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Abstract
Studies accumulate over time and meta-analyses are mainly retrospective.
These two characteristics introduce dependencies between the analysis

, at which a series of studies is up for meta-analysis, and results withintime
the series. Dependencies introduce bias       and— Accumulation Bias —
invalidate the sampling distribution assumed for p-value tests, thus inflating
type-I errors. But dependencies are also inevitable, since for science to
accumulate efficiently, new research needs to be informed by past results.
Here, we investigate various ways in which   influences error control intime
meta-analysis testing. We introduce an   thatAccumulation Bias Framework
allows us to model a wide variety of practically occurring dependencies
including study series accumulation, meta-analysis timing, and approaches
to multiple testing in living systematic reviews. The strength of this
framework is that it shows how all dependencies affect p-value-based tests
in a similar manner. This leads to two main conclusions. First, Accumulation
Bias is inevitable, and even if it can be approximated and accounted for, no
valid p-value tests can be constructed. Second, tests based on likelihood
ratios withstand Accumulation Bias: they provide bounds on error
probabilities that remain valid despite the bias. We leave the reader with a
choice between two proposals to consider   in error control: either treattime
individual (primary) studies and meta-analyses as two separate worlds —
each with their own timing   or integrate individual studies in the—
meta-analysis world. Taking up likelihood ratios in either approach allows
for valid tests that relate well to the accumulating nature of scientific
knowledge. Likelihood ratios can be interpreted as betting profits, earned in
previous studies and invested in new ones, while the meta-analyst is
allowed to cash out at any time and advice against future studies.
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1 Introduction
Meta-analysis refers to the statistical synthesis of
results from a series of studies. [...] the synthe-
sis will be meaningful only if the studies have
been collected systematically. [...] The formulas
used in meta-analysis are extensions of formulas
used in primary studies, and are used to address
similar kinds of questions to those addressed in
primary studies. —Borenstein, Hedges, Higgins
& Rothstein (2009, pp. xxi-xxiii)

To consult the statistician after an experiment is
finished is often merely to ask him to conduct a
post mortem examination. He can perhaps say
what the experiment died of. —Fisher (1938, p.
18)

These two quotes conflict. Most meta-analyses are retro-
spective and consider the number of studies available —
after the literature has been searched systematically — as
a given for the statistical analysis. P-value based statis-
tical tests, however, are intended to be prospective and
require the sample size — or the stopping rule that pro-
duces the sample — to be set specifically for the planned
statistical analysis. The second quote, by the p-value’s pop-
ularizer Ronald Fisher, is about primary studies. But this
prospective rationale influences meta-analysis as well be-
cause it also involves the size of the study series: p-value
tests assume that the number of studies — so the timing
of the meta-analysis — is predetermined or at least un-
related to the study results. So by using p-value meth-
ods, conventional meta-analysis implicitly assumes that
promising initial results are just as likely to develop into
(large) series of studies as their disappointing counter-
parts. Conclusive studies should just as likely trigger meta-
analyses as inconclusive ones. And so the use of p-value
tests suggests that results of earlier studies should be un-
known when planning new studies as well as when plan-
ning meta-analyses. Such assumptions are unrealistic and
actively argued against by the Evidence-Based Research Net-
work (Lund et al., 2016) part of the movement to reduce
research waste (Chalmers and Glasziou, 2009; Chalmers
et al., 2014). But ignoring these assumptions invalidates
conventional p-value tests and inflates type-I errors.
P-values are based on tail areas of a test statistic’s sam-
pling distribution under the null hypothesis, and thus re-
quire this distribution to be fully specified. In this paper
we show that the standard normal Z-distribution generally
assumed (e.g. Borenstein et al. (2009)) is not an appro-
priate sampling distribution. Moreover, we believe that no
sampling distribution can be specified that fully represents
the variety of processes in accumulating scientific knowl-
edge and all decision made along the way. We need a more
flexible approach to testing that controls errors regardless
of the process that spurs the meta-analysis.

When dependencies arise between study series size or
meta-analysis timing and results within the series, bias is
introduced in the estimates. This bias is inherent to ac-
cumulating data, which is why we gave it the name Accu-
mulation Bias. Various forms of Accumulation Bias have
been characterized before, in very general terms as “bias
introduced by the order in which studies are conducted”
(Whitehead, 2002, p. 197) and more specifically, such as
bias caused by the dependence of follow-up studies on pre-
vious studies’ significance and the dependence of meta-
analysis timing on previous study results (Ellis and Stew-
art, 2009). Also, more elaborate relations were studied
between the existence of follow-up studies, study design
and meta-analysis estimates (Kulinskaya et al., 2016). Yet
no approach to confront these biases has been proposed.
In this paper we define Accumulation Bias to encompass
processes that not only affect parameter estimates but also
the shape of the sampling distribution, which is why only
approximation and correction for bias does not achieve
valid p-value tests. We illustrate this by an example in Sec-
tion 3, right after we give a general introduction to Accu-
mulation Bias in Section 2 with its relation to publication
bias (Section 2.1) and an informal characterization of the
direction of the bias (Section 2.2). By presenting its diver-
sity, we argue throughout the paper that any efficient sci-
entific process will introduce some form of Accumulation
Bias and that the exact process can never be fully known.
We collect the various forms of Accumulation Bias into one
framework (Section 4) and show that all are related to the
time aspect in meta-analysis. The framework incorporates
dependencies mentioned by Whitehead (2002), Ellis and
Stewart (2009) and Kulinskaya et al. (2016) as well the
effect of multiple testing over time in living systematic re-
views (Simmonds et al., 2017). We conclude that some
version of these biases will also be introduced by Evidence-
Based Research.
Our framework specifies analysis time probabilities — with
behavior familiar from survival analysis — and distin-
guishes two approaches to error control: conditional on
time (Section 5.1) and surviving over time (Section 5.2).
We show that general meta-analyses take the former ap-
proach, while existing methods for living systematic re-
views take the latter. However, neither of the two is able
to analyze study series affected by partially unknown pro-
cesses of Accumulation Bias (Section 5.3). After an inter-
mezzo on evidence that indeed such processes are already
at play in Section 6, we introduce a general form of a test
statistic that is able to withstand any Accumulation Bias
process: the likelihood ratio. We specify bounds on er-
ror probabilities that are valid despite the existing bias,
for error control conditional on time (Section 7.1) as well
as surviving over time (Section 7.2). The reader is left to
choose between the two; the consequences of either pref-
erence are specified in Section 8. We try to give intuition
on why both are still possible in their respective sections
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7.1 and 7.2, but also give some extra intuition on the magic
of likelihood ratios in Section 9: Likelihood ratios have an
interpretation as betting profit that can be reinvested in
future studies. At the same time, the meta-analyst is al-
lowed to cash out at any time and advise against future
studies. Hence, the likelihood ratio relates the statistics of
Accumulation Bias to the accumulating nature of scientific
knowledge, which is critical in reducing research waste.

2 Accumulation Bias
Any meta-analyst carries out a meta-analysis under the as-
sumption that synthesizing previous studies will add to
what is already known from existing studies. So meta-
analyses are mainly performed on series of studies of
meaningful series size. What is considered meaningful
varies considerably: 16 and 15 studies per meta-analysis
were reported to be the median numbers in Medline meta-
analyses from 2004 and 2014 (Moher et al., 2007a; Page
et al., 2016), while 3 studies per meta-analysis were re-
ported in Cochrane meta-analyses from 2008 (Cochrane
Database of Systematic Reviews (Davey et al., 2011)). Since
meta-analyses are performed on research hypotheses that
have spurred a certain study series size, they always report
estimates that are conditioned on the availability of such
a series. The crucial point is that not all pilot studies or
small study series will reach a meaningful size, and that
doing so might depend on results in the series. Apart from
the dependent size of the study series, the exact timing of
a meta-analysis can also depend on the available results.
The completion of a highly powered or otherwise conclu-
sive study, for example, might be considered to finalize the
series and trigger a meta-analysis. So meta-analysis also
report estimates conditioned on the consideration that a
systematic synthesis will be informative. Both dependen-
cies — series size and meta-analysis timing — introduce
bias: Accumulation Bias.

2.1 Accumulation Bias vs. publication bias
Publication bias refers to the practice that studies with
nonsignificant, or more general, unsatisfactory results
have smaller probability to be published than studies with
significant, satisfactory results. So unsatisfactory studies
are performed, but do not reach the meta-analyst because
they are stashed away in a file drawer (Rosenthal, 1979).
Accumulation Bias, on the other hand, refers to some stud-
ies or meta-analyses not being performed at all, as a result
of previous findings in a series of studies. In a file drawer-
free world, Accumulation Bias would still exist. But Ac-
cumulation Bias is a manageable problem because it does
not operate at the individual study level. Conditional on
the fact that a second study is performed, the second study
is an unbiased sample. Conditional on the fact that a third
study is performed, for whatever reason, the third study is

an unbiased sample. So bias is introduced at the level of
the series, not at the study level. This is different for pub-
lication bias, where, conditional on being published, the
studies available are not an unbiased sample. We exploit
the difference in this paper by considering time in error
control.

Of course, Accumulation Bias and publication bias are not
alone in their effects on meta-analysis reporting. All sorts
of significance chasing biases — selective-outcome bias,
selective analysis reporting bias and fabrication bias —
might be present in the study series up for meta-analysis,
and can lead to “wrong and misleading answers” (Ioanni-
dis, 2010, p. 169). But for a world in which these biases
are overcome, we also need tests that reflect how scientific
knowledge accumulates.

2.2 Accumulation Bias’ direction
Accumulation Bias in estimates is mainly bias in the satis-
factory direction, which means that the effect under study
is overestimated. This is the case for bias caused by size
of the studies series when (overly) optimistic initial es-
timates (either in individual studies or in intermediate
meta-analyses) give rise to more studies, while disappoint-
ing results terminate a series of studies. This is also the
case when the timing of the meta-analysis is based on an
(overly) optimistic last study estimate or an (overly) opti-
mistic meta-analysis synthesis is considered the final one.
We focus on this satisfactory direction of Accumulation
Bias and will only briefly discuss other possibilities in Sec-
tion 5.3 and 6.1. We introduce the wide variety of possible
dependencies in an Accumulation Bias Framework in Sec-
tion 4, which has a generality that also includes Accumu-
lation Bias without a clear direction. But we first present
Accumulation Bias’ effects on error control by an example.

3 A Gold Rush example: new studies
after finding significant results

We study the effect of Accumulation Bias by a simple exam-
ple. Its simplicity allows us to calculate the exact amount
of bias in the test statistic and investigate the additional
effect on the sampling distribution. The example given in
this section is an extension of the toy example introduced
by Ellis and Stewart (2009). We denote this example by
Gold Rush because it describes how new studies go looking
for more results after finding initial statistical significance.
In the current culture of scientific practice, statistical sig-
nificance can be seen as the currency of scientific success.
After all, significant results achieve the future possibility to
pay off in publications, grants and tenure positions. When
a gold rush for statistical significance presents itself in a se-
ries of studies, dependencies arise between the size of the
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series and the results within: Accumulation Bias. We spec-
ify this mechanism in detail in Section 3.2 and 3.3, after
we simplified our meta-analysis setting to common/fixed-
effects meta-analysis in Section 3.1. We present the result-
ing bias in the test estimates in Section 3.4 and its addi-
tional effects on the sampling distribution and testing in
Section 3.5 and 3.6. In Section 3.7 we conclude by point-
ing out the very mild condition needed for some form of
Gold Rush Accumulation Bias to occur

3.1 Common/fixed-effect meta-analysis
This paper discusses meta-analysis in its simplest form,
which is common-effect meta-analysis, also known as
fixed-effect meta-analysis. This restriction does not
mean that more complex forms of meta-analysis, such as
random-effects meta-analysis and meta-regression, do not
suffer from the problems mentioned in this paper. The rea-
son for simplification is to reduce the complexity in quan-
tifying the problem, part of showing that quantification is
not enough. In a future paper we will study the effects of
heterogeneity on testing in more detail. For an example of
Accumulation Bias in random-effects estimates we refer to
Kulinskaya et al. (2016).
Common-effect meta-analysis derives a combined Z-score
from the summary statistics of the available studies. This
combined Z-score is used as a test statistic in two-sided
meta-analysis testing by comparing it to the tails of a stan-
dard normal distribution. This is equivalent to assessing
whether its absolute value is more than z α

2
standard devi-

ations away from zero (larger than 1.960 for α = 0.05).
We simplify the setting by assuming studies with equal
standard deviations to obtain an easy to handle expres-
sion for the combined Z-score of t available studies. We
denote this meta-analysis Z-score by Z (t) and derive it as
the weighted average over the study Z-scores Z1, . . . , Zt ,
shown in its general form in Eq. (3.1a) and in Eq. (3.1b)
under the assumption of equal study sizes:

Z (t) =

∑t
i=1
p

ni Zip
N (t)

with N (t) =
t
∑

i=1

ni (3.1a)

=
1
p

t

t
∑

i=1

Zi (n1 = n2 = · · ·= nt = n). (3.1b)

See Appendix A.1 for a derivation from the mean differ-
ence notation in Borenstein et al. (2009).

