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Abstract. The problem of determining what information to trust is cru-
cial in many contexts that admit uncertainty and polarization. In this
paper, we propose a method to systematically reason on the trustwor-
thiness of sources. While not aiming at establishing their veracity, the
method allows creating a relative reference system to determine the trust-
worthiness of information sources by reasoning on their knowledgeability,
popularity, and reputation. We further propose a formal rule-based set
of strategies to establish possibly negative trust on contradictory con-
tents that use such source evaluation. The strategies answer to criteria of
higher trustworthiness score, majority or consensus on the set of sources.
We evaluate our model through a real-case scenario.

1 Introduction

Assessing information quality is a challenging task. Assuming a minimal defini-
tion of information as ‘data + semantics’, assessing its quality means to establish
fitness for purpose for a given piece of information. Given the huge number of
possible purposes and to make its computation feasible, information quality is
often broken down into ‘dimensions’ [13], like accuracy, precision, completeness.
Despite its complexity, humans deal with quality on a daily basis using heuristics
to approximate ideal values and using them as a proxy for deciding whether to
trust information or not. Notwithstanding the possibility of being deceived by
our heuristics, a formalization of such strategies is a useful tool for understand-
ing and prediction. We provide here a framework to mimic such strategies and
a relative reference system of sources. When an oracle or fact-checking service
is available, such a reference system can be turned into an absolute one, i.e.,
determining which sources are veracious and which not. Otherwise, our result
will still provide a relative ranking of the importance of sources. This task relies
on providing appropriate understandings of trust and trustworthiness.

Among the large number of its definitions in the literature, for our purpose
trust on contents can be minimally identified with the result of a consistency

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
W. Meng et al. (Eds.): IFIPTM 2019, IFIP AICT 563, pp. 108–121, 2019.
https://doi.org/10.1007/978-3-030-33716-2_9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301635732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33716-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-33716-2_9


Negative Trust Source Assessment 109

assessment: a piece of information consistent with the agent’s current set of
beliefs or knowledge base is trusted when it allows to preserve other informa-
tion considered truthful. This approach requires a methodology to deal with
inconsistent information and it calls upon the problem of assessing source trust-
worthiness. The logic (un)SecureND [20] provides a mechanism to deal with this
aspect through the introduction of separate protocols to deal with failing con-
sistency. An agent A reading a piece of information φ from an agent B, where
φ is inconsistent with A’s knowledge base, has two possibilities: (1) distrust : to
reject φ and preserve ¬φ and its consequences; and (2) mistrust : to remove ¬φ
from her profile and to accept φ. (un)SecureND does not have a selection mech-
anism for either form of negated trust. In real case scenarios, the choice between
distrust and mistrust will be determined by evaluating the source. While trust
is the mechanism to establish admissible consistent information, we call trust-
worthiness the assessment quality on sources. We introduce an ordering function
and several decision strategies aiming at providing computational mechanisms to
mimic the subjective quality assessment process called trustworthiness. Through
any of these mechanisms, A can decide whether the estimated trustworthiness of
B is high enough to trust the new information φ. Consider a simplified scenario,
with a finite set of sources sharing information on a common topic and referenc-
ing each other (to a lesser or greater degree): some of them will be in conflict
and some will be consistent with one another. We identify three dimensions:

– Knowledgeability : the number of sources to whom a source B refers. This
value is used as an indicator of B’s knowledge of other views;

– Popularity : the number of sources referring to B. This counts the number of
inbound links, and it does not involve their polarity. Citing a source, even to
attack it, is seen as an indication of the popularity of the latter;

– Reputation: the proportion between positive and negative evaluations of B.

These dimensions are used for assessing the trustworthiness of B, to compare
contradictory sources by a receiver, and to formulate decision strategies.

The paper continues as follows. Section 2 describes formal preliminaries,
Sect. 3 describes the different strategies available to resolve the presence of con-
tradictory contents, Sect. 4 translates these strategies in implementable rule-
based protocols, Sects. 5 and 6 present and discuss a use case implementation of
the proposed logic. Section 7 surveys related work, and Sect. 8 concludes.

2 Formal Preliminaries

Consider a set of sources S and a (possibly partial) order relation ≤t over sources
S × S expressing source trustworthiness; once defined, this is used as a proxy
to establish trust in contents in the rule-based semantics presented in Sect. 4.
We define the trustworthiness order ≤t as a function over three dimensions:
reputation, popularity, and knowledgeability.

Reputation is an order relation ≤R over sources S × S: intuitively, S ≤R S′

means that source S ∈ S has at least the same reputation as S′ ∈ S. For
simplicity, reputation is evaluated on the following criteria:
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– we denote with w(S)S′ a fixed weight of S received by S′;
– w = {1,−1}, respectively for a positive and a negative assessment;
– we denote each w(S)S′ = 1 as pos and each w(S)S′ = −1 as neg;
– for any source S ∈ S, a reputation assessment r(S) by other sources in S is

r(S) =
|pos| + 1

|pos| + |neg| + 2

We note that instead of computing the simple ratio of positive assessments over
the total number of assessments, we add a smoothing factor like in Subjective
Logic [15]. This allows us to represent assessment as performed in a ‘semi-closed
world’: we base ourselves on the evidence at our disposal, but our sample is
limited. The smaller our sample, the more the resulting reputation will be close
to the neutral prior 0.5, since no prior knowledge is available to believe the
source is fully trustworthy or untrustworthy. The larger our sample, the more
the weight of the sample ratio will count on the reputation estimation. On the
basis of the reputation assessment, we establish the corresponding order on S:

