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Analogues of the Erdos-Ko-Rado theorem are proved for the Boolean algebra of all 

subsets of { 1, ... n) and in this algebra truncated by the removal of the empty set and the 

whole set. 

1. Introduction 

One of the basic results in extremal set theory is the Erdos-Ko-Rado (EKR) Theorem [5]: 

if :ff' is an intersecting family of k-element subsets of [l, n] = { 1, 2, ... , n} (i.e. every two 

members of ff have non-empty intersection) and n ~ 2k, then lffl ,::::; G:::D and this bound 

is attained. We can consider k-subsets of [1, n] as length-k chains in the (total) order 

1 < 2 < ... < n: using this terminology, the EKR theorem is a result about intersecting 

k-chains in a special partially ordered set. 

Erdos, Faigle, and Kern [3] pointed out that certain results of Deza, Frankl [2, Theorem 

5.8], and Frankl and Fliredi [7] on intersecting sequences of integers may be interpreted 

as results on intersecting families of chains in some partially ordered sets. 

The purpose of this note is to prove analogues of the EKR theorem in two other 

partially ordered sets: in the Boolean algebra &4n of all subsets of [1,n] (with A ,::::; B 

if A c B), and in the truncated Boolean algebra !!l; := !!ln \ {0, [1, n]}. We say that 

.2' == (Li, L2, ... , Lk) is a k-chain in !!ln if Li E &4n for all 1 ,::::; i ,::::; k and Li is a proper 

subset of Li+ 1 for all 1 ,::::; i ::; k - 1. A family ff of k-chains in &4n is intersecting if any 

two elements of ff have non-empty intersection. 

k-chains and an intersecting family in !!l; are defined analogously. Let f (n, k) and 
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f-(n, k) denote the maximum size of intersecting families of k-chains in 98n and :JJ;, 

respectively. 

Obviously, the family .~(A) of all k-chains containing some fixed A E f!Bn is an 

intersecting family, and the same is true for the family ;F-(A) of all k-chains in :!4; 

containing some fixed A E :Jt;. Our main result is the following. 

Theorem 1.1. For any k, n, we have 

( i) f(n, k) = !ff(0JI and 
(ii) f-(n,k) = i:P-((1})1. 

Moreover.for 2sk~n+1, the only extremal.families in 9811 are ff(</J) and ff([l,n]). 

The most well-known proof techniques for the original EKR Theorem are shifting and 

the kernel method. (For a brief introduction to these methods, see e.g., the survey papers 

of Frankl [6] and Filredi [8].) The kernel method usually ensures short and easy proofs, 

but rarely gives the exact range of the result. Shifting gives exact (but perhaps slightly 

more complicated) proofs. 

The situation is very similar in our case: Z. Fiiredi (personal communication) showed, 

using only the kernel method, that for n ~ 6k Ink Theorem 1.1 ( i) holds. In our proof of 

Theorem 1.1, we use an analogue of the shifting method and obtain a result without any 

restrictions on the parameters. 

We remark, however, that to obtain sharp results in the case of t-intersecting families 

of chains, or the poset obtained by deleting the top m and bottom m levels in 98 11 for 

some m < n/2, it seems to be necessary to combine the two methods. Hilton-Milner 

type generalizations are also possible. Moreover, we have a common generalization of 

the original EKR theorem and Theorem 1.1. We shall return to these problems in a 

forthcoming paper. 

Let S(p, q) denote the Stirling numbers of the second kind, i.e. S(p, q) is the number 

of partitions of a p-element set into q nonempty parts. It is easy to see that lff-({l})l = 

k !S(n - l, k ), since each ::!' = (L 1, L2 , ... , Lk) E ;F-({ l}) corresponds to an ordered partition 

(L2 \ L1,L3 \ L2, ... ,Lk \ Lk-1, [1,n] \ Lk) of [2,n]. Similarly, [.Y"(</J)i = (k- l)!S(n+ l,k) = 

(k - 1) !S(n, k - I)+ k !S(n, k), the two last terms corresponding to the number of k-chains 

in ff(</J) containing and not containing [1, n], respectively. 

In the proofs, we shall often use the well-known recursion 

S(n,k) = S(n -1,k- l) +kS(n -1,k) 

(see e.g., [9, Chapter l]). In particular, lff(</J)i = (k- l)!S(n+ 1,k). 

2. Shifting 

In this section we begin the proof of Theorem 1.1. We reduce the problem to the 

examination of so-called compressed sets of chains and prove that these satisfy a strong 

intersection property. 

Let ff be a family of pairwise intersecting k-chains from El 11 or 98-;;, and let l s i < j s n 

be integers. The (i,j) chain-shift Sij(ff) of the family ff is defined as follows. 
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For every k-chain 2 = (Li. ... Lk) E ff let S.·(!!:') = (L' L') h 
, •1 1, ••• , k , w ere 

L; = { L1 \ {j} U {i} if j E L1 and it/. L1, 

L1 otherwise. 

We say that L; is the shift of L1. Shifting preserves set containment, so s, ·(!!:') is a k-chain. 