3.2 Gold Rush new study probabilities
In our Gold Rush example, we assume the following de-
pendency within a series of studies: each study in a series
has a larger probability to be replicated — and therefore
expanding the series of studies — if the study shows a sig-
nificant positive effect. So the existence of a new study is

dependent on the significance and sign of the results of its
predecessor.
T is the random variable that denotes the maximum size
of a study series — the time at which the search stops.
We enumerate time by the order of appearance in a study
series, with t = 1 for the pilot study, t = 2 for the sec-
ond study (so now we have a two-study series) etc. So we
use t to denote the number of studies available for meta-
analysis at any time point: our notion of time is not re-
lated to actual dates at which studies are performed. The
maximum time T is usually unknown since more studies
might be performed in the future. T ≥ 2 means that the
series has not halted after the first initial study, but that it
is unknown how many replications will eventually be per-
formed. In our extended Gold Rush example, we present
the Accumulation Bias process by the probability that the
maximum size is at least one study larger than the current
size (T ≥ t + 1), and do so using six parameters. We de-
note these parameters by the new study probabilities, since
they indicate the probability that a follow-up study is per-
formed when the result of the current study is available:

ω(1)
S

:=P
�

T ≥ 2
�

�

� T ≥ 1, Z1 ≥ z α
2

�

= 1

ω(1)
X

:=P
�

T ≥ 2
�

�

� T ≥ 1, Z1 ≤ −z α
2

�

= 0

ω(1)
NS

:=P
�

T ≥ 2
�

�

� T ≥ 1, |Z1|< z α
2

�

= 0.1,

for all t ≥ 2 : (3.2)

ω(t)
S
= ωS := P

�

T ≥ t + 1
�

�

� T ≥ t, Zt ≥ z α
2

�

= 1

ω(t)
X
= ωX := P

�

T ≥ t + 1
�

�

� T ≥ t, Zt ≤ −z α
2

�

= 0

ω(t)
NS
=ωNS := P

�

T ≥ t + 1
�

�

� T ≥ t, |Zt |< z α
2

�

= 0.02.

We distinguish between the influence of the first (pilot)
study (ω(1)S , ω(1)X and ω(1)NS ) and the others (ωS, ωX and
ωNS) since pilot studies are carried out with future studies
in mind, and therefore replications have higher probability
after the first than after other studies in the series, also in
case the pilot study is not significant. We assume that no
new study is performed when a significant negative result
is obtained (ω(1)X = ωX = 0) and new studies are always
performed after positive significant findings, the satisfac-
tory result (ω(1)S = ωS = 1). Nonsignificant results have
a small, but not negligible probability to spur new studies
(ω(1)NS = 0.1, ωNS = 0.02).

3.3 Gold Rush new study probabilities’ inde-
pendence from data-generating hypothesis

In the following we use P1 to express probabilities under
the alternative hypothesis and P0 to express probabilities

Page 5 of 31

F1000Research 2019, 8:962 Last updated: 23 OCT 2019



under the null hypothesis. Our new study probabilities
in Eq. (3.2) were given without reference to any of these
hypotheses, to make explicit that they depend solely on the
data (or summary statistic Zt) and not on the hypothesis
that generated the data. So P in these definitions can be
read as P1 as well as P0.
In the next sections we focus on Gold Rush Accumulation
Bias under the null hypothesis and its effect on type-I error
control. The values in rightmost column of Eq. (3.2) are
introduced to obtain estimates for the Accumulation Bias
in the test estimates. These values are not supposed to be
realistic, but are chosen to demonstrate the effect of Accu-
mulation Bias as clearly as possible. The extreme values
1 for ω(1)S and ωS given in Eq. (3.2) support the simula-
tion of large study series under the null hypothesis. The
small values for ω(1)NS and ωNS are chosen such that the ef-
fect of significant findings on the sampling distribution is
clearly visible (see Section 3.5 and Figure 1). Forα= 0.05,
ω
(1)
S = 1 implies that, in expectation under the null distri-

bution, all of the 2.5% (α2 ) positively significant pilot stud-
ies under the null hypothesis become a two-study series,
while ω(1)NS = 0.1 indicates that, since an expected 95%
(1−α) of pilot studies is not significant under the null hy-
pothesis, 9.5% (0.1 ·95%) become a two-study series. For
study series beyond the pilot study and its replication, this
setup entails that in all studies, except for the last and the
first, the fraction of significant findings is more than half,
since ωS = 0.02 implies that only 0.02 · 95% = 1.9% non-
significant studies grow into a larger study series: the ex-
pected fraction of significant studies in growing series un-
der the null hypothesis converges to 2.5/(2.5+1.9) = 0.6.

3.4 Gold Rush Accumulation Bias’ estimates
under the null hypothesis

The new study probability parameters in Eq. (3.2) are
much larger when results are positively significant than
when they are not. As a result, study series that contain
more significant studies have larger probabilities to come
into existence than those that contain less. While the ex-
pectation of a Z-score is 0 under the null hypothesis for
each individual study (for all t: E0 [Zt] = 0), the expecta-
tion of a study that is part of a series of studies is larger.
This shift in expectation introduces the Accumulation Bias
in the estimates.
The main ingredient of the bias in the meta-analysis Z (t)-
score is the bias in the individual study Zt -scores, condi-
tional on being part of a series. This is already apparent for
the pilot study, which we use as an example by expressing
its expected value under the null hypothesis, given that it
has a successor study: E0 [Z1 | T ≥ 2]. This conditional ex-
pectation is a weighted average of two other expectations
that are conditioned further based on the events that lead
to a new study according to Eq. (3.2): E0

�

Z1

�

�

� Z1 ≥ z α
2

�

,

Z1 from the right tail of the null distribution, and the

nonsignificant results with expectation E0

�

Z1

�

�

� |Z1|< z α
2

�

.

We discard negative significant results, since those were
given 0 probability to produce replication studies in Eq.
(3.2). The positive significant and nonsignificant results
are weighted by the new study probabilities in Eq. (3.2)
and the probabilities under the null distribution of sam-
pling from either the tail (α) or the middle part (1−α) of
the standard normal distribution. A more detailed specifi-
cation of these components can be found in Appendix A.2.
If we assume a significance threshold of 5% we obtain:

For α= 0.05 :

E0 [Z1 | T ≥ 2]

=

∫∞
z α

2

z ·φ(z)dz ·ω(1)S ·
α
2 + 0 ·ω(1)NS · (1−α)

ω
(1)
S ·

α
2 +ω

(1)
NS · (1−α)

≈ 0.487.

(3.3)

Here we use the fact that, for α= 0.05, E0

�

Z1

�

�

� Z1 ≥ z α
2

�

=
∫∞

1.960 z · φ(z)dz ≈ 2.338, with φ() the standard normal

density function and that E0

�

Z1

�

�

� |Z1|< z α
2

�

is the expec-

tation of a symmetrically truncated standard normal dis-
tribution, which is 0. The value 0.487 is obtained by using
the parameter values given in Eq. (3.2). For studies in
the series later than the pilot study, the expression follows
analogously by taking for all t ≥ 2 : ω(t)S =ωS and ω(t)NS =
ωNS: E0 [Zt | T ≥ t + 1]≈ 1.328.
To determine the effect on the meta-analysis Z (t)-score,
we define the expectation under the null hypothesis
E0

�

Z (t)
�

� T ≥ t
�

, conditioned on the availability of a series
of size t. To specify this expectation, we use that the last
study is always unbiased since we do not know whether
it will spur more studies. As shown in more detail in Ap-
pendix A.3, the expression follows from Eq. (3.1a) by sep-
arately treating the unbiased expectation of 0 and the pilot
study. If we assume a significance threshold of 5%, we ob-
tain the general expression in Eq. (3.4a) and the expres-
sion in Eq. (3.4b) under the assumption of equal study
sizes (n1 = n2 = · · ·= nt = n):

For α= 0.05, for all t ≥ 2 :

E0

�

Z (t)
�

� T ≥ t
�

≈
p

n1 · 0.487+
∑t−1

i=2
p

ni · 1.328+pnt · 0p
N (t)

(3.4a)

=
0.487+ 1.328(t − 2)

p
t

. (3.4b)

Table 1 shows the Accumulation Bias in the estimates of
E0

�

Z (t)
�

� T ≥ t
�

as studies accumulate under the Gold Rush
scenario, with equal study sizes and values for the new
study probabilities given by Eq. (3.2).
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Table 1. Expected Z-scores under the null hypothesis in the Gold Rush scenario, under the equal study size
assumption, calculated using Eq. (3.4b) with α= 0.05 and values for ω(1)S , ω(1)NS , ωS and ωNS from Eq. (3.2). Z (t) is
as defined in Eq. (3.1b). See Appendix A.7 for the code that was used to calculate these values.

Number of
studies (t) E0 [Zt] E0 [Zt | T ≥ t + 1] E0

�

Z (t)
�

� T ≥ t
�

1 0.000 0.487 0.000
2 0.000 1.328 0.344
3 0.000 1.328 1.048
4 0.000 1.328 1.572
5 0.000 1.328 2.000
6 0.000 1.328 2.368
7 0.000 1.328 2.695
8 0.000 1.328 2.990
9 0.000 1.328 3.262
10 0.000 1.328 3.515

3.5 Gold Rush Accumulation Bias’ sampling
distribution under the null hypothesis

Figure 1 shows simulated Gold Rush sampling distributions
for study series of size two and three in comparison to an
individual study Z-distribution. Because the new study
probabilities in Eq. (3.2) give Zt−1-values below −z α

2
zero

probability to warrant a successor study, values for the
z(t)-statistic below −z α

2
will be scarce and the larger t is

the larger this scarcity will be since only the last study is
able to provide such small Z-score estimates. The oppo-
site is the case for values above z α

2
, which have probability

1 to warrant a new study. As a result, the distribution of
the meta-analysis Z-score has negative skew (more mass
on the right, more tail to the left). See the comparison
to the normal distribution also plotted in Figure 1 for a
three-study series. Skewness is not the only characteristic
that distinguishes the resulting distribution from a stan-
dard normal. The variance also deviates since the meta-
analysis distribution is a mixture distribution.

For a two-study meta-analysis Z (2) we obtain a mixture
of two conditional distributions, one conditioned on the
first study being a significant — sampled from the right
tail of the distribution (with probability α

2 ·ω
(1)
S ) — and

one with the first study nonsignificant — sampled from the
symmetrically truncated normal distribution (with proba-
bility (1−α) ·ω(1)NS ). Because the combined distribution on
Z (2) is a mixture of the two scenarios, its variance is larger
than the variance of either of the two components of the
mixture, as we show in Appendix A.4. In Figure 1 we see
that, with the parameter values from Eq. (3.2) the vari-
ance of Z (2) and Z (3) are even larger than that of Z1, even

though both Var
¦

Z (2)
�

�

� Z1 < z α
2

©

and Var
¦

Z (2)
�

�

� |Z1| ≥ z α
2

©

are smaller. Hence the sampling distribution under the
null hypothesis of a meta-analysis Z-score deviates from a
standard normal under Accumulation Bias due to a non-

zero location (the bias), skewness and inflated variance.
All three inflate the probability of a type-I error in a stan-
dard normal test, as we will study in the next section.

3.6 Gold Rush Accumulation Bias’ influence on
p-value tests

Let us now establish the effect of our Gold Rush Ac-
cumulation Bias on meta-analysis testing when using
common/fixed-effects Z-tests. Let E (t)TYPE-I indicate the
event of a type-I error (significant result under the
null hypothesis) in a meta-analysis of t studies and let

P0

�

E (t)TYPE-I

�

�

� T ≥ t
�

= P0

�

|Z (t)| ≥ z α
2

�

�

� T ≥ t
�

denote the ex-

pected rate of type-I errors in a two-sided common/fixed-
effect Z-test for studies i up to t conditional on the fact
that at least t studies were performed.
We obtain the type-I error rate for this test by simulating
the Gold Rush scenario, for which the results are shown in
the right hand column of Table 2, assuming α = 0.05. If
only bias would be at play, the sampling distribution under
the null hypothesis would be a shifted normal distribution.
Eq. (3.5) expresses the expected type-I error rate for this
bias only scenario, with Φ() the cumulative normal distri-
bution. The inflation actual inflation in the type-I error
rate is larger than shown by this scenario, as illustrated
the Table 2. The difference between these two type-I error
rates for a series of three studies is depicted in Figure 1
by the area under the red histogram for Z (3) and the red
φ(z | E0

(3)) curve below −z α
2

and above z α
2
. We conclude

that the effect of Accumulation Bias on testing cannot be
corrected by only an approximation of the bias.

fP0

�

E (t)TYPE-I

�

�

� T ≥ t
�

:= 1−Φ
�

z α
2
− E0

�

Z (t)
�

� T ≥ t
�

�

+Φ
�

−z α
2
− E0

�

Z (t)
�

� T ≥ t
�

�

.
(3.5)
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Figure 1. Sampling distributions of meta-analysis Z (t)-scores under the null hypothesis in the Gold Rush scenario,
under the equal study size assumption, with α= 0.05 and values for ω(1)S , ω(1)NS , ωS and ωNS from Eq. (3.2). Z (t) is
as defined in Eq. (3.1b). φ(z|E0

(3)) the standard normal density function shifted by E0
(3), with E0

(3) shorthand for
E0

�

Z (3)
�

� T ≥ 3
�

. See Appendix A.7 for the code that produces the simulation and this figure.