Definition 1 (Reputation). For any S, S′ ∈ S, S ≤R S′ ↔ r(S) ≥ r(S′)

A second-order relation ≤P over sources S×S is defined: intuitively, S ≤P S′

means source S has at least the same popularity as S′, where popularity reflects
the number of sources which refer to S. We denote the referenced sources as
outbound links and the referencing sources as inbound links; non-referenced or
non-referencing sources are denoted as missing links. Note that ∀S, S′, if S ∈
outbound links(S′) and S′ ∈ outbound links(S), we can assume both sources
have explicit knowledge of each other’s information. We assume this fact and
express that S′ reads from S (or alternatively that S writes to S′) as S′ ∈
outbound links(S). Note that in the calculus presented in Fig. 1 these access
operations are explicit. By our definition of reputation, we can assume that for
every source S referenced by S′, w(S)S′ ∈ r(S). Hence, the popularity of S is

p(S) =
|inbound links| + 1

|inbound links| + |missing links| + 2

On its basis, we establish the corresponding order on S:

Definition 2 (Popularity). For any S, S′ ∈ S, S ≤P S′ ↔ p(S) ≥ p(S′).

Finally, we define a third order relation ≤K over sources S × S: intuitively,
S ≤K S′ means that source S has at least the same knowledgeability as S′,
where knowledgeability reflects the number of sources to which S refers. For
simplicity, given the definition of p(S) based on r(S), knowledgeability k(S) is
the inverse of p(S), computed as

k(S) =
|outbound links| + 1

|outbound links| + |missing links| + 2

On its basis, we establish the corresponding order on S:
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Definition 3 (Knowledgeability). For any S, S′ ∈ S, S ≤K S′ ↔ k(S) ≥
k(S′).

The highest value of knowledgeability corresponds to the totality of the avail-
able sources. For simplicity, we include in this count the source itself:

Definition 4 (Source Completeness). A source S satisfies source complete-
ness if |outbound links| = |S|.

The three dimensions of reputation, popularity, and knowledgeability estab-
lish a generic computable metric on the trustworthiness of a source S:

Definition 5 (Source Trustworthiness). Source trustworthiness is computed

t(S) = Φ(φ(r(S)), ψ(p(S)), ξ(k(S)))

with Φ a given function and φ, ψ, ξ appropriate weights on the parameters.

The choice of φ, ψ, ξ is essentially contextual, as it determines the role that
each parameter has in the computed value of t(s), e.g. to stress knowledgeability
as more important than popularity, or reputation as more relevant than knowl-
edgeability. Fixing these parameters to 1 provides the basic evaluation with all
equipollent values. Φ can be interpreted e.g. as

∑
X, X, max(X): again, this

choice can be contextually determined.
To distinguish between different semantic strategies for information conflict

resolution, we first weight the notion of source trustworthiness with respect to
source order and calculate an average value.

Definition 6 (Sources with Higher Trustworthiness). Let S∼
<tS

denote the
set of sources with higher trustworthiness <t than a given source S ∈ S.

We now partition this set as follows: we denote with T the subset of S∼
<tS

such
that ∀S′ ∈ T , S′ trusts information φ; we denote with T⊥ the complement of T .

Definition 7 (Weighted Trustworthiness). Average trustworthiness of T is

t(T ) =
∑|T |

∀S′∈T t(S′)
|T |

Let t(T⊥) denote the average trustworthiness for the complement partition.
If t(T ) > t(T⊥), then S trusts φ, else S trusts ¬φ.

In the case of weighted trustworthiness there is a possible parity outcome: either
the selection of a different strategy (e.g., the simpler majority trustworthiness)
or a random assignment is possible. Finally, on the basis of the trustworthiness
assessment, we establish the corresponding order on S:

Definition 8 (Trustworthiness). For any S, S′ ∈ S, S ≤t S′ ↔ t(S) ≥ t(S′).

Note that the general definition allows for a partial order, as it is possible that
the trustworthiness values of two distinct sources be equivalent or incomparable.
The following resolution strategies assume that a strict order is being obtained.
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3 Trustworthiness Selection Strategies

We define several strategies to implement negative trust based on the Trust-
worthiness relation defined in Sect. 2. Recall that distrust requires an agent to
reject incoming contradictory information in favor of currently held data. In this
context, we establish such a choice on the basis of higher trustworthiness.

Definition 9 (Distrust). Assume S <t S′, S ∈ outbound links(S′). If S′

trusts φ and φ is inconsistent with the profile of S, then S distrust φ and
trusts ¬φ.