The shifted family Sij(ff) is obtained by the following rule: replace ever~ k-chain !!:' E § 

by Sij(!I') if and only if 

(1) Sij(2)-=!= !I' and 

(2) Sij(!!:') <f. ff. 

It is clear from the definition that iSij(ff)I = lffl. Moreover, shifting preserves the 

intersection property. 

Lemma 2.1. If ff is an intersecting family of k-chains in !!Jn or :14-;;. then SiJ(.F) is also 

intersecting. 

Proof. Let !1'1,22 E Sij(.9'); we have to prove that they contain a common element. We 

distinguish three cases: 

Case 1: !I' 1, 2 2 E ff. In this case it is obvious that !I' 1 and !!:' 2 intersect. 

Case 2: !1'1,!1'2 <f. ff. In this case, there are !!:'3,!1'4 E :F such that !!:'1 = S;j(!t'3) and 

!1'2 = Sij(!l'4). Let M E 23 n !/:'4. Then the shift of M (which may be M itself) is a 

common element of !!:' 1 and !!:' 2. 

Case 3: 21 <f. ff and !!:'2 E !F. Then let !/3 E !ffl such that !t'1 = S;i(Y3). There may be 

two reasons why 22 was not replaced. If !!:'2 = Sij(.!t'2) then let M E .!t'2 n Y 3. The shift 

of Mis itself (since .!t'2 = Sij(22 )) so ME !!:'2 n Sij(Y3) = Y 2 n !t'1 as well. 

The other reason is that !!:'2 -=!= S;j(.!t'2) but Sij(!t'2) E :F. In this subcase, let M E 

!!:'3 n SiJ(22). It is impossible that j E M and i ff. M since M is the shift of some element 

of !!:'2. Also, it is impossible that i E M and j <f. M because there is some K E .!t'3 such 

that j EK and i <f. K (because Sij(.!t'3 ) f !f3) and one of K, M must contain the other. So 

M is a set containing either both of i,j or neither of i,j. In either case, from M E SiJ(!t'2) 

we have ME .!t'2 so M E !!:'1 n .!t'2. D 

We say that the family :F of intersecting k-chains is compressed if § is invariant for 

all chain-shift operations Sij, 1 ::;; i < j::;; n. By Lemma 2.1, for any intersecting family ff, 

repeated applications of chain-shifts result in a compressed family of the same size. 

Compressed families satisfy a strong intersection property. We say that M E id11 (or 

M E f!J-;;) is an initial segment if M = [1, m] for some 1 ::;; m :s;; n or M = 0. 

Lemma 2.2. Let ff be a compressed family of intersecting k-chains. Then for any .!t'1, Y2 E 

!ffl, !1'1 and !t'2 intersect in an initial segment. 

Proof. Suppose that the lemma is not true and let .!t'1 E :F be a minimal counterexample 

in the sense that 

(i) there exists !t'2 E ff such that .Y1 n .Y2 contains no initial segment 
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(ii) LLE..'l"i LxEL x is minimal among all !!'1 satisfying (i). 

Let ME !!'1 n .51'2• Since M is not an initial segment, there exist 1 :::::; i < j:::::; n such that 
i (/:. M and j E M. Then Sij(!l'i) -::f= !!'1, so Sij(!l'i) is not a counterexample. Therefore, 
there exists an initial segment K E S;j(!l'i) n !!'2• It is impossible that j EK and i tt K, 
since K is an initial segment. Also, it is impossible that i E K and j tt K, because 
K, M E !l' 2, so one of them must contain the other. So K is a set containing both of i, j 
or neither of i,j. In either case K E !!'1, which is a contradiction. D 

In the next two sections, we prove Theorem 1.1 for !!fin and !!l;;, respectively. By 
Lemma 2.1, it is enough to consider compressed families. 

3. Chains in f!4 n 

We prove by induction on n that f(n,k) = (k-1) !S(n + 1, k). The base case n = 1 is trivial. 
Suppose we are done for n - 1 (with all values of k) and let § be a compressed family 
of chains in P4n. We distinguish two cases: 

Case I: § contains a chain .ff such that the only initial segment in !l' is [1, n]. Then, 
since each chain in § must intersect .ff in an initial segment (see Lemma 2.2), all chains 
contain [1, n] and we are done. 

Case 2: There is no chain in § such that [1, n] is the only initial segment in the chain. 
Then delete n from each element of each chain. Each chain is transformed into either a 
k-chain or a (k- 1 )-chain and so we obtain an intersecting family rck-l of chains of length 
k - 1 in !!ln-1 and an intersecting family rck of chains of length k in !!ln-1· 

We claim that each (L1, ... , Lk-d E rck-l can be obtained from :::::; k - 1 chains of§. 
This is true since we have to add the set L; u { n} to the chain for some 1 :::::; i :::::; k - 1 
and add n to the sets L;+ 1,. .. , Lk-I· The value of i uniquely determines the chain in §. 