Table 2. Inflated type-I error rates for tests affected by bias only and tests affected by bias as well as impaired
sampling distribution. Simulated values are under the null hypothesis in the Gold Rush scenario, under the equal
study size assumption, with α = 0.05 and values for ω(1)S , ω(1)NS , ωS and ωNS from Eq. (3.2). See Appendix A.7 for
the code that produces the simulation and this table.

Number of studies (t) fP0[E
(t)
TYPE-I | T ≥ t] P0[E

(t)
TYPE-I | T ≥ t]

2 0.06 0.10
3 0.18 0.23
4 0.35 0.40
5 0.52 0.53

3.7 Gold Rush Accumulation Bias: When does
it occur?

We indicated in Section 3.3 that we chose extreme val-
ues for parameters ω(1)S , ω(1)X , ω(1)NS , ωS, ωX and ωNS such
that Figure 1 would clearly show the bias and distribu-
tional change that occurs. However, for any combination
of values for which there is a t where ω(t)S 6= ω

(t)
X 6= ω

(t)
NS

Accumulation Bias occurs for series larger than size t and
p-value tests that assume a standard normal distribution
are invalid.

4 The Accumulation Bias Framework
In general, Accumulation Bias in meta-analysis makes the
sampling distribution of the meta-analysis Z-score difficult
to characterize due to the data dependent size and tim-
ing of a study series up for meta-analysis. In this section,
we specify both processes in a framework of analysis time
probabilities. We use the term analysis time because time

in meta-analysis is partly based on a survival time. A sur-
vival time indicates that a subject lives longer than time
t (and might still become much older), just as an analysis
time indicates that a series up for meta-analysis has at least
size t (but might still grow much larger). As such, analy-
sis time probabilities, just as the probabilities in a survival
function, do not add up to 1.

Our Accumulation Bias Framework uses the following nota-
tion for its three key components: S(t−1),A (t) and A(t).
Firstly, S(t−1) can be understood as the survival function
in the variable time t that indicates the size of the expand-
ing study series. S(t − 1) denotes the probability that the
available number of studies is at least t (P[T ≥ t]), so the
study series has survived past the previous study at t − 1.
Secondly, A (t) indicates the event that a meta-analysis is
performed on a study series of size exactly t. Lastly, A(t)
combines the probability that a study series of certain size
is available (S(t − 1)) with the decision A (t) to perform
the analysis on exactly t studies. So the analysis time prob-
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ability A(t) represents the general probability that a meta-
analysis of size t — so at time t — is performed and is the
key to describing the influence of various forms of Accu-
mulation Bias on testing.

4.1 Analysis time probabilities
Let P

�

A (t)
�

� T ≥ t, z1, . . . , zt

�

denote the probability that a
meta-analysis is performed on the first t studies. Just as
the Gold Rush’ new study probabilities from Eq. (3.2), this
probability can depend on the results in the study series
z1, . . . , zt . The event A (t) only occurs if a series of size t
is available, so we need to condition on the survival past
t − 1, which can also depend on previous results. When
combined, we obtain the following definition1 of analysis
time probabilities A(t):

A(t | z1, . . . , zt) := P
�

A (t)
�

� T ≥ t, z1, . . . , zt

�

· S (t − 1 | z1, . . . , zt−1) ,

where we define

S (t − 1 | z1, . . . , zt−1) := P [T ≥ t | z1, . . . , zt−1] .

(4.1)

Eq. (4.1) formalizes the idea of analysis time probabilities
“depending on previous results” in terms of the individual
study Z-scores z1, . . . , zt . This is compatible with the Z-
test approach in meta-analysis and the dependencies and
the Gold Rush’ new study probabilities that are explicitly
expressed in terms of Z-scores. More generally however,
in Section 4.3 and 4.4 we extend the definition and allow
analysis time probabilities to also depend on the data in
the original scale and external parameters.

4.2 Analysis time probabilities’ independence
from the data-generating hypothesis

Just as for the Gold Rush’ new study probabilities discussed
in Section 3.2 and 3.3, the analysis time probabilities A(t)
only depend on the data, and are independent from the
hypothesis that generated the data. So again, P in these
definitions can be read as P1 as well as P0. Our defini-
tion of A(t) relates to the definition of a Stopping Rule by
Berger and Berry (1988, pp. 33-34), where they use x (m)

to denote a vector of m observations:
1Note that A(t | z1, . . . , zt ) is defined as a product of two (conditional)

probabilities. Calling this product itself a “probability”, as we do, can
be justified as follows: we currently think of the decision whether to
continue studies at time t, i.e. whether T ≥ t, to be made before the
t-th study is performed. But we may also think of the t-study result zt
as being generated irrespective of whether T ≥ t, but remaining unob-
served for ever if T < t. If the decision whether T ≥ t is made indepen-
dently of the value zt , i.e. we add the constraint P [T ≥ t | z1, . . . , zt−1] =
P [T ≥ t | z1, . . . , zt ], then the resulting model is mathematically equiva-
lent to ours (in the sense that we obtain exactly the same expressions for
S(t), A(t | z1, . . . , zt ), all error probabilities etc.), but it does allow us to
write, by Eq. (4.1), that A(t | z1, . . . , zt ) = P

�

A (t), T ≥ t
�

� z1, . . . , zt
�

—
so now A(t | z1, . . . , zt ) is indeed a probability.

Definition. A stopping rule is a sequence τ =
(τ0,τ1, . . . ) in which τ0 ∈ [0, 1] is a constant and
τm is a measurable function of x (m) for m ≥ 1,
taking values in [0,1].

τ0 is the probability of stopping the experiment
with no observations (e.g., if it is determined that
the experiment is too expensive); τ1(x (1)) is the
probability of stopping after observing the datum
x (1) = x1, conditional on having taken the first
observation; τ2(x (2)) is the probability of stop-
ping after observing x (2) = (x1, x2), conditional
on having taken the first and second observa-
tions; etc.

To take the analogy with survival analysis further, we con-
sider the sequence τ defined above by Berger and Berry
(1988) to be a sequence of hazards. Instead of using
their notation τ we denote the Stopping Rule by λ =
(λ(0),λ(1), . . . ) to emphasize its behavior as a sequence of
hazard functions and to distinguish time t from the proba-
bility λ(t) of stopping at that time given that you were able
to reach it. The hazard of stopping at time t can depend
on previous results and is defined as follows:

λ (t | z1, . . . , zt) := P [T = t | T ≥ t, z1, . . . , zt] . (4.2)

In this paper we are only interested in cases in which a first
study is available, so λ(0) = 0 (also stated as P[T ≥ 1] = 1
in Appendix A.2). The survival S(t −1), the probability of
obtaining a series of size at least t (so larger than t − 1),
follows from the hazards by considering that surviving past
time t−1 means that the series has not stopped at studies
i up to and including t − 1. So for t ≥ 1:

S (t − 1 | z1, . . . , zt−1) =
t−1
∏

i=0

(1−λ (i | z1, . . . , zi)). (4.3)

In many examples, the hazard of stopping at time t, λ(t),
will depend on the result zt just obtained. In that case
λ (i | z1, . . . , zi) = λ (i | zi) in Eq. (4.3) above. But in gen-
eral λ(t) might also depend on some synthesis of all zi so
far. We show some of the variety of forms that λ(t), S(t)
and A(t) can take in our Accumulation Bias Framework in
the following sections.

4.3 Accumulation Bias caused by dependent
study series size

Our Gold Rush example describes an instance of Accumula-
tion Bias that is caused by how the study series size comes
about. This is expressed by the S(t) component of the
analysis times probability A(t). We represent our Gold
Rush scenario in terms of our Accumulation Bias frame-
work in next section, followed by variations from the lit-
erature that we were able to express in a similar manner.
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4.3.1 Gold Rush: dependence on significant study results

The Gold Rush scenario operates in a general meta-analysis
setting and assumes that there is a single random or pre-
specified time t at which a study series is up for meta-
analysis. This is the approach taken by meta-analyses not
explicitly part of a living systematic review. In the Gold
Rush example the dependency arises in the study series be-
cause a t-study series has a larger probability to come into
existence when individual study results are significant,
and you need a t-study series to perform a t-study meta-
analysis. This dependency was characterized by the new
study probabilities ω(1)S , ω(1)NS , ωS and ωNS from Eq. (3.2).
The value of S(t), and therefore A(t), can be expressed
in terms of these new study probabilities by considering
whether z1, . . . , zt−1 are larger than z α

2
(which is 1.960 for

α = 0.05). Since a meta-analysis is performed only once
at a randomly chosen time t, we have P[A (t)] = 1 for that
time t and P[A (t)] = 0 otherwise. So for the one meta-
analysis we obtain:

For t such that P[A (t)] = 1 :

A(t | z1, . . . , zt−1;α) =S (t − 1 | z1, . . . , zt−1;α)

=
t−1
∏

i=0

(1−λ (i | zi;α)) ,

(4.4)

with λ (0) = 0 and for all i ≥ 1, λ(i) is defined as follows:

λ (i | zi ,α) = 1−
�

ω(i)
S
·1zi≥z α

2
+ω(i)

NS
·1|zi |<z α

2

�

λ0 (i |α) := E0 [λ(i | Zi;α)]

= 1−
�

ω(i)
S
·
α

2
+ω(i)

NS
· (1−α)

�

.

(4.5)

Therefore, (leaving out the λ(0) and summing from i = 1
to t −1), we obtain the following expressions for the Gold
Rush analysis time probabilities and its expectations under
the null distribution:

A(t | z1, . . . , zt−1;α) =
t−1
∏

i=1

�

ω(i)
S
·1zi≥z α

2
+ω(i)

NS
·1|zi |<z α

2

�

A0 (t |α) :=E0 [A(t | Z1, . . . , Zt−1;α)]

=
t−1
∏

i=1

�

ω(i)
S
·
α

2
+ω(i)

NS
· (1−α)

�

.

(4.6)

4.3.2 Kulinskaya et al. (2016): dependence on meta-
analysis estimates

Kulinskaya et al. (2016) report biases that result from de-
pendencies between a current meta-analysis estimate and

the decision to perform a new study. Since their focus is
on bias, they do not discuss issues of multiple testing over
time, which would arise if their cumulative meta-analyses
estimates were tested. In this section we assume that the
timing of the meta-analysis test is independent from the
estimates that determined the size of the series, as if a test
were done by a second unknowing meta-analyst. This sce-
nario is hinted at by Kulinskaya et al. (2016, p. 296) in
the statement “When a practitioner or a meta-analyst finds
several trials in the literature, a particular decision-making
scenario may have already taken place.” We postpone the
discussion of multiple testing to Section 4.3.4. In this es-
timation setting, the decision to perform new studies is
determined not by the meta-analysis Z-scores Z (t−1), but
by the meta-analysis estimates on the original scale M (t−1)

(notation adopted from Borenstein et al. (2009), see Ap-
pendix A.1), in relation to a minimally clinically relevant
effect ∆H1. A minimally clinically relevant effect is the
effect that should be used to power a trial (in the alter-
native distribution H1), and therefore, the effect that the
researchers of the study do not want to miss. Kulinskaya
et al. (2016) consider three models for the study series ac-
cumulation process: the power-law model and the extreme-
value model and the probit model. The models relate the
probability of a new study to the cumulative meta-analysis
estimate of the study series so far and are inspired by mod-
els for publication bias. Although all three models can be
recast in our framework, we demonstrate this only for the
power law model that uses one extra parameter τ to re-
late the previous meta-analysis estimate M(t−1) to S(t).
Just as in the Gold Rush scenario, we must assume that
a meta-analysis test is performed only once at a randomly
chosen time t. So only at that time t P[A (t)] = 1 and
P[A (t)] = 0 otherwise. We obtain the following expres-
sion for the Kulinskaya et al. (2016) power-law model:

For t such that P[A (t)] =1 :

A
�

t
�

�M (t−1);∆H1,τ
�

= S
�

t − 1
�

�M (t−1);∆H1,τ
�

=
t−1
∏

i=0

(1−λ
�

i
�

�M (t−1);∆H1,τ
�

),

(4.7)

with λ(0) = λ(1) = 0, and for all i ≥ 2, λ(i) is defined as
follows:

λ
�

i
�

�M (i−1);∆H1,τ
�

= 1−
�

M (i−1)

∆H1

�τ

, (4.8)

for 0< M (i−1) <∆H1 and 1 (so 1−λ= 0) otherwise.
According to this model, no further studies are performed
as soon as an estimate as large as ∆H1 is found. For esti-
mates smaller than ∆H1, the closer the estimate is to ∆H1,
the larger the probability of a subsequent study. Just as
in the Gold Rush example, this model will introduce bias
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as well as skew the sampling distribution of the data un-
der the null hypothesis since initial studies with large es-
timates have larger probability to end up in study series
of considerable size than small initial estimates do. When
the initial study gives a large overestimation of the effect,
this overestimation stays present in the subsequent meta-
analysis estimates and keeps influencing the probability of
subsequent studies. Therefore, this model shows the ef-
fect of early studies in the series even more clearly than
the Gold Rush example. However, the accumulation bias
does have a cap, since estimates larger than ∆H1 do not
introduce new replication studies.