With this protocol in place, a source with a higher trustworthiness will always
reject incoming contradictory information from a lower ranked source. It is also
fair to assume that where t(S) = t(S′), a conservative source S will not change
its current information. The process of modifying currently held information to
accommodate for newly incoming one (mistrust) starts therefore on the assump-
tion that the source of incoming information has lower trustworthiness degree
than the receiver. On this basis, implementing a mistrust strategy has a com-
plex dynamic: the user can be more or less inclined to a belief change and it can
require more or less evidence for it to happen. Therefore, different strategies can
be designed. One strategy requires that a majority of agents with higher trust-
worthiness agree on the new incoming data. A stronger strategy requires that
the totality of agents with higher trustworthiness agree. Reaching the desired
number of agents to implement a mistrust strategy might be a dynamic process
resulting from a temporally extended analysis of the set of sources. We design
the different strategies assuming Definition 6 of the subset S∼

<tS
of sources with

higher trustworthiness as the sources which the receiver S has to consider.
The weakest strategy is defined by an agent which allows for a mistrust

operation based on the presence of at least one source with higher reputation
that contradicts her current belief state:

Definition 10 (Weak Trustworthiness). If ∃S′ ∈ S∼
<tS

such that S′ trusts
information φ, then S trusts φ.

To accommodate a contradicting φ, the source S has to modify the current set
of belief, Γ , to some subset Γ ′ which can be consistently extended with φ, i.e.
removing any formula implying ¬φ. A stronger strategy is for the agent to accept
the content on which the majority of sources with higher trustworthiness agree:

Definition 11 (Majority Trustworthiness). Assume T ⊆ S∼
<tS

such that
∀S′ ∈ T , S′ trusts information φ. We denote with T⊥ the complement of T . If
|T | > |T⊥|, then S trusts φ, else S trusts ¬φ.

In the case of a parity outcome, either the selection of a different strategy or a
random assignment are possible. Note that the above strategy does not account
for the order within the subset S∼

<tS
: it only partitions it according to the truth

value of a formula and then selects the partition with higher cardinality. A more



Negative Trust Source Assessment 113

refined majority strategy will weight each member S′ ∈ T and T⊥ on the basis
of their trustworthiness value t(S′). Then an average value will be assigned to
the corresponding partition and the strategy will select the formula held by
the partition with a higher value. If the cardinality of the partition has to be
considered, the sum of the trustworthiness values of the sources can be assigned
to each partition. The strongest strategy requires the agent to change her mind
if all other agents with higher trustworthiness agree:

Definition 12 (Complete Trustworthiness). If ∀S′ ∈ S∼
<tS

, S′ trusts infor-
mation φ, then S trusts φ.

The Majority and Complete Trustworthiness strategies above have a strong effect
on knowledge diffusion in the presence of full communication. The Consensus rule
below holds even if the content from the most trustworthy source is not initially
held by the majority of agents.

Proposition 1 (Consensus). Assume S′ ∈ outbound links(S) holds ∀S <
S′ ∈ S∼. Then S converges towards consensus on the information trusted by the
most trustworthy source.

4 Rule-Based Semantics for the Strategies

The natural deduction calculus (un)SecureND [20] defines trust, mistrust and
distrust protocols according to the informal semantics described in Sect. 1. It
formalizes a derivability relation on formulas from sets of assumptions (contexts)
as accessibility on resources issued by sources. In this section, we provide an
extension of the calculus with a rule-based implementation of the trustworthiness
selection strategies from Sect. 3.

Definition 13 (Syntax of (un)SecureND).

S∼ := {A <t B <t · · · <t N}
BFS := aS | φS

1 → φS
2 | φS

1 ∧ φS
2 | φS

1 ∨ φS
2 | ⊥

mode := Read(BFS) | Write(BFS) | Trust(BFS)
RESS := BFS | mode | ¬RESS

ΓS := {φS
1 , . . . , φS

n}

Every S ∈ S is a content producer which has a trustworthiness value based on
its interactions with any other S′ ∈ S. Any S ∈ S is ordered with respect to the
others by the trustworthiness order.1 Formulas in the set BFS express content
produced by source S and they are closed under logical connectives. Functions on
contents in the set mode refer to reading, writing and trusting formulas. Every
source S is identified by the set of contents it produces, denoted by ΓS called
the profile of S. A formula expresses access from a source S to content issued by
another source S′ (metavariables S, S′ are substituted by variables A,B):
1 In other versions of this logic, the order between elements in S is differently defined,

e.g. imposed by access policies, see e.g. [20,22,23].
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Definition 14. An (un)SecureND-formula ΓA  RESB says that under the
content expressed by source A, some content from source B is validly accessed.

The rule-based semantics of the calculus is given in Fig. 1. Atom establishes
derivability of formulas from well-formed contexts and under consistency pre-
serving extensions. We use the judgment Γ : profile for a profile consistently
construed by induction from the empty set. For brevity, we skip here the intro-
duction and elimination rules for logical connectives, see [20] and focus only on
the access rules. Differently from other versions of the same calculus, we drop here
negation-completeness: a source without access to a content item from another
source, will not assume access to its negation, i.e. uncertainty is admissible. read
says that from any well-formed source profile A, formulas from a profile B can be
read. trust says that if a content item is read and it preserves consistency when
added to the reading profile, then it can be trusted. write says that a readable
and trustable content can be written. By distrust, source A distrusts content
φB if it induces contradiction when reading from ΓA and A has higher trust-
worthiness than B. Its elimination uses →-introduction to induce write from
the receiver profile for any content that follows a distrust operation. This allows
Write(¬φB) when ¬Trust(φB) holds. Each of the mistrust rules applies one dif-
ferent strategy from Sect. 3 for a content item φB inducing contradiction when
reading from ΓA and A has lower trustworthiness than B. By weak mistrust,
A accepts φ (and removes from its own profile any conflicting information) by
the simple presence of B in the set of sources with a higher reputation of A:
this formulation is general enough to accommodate for the substitution of B in
this condition by any other source that A considers absolutely essential (appeal
to authority). majority mistrust requires computing the partitions of the set
of sources with higher trustworthiness than A and comparing their cardinal-
ity: any content φ held by the larger partition will be kept by A (even when
this reduces to an application of a distrust rule). In weighted majority, the
condition is expressed by the higher average reputation of the partition. By
complete mistrust the source A requires that every element in the set of sources
with higher reputation agrees on φ. By the rule write, every trusted content can
be written.