Furthermore, i = 0 is impossible, since then the only initial segment would be [1, n]. 
We also claim that each (L1,. .. ,Lk) Erck can be obtained from:::::; k chains of :F. Indeed, 

we have to add n to the sets starting at some 2 ::::;; i:::::; k + 1; the value k + 1 corresponds 
to the case that n did not occur in any element of the chain in :F. Furthermore, i = 1 is 
impossible, since the only initial segment would be [1, n]. 

Thus 

I/FI 5;, (k - l)f(n - 1,k - 1) + kf(n - 1,k) = (k - 1) !S(n + 1,k). ( 1) 

The uniqueness of the extremal systems can also be proved by induction on n. First, we 
remark that if k = n + 1, every family § of k-chains must contain the empty set, and 
maximality implies§= :7(0). If k = 2 and I/FI ~ 4, then§ s;;; §(A) for some subset A. 
Now, lff(A)I = 21AI + 2n-IAI - 2, which takes its maximum value for IAI = 0 and IAI = n. 

In the case 3 :::::; k :::::; n, we first consider a compressed family §. If§ belongs to Case 
1 above, then§= :F([l,n]); otherw~se, in Case 2, we must have equality in (1). This 
implies that rck-1 and rck are extremal families in P4n-i. and, by the induction hypothesis, 
they must be the :7(0) of (k -1)-chains and k-chains in P4n_ 1, respectively. So§ must be 
identical with :7(0) in !!ln. 
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Finally, we observe that any family whose compressed image is §'(l)l or .F([L nj) is 

itself one of these families. ~ 

We remark that in a preliminary version of the present paper [4], we proved Theorem l.1 

for n > klnk. Since then, Ahlswede and Cai [1] have also found a proof for Theorem l.l 

(i), but their method does not seem to generalize to the truncated case. 

4. Chains in .<~;; 

Again, we use induction on n to prove that f-(n,k) = k!S(11- 1,k). The base case n = 2 

is trivial. Suppose we are done for n - 1 and let ff be a compressed family of chains in 

.'!.a;. We distinguish two cases: 

Case 1: If there exists a chain !f E .F such that n - 1 E L 1, then !!' may contain only 

one initial segment, namely [l, n - l]. Then, since each chain in .F must intersect fl' in an 

initial segment (see Lemma 2.2), all chains contain [l,11- I] and we are done. 

Case 2: If each !f E ff has no 11- 1 ~ L 1, then, in particular, we never have L1 =!= { n - l). 

Define 

ff; {!f E ff: L;+1 - L; = {n -1}}, (i = 1,2, ... ,k- l) 

ffk {!!' E ff: Lk = {1,2, ... ,n -2,n}}, 

= :Z uk -:.--r 
.;r 0 ,J - j=l '7" j· 

Deleting n-1 from each element of each chain of ff 0, we obtain a family ff~1 of intersecting 

k-chains in the truncated Boolean algebra on the underlying set { 1, 2, ... , 11 - 2, n }. By 

hypothesis, 1-Fbi:::::; l-(n - 1,k). Each (L 1, .•• ,Lk) E .'Fb can be obtained from:::::; k chains 

of ff o, since n - 1 could have been inserted starting at L2, L3, .. ., Lk. or could have been 

an element of [1, n] \ Lk. 

Deleting n -1 from every set in every chain in ff; (for any i = 1, 2, ... , k-1 ), we obtain a 

family .F; of intersecting (k-1 )-chains in the truncated Boolean algebra on the underlying 

set {1,2, .. .,n - 2,n}. By hypothesis, !.F;! = lff;I:::::; f-(11- 1,k - 1). 

Finally, define ffk by deleting the largest set Lk = { 1, 2, ... , n - 2, n} from every chain in 

ff k. Observe that ff~ is a family of intersecting (k - 1 )-chains in the truncated Boolean 

algebra on the underlying set { l, 2, ... , n - 2, 11 }, since the set that we dropped is not an 

initial segment in the original underlying set. Therefore, by hypothesis, l..F k I = 1.~~ I ::;; 
l-(n - 1,k - 1). 

Hence, !."FI :::::; k · k !S(n - 2, k) + (k - l )(k - 1) !S(11 - 2, k - 1) + (k - l) !S(n - 2, k - l) = 
k !S(n - l,k). 

This finishes the proof of Theorem 1.1. D 

We remark that, analogously to the discussion at the end of Section 3, it can be shown 

that the only compressed extremal families in £!,B~- are ff--([1]) and ff--w. n - l]). The 

extension that the only extremal families are ff-(A) with !Al = 1 or !Al = 11 - 1 is still 

missing. 
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Note added in proof 

We have just learned of a research program initiated by Miklos Simonovits and Vera T. 

Sos on 'structured intersection theorems' [10, 11], which has a fairly large literature. They 

studied the maximum number of graphs on n vertices such that any two intersect in a 

prescribed graph, e.g. a path or cycle. The following problem fits into their scheme: given 

a graph G what is the maximum number of pairwise intersecting complete k-subgraphs. 

In this paper we have studied the comparison graphs of some partially ordered sets. 
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