4.3.3 Whitehead (2002): dependence on early study re-
sults

Bias may also be introduced by the order in
which studies are conducted. For example,
large-scale clinical trials for a new treatment
are often undertaken following promising results
from small trials. [...] given that a meta-analysis
is being undertaken, larger estimates of treat-
ment difference are more likely from the small
early studies than from the later larger studies.
—Whitehead (2002, p. 197)

Whitehead (2002) mentions a dependence between the
results of the small early studies in a series and the size
of the series. This influence could either be based on the
significance of early findings, such as in the Gold Rush ex-
ample (Section 4.3.1), or on the estimates in the initial
studies, such as in the power law model from Kulinskaya
et al. (2016) (Section 4.3.2). Whitehead (2002) does not
give sufficient details to specify this dependency explicitly,
but we are confident that it will fit in our Accumulation
Bias framework.
Two ways to approach this Accumulation Bias are given
in Whitehead (2002). The first is to exclude early stud-
ies from the meta-analyses, either in the main analysis or
in a sensitivity analysis. The second way is to ignore the
problem, since the small studies will have little effect on
the overall estimate. In Section 7 we show that any small
initial study dependency that can be expressed in terms of
A(t) can be dealt with by tests using likelihood ratios.

4.3.4 Living Systematic Reviews: dependence on signif-
icant meta-analyses + multiple testing

A living systematic review (LSR) should keep
the review current as new research evidence
emerges. Any meta-analyses included in the re-
view will also need updating as new material is
identified. If the aim of the review is solely to
present the best current evidence standard meta-
analysis may be sufficient, provided reviewers
are aware that results may change at later up-
dates. If the review is used in a decision-making

context, more caution may be needed. When us-
ing standard meta-analysis methods, the chance
of incorrectly concluding that any updated meta-
analysis is statistically significant when there is
no effect (the type I error) increases rapidly
as more updates are performed. —Simmonds,
Salanti, McKenzie & Elliott (2017, p. 39)

In living systematic reviews, the aim is to have a meta-
analysis available to present the current evidence, thus
synthesizing the t studies available at a certain time. The
current meta-analysis estimate might be used to decide
whether further studies should be performed. In that case
S(t−1), the probability that a study series of size t is avail-
able — so that a study series has expanded beyond series
size t −1 — depends on the meta-analysis estimate Z (t−1)

at the previous study’s meta-analysis. Because the review
is continuously updated, P[A ] is always 1, and living sys-
tematic reviews can be described by the following analysis
time probability A(t):

A
�

t
�

�

� z(1), . . . , z(t); z α
2

�

= P
�

A (t)
�

� T ≥ t
�

· S
�

t − 1
�

�

� z(1), . . . , z(t); z α
2

�

= S
�

t − 1
�

�

� z(1), . . . , z(t−1); z α
2

�

=
t−1
∏

i=0

(1−λ
�

i
�

�

� z(i); z α
2

�

).

(4.9)

The quote above warns against decisions based on the con-
tinuously updated meta-analysis using a fixed threshold
z α

2
. Living systematic reviews experience multiple testing

problems of a kind that are familiar from statistical moni-
toring of individual clinical trials (Proschan et al., 2006). If
the study series is stopped as soon as a significance thresh-
old is reached, and the obtained meta-analysis is consid-
ered the final one, then this final meta-analysis test has an
increased chance of a type-I error. So the warning is not
to use the following simple stopping rule:

λ
�

i
�

�

� z(i); z α
2

�

= 1|Z (i)|≥z α
2
. (4.10)

Various corrections to significance thresholds are proposed
that relate intermediate looks to a maximum sample size
or information size. These corrected thresholds depend on
α and the fraction of sample size or information size avail-
able at time t. Examples of such methods are Trial sequen-
tial analysis (Brok et al., 2008; Thorlund et al., 2008; Wet-
terslev et al., 2008) and Sequential meta-analysis (White-
head, 2002, Ch. 12) (Whitehead, 1997; Higgins et al.,
2011). For an overview see Simmonds et al. (2017). In
general, Eq. (4.9) and (4.10) show that any dependency
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between “the best current evidence” and the accumulation
of future studies is part of our Accumulation Bias Frame-
work. We discuss the approach to error control taken by
the corrected thresholds in Section 5.2.

4.4 Accumulation Bias caused by dependent
meta-analysis timing

We described various forms of Accumulation Bias that are
caused by how the study series size comes about, but de-
pendencies are also introduced by how the meta-analysis
itself arises. This is expressed by the P

�

A (t)
�

component
of the analysis times probabilities A(t). We only found one
such process mentioned in the literature and will discuss
it in the next section.

4.4.1 Ellis and Stewart (2009): dependence on the right
amount of positive findings

Meta-analysis times are subtle. A train of neg-
ative findings would generally not stimulate a
meta-analysis. Nor would a string of very pos-
itive findings. [...] All this makes the analysis
of explicitly defined meta-analysis times very dif-
ficult. We conclude that study of bias in meta-
analysis based on parametric modeling of meta-
analysis times is problematical. —Ellis & Stewart
(2009, pp. 2454-2455)

Ellis and Stewart (2009) do not give an explicit model that
we can interpret in terms of A(t), but indicate that it should
depend on the study findings Zi , or in the original scale, Di
(notation adapted from Borenstein et al. (2009), see Ap-
pendix A.1). Given the quote above, the amount of very
positive findings should not be too large, and not too small.
Though exact parametric modeling indeed stays problem-
atical, we can assume that a positive finding is a study es-
timate larger than the minimally clinically relevant effect
∆H1, define the right amount of positive findings to be in
the region [a, b], and show that this fits in our Accumu-
lation Bias Framework by expressing a possible model for
A(t):

For t such that S(t − 1) =1 :

A
�

t
�

�D1, . . . , Dt ; a, b
�

=P
�

A (t)
�

� T ≥ t, D1, . . . , Dt ; a, b
�

· S
�

t − 1
�

�D1, . . . , Dt−1; a, b
�

=P
�

A (t)
�

� T ≥ t, D1, . . . , Dt ; a, b
�

=1C∈ [a,b]

with C =
t
∑

i=1

1Di>∆H1 .

(4.11)

4.5 Accumulation Bias caused by Evidence-
Based Research

New research should not be done unless, at
the time it is initiated, the questions it pro-
poses to address cannot be answered satisfac-
torily with existing evidence. —Chalmers &
Glasziou (2009)

In 2009, the term Research Waste was coined and this key
recommendation was made. The recommendation further
specifies that existing evidence should be obtained by a
systematic review and summarized with a meta-analysis.
But how exactly to answer the question whether new re-
search is necessary or wasteful remained unclear. Never-
theless, the recommendation was important enough to be
repeated, as was first done in an entire series on Research
Waste with a specific recommendation on setting research
priorities (Chalmers et al., 2014) and later in a paper that
gave the recommendation its official name: Evidence-Based
Research (Lund et al., 2016). Support for these recom-
mendations was provided by various retrospective cumu-
lative meta-analyses that show how many studies were still
performed while satisfactory evidence was already avail-
able. These cumulative meta-analysis judge “satisfactory
evidence” based on a significance threshold, usually uncor-
rected for multiple testing (e.g. Fergusson et al. (2005)),
which reminds us of the Accumulation Bias that occurs in
living systematic reviews (Section 4.3.4).
The larger consequence, however, is that Accumulation
Bias is caused by any dependencies between results and
series size and meta-analysis timing, and that Evidence-
Based Research introduces such dependencies. Inspecting
previous results to decide whether new research is neces-
sary or wasteful therefore always introduces Accumulation
Bias, whether it based on uncorrected or corrected thresh-
olds. Also more subtle decision methods — implicit rather
than based on thresholds — introduce Accumulation Bias,
as was shown by Kulinskaya et al. (2016). In fact, they de-
scribe the rationale behind their models — among which
the power-law model (Section 4.3.2) — as an example of
bias introduced by guidelines to decide on “the usefulness
of a new study” “with direct reference to existing meta-
analysis.” (Kulinskaya et al., 2016, p. 297).
So Evidence-Based Research causes bias, and our Accu-
mulation Bias Framework demonstrates how it might af-
fect the sampling distribution, whether based on explicit
thresholds or implicit decision making. Does this mean
that we cannot make Evidence-Based Research decisions
to avoid research waste, while also controlling type-I er-
rors? Fortunately, we do not need to be that pessimistic
and can still embrace Evidence-Based Research. In Section 7
we show that tests based on likelihood ratios withstand
Accumulation Bias and are very well suited to reduce re-
search waste. But to do so, we first need to specify exactly
what role is played by time in error control.
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Table 3. Possible 2001 state of a database of study series per topic, visualizing what study series are taken into
account in the two approaches to error control: conditional on time (blue and grey) and surviving over time
(orange).

Topics
1 2 3 4 5 6 7 8 9 10 . . . 9 998 9 999 10 000

Study series
size (t)
1 z1,1 z1,2 z1,3 z1,4 z1,5 z1,6 z1,7 z1,8 z1,9 z1,10 . . . z1,9998 z1,9999 z1,10000
2 z2,1 z2,2 z2,3 z2,4 z2,5 z2,7 z2,8 z2,10 z2,9998 z2,10000
3 z3,1 z3,2 z3,3 z3,5 z3,7 z3,10 z3,9998 z3,10000
4 z4,2 z4,3 z4,5 z4,7 z4,9998 z4,10000
5 z5,2 z5,5 z5,9998
6 z6,2 z6,5 z6,9998
. . . . . .
136 z136,9998

5 Time in error control
Over time new study series are initiated, studies are added
to existing study series and more meta-analyses are per-
formed. To visualize how this process relates to error con-
trol, we need to start with a specific state of this expanding
system. In 2001 an estimated minimum of 10 000 medi-
cal topics were covered in over half a million studies, thus
requiring 10 000 meta-analyses if all were synthesized in
a database such as the Cochrane Database of Systematic Re-
views (Mallett and Clarke, 2003). The number of studies
in a series varied between 2 and 136, which we can use to
describe the 2001 state of a possible database, that to be
complete, also includes many unreplicated pilot studies.
We could visualize this database in a table, with studies in
the rows, topics in the columns and many missing entries.
A sketch is shown in Table 3.
The conventional approach to error control, which we
used to show the influence of Gold Rush Accumulation Bias
in meta-analysis testing in Section 3.6, is a conditional ap-
proach. Since conventional meta-analysis does not raise
any multiple testing issues, there is a hidden assumption
that the timing of a meta-analysis A (t) is independent
from the data and each study series experiences only one
meta-analysis. In Section 4.3.1 we took the t at which
the sole meta-analysis is conducted to be either random
or prespecified. This is shown in Table 3 by the black box
enclosing the available studies on Topic 1. Other possible
study series up for meta-analysis are shown by the boxes
enclosing studies on Topic 5 and 8. Note that by assum-
ing only one meta-analysis, a study series might continue
growing but not be fully analyzed, as shown for Topic 5.
In the conditional approach to error control, a three-study
series (Z1, Z2, Z3) produces a possible draw from the Z (3)

sampling distribution. If we test our draw, the type-I error
rate is defined as the fraction of t-study series that is con-
sidered significant if all t-study series were to be sampled
from the null distribution. The question is: What study

series are taken into account to specify this fraction? This
is visualized in Table 3 by the dark blue and grey shading
for t = 2 and the dark blue and lighter blue shading for
t = 3. The unshaded topics and change of color between
t = 2 and t = 3 show the flaw of this approach: some
series might not survive up until a specific time t, as for
instance shown by the grey studies that are part of t = 2
but not part of the error control for t = 3. We also do not
want every series to survive up until any arbitrary time t
to avoid research waste (Chalmers and Glasziou, 2009).
The crucial point is that the series that do survive are no
random sample from all possible t-study series. This is
another illustration of Accumulation Bias such as the Toy
Story scenario. The series deviates even more from the as-
sumption of a random t-study draw if the meta-analysis
time t is not random or prespecified, but dependent on
the results, as expressed in Section 4.4. We discuss the
conventional conditional approach to meta-analysis error
control in more detail in Section 5.1.
The other possible approach to error control is surviving
over analysis times, which means that it should be valid
for any upcoming analysis time t within a series. So the
probability that a type-I error — ever — occurs in the ac-
cumulating series is controlled, whether the series reaches
a large size or not. This is visualized in Table 3 by the or-
ange shading, and has a long run error rate that runs over
series of any size, including the one-study series. This ap-
proach to error control is taken by methods for living sys-
tematic reviews such as Trial sequential analysis and Se-
quential meta-analysis. We discuss this approach of error
control surviving over time in more detail in Section 5.2.