5 Evaluation

5.1 Use Case Description

In 2015, a measles outbreak took place in Disneyland, California. This event
received much attention online, and a quite strongly polarised discussion fol-
lowed up the news regarding this event. Public authorities and pro-vaccination
sources pointed out the importance of vaccination, and some of them blamed the
low vaccination rate as the main reason for this outbreak. On the other hand,
the anti-vaccination movement accused the government agencies and the pro-
vaccination movement of misinforming the public, since the children involved in
the outbreak were vaccinated. Two main factions are at work, the pro and the
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Fig. 1. The system (un)SecureND: access rules.

anti vaccinations. While sources do not always identify themselves as part of one
or the other, for many of them it is either clear what their stance is (e.g., when
they explicitly ‘attack’ each other), or we can make safe assumptions based on
our background knowledge (e.g., by assuming that authorities are pro vaccina-
tions). We have at our disposal a set of assessments of these articles collected
by means of user studies involving experts [6]. These assessments cover quality
dimensions like accuracy and prediction, and present an overall quality score
that is equivalent to the trustworthiness score defined here.

5.2 Data Preprocessing

We select a subset of 10 articles regarding this debate from a corpus of docu-
ments regarding the Disneyland measles outbreak2. The selection gives a small
but diverse set of views on the topic in terms of stance (pro or anti vaccinations)
and type of document (news article, official document, blog post, etc.). Provided

2 The dataset is available online at https://goo.gl/aouDJH.

https://goo.gl/aouDJH
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they all discuss the specific event selected, a clear network of references emerges.
However, such a network is rather sparse since a large majority of these sources
do not cite each other. As we are interested in capturing their polarity to compute
the three trustworthiness dimensions, we reconstruct the network as follows: (1)
a source criticizing another source is considered as a negative piece of evidence
regarding the reputation of the source mentioned; and (2) a source citing data
from another source, even in neutral terms, is considered a piece of evidence
regarding the popularity of the source cited. The resulting network of references
is represented in Fig. 2 and it illustrates only the relations emerging from the
corpus considered, representing a partial view on the real scenario because we
derive a source’s trustworthiness using one or more documents published by it as
a proxy; the more documents we observe from a source, the better we can assess
its trustworthiness value. For example, we estimate the source knowledgeability
from the number of citations of other sources. Some sources could be cited only
in some articles by the source under consideration. Also, we derive a source’s
trustworthiness based on the references it receives from the other sources con-
sidered, but we know that the set of sources is limited, and the scenario might
change when considering other sources (e.g., the number of citations of currently
poorly cited sources could rise). Given these considerations, the smoothing factor
added to Definitions 1, 2, and 3, helps to cope with the resulting uncertainty.

Fig. 2. Network of references resulting from the preprocessing of our corpus. Directed
arrows indicate positive (continuous line) or negative (dotted line) references.

5.3 Sources Ordering

Based on the network depicted in Fig. 2, and using the formulas presented in
Sect. 2, we compute the trustworthiness score for each of the sources in our
sample. The trustworthiness score is computed by averaging the reputation,
the knowledgeability, and the popularity of the sources, resulting in the scores
reported in Table 1. Figure 3 shows a graphical representation of the resulting
hierarchy of sources. Since the trustworthiness thus obtained shows a weak cor-
relation (0.2) with the overall scores provided by the users in the user study, we
explore alternative ways to aggregate the scores.

Weighted Trustworthiness. Applying weights to the trustworthiness param-
eters can yield a different hierarchy. Instead of applying an arbitrary weighing
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Table 1. Trustworthiness scores of the sources considered for our use case. The score
is computed by means of a simple average, where each component has the same weight.

Source Reputation Knowledgeability Popularity Trustworthiness

California Healthline 0.50 0.17 0.08 0.25

CDC 0.63 0.08 0.67 0.46

NYTimes 0.50 0.17 0.08 0.25

InfoWars 0.50 0.17 0.08 0.25

GreenMedInfo 0.50 0.25 0.08 0.28

Age of Autism 0.67 0.17 0.17 0.33

Science-Based Medicine 0.50 0.17 0.08 0.25

Heavy.com 0.50 0.08 0.08 0.22

Natural News 0.50 0.17 0.08 0.25

NPR 0.67 0.08 0.17 0.31

Fig. 3. Hierarchical ordering of the sources derived from the scores shown in Table 1

to the scores, we apply linear regression on the parameters, targeting the overall
quality scores provided by the users in the study. Once we learn the weights
for the parameters, we compute the trustworthiness scores. The resulting scores
show a 0.6 correlation with those provided by the users. Moreover, we also run
3-fold cross-validation (split the dataset into 3 parts and, in round, use two parts
as a training set for linear regression, and one for validation). For one item only,
our model is unable to make a prediction. Excluding such item, the resulting
average correlation between predicted and user-provided overall quality is −0.87
(Pearson) and −0.76 (Spearman). We consider these as promising results.

