X 2
0 0 e -1 .
1 1
=n J u"(E - nu)du = - J {—nu"(g-— nu) }du =
0 0
n u=l n
PR 7 * S = Ry _ v A
W] = - G- 0.

Hence, for x > 1 we have the remarkable formula

o o]

1 -m— |
E;Z (Tn(m) - E;TDX

p'(nx) - u'(nx-n),

from which it is easily seen that

I L@@ -tox ™k oum gy,
m=2 —
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