5.1 Error control conditioned on time
The null distributions of the common/fixed meta-analysis
Z-statistic shown in Figure 1 are conditioned on the size of
the series, which is the time: T ≥ t. We can use our Accu-
mulation Bias framework to give this distribution a general
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description, where we use f0(z(t)) to denote the assumed
standard normal null distribution for the meta-analysis Z-
score and obtain a conditional density using Bayes’ rule:

f0

�

z(t)
�

�A (t), T ≥ t
�

=
f0(z(t)) · P0

�

A (t), T ≥ t
�

� z(t)
�

P0 [A (t), T ≥ t]

=
f0(z(t)) · A0

�

t
�

� z(t)
�

A0 (t)
,

where we define:

A0

�

t
�

� z(t)
�

:= E0

�

A(t | Z1, . . . , Zt)
�

� Z (t) = z(t)
�

A0 (t) := E0 [A(t | Z1, . . . , Zt)] ,
with under the equal study size assumption in (Eq. (3.1b))

Z (t) =
1
p

t

t
∑

i=1

Zi

(5.1)

(extension to the general cases with unequal sample sizes
is straightforward). For the Gold Rush example, A0 (t) was
given by Eq. (4.6) and can be calculated if ωs are known.
A0 (t) denotes the general probability of arriving at T ≥ t
under the null hypothesis, and so does A0

�

t
�

� z(t)
�

, but with
the restriction that we only take samples into account that
result in meta-analysis score z(t). The type-I error rates
for the Gold Rush example shown in Table 2 are based on
a randomly chosen or prespecified t for which P[A (t)] =
1, and represent the following (with f0 as above in Eq.
(5.1)):

P0

�

E (t)TYPE-I

�

�

�A (t), T ≥ t
�

=

∫ −z α
2

−∞
f0

�

z(t)
�

�A (t), T ≥ t
�

dz(t)

+

∫ ∞

z α
2

f0

�

z(t)
�

�A (t), T ≥ t
�

dz(t).

(5.2)

5.2 Error control surviving over time
In living systematic reviews, a meta-analysis is performed
after each new study (P

�

A (t)
�

= 1 for all t). The proper-
ties on error control obtained by for example Trial Sequen-
tial Analysis are therefore surviving over analysis times
t and depend on the joint distribution on the data and
the maximum study series size T . For P

�

A (t)
�

always 1,
A(t) = S(t−1) and this joint distribution can be presented
as follows:

f0

�

z(1), . . . , z(t), T = t
�

= f0

�

z(1), . . . , z(t)
�

· P0

�

T = t
�

� z(1), . . . , z(t)
�

,
(5.3)

where we define

P0

�

T = t
�

� z(1), . . . , z(t)
�

:= E0

�

S(t − 1
�

� Z1, . . . , Zt−1)
�

� Z (1) = z(1), . . .
�

− E0

�

S(t
�

� Z1, . . . , Zt)
�

� Z (1) = z(1), . . .
�

,

with under the equal study size assumption in (Eq. (3.1b)),

Z (t) =
1
p

t

t
∑

i=1

Zi ,

and with f0(z
(0)) = 1 and P0

�

T ≥ 1
�

� z(0), z(1)
�

= 1.

The result P[T = t] = S(t − 1) − S(t) is known from
survival analysis and made explicit in the Appendix A.5.
When S(t) is known for all t, it is possible to obtain error
control that survives over analysis times T = t with thresh-
olds z(t)α

2
that are functions of α, t and some Tmax based on

a maximum sample or information size. Such methods
are known as Trial sequential analysis (Brok et al., 2008;
Thorlund et al., 2008; Wetterslev et al., 2008) and Sequen-
tial meta-analysis (Whitehead, 2002, Ch. 12) (Whitehead,
1997; Higgins et al., 2011). If we assume a one-sided test,
the approach to error control taken by these methods can
be expressed as follows:

ET

h

P0

�

E (T )TYPE-I

�

�

� T
�
i

=
Tmax
∑

t=1

∫ ∞

z(1)α
2

. . .

∫ ∞

z(t)α
2

f0

�

z(1), . . . , z(t), T = t
�

dz(1) . . . dz(t)

= α,

with f0 as above (5.3)

and T = t only in the case λ(t) = 1Z (t)≥z(t)α
2

= 1.

(5.4)

The change in notation from T ≥ t to T = t already hints
at the limitations of this approach: the series size needs
to be completely determined by the thresholds specified
in the hazard function and nothing else. We discuss this
limitation in more detail in the next section.

5.3 Unknown and unreliable analysis time
probabilities

To obtain thresholds to test z(t) under Accumulation Bias,
we need to know the probability A(t) (or only S(t)) for
meta-analysis time t. However, any of the scenarios de-
scribed in Sections 4.3 and 4.4 can be involved, and some
can be influencing z(t) simultaneously. Also, ethical imper-
atives might balance the bias, as illustrated by the follow-
ing quote:
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A negative result will dampen enthusiasm and
turn the attention of investigators to other pos-
sible protocols. A positive result will excite in-
terest but may provide an ethical veto on further
randomization. —Armitage (1984) as cited by
Ellis and Stewart (2009)

We do not believe that the corrected thresholds z(t)α
2

from

sequential methods like Trial Sequential Analysis can ac-
count for all Accumulation Bias, since they require very
strict conformation to the stopping rule based on syn-
thesized studies z(t) and some have already argued that
meta-analysts do not have such control over new stud-
ies (Chalmers and Lau, 1993). Sequential meta-analysis
was proposed for prospective meta-analyses (Whitehead,
1997; Higgins et al., 2011) and never intended for settings
with retrospective dependencies. Stopping rules based
solely on meta-analysis ignore dependencies that might al-
ready have arisen at the individual study level (such as in
the Gold Rush example) and that meta-analyses might in
practice not be performed continuously (so P[A (t)] 6= 1
for some t). When meta-analyses are not performed con-
tinuously, as discussed in Section 4.4, the specification of
which series are included in the long run error control is
missing (imagine for example that some of the columns
1, 2, 3 and 5 of meta-analyses in Table 3 be excluded in
the long run error control because the individual study re-
sults were such that nobody will ever bother to perform a
meta-analysis).
It might be very inefficient to try to avoid Accumulation
Bias. As stated in the introduction, avoiding it would mean
that results from earlier studies should be unknown when
planning new studies as well as when planning meta-
analyses (that is, the decision to do a meta-analysis after t
studies should not depend on the outcome of these stud-
ies). Achieving this might be impossible, since research is
very often somehow inspired by other findings. Also, such
approach cannot be reconciled with the Evidence-Based
Research initiative to reduce waste (Lund et al., 2016;
Chalmers and Glasziou, 2009; Chalmers et al., 2014).
We conclude that the Accumulation Bias process specify-
ing A(t) can never be fully known and that avoiding an
Accumulation Bias process will introduce more research
waste. So we need a testing method that is valid regardless
of the exact Accumulation Bias process. We will introduce
such a method in Section 7, but first exhibit some evidence
that, even though the recommendations from Evidence-
Based Research still need renewed attention, Accumulation
bias might already be at play.

6 Intermezzo: evidence for the exis-
tence of Accumulation Bias

6.1 Agreement with empirical findings
Accumulation Bias arises due to dependencies in how a
study series comes about (Section 4.3), and in the timing
of the meta-analysis (Section 4.4). We first discuss some
indications of the former and then illustrate how these can
be reinforced by some approaches to the latter.
If citations of previous results are a real indication of why
a replication study is performed, than many such depen-
dencies have been demonstrated in the literature on ref-
erence/citation bias (Gøtzsche, 1987; Egger and Smith,
1998). Citation or reference bias indicates that initial sat-
isfactory results are more often cited than unsatisfactory
results, thus some sort of Gold Rush occurs. Studies into ci-
tations indicate that early small trials are much more often
cited than later large trials (e.g. Fergusson et al. (2005);
Robinson and Goodman (2011)), which might limit the
Gold Rush to the early studies in a series, such as indi-
cated by Whitehead (2002) (Section 4.3.3). Many studies
have found that early studies are unreliable predictors of
later replications in a study series (Roberts and Ker, 2015;
Chalmers and Glasziou, 2016) (and see references 6-34 in
Ioannidis (2008) and references 33-49 in Pereira and Ioan-
nidis (2011)), which is also an indication of early study
Accumulation Bias.
Other empirical findings suggest that Accumulation Bias
might occur throughout a series, but to a lesser extent in
later studies. Gehr et al. (2006), for example, report effect
sizes that decrease over time, but in which study size did
not play a significant role. What has been recognized as
regression to the truth in heart failure studies, might also
be characterized as Accumulation Bias (Krum and Tonkin,
2003). But this effects will be difficult to limit to only
a few early studies, so excluding a certain number from
meta-analysis, as proposed in Whitehead (2002, p. 197)
(Section 4.3.3), might therefore be a too crude measure.
The Proteus effect (Pfeiffer et al., 2011; Ioannidis and
Trikalinos, 2005; Ioannidis, 2005a) describes how early
replications can be biased against initial findings. If early
contradicting findings spur a large series of studies into
a phenomenon, it introduces a more complex pattern of
Accumulation Bias that does not have a straightforward
dominating direction. The same holds for the Value of In-
formation approach, to decide on replication studies (Clax-
ton and Sculpher, 2006; Claxton et al., 2002).
There is quite some literature with suggestions on when
a meta-analysis should be updated. One general recom-
mendation is to do so when studies can be added that
will have a large effect on the meta-analysis (Moher and
Tsertsvadze, 2006; Moher et al., 2007b, 2008). If such
recommendations reflect an overall tendency in timing of
meta-analysis, Accumulation Bias might be re-enforced by
the timing of the meta-analysis: initial misleading studies
might have spurred a study series, and might also indi-
rectly encourage a meta-analysis after later studies report
deviating results.
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6.2 Agreement with intuitions about priors
The famous paper “Why Most Published Research Find-
ings are False” (Ioannidis, 2005b) introduced the concept
of field specific prior odds to a large audience. The prior
odds were presented as the “Ratio of True to Not-True Rela-
tionships (R)”, which has the same meaning as the fraction
of pilot studies from the null and alternative distribution
(π/(1 − π)) in the terminology of this paper. Ioannidis
(2005b) combines this ratio with the average power and
type-I error of tests in a research field to obtain a field-
specific estimate of the Positive Predictive Value (PPV) of
a significant result. This is the expected rate or target rate
of true to false rejections, and the same as γ ·π/(1−π) in
Section 7.1 of this paper.
Ioannidis (2005b) provides prior odds of various research
fields and publication types for which two are of interest
to Accumulation Bias: “Adequately powered RCT with lit-
tle bias” and “Confirmatory meta-analysis of good-quality
RCTs”. For the first of these an R of 1:1 is provided and for
the second an R of 2:1. So a distinction is made between
topics worthy of only one individual study and those that
evoke a series of studies eligible for meta-analysis.
How would the researchers involved in replicating RCTs
know that their topic is worthy of a series of studies in com-
parison to just one? The difference between prior odds of
the two indicates that this is no random decision. The only
available source of information would be previous study
results, hence introducing dependence between study se-
ries size and study results: Accumulation Bias. So the prior

odds R specified by Ioannidis (2005b) is actually π·A1(t)
(1−π)·A0(t)

,

with A1(1) = 1 and A0(1) = 1 for primary studies.

7 Likelihood ratios’ independence
from meta-analysis time

In Section 5.3 we argued that any approach to model the
analysis time probabilities A(t) is unreliable: in realistic
and practically relevant scenarios, the ingredients required
to calculate A(t) will be unknown. Therefore, we need to
define test statistics that are independent from how a se-
ries size or meta-analysis comes about. A possible form of
such a test statistic is the likelihood ratio, which we discuss
from the two approaches to error control: in the next sec-
tion 7.1 from the perspective of error control conditioned
on time, and in Section 7.2 from the perspective of error
control surviving over time.
Our proposed use of the likelihood ratio is based on the
following extraordinary property2, already recognized by
Berger and Berry (1988) and shown in Eq. (7.1): The like-
lihood ratio is a test statistic that depends on the specifica-

2This property is related to the well-known fact that the Bayesian pos-
terior based on data, when the priors are determined independently of
the sample size, takes on the same value irrespective of the stopping rule
that gave rise to the observations (Hendriksen et al., 2018)

tion of some alternative distribution f1. Any data sampled
from an alternative distribution will have the same analy-
sis time probabilities as data sampled from the null distri-
bution, since analysis time probabilities are independent
from the data-generating hypothesis (Section 4.2). When
a likelihood ratio statistic is obtained for known data, the
analysis time probability is a constant factor that is the
same in the numerator and denominator of the likelhood
ratio and therefore drops out of the equation:

LR10
(t)
�

z1, . . . , zt ,A (t), T ≥ t
�

:=
f1 (z1, . . . , zt) · P1(A (t), T ≥ t | z1, . . . , zt)
f0 (z1, . . . , zt) · P0(A (t), T ≥ t | z1, . . . , zt)

=
f1 (z1, . . . , zt) · A(t | z1, . . . , zt)
f0 (z1, . . . , zt) · A(t | z1, . . . , zt)

=
f1 (z1, . . . , zt)
f0 (z1, . . . , zt)

= LR10 (z1, . . . , zt) .