5.4 Applying Trustworthiness Selection Strategies

Here we illustrate how users could apply the selection strategies described in
Sect. 3. Figure 4 shows the scenario where the trustworthiness selection strategies
are applied. The sources analyzed in the previous step are now shown in white
if they present a positive stance with respect to vaccinations, in grey otherwise.
C is a new source with an unclear stance that joins the scenario. The stance of C
(i.e., whether C trusts vaccines or not) will be determined by comparison with

https://heavy.com
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the other sources. Assume that the trustworthiness of C is higher than that of
Heavy.com, but lower than the trustworthiness of all the other sources.

Fig. 4. Use case scenario. We adopt the same hierarchy as in Fig. 3. Sources in white
trust vaccinations. Sources in grey do not. C denotes an additional source which takes
part in the scenario and has not yet a clear stance.

Distrust. When C is confronted with Heavy.com and its lower trustworthiness
score, following the distrust rule it will distrust vaccines.

Weak Trustworthiness. Let us follow up on the previous scenario. C now dis-
trusts vaccines. When encountering all the other sources, if the weak mistrust
strategy is applied, C will revise its profile: now C trusts vaccines because
of several sources with trustworthiness higher than C trust φ. Note that
weak mistrust requires at least one source to trust φ in order to follow suit.

Majority Trustworthiness. In an alternative scenario, when encountering
the other sources, C can evaluate whether to trust φ or not based on whether
the majority of the sources trusts vaccines. We partition the sources based on
vaccines and ¬vaccines. With any strategy for determining the majority (par-
tition cardinality, average trustworthiness of the sources in the two partitions,
sum of the cardinalities in the two partitions), trust in vaccines prevails.

Complete Trustworthiness. When complete trustworthiness is applied, C
needs all the sources to agree on vaccines to add it to its profile. Since three
sources disagree, by applying this rule, we obtain that C d istrusts vaccines.

6 Discussion

The goal of our model is to provide means to mimic human thinking and provide
a tool to systematically reason upon sources. The result of such reasoning is
a relative reference system of sources. When oracles, fact-checkers, and other
sources are available, such a reference system can be turned into an absolute
one: if the user knows that a given set of statements is true or false, she can
reason about the trustworthiness of the sources incorporating this additional
information in the networks. When oracles are not available, the reference system
can provide the user with a basis to coherently reason upon the sources she
observes.

https://heavy.com
https://heavy.com
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Frameworks like PageRank and its successors can be considered more evolved
and successful alternatives to the present proposal. While PageRank can be
applied to one or more networks to rank their sources, our system considers
three distinct networks, aggregates them, and can be either extended with other
networks or be used as reasoning support as it is. Hence we consider the present
a viable complement to existing approaches.

While assessing the veracity of information is not the focal point of our
system, the multidimensional approach we take shows promising robustness to
possible attacks. Suppose that in an echo-chamber, sources cite each other posi-
tively in order to increase their own reputation and popularity. If their citations
are limited to the sources in the echo chamber, their knowledgeability (and, thus,
their trustworthiness) will necessarily be low. If to remedy this sources start cit-
ing others outside the echo chamber, their knowledgeability will rise, but they
will also contribute to the popularity of these external sources. Still, vulnerabil-
ity to the knowledgeability score is possible in sufficiently large echo chambers.
Future developments will tackle this aspect more explicitly.

7 Related Work

Assessing the quality of information sources is a long-standing problem largely
addressed in the fields of humanities, where specific guidelines and checklists
have been proposed to address the issue of “source criticism” [3]. Such work has
also been extended to Web sources in [6,7], where a combination of crowdsourc-
ing and machine learning is adopted. Those works are complementary to the
present contribution since they do not compare directly the references among
sources. Counting links for a source as employed in this paper aims at mimicking
the evaluation of the bibliography mentioned in the source criticism checklist.
Another framework based on crowdsourcing is presented in [17].

Using fitness for purpose to assess information quality is a widely adopted
strategy, see [12,13]. In the present work, we start from the assumption that
where it is unclear or impossible for an agent to distinguish between contra-
dictory data, source assessment based on trustworthiness is a valuable strategy.
We show how such a protocol can be implemented through different selection
strategies. A related topic is the one of fake news, tackled for instance in [4,25].

Research on trust in computational domains has been extensive in the last
decades. Crucial aspects of the behavior of trust concern properties like propaga-
tion and blocking [8,10,14,16]. Solutions to these problems are various [2,9,11].
In the present work, we evaluate trust in information sources not on an absolute
scale, but rather with varying degrees. A related approach is presented in [19],
where a trust measure on agents is combined with the use of argumentation for
reasoning about beliefs. Similarly, we propose a trust evaluation of sources to
decide which information to maintain. The logic used in this work originates
from a model designed to model trust in resource access control scenario, and to
be able to block trust transitivity by design [21,23]. The logic has been applied
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to the Minimally Trusted Install Problem software management in [5], its neg-
ative counterpart [22], and tested to investigate optimal strategies to minimize
false information diffusion [24]. For other accounts of negative trust, see [1,18].