(7.1)

Here we used the standard definition of likelihood ratio
for the case that the likelihood jointly involves continuous-
valued data and discrete events, and we critically used the
fact that the probability ofA (t), T ≥ t does not depend on
whether the null or the alternative distribution generated
the data.
In the following two sections we discuss two means of us-
ing likelihood-ratio based tests that yield results that are
valid irrespective of accumulation bias.3

7.1 Likelihood ratio’s error control conditioned
on time

A large study series has an extremely low probability of
occurring under the null hypothesis in the Gold Rush sce-
nario, and under any other similar Accumulation Bias set-
ting. The probability of reaching a certain study series
size t is much larger under any alternative hypothesis
when the power of the test for that alternative hypothe-
sis (1 − β) is larger than the type-I error α. Due to this
fact, it is possible to control an error rate if we assume
that a certain fraction of pilot studies (or topics, see Ta-
ble 3) π are sampled from the alternative distribution and
a proportion (1 − π) of pilot studies from the null. This
way, we are able to control the fraction of true rejections

1−P1

�

E (t)TYPE-II

�

�

�A (t), T ≥ t
�

(complement of type-II errors)

to false rejections P0

�

E (t)TYPE-I

�

�

�A (t), T ≥ t
�

.

3To avoid any confusion, let us highlight that our likelihood-ratio
based tests are never equivalent to p-value based tests. While some p-
value based tests (such as the Neyman-Pearson most powerful test) can
be written as likelihood ratio tests, these are invariably of the form ‘reject
at significance level α if LR10(z1, . . . , zt ) ≥ γ where γ is chosen such that
P0( f1(z1, . . . , zt )/ f0(z1, . . . , zt ) ≥ γ) = α. In contrast, we choose γ in a
way that does not depend on knowledge of the tail area under P0 (e.g.
in Section 7.2 we take γ= 1/α, and there the equality above is a (strict)
inequality).
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We can achieve such error control conditioned on time —
e.g. error control taking into account only t-study meta-
analyses — if we define thresholds based on the Bayes
posterior odds, which, by Bayes’ theorem, are given by
Opost (z1, . . . , zt) = LR10 (z1, . . . , zt) ·

π
1−π . Remarkably, these

are not affected by the mechanism underlying the deci-
sions to continue studies or perform meta-analyses:

Opost

�

z1, . . . , zt

�

�A (t), T ≥ t
�

:=
P
�

H1

�

� z1, . . . , zt ,A (t), T ≥ t
�

P [H0 | z1, . . . , zt ,A (t), T ≥ t]

=
f1

�

z1, . . . , zt ,A (t), T ≥ t
�

·π
f0 (z1, . . . , zt ,A (t), T ≥ t) · (1−π)

= LR10
(t)
�

z1, . . . , zt ,A (t), T ≥ t
�

·
π

1−π
= LR10 (z1, . . . , zt) ·

π

1−π
= Opost (z1, . . . , zt) .

(7.2)

We can set a threshold γ based on the rate of true to false
rejections, so γ = 16 would mean that we try to achieve
16 times as many true rejections than false rejections γ =
1−β
α , which is the the usual goal of a primary analysis with

intended power 1 − β = 0.8 and type-I error rate α =
0.05. To obtain error control, we need to specify the pre-
experimental rejection odds (Bayarri et al., 2016) γ · π

1−π
and use these to threshold the posterior odds (Eq. (7.2)).
We define R to be the region of the sample space and R
the event for which Opost(z1, . . . , zt)≥ γ·

π
1−π , i.e. the event

that we reject, and obtain the following:
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1−π

�

P0

�

Opost (Z1, . . . , Zt |A (t), T ≥ t)≥ γ · π
1−π

�

=
P1
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Opost(Z1, . . . , Zt)≥ γ ·
π

1−π
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P0
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Opost(Z1, . . . , Zt)≥ γ ·
π

1−π

�

=
P1[R]
P0[R]

≥
P1[R]

P1[R] ·
1
γ

= γ,

(7.3)

where the inequality follows since if
Opost

�

z1, . . . , zt

�

�A (t), T ≥ t
�

≥ γ · π
1−π :

f1 (z1, . . . , zt)
f0 (z1, . . . , zt)

·
π

1−π
≥ γ ·

π

1−π

then
f1 (z1, . . . , zt)
f0 (z1, . . . , zt)

≥ γ and

P0[R] =
∫

R

f0(z1, . . . , z2)≤
∫

R

f1(z1, . . . , z2)
γ

=
P1[R]
γ

.

(7.4)

So by specifying π
1−π and an intended rate of true to false

rejections γ, we can calculate the posterior odds based on
the likelihood ratio, compare it to the threshold based on
γ and control fraction γ of type-I errors under the null hy-
pothesis. Note that anyA (t) is allowed, also multiple test-
ing in a series or selection for the most promising meta-
analysis timing. Setting a threshold to the Bayes posterior
odds as described above, achieves conditional error con-
trol under any form of Accumulation Bias.

7.2 Likelihood ratio’s error control surviving
over time

A likelihood ratio itself can be used as a test statistic to
obtain a procedure that controls P0[ETYPE-I] surviving over
analysis times t, as in Section 5.2. Suppose we simply
reject if the likelihood ratio in favor of the alternative is
larger than 1/α, ignoring any knowledge we might have
about the accumulation bias process and the prior odds.
We then find:

P0

�

there exists t ≤ T with E (t)TYPE-I andA (t)
�

= P0

�

∃t ≤ T : E (t)TYPE-I;A
(t)
�

= P0

�

∃t ≤ T : LR10
(t) (Z1, . . . , Zt)≥

1
α

;A (t)
�

≤ P0

�

∃t > 0 : LR10
(t) (Z1, . . . , Zt)≥

1
α

�

≤ α.

(7.5)

The final inequality is a classic result, proofs of which
can be found in, for example, Robbins (1970); Shafer
et al. (2011) and (with substantial explanation) Hendrik-
sen et al. (2018); see also Royall (2000).
Thus, the type-I error control survives over time in the
sense that the P0-probability that we ever reject at a meta-
analysis time is bounded by α. To further illustrate and
interpret error control surviving over time, we define

F (t)TYPE-I = E
(t)
TYPE-I ∩E

(t−1)
TYPE-I,∩ . . .∩E

(1)
TYPE-I

as the event that the first type-I error E (t)TYPE-I in a series hap-

pens at time t (here E
(t ′)
TYPE-I means ‘no type-I error at time

t ′). As we show in Appendix A.6, the previous inequality
implies that

∑

t

P0

�

F (t)TYPE-I,A
(t), T ≥ t

�

≤ α. (7.6)

The change in notation from E (t)TYPE-I to F (t)TYPE-I is necessary
since we want a general result for all forms of Accumula-
tion Bias and do not want to assume that the series stops
growing after the threshold is crossed (as is assumed in
living systematic reviews, see Section 4.3.4). But since it
is not possible to control the amount of errors if multiple
errors are made in the same series, we count only the first
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error in Eq. (7.6). As such, we are able to control the num-
ber of topics for which an error ever occurs in the series by
comparing the likelihood ratio to the threshold 1

α .
It may seem surprising that it is possible to obtain error
control in the sense of Eq. (7.6) for Accumulation Bias
scenarios like Gold Rush example. After all, in this example
large study series have only a large probability to occur
if they contain many extreme (significant) results. So it
seems that we would inevitably hit a type-I error once we
perform a meta-analysis. But note that in this example, the
expectation of A(t | Z1, . . . , Zt) (A0(t)) is much larger for
small t — due to the S(t) component — so that most meta-
analyses will be of small study series, or even one-study
series, with small type-I error rates. In terms of Table 3,
controlling error this way is possible because error control
runs over all topics, regardless of the realized series size.
Thus, such error control is only meaningful if the series for
each topic are continuously monitored — including those
consisting of only pilot studies.

8 The choice between error control
conditioned and surviving over time

Many meta-analysts seem reluctant to apply living sys-
tematic review techniques to all meta-analyses. We be-
lieve that this reluctance can be defended based on the
assumed approach to error control surviving over time.
Surviving over time means that all possible analysis times
are weighted and that — in the long run —- a large pro-
portion of meta-analyses will be one-, two- and three-
study meta-analyses and never expand. To the occasional
meta-analyst, not involved in continuously updating meta-
analyses, two- or three-study meta-analyses might never
occur. Also, it requires a stretch of mind to imagine one-
study meta-analyses part of the long run properties of your
specific 15-study meta-analysis. But it has been argued
that “primary research is increasingly viewed as part of a
wider sequential process” (Higgins et al., 2011, p. 918),
or at least, that it should be (Lund et al., 2016). Whether
this approach to error control is acceptable might also be
very field specific. Among medical meta-analyses in the
Cochrane Database of Systematic Reviews, two- and three-
study meta-analyses are common (Davey et al., 2011), but
in other fields meta-analyses might only be performed if
many more studies are available.
If, on the other hand, we want to stick to the conven-
tional conditional approach to meta-analysis, we need ad-
ditional assumptions on the fraction π of true alternative
hypotheses among pilot studies to threshold the posterior
odds. Assuming a base rate π means that we are essen-
tially Bayesian about the null and alternative hypothesis4,

4We do not necessarily have to be completely Bayesian: even if the null
and/or alternative are composite, we can define “likelihood ratios” that
do not rely on prior guesses about the parameters within the models. But

but there is no need to be strictly Bayesian: in practice, we
might play around, and try best case and worst case π, to
see how it affects our posterior odds. The important thing
for us to note within the context of this paper is that, when
concentrating on posterior odds, we can ignore all details
of the Accumulation Bias process and still obtain meaning-
ful results, in the form of error control that balances type-I
and type-II errors.
Summarizing: If we prefer conditional error control, we
can obtain meaningful error control despite Accumulation
Bias if we use tests based on likelihood ratios, but using
prior odds for the base rates (and being partially Bayesian)
is then unavoidable. If we prefer not to rely on any prior
odds, we can still obtain meaningful error control despite
Accumulation Bias if we use tests based on likelihood ra-
tios, but then we have to resort to error control surviving
over time instead of conditional error control.
The former, conditional approach balances type-I and
type-II errors and thus takes power into account. The im-
portance of taking power (the complement of a the type-II
error rate) into account has been argued before by many.
In the general approach to error control in individual stud-
ies, the expected type-I error rate is fixed by the signif-
icance level α, and the type-II error rate minimized by
the experimental design and sample size. In retrospective
meta-analysis, however, sample size (or study series size
t) is not under the control of the meta-analyst. Also, the
study series size t is only a snapshot of a possibly grow-
ing series (T ≥ t), since more studies might be performed
in the future. Therefore also estimations of meta-analysis
power are snapshots at a specific meta-analysis time. Nev-
ertheless, it is often argued that many meta-analyses are
underpowered (Turner et al., 2013; Davey et al., 2011)
and that this should be taken into account in evaluating
significance in meta-analyses. In Trial Sequential Analysis
(Wetterslev et al., 2008) for example, an alternative hy-
pothesis is formulated to judge the fraction of a required
sample size available at t studies. A later review on trial
sequential analysis noted:

statistical confidence intervals and significance
tests, relating exclusively to the null hypothe-
sis, ignore the necessity of a sufficiently large
number of observations to assess realistic or
minimally important intervention effects. —
Wetterslev, Jakobsen & Gluud (2017, p. 12)

Testing procedures based on likelihood ratios are very
well suited to take an alternative distribution with min-
imally important intervention effect into account. Espe-
cially when balancing type-I error and power by thresh-
olding posterior odds. Specifying power in tests without
fixed sample sizes is studied extensively in Grünwald et al.

we do need to be partially Bayesian, in the sense that we need to specify
a base rate for the null (Grünwald et al., 2019)
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(2019) and will be the focus of future research into likeli-
hood ratios for meta-analysis.

9 Why likelihood ratios work: depen-
dencies as strategy

We calculate p-values to judge the extremeness of our re-
sults under the null hypothesis, and to control type-I er-
rors. But the p-value method is a fairly complicated ap-
proach to that goal when it comes to meta-analysis: To
obtain a valid p-value for a series of studies, the sampling
distribution under the null hypothesis needs to specify ex-
actly how the series and the meta-analysis timing came
about. Only for a completely and accurately specified pro-
cess can the extremeness of the data be judged and com-
pared to a threshold based on the tail area of the sampling
distribution.
Fortunately, much simpler approaches to the same goal
can be found. One intuitive way is to consider a series of
bets s(Z1), s(Z2), . . . , s(Zt) against the null hypothesis that
make a profit when observed study results are extreme.
The more extreme the results, the larger the profit. The
bet needs to be designed in such a way that, under the
null hypothesis, no profit is to be expected. Each null re-
sult might costs $1 to play the bet, but in expectation also
makes a $1 profit:

E0[s(Zt)] = $1. (9.1)

Suppose that you start by investing $1 in the first bet. Af-
ter each study, you either decide to do a new study, and
reinvest all profit obtained so far, or to stop and cash out.
If you cash out after, for example, three studies, your profit
is s(Z1) · s(Z2) · s(Z3).
As long as Eq. (9.1) holds for each bet, you cannot ex-
pect to profit under the null hypothesis; no matter what
the process is for deciding, based on past data, to con-
tinue to new studies or to stop. This can be mathemat-
ically proven using martingale theory, but intuitively the
reason is clear: The situation is entirely analogous to that
in a casino where you cannot expect to make a salary out
of playing — no matter how sophisticated the strategy you
use on the order of the games or when you want to play
or want to go home. Thus, irrespective of the rules used
for continuation and stopping, making a large profit casts
doubt on the null hypothesis even without knowledge of
the entire sampling distribution.
This idea of testing by betting is described in great detail
by Shafer and Vovk (2019), and Shafer et al. (2011) show
that a likelihood ratio is a beautiful way to specify such
bets. Briefly, if we set s(Zt) = f1(Zt)/ f0(Zt), then Eq. (9.1)
obviously holds:

E0

�

f1(Zt)
f0(Zt)

�

=

∫

z

f0(z)
f1(z)
f0(z)

dz =

∫

z

f1(z)dz = 1. (9.2)

Under this definition, s(z1) · . . . · s(zt) has two interpreta-
tions: First, it is the joint likelihood ratio for the first t stud-
ies. Second, it is the amount of profit made by sequentially
reinvesting in a bet that is not expected to make a profit
under the null hypothesis.
So we can think of the meta-analyst acting at time t as
earning the profit specified by the likelihood ratio of the
data until the t-th study, and using that information to
advise on reinvestment in future studies. This procedure
will not lead to bankruptcy if the null hypothesis is true,
and will therefore allow you to keep reinvesting. If the
null hypothesis is not true, the better the focus of the bets
— determined by how close the alternative distribution in
the likelihood ratio is to the data-generating distribution
— the larger the expected profit. The crucial point is that
every strategy is allowed, so also the ineffective ones that
produce research waste: also not taking into account ear-
lier studies is a strategy.
This interpretation — likelihood ratios as betting strate-
gies — explains how dependencies in the series relate to
the test statistic. Any Accumulation Bias process can be
considered a strategy to reinvest profit made so far, by de-
ciding on new studies (S(t)), or cashing out the current
profit (equivalent to performing a meta-analysis at time t
and advising against further studies: A (t), T = t). This
is the intuition behind the proof of results like Eq. (7.5)
and (7.6) — bounds on type-I error probability in meta-
analysis —- that can be derived without knowledge of the
Accumulation Bias process. These bounds simply express
that under the null, a large profit is unlikely under the null
no matter what the Accumulation Bias is.

it is always legitimate to continue betting, and
this makes each individual study a more infor-
mative element of a research program or a meta-
analysis —Shafer (2019, p. 2)

In contrast to an all-or-nothing test for one study, inspect-
ing the betting profit of a study is a way to test the data
without loosing the ability to build on it in future stud-
ies. The likelihood ratio has the ability to maximize the
rate of growth among all studies in a series, instead of the
power of a single p-value test on a prespecified series size
or stopping rule (Shafer, 2019). It allows for promising
but inconclusive initial studies and small study series to
be revisited in the light of new studies, but also to keep
track of the combined evidence at any time.
In this sense, the use of likelihood ratios in meta-analysis
is a statistical implementation of the goals of the Evidence
Based Research Network (Lund et al., 2016). Choosing your
bets wisely, by informing new studies by previous results
is just another betting strategy. You optimize what studies
to perform, and how to design and analyze them. Imple-
menting this rationale in the statistics allows to maximize
the efficiency of future research and reduce research waste
(Chalmers and Glasziou, 2009).
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9.1 Expanding likelihood ratios to Safe Tests
When the null hypothesis is simple, it can be shown that
either using bets that satisfy Eq. (9.1) under the null or us-
ing likelihood ratios or using Bayes factors is equivalent,
and the gambling approach can be viewed as a form of
Bayesian inference. But for composite null (as in the t-
test scenario, with unknown variance σ2), the situation is
trickier: bets that satisfy Eq. (9.1) under all distributions
in the null hypotheses can still be constructed, but their re-
lation to likelihood ratios is more complicated. The paper
Safe Testing (Grünwald et al., 2019) investigates this set-
ting in great detail and shows that ‘error control surviving
over time’ (Section 7.2) can still be obtained for general
composite null.

10 Discussion
We need to consider time — study chronology and analysis
timing — in meta-analysis. We need it because estimates
are biased by Accumulation Bias when they assume that a
t-study series is a random sample from all possible t-study
series, while in fact dependencies arise in accumulating
science. We also need time because sampling distributions
are greatly affected by it, and the (p-value) tail area ap-
proach to testing is very sensitive to the shape of the sam-
pling distribution. And we need to consider time because
it allows for new approaches to error control that recog-
nize the accumulating nature of scientific studies. Doing
so also illustrates that available meta-analysis methods —
general meta-analysis and methods for living systematic
reviews — target two very different approaches to type-I
error control.
We believe that the exact scientific process that determines
meta-analysis time can never be fully known, and that ap-
proaches to error control need to be trustworthy regard-
less of it. A likelihood ratio approach to testing solves this
problem and has even more appealing properties that we
will study in a forthcoming paper. Firstly, it agrees with
a form of the stopping rule principle (Berger and Berry,
1988). Secondly, it agrees with the Prequential principle
(Dawid, 1984). Thirdly, it allows for a betting interpre-
tation (Shafer and Vovk, 2019; Shafer, 2019): reinvesting
profits from one study into the next and cashing out at any
time.
But this approach still leaves us with a choice: either as-
sume a prior probability π and separate meta-analysis of
various sizes from each other and individual studies, or
control the type-I error rate over all analysis times t and
include individual studies in the meta-analysis world. The
first approach is more of a reflection of the current real-
ity in meta-analysis, while the second can be aligned with
the goals from the Evidence-Based Research Network (Lund
et al., 2016) and living systematic reviews (Simmonds et al.,
2017).
Accumulation Bias itself might not need to be corrected

at all, which is why we want to close this paper with the
following quote:

the intuitive notion that bias is something bad
which must be corrected for, does not even fit
well within the frequentist framework. [...] one
could not state “use estimate X for a fixed sam-
ple size experiment, but use X − c(X ) (correcting
for bias) for a sequential experiment,” and re-
tain frequentist admissibility in the “real” situa-
tion where one encounters a variety of both types
of problems. The requirement of unbiasedness
simply seems to have no justification. —Berger
& Berry (1988, p. 67)
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A Appendix
A.1 Common/fixed-effect meta-analysis
Here we derive Eq. (3.1a) and (3.1b), shown in (A.4), from the notation in (Borenstein et al., 2009), specifically for
the setting where means and standard deviations are reported in the study series Borenstein et al. (2009, Ch. 4 ). We
slightly adjusted the notation by using X T and X P instead of X 1 and X 2 to indicate the treatment and placebo group
estimate — to avoid confusion with the study numbering — and using Di instead of Di (Borenstein et al., 2009, p. 22)
or Yi (Borenstein et al., 2009, p. 66) as an analogy to the group study mean Xi and we denote its standard deviation as
σDi

. We introduce the superscript (t) to emphasize a meta-analysis estimate of a series of studies 1 up to t.

Let Di = XTi − XPi be a random variable that denotes the difference between two observations (random or paired) from
the treatment group (XTi) and the placebo group (XPi) in study i. Let σ̂Di

be the estimate of the population standard
deviation of these difference scores in study i. Following the usual assumptions of common/fixed-effect meta-analysis,
no distinction is made between σ̂Di

and the true σDi
(Borenstein et al., 2009, p. 264) and for simplicity, we assume these

standard deviations to be equal across studies:

For all i, j ∈ {1, 2, . . . , t} σ̂Di
= σDi

= σ̂Dj
= σDj

= σD (A.1)

Let Di = X Ti − X Pi be the estimated treatment effect in study i, i.e. the difference between the average effect in the
treatment group X Ti in study i and the average effect in the placebo group X Pi in study i. The population treatment effect
is denoted by ∆, and is the difference between the population mean effects in the two groups, ∆ = µT −µP (Borenstein

et al., 2009, p. 21). Let Zi =
Di

SEDi
be the treatment Z-score of study i that is standardized with regard to the treatment

effect standard error. Equation (A.2) displays the general definition of Z (t), the Z-score of the combined effect estimated
by a common/fixed-effect meta-analysis on studies 1 up to and including t (adapted notation from Borenstein et al.
(2009, p. 66)):

Z (t) =
M (t)

SEM (t)

M (t) =

∑t
i=1 Wi Di
∑t

i=1 Wi

Wi =
1

SE2
Di

SEM (t) =

√

√

√

1
∑t

i=1 Wi

(A.2)

Let di =
Di
σD

be the Cohen’s d of the treatment score in study i (Borenstein et al., 2009, p. 26) — so standardized
with regard to the estimated population standard deviation — and let ni denote the sample size in the treatment and
placebo arm of study i (under the assumption that all studies have equal size study arms). Since SE2

di
= 1

ni
, we let

wi =
1

SE2
di

= 1
1
ni

= ni denote the weights for di . Based on these weights, M (t) and SEM (t) can be expressed as follows, using

the fact that Di = diσD, SE2
Di
= σ2

D
ni

, and thus Wi = wi
1
σ2

D
(see also Borenstein et al. (2009, p. 82)):

M (t) =

∑t
i=1 wi

1
σ2

D
diσD

∑t
i=1 wi

1
σ2

D

=

∑t
i=1 widiσD
∑t

i=1 wi

=

∑t
i=1 nidiσD
∑t

i=1 ni

SEM (t) =

√

√

√

1
∑t

i=1 wi
1
σ2

D

=

√

√

√

σ2
D
∑t

i=1 wi

=

√

√

√

σ2
D
∑t

i=1 ni

(A.3)

With N (t) =
∑t

i=1 ni and di =
Zi�
ni

, the common/fixed-effect Z-score Z (t) of studies i up to and including t can be derived
as an average weighted by the square root of the individual study sample sizes:
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With N (t) =
∑t

i=1 ni and di =
Zi�
ni

, the common/fixed-effect Z-score Z (t) of studies i up to and including t can be derived
as an average weighted by the square root of the individual study sample sizes:

Z (t) =

∑t
i=1 ni diσD

N (t)
�

σ2
D

N (t)

=

∑t
i=1 nidi
�

∑t
i=1 ni

=

∑t
i=1 ni

Zi�
ni�

N (t)
=

∑t
i=1
�

ni Zi�
N (t)

=

∑t
i=1

�
nZi�

t
�

n
=

1
�

t

t
∑

i=1

Zi for n1 = n2 = . . .= nt = n

(A.4)

A.2 Expectation Gold Rush conditional pilot Z-score
Here, and in the following, we assume that there is always a first study (P [T ≥ 1] = 1).

E0 [Z1 | T ≥ 2] =
E0

�

Z1

�

�

� T ≥ 2, Z1 ≥ z α
2

�

· P0

�

T ≥ 2
�

�

� T ≥ 1, Z1 ≥ z α
2

�

· P0

�

Z1 ≥ z α
2

�

P0 [T ≥ 2]

+
E0

�

Z1

�

�

� T ≥ 2, |Z1|< z α
2

�

· P0

�

T ≥ 2
�

�

� T ≥ 1, |Z1|< z α
2

�

· P0

�

|Z1|< z α
2

�

P0 [T ≥ 2]

=
E0

�

Z1

�

�

� T ≥ 2, Z1 ≥ z α
2

�

·ω(1)S ·
α
2 + E0

�

Z1

�

�

� T ≥ 2, |Z1|< z α
2

�

·ω(1)NS · (1−α)

ω
(1)
S ·

α
2 +ω

(1)
NS · (1−α)

(A.5)

since

P0 [T ≥ 2] = P0

�

T ≥ 2
�

�

� T ≥ 1, Z1 ≥ z α
2

�

· P0

�

Z1 ≥ z α
2

�

+ P0

�

T ≥ 2
�

�

� T ≥ 1, |Z1|< z α
2

�

· P0

�

|Z1|< z α
2

�

=ω(1)
S
·
α

2
+ω(1)

NS
· (1−α)

This expression only considers significant positive and nonsignificant results in the pilot study, since we defined in Eq.
(3.2) that significant negative results have 0 probability to produce replication studies. We can replace P0 by P in the
middle term of the fractions in the first two rows because new study probabilities are independent from the data generating
distribution, as discussed in Section 3.3.