8 Conclusion

In this paper, we presented an extension of (un)SecureND, a logic modeling
trust on information, with strategies for assessing the trustworthiness of sources
as a function (average or otherwise) of their knowledgeability, popularity, and
reputation, possibly weighted. We evaluated this extension on a real-life case
study on the trustworthiness of Web sources and applied the selection strategies
to the resulting source hierarchy. We showed that a linear combination of these
parameters presents a decent correlation with user-provided assessments.

We plan to extend this work in two main directions. First, we will work on the
automation of the preprocessing phase. We expect to use natural language pro-
cessing for this and, in particular, author attribution to systematically identify
references among the sources, and textual entailment to capture the perspectives
taken by the different sources. Second, we will improve the parameters consid-
ered for assessing the trustworthiness. For instance, knowledgeability will have
to be assessed based on the estimated level of the truthfulness of the statements
made by the source. We plan to run an exhaustive user study to guide the design
of source trustworthiness assessment and selection. Lastly, we will experiment
with network centrality measures as alternative indicators for these parameters.

References

1. Abdul-Rahman, A.: A framework for decentralised trust reasoning. Ph.D. thesis,
Department of Computer Science, University College London (2005)

2. Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: NSPW, pp. 48–60
(1997)

3. American Library Association: Evaluating information: a basic checklist (1994)
4. Bessi, A., Coletto, M., Davidescu, G., Scala, A., Caldarelli, G., Quattrociocchi,

W.: Science vs conspiracy: collective narratives in the age of misinformation. PLoS
One 2, e0118093 (2015)

5. Boender, J., Primiero, G., Raimondi, F.: Minimizing transitive trust threats in
software management systems. In: PST, pp. 191–198. IEEE (2015)

6. Ceolin, D., Noordegraaf, J., Aroyo, L.: Capturing the ineffable: collecting,
analysing, and automating web document quality assessments. In: Blomqvist, E.,
Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024,
pp. 83–97. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5 6

7. Ceolin, D., Noordegraaf, J., Aroyo, L., van Son, C.: Towards web documents quality
assessment for digital humanities scholars. WebSci 2016, 315–317 (2016)

8. Chakraborty, P.S., Karform, S.: Designing trust propagation algorithms based on
simple multiplicative strategy for social networks. Procedia Technol. 6, 534–539
(2012). iCCCS-2012

9. Chapin, P.C., Skalka, C., Wang, X.S.: Authorization in trust management: features
and foundations. ACM Comput. Surv. 40(3), 9 (2008)

https://doi.org/10.1007/978-3-319-49004-5_6


Negative Trust Source Assessment 121

10. Christianson, B., Harbison, W.S.: Why isn’t trust transitive? In: Lomas, M. (ed.)
Security Protocols 1996. LNCS, vol. 1189, pp. 171–176. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-62494-5 16

11. Clarke, S., Christianson, B., Xiao, H.: Trust*: using local guarantees to extend the
reach of trust. In: Christianson, B., Malcolm, J.A., Matyáš, V., Roe, M. (eds.) Secu-
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Steghöfer, J.-P., Esfandiari, B. (eds.) IFIPTM 2017. IAICT, vol. 505, pp. 79–93.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59171-1 7

22. Primiero, G., Boender, J.: Negative trust for conflict resolution in software man-
agement. Web Intell. 16(4), 251–271 (2018)

23. Primiero, G., Raimondi, F.: A typed natural deduction calculus to reason about
secure trust. In: PST, pp. 379–382. IEEE (2014)

24. Primiero, G., Raimondi, F., Bottone, M., Tagliabue, J.: Trust and distrust in con-
tradictory information transmission. Appl. Netw. Sci. 2, 12 (2017)

25. Zhang, A.X., et al.: A structured response to misinformation: defining and anno-
tating credibility indicators in news articles. In: WWW 18 Companion (2018)

https://doi.org/10.1007/3-540-62494-5_16
https://doi.org/10.1007/978-3-642-36213-2_21
https://doi.org/10.1007/978-3-319-07121-3
https://doi.org/10.1007/978-3-319-07121-3_14
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.1007/11755593_14
https://doi.org/10.1007/11755593_14
https://doi.org/10.1007/11429760_2
https://doi.org/10.1007/11429760_2
https://doi.org/10.1007/978-3-319-41354-9_15
https://doi.org/10.1007/978-3-319-59171-1_7


A Fair (t, n)-Threshold Secret Sharing
Scheme with Efficient Cheater Identifying

Hua Shen1, Daijie Sun1, Lan Zhao1, and Mingwu Zhang1,2(B)

1 School of Computer Science, Hubei University of Technology, Wuhan, China
csmwzhang@gmail.com

2 Hubei Key Laboratory of Intelligent Geo-Information Processing,

China University of Geosciences, Wuhan, China

Abstract. The fairness of secret sharing guarantees that, if either par-
ticipant obtains the secret, other participants obtain too. The fairness
can be threatened by cheaters who was hidden in the participants. To
efficiently and accurately identify cheaters with guaranteeing fairness,
this paper proposes a fair (t, n)-threshold secret sharing scheme with an
efficient cheater identifying ability. The scheme consists of three protocols
which correspond to the secret distribution phase, secret reconstruction
phase, and cheater identification phase respectively. The scheme’s secret
distribution strategy enables the secret reconstruction protocol to detect
the occurrence of cheating and trigger the execution of the cheater iden-
tification protocol to accurately locate cheaters. Moreover, we prove that
the scheme is fair and secure, and show that the cheater identification
algorithm has higher efficiency by comparing with other schemes.