A.3 Expectation Gold Rush conditional meta-analysis Z-score

For all t ≥ 2 :

E0

�

Z (t)
�

� T ≥ t
�

=

∑t
i=1
�

ni E0 [Zi | T ≥ t]
�

N (t)

=
�

n1 E0 [Z1 | T ≥ t] +
∑t−1

i=2
�

ni E0 [Zi | T ≥ t] +�nt E0 [Zt | T ≥ t]
�

N (t)

=
�

n1 E0 [Z1 | T ≥ 2] +
∑t−1

i=2
�

ni E0 [Zi | T ≥ i + 1]
�

N (t)

(A.6)

Here we use that the last study in a series under the Gold Rush example is unbiased and has expectation 0 under the null
hypothesis. We also use that the expansion of the series beyond the next study does not influence a study’s expectation
in our Gold Rush example: for t ≥ 2 E0 [Z1 | T ≥ t] is the same as E0 [Z1 | T ≥ 2], and for any i and t ≥ i, E0 [Zi | T ≥ t]
is the same as E0 [Zi | i + 1]).
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Here we use that the last study in a series under the Gold Rush example is unbiased and has expectation 0 under the null
hypothesis. We also use that the expansion of the series beyond the next study does not influence a study’s expectation
in our Gold Rush example: for t ≥ 2 E0 [Z1 | T ≥ t] is the same as E0 [Z1 | T ≥ 2], and for any i and t ≥ i, E0 [Zi | T ≥ t]
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A.4 Mixture variance
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(A.7b)

Because squaring is a convex function, we know from Jensen’s Inequality that the average squared mean (A.7a) is larger
than the square of the average mean (A.7b). So the variance of the mixture is larger than the mixture of the variances.

A.5 Maximum time probability
The survival function S(t−1) represents the probability P[T ≥ t]. The survival function is the complement of a cumulative
distribution function on maximum time or stopping times T, known in survival analysis as the lifetime distribution function
F(t − 1):

S(t − 1) = 1− F(t − 1)

with F(t − 1) =
t−1
∑

i=0

P[T = i]
(A.8)

S(t − 1) = 1−
t−1
∑

i=0

P[T = i]

S(t) = 1−
t−1
∑

i=0

P[T = i]− P[T = t]

therefore: P[T = t] = S(t − 1)− S(t)

(A.9)

A.6 Error control surviving over time in terms of a sum
Let �′(t)TYPE-I be the even that both � (t) and T ≥ t holds. Using in the first equality below that the events �′(1)TYPE-I,�

′(2)
TYPE-I, . . .

are all mutually exclusive (so that the union bound becomes an equality), we get:
∑

t

P0

�

� (t)TYPE-I,�
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�

≤
∑

t
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�
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�
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�
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�

∃t > 0 : LR10
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1
α

�

≤ α
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Because squaring is a convex function, we know from Jensen’s Inequality that the average squared mean (A.7a) is larger
than the square of the average mean (A.7b). So the variance of the mixture is larger than the mixture of the variances.

A.5 Maximum time probability
The survival function S(t−1) represents the probability P[T ≥ t]. The survival function is the complement of a cumulative
distribution function on maximum time or stopping times T, known in survival analysis as the lifetime distribution function
F(t − 1):

S(t − 1) = 1− F(t − 1)

with F(t − 1) =
t−1
∑

i=0

P[T = i]
(A.8)

S(t − 1) = 1−
t−1
∑

i=0

P[T = i]

S(t) = 1−
t−1
∑

i=0

P[T = i]− P[T = t]

therefore: P[T = t] = S(t − 1)− S(t)

(A.9)

A.6 Error control surviving over time in terms of a sum
Let �′(t)TYPE-I be the even that both � (t) and T ≥ t holds. Using in the first equality below that the events �′(1)TYPE-I,�
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TYPE-I, . . .

are all mutually exclusive (so that the union bound becomes an equality), we get:
∑

t

P0

�

� (t)TYPE-I,�
(t), T ≥ t
�

≤
∑

t

P0

�

� (t)TYPE-I, T ≥ t
�

= P0

�

∃t > 0 : � (t)TYPE-I, T ≥ t
�

≤ P0

�

∃t > 0 : � (t)TYPE-I

�

= P0

�

∃t > 0 : � (t)TYPE-I

�

= P0

�

∃t > 0 : LR10
(t) (Z1, . . . , Zt)≥

1
α

�

≤ α

where the final inequality is just the final inequality of Eq. (7.5) again. Eq. (7.6) follows.

A.7 Code availability
Table 1, Figure 1 and Table 2 were calculated, simulated and created by R code available in the EASY-DANS repository:
https://doi.org/10.17026/dans-x56-qfme (see Extended data(Schure, 2019))
Details on the OS and version at which it were run can be found below:

• Platform: x86 64-redhat-linux-gnu

• Arch: x86 64

• OS: linux-gnu

• System: x86 64, linux-gnu

• R version: 3.5.3 (2019-03-11) Great Truth

• svn rev: 76217

The following packages were used:

• ggplot2 version 3.0.0

• graphics version 3.5.3

• grDevices version 3.5.3

• methods version 3.5.3

• stats version 3.5.3

• utils version 3.5.3
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1. Introduction
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2. Accumulation Bias
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series will reach a meaningful size and that   might depend on results in the series.doing so
One but last sentence: So meta-analysis also report….  (should be meta-analys s)e
 
Section 3.6 
Typo: The inflation actual inflation in the type-I error…
Figure 1: in black and white print the colours in the legend seem to differ from the colours in the graph.
Table 2: If possible, it might be handy to add the P̃  and P  to the title (after bias only and after bias as
well as impaired sampling distribution).
 
Section 4.5
Typo: These cumulative meta-analysis judge…. : should be meta-analys se
 
Section 5
Here you refer to “another illustration”… as the   Scenario. However, where do you discuss thisToy Story
scenario?
 
Section 6.1 
Typo: “But   effects…”. Also somewhat unclear sentence. I suppose that you mean that is difficult tothis
define a cut-off for the number of early studies to be excluded from meta-analysis.
 
Section 6.2
Here you compare the prior odds of Ioannidis with the fraction of pilot studies from the null and alternative
distribution π / (1-π). However, you did not define π before, and if I understand it correctly, π is the fraction
of studies from the alternative distribution, although this text (first line) suggests the other way around.
 
Section 7.1
Formula 7.2: Please define H  and H .
Please edit sentence directly below formula: …16 times as many true rejections   falsethan (as?)
rejections (with?) γ = (1-β) / α.
Formula 7.4: P  : should be integral over z , …, z  (instead of z ) (twice). Should it not contain also
dz(1).…dz(t)?

I noticed that you don’t use the word test, only “error control”. It is not fully clear to me: if we use the
threshold based on the Bayes posterior odds, does that also result in a p-value, or is it just a yes/no
answer? Or can we use a distribution? (you elaborate on this only in Section 9).
 
And how do we specify R= π / (1-π)?  Should this be influenced by the study results seen thus far? As you
state in section 6.2 on π / (1-π): “the fraction of pilot studies from the null and alternative distribution. …
The only available source of information would be previous study results… “. However, this would mean
that – indeed -  depending on the timing of the meta-analysis, we would define a different R.
Or should we use the same – more general -  R as Ioannidis, ie 1:1, or 2:1?
 
Interesting is also that the threshold, that is based on the pre-experimental rejection odds, becomes more
stringent if we believe the ratio of true to false rejections to be higher, e.g. if R =2 and γ = 16, the threshold
becomes 32, but if R=1, the threshold is 16. Could you elaborate on that? You do elaborate a bit in
Section 8, but for me it is still not very clear.
 
Section 9
Edit, 2  paragraph, … a series of bets s(Z ), … against the null hypothesis that make a profit….
I suggest to (re)move “against the null hypothesis”  to facilitate easier reading.
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Edit, 2  paragraph, … a series of bets s(Z ), … against the null hypothesis that make a profit….
I suggest to (re)move “against the null hypothesis”  to facilitate easier reading.
Typo: each null result might cost  1 dollar (should be: cost)s
“If you cash out, your profit is s(Z ) s(Z ) s(Z )”. Are the s(Z) bets not odds or probabilities?  Should we
not add the profit here? And subtract the 1 dollar initial investment? Or do I show here my lack of
knowledge on gambling?  Only later, when you suggest s(Z) = f /f , this makes more sense.
Typo, second column before quote of Shafer: twice “under the null”.
Inspecting the betting profit of a study: do you mean calculating the LR for that study?
I don’t understand the following sentence: “The LR has the ability to maximize the rate of growth among
all studies in a series”.
 
Section 10
Typo: 3  paragraph: separate meta-analysis of various sizes…, should be meta-analys se
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 Steven P. Ellis
Department of Psychiatry, New York State Psychiatric Institute (NYSPI), Columbia University, New York
City, NY, USA

The article explains how bias arises in meta-analysis and explains how, in theory, one can nonetheless
control the error rate through use of the likelihood ratio statistic. I found the use of the likelihood ratio quite
interesting.

2.2, p. 4 "This is also the case when the timing of the meta-analysis is based on an (overly) optimistic last
study estimate or an (overly) optimistic meta-analysis synthesis is considered the final one."

Section 3, p. 4. "We denote this example ..." How about "We CALL this example ..."

(3.1a), p. 5: I think it should just be  , not √ . [Maybe not?]n n

p. 5: "... if the study shows a significant positive effect" So you are doing one-sided tests. Why do you do
alpha/2-size tests, for example 0.025? Why not alpha-size, for example 0.05? Getting a significantly low Z
can have the interpretation that that treatment being tested seems to actually be harmful. Therefore no
further studies should be done with it.

p. 5: Why is  ≥  + 1? Why might the current study ultimately prove to be the last one?T t 

p. 6: It seems that the P in (3.2) has nothing to do with the null and alternative hypotheses. That P has to
do with the behavior of researchers.

p. 6: The rate 2.5/(2.5+1.9) might be justified by observing that that number is just the conditional
probability of getting a positive finding conditional on another study being done.

p. 6: "As a result, study series that contain more significant studies have larger probabilities to come into
existence than those that contain less." That sentence is vague.

p. 6: There appears to be a typographical error in formula (3.3). The factors alpha/2 and (1-alpha)
shouldn't be in the numerator. However, the value 0.487 on the right-hand side is correct. (Checked by
simulation.)

p. 6: "... the last study is unbiased ..." What do you mean by "last study", the Tth study? The last study
before what? Let S denote the number of studies available at the time of the meta-analysis. S is random.
But the Sth study is not unbiased (given that there will be a meta-analysis) because the decision to do the
meta-analysis partly depends on the outcome of study S. Since the subject of the paper is meta-analysis,
it is the first S studies, i.e., the studies available at the time of the meta-analysis, that are relevant.

Suppose U is a fixed or random time that is statistically independent of the study series. Is the last study
before U unbiased? What if the last study before U was published 50 years ago? The fact that no study
has been done in 50 years probably says something about the outcome of the last study. So even though
U is independent of the study series, conditional on the event that no study has been done in the last 50
years prior to U, that last study is not unbiased. (Perhaps one should pay attention not just to the number
of studies that have been performed but also to when they were performed.) It is very difficult to identify a
study that is unbiased conditional on everything one knows about the study series. Instead of looking at
past studies, one could look at a future study. One might say "I will start a meta-analysis after the next

study is completed". The next study would be unbiased, but what if there are no further studies? That

i i
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study is completed". The next study would be unbiased, but what if there are no further studies? That
strategy would work if one knew for sure that there will be a study. For example, if you knew at time U that
some researchers have already started -- but not completed -- a study.

p. 7: "inflation actual inflation" looks like a typo.

p. 7: Equation (3.5). Have you defined the P̃  notation? I think you should one sided-tests. (See above.)

p. 8:   is a conditional probability. The notation “ ,…, ” for a study series apparentlyProbability Notation z
hasn't been introduced yet.

p. 9: I don't understand the footnote.

P. 10: I don't understand the sentence "In this section we assume that the timing of the meta-analysis test
is independent from the estimates that determined the size of the series."

p. 15: "But this effects will be ..." Perhaps this should be "But THESE effects will be ...".

p. 16: "... which has the same meaning as the fraction ..." Perhaps this should be "... which has the same
meaning as the RATIO ..."

P. 16: "The likelihood ratio is a test statistic that depends on the specification ..." Perhaps this should be
"The likelihood ratio is a test statistic that ONLY depends on the specification ..."

p. 16: "Any data sampled from an alternative distribution will have the same analysis time probabilities as
data ..." I prefer "GIVEN THE DATA, any data sampled from an alternative distribution will have the same
analysis time probabilities as data ..."

p. 17: The authors sometimes introduce symbols without defining them. For example, I couldn't find any
place where the symbol γ is defined. From context one can figure out what it means, but I would prefer if it
were defined somewhere.

p. 19: "In contrast to an all-or-nothing test for one study, inspecting the betting profit of a study is a way to
test the data without loosing the ability..." I think it should be "In contrast to an all-or-nothing test for one
study, inspecting the betting profit of a study is a way to test the data without LOSING the ability...".

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
No source data required
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