Keywords: Secret sharing · Cheater identification · Fairness · Attack
model

1 Introduction

In the reconstruction phase of a (t, n)-threshold secret sharing scheme, dishon-
est participants can reconstruct the real secret because of receiving the valid
secret shares. It’s unfair for honest participants that they gain the wrong secret
because of accepting the invalid secret shares [1]. To address this issue, many
researchers have come up with their solutions. Laih and Lee [2] proposed a v-
fair (t, n)-threshold secret sharing scheme, in which all participants do not have
to show their secret shares simultaneously to recover the secret with the same
probability, even if there are v(< t/2) dishonest participants. [3] and [4] further
improved Laih scheme [2]. In 2003, Tian [5] utilized the consistency of secret
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shares to detect attackers, and constructed a fair (t, n)-threshold scheme with
the help of the schemes of Tompa and Woll [6]. Harn and Lin [7] also used the
consistency of secret share to design an algorithm to detect cheating behavior
and identify cheaters. In 2014, Harn [8] pointed out that the research on asyn-
chronous attack in scheme [5] was incorrect. In 2015, Harn [9] proposed a scheme
that can resist asynchronous attacks of external attackers and internal attack-
ers. In 2016, Liu [10] presented a Linear (t, n)-threshold secret sharing scheme
in which there is only one honest participant can detect cheaters. Lin [11] con-
structed a secret sharing scheme which focuses on preventing cheating behavior
rather than cheating detection. With the same purpose, in 2018 Liu [12] pro-
posed a (t, n)-threshold secret image sharing scheme. In order to improve the
efficiency of the verifiable secret sharing scheme, Mashhadi [13] and Cafaro [14]
put forward their schemes respectively, but none of their schemes are uncondi-
tionally safe. In 2018, Liu and Yang [16] proposed a cheating identifiable secret
sharing scheme by using the symmetric bivariate polynomial, but the scheme
does not achieve fairness requirement of secret sharing.

In order to not only identify deception behavior but also efficiently and accu-
rately locate cheaters, this paper propose a fair (t, n)-threshold secret sharing
scheme which realizes the fairness through Distribution protocol and Reconstruc-
tion protocol, and achieves the efficiently cheaters identification through Cheater
identification protocol. Moreover, the presented scheme is unconditional security
because of not depending on any security assumptions, and is fair and secure
based on four attack models.

The remainder of this paper is organized as follows. We introduce some pre-
liminaries, in Sect. 2. In Sect. 3, we present a fair (t, n)-threshold secret sharing
scheme with an efficient cheater identifying algorithm. In Sect. 4, we describe
the fairness and security of the proposed scheme, followed by the performance
analysis in Sect. 5. Finally, we conclude this paper.

2 Preliminaries

In this section, we briefly recall some fundamental backgrounds which are used
in our scheme and then introduce the attack models of our scheme.

2.1 Shamir’s (t,N)-Secret Sharing Scheme

Shamir’s (t, n)-threshold secret sharing scheme [15] is based on Lagrange inter-
polating polynomial, in which there are n participants P={P1,· · · ,Pn}, and a
mutually trusted dealer D. The scheme consist of two algorithms:

– Distribution Algorithm: The dealer D first randomly generates a polynomial:
f(x) = a0 + a1x + a2x

2 + · · · + at−1x
t−1, in which the secret is s=a0 and all

the other coefficients a1, · · · , at−1 are chosen from a finite field F, and then D
computes the secret share si = f(i) and sends it to the participant Pi, where
i = 1, 2, · · · , n.
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– Reconstruction Algorithm: In the reconstruction phase, at least t participants
submit their secret shares, the secret s can be reconstructed by calculating
the Lagrangian interpolation polynomial through these secret shares.

2.2 Definitions of Consistency and Fairness

Definition 1. (Consistency): In a (t, n)-threshold secret sharing scheme, sup-
pose there are m (m ≥ t) participants reconstruct the secret. The m shares are
consistent if any t shares in them can reconstruct the same secret.

To check whether m shares are consistent or not, we only need to sequentially
execute three steps as follows [5]. (i) Reconstruct a polynomial g(x) using any t
shares of the m secret shares. (ii) Check whether the degree of g(x) is t − 1 or
not. (iii) Check whether the remainder m − t secret shares satisfy g(x) or not.
If (ii) and (iii) are satisfied, we can conclude that the m shares are consistent.

Definition 2. (Fairness): A (t, n)-threshold secret sharing scheme is fair if it
can guarantees that either each participant who takes part in reconstructing the
secret obtains the same secret, or knows nothing about the mystery.

Not difficult to find if the m secret shares are consistent, the corresponding
scheme is fair.

2.3 Attack Models

The aim of our scheme is holding the fairness and secure under the following
four attack models. :

– Non-cooperative attack with synchronisation (NCAS): All participants submit
the secret shares simultaneously, and that there are no cooperations between
dishonest parties.

– Non-cooperative attack with asynchronisation (NCAAS): All participants
present secret shares successfully and that there are no cooperations between
dishonest parties.

– Collusion attack with synchronisation (CAS): The malicious parties modify
their secret shares to deceive the honest parties. We assume that all partic-
ipants submit their secret shares at the same time. Under this assumption,
only when the number of malicious parties is more extensive than or equal
to the threshold value t, can the malicious parties successfully deceive the
honest parties.

– Collusion attack with asynchronisation (CAAS): The dishonest parties col-
laboratively modify their secret shares to deceive the honest parties. The
participants asynchronously release their secret shares. The best option for
dishonest participants is to submit their accordingly modified secret shares
after all honest participants have submitted their secret shares.
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3 Our Schemes

In this section, we introduce our fair (t, n)-threshold secret sharing scheme which
consists of three algorithms: distribution algorithm, reconstruction algorithm,
and cheater identification algorithm.

3.1 Distribution

The dealer D wants to share a secret s among n participants P = {P1, · · · , Pn}.
D first randomly constructs an identifier sequence {a1, a2, · · · , av} from Zq, and
q is big prime integer. The sequence must satisfy: a1 > a2 > · · · > al−1 > al+1 >
· · · > av > al where l ∈ [1, v] is randomly determined by D, and al is related
to finally recover s. And then, based on the sequence, D generates v random
polynomials through which D calculates the secret share si = (si1 , · · · , siv ) for
the ith participant. The distribution protocol is shown as:

Distribution protocol
Input: the secret s, the parameter v.
Output: the secret shares s1, s2, · · · , sn.

1. Randomly pick an integer l ∈ [1, v];
2. Generate a1 > a2 > · · · > al−1 > al+1 > · · · > av > al;
3. Construct v polynomials of (t − 1)-degree, like as follows:

fk(x) = ak + ak,1x + ak,2x
2 + · · · + ak,t−1x

t−1 mod Zq,
where k = 1, · · · , v, and ak,1, · · · , ak,t−1 are randomly picked from Zq;

4. Calculate d to satisfy: s = al · d;
5. Generate the secret share of ith (i = 1, · · · , n) participant by computing

si = (si1 , si2 , · · · , siv ) = (f1(i), f2(i), · · · , fv(i)).

3.2 Reconstruction

Suppose that m(≥ t) participants R = {P1, · · · , Pm} cooperate to reconstruct
s. Denoted by P−i = R/Pi. The reconstruction protocol is shown below:

Reconstruction protocol
Input: m(m ≥ t) secret shares {s1, s2, · · · , sm}.
Output: the set of cheaters A and the secret s.

1. 1th round: Pi sends si1 to P−i, and then performs Receive share(k).
2. kth (k from 2 to v) round: If Pi receives all (k − 1)th items of secret

shares sent by P−i, then uses {s1k−1 , s2k−1 , · · · , smk−1} to calculate a
Lagrange interpolating polynomial fk−1(x). If fk−1(x) is t − 1 degree,
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then all participants send the kth items of their secret shares and then
perform Receive share(k). Otherwise, all participants utilize the cheater
identification protocol and obtain the set A. If |P/A| ≥ t, then all par-
ticipants ∈ P/A send the kth items of their secret shares and performs
Receive share(k); otherwise, protocol is terminated.

Procedure Receive share(k): Receiving the kth item of secret share

1. When Pi has received all kth items of secret shares sent by P−i, he utilizes
all these items {s1k

, s2k
, · · · , smk

} to compute the Lagrange interpolating
polynomial fk(x). If the degree of fk(x) is t−1, then Pi performs step (b).
Otherwise, all participants invoke the cheater identification protocol to
identify the cheaters, and put them into the cheaters’ set A. If |P/A| ≥ t,
then the protocol turns to step b; otherwise, it is terminated.

2. Calculate the identifier by using the secret share sent by all participants
in P/A, ak = fk(0). If ak > ak−1, then D sends d to all participants
in P/A, and these participants can calculate s = ak−1 · d, and then
the protocol is terminated; otherwise, all participants in P/A send the
(k + 1)-th items of secret shares.

3.3 Cheater Identification

To identify the participants who input fake shares, We use a mark vector repre-
sents a kind of choice of selecting t participants from m participants, so there are

u =
(

m

t

)
mark vectors, denoted by C1, · · · , Cu. Each mark vector consists of m

items, of which the value is 0 or 1, denoted by Cj = (cj1 , · · · , cjm
), j = 1, 2, · · · , u.

Therefore, each mark vector includes t 1′s and m − t 0′s.

Cheater identification protocol
Input: m, t, k, {s1k

, s2k
, · · · , smk

}.
Output: the set of cheaters A.
All the m reconstruction participants do:

1. Generate u mark vectors C1, C2, · · · , Cu.
2. Based on the mark vector Cj (j = 1, 2, · · · , u) (that is, based on S′

k =
{si′k |cji′ = 1} (i′ = 1, 2, · · · ,m)), each participant yields the Lagrange
interpolating polynomial f j

k(x). Therefor, each participant can obtain
f1
k (x), f2

k (x), · · · , fu
k (x).



A Fair (t, n)-Threshold Secret Sharing Scheme 127

3. According to f1
k (x), f2

k (x), · · · , fu
k (x), each participant can obtain u val-

ues of the identifier ak, that is a1
k = f1

k (0), a2
k = f2

k (0), · · · , au
k = fu

k (0).
These values might different or the same. Find the most frequently occur-
ring value in them, the value is the value of ak.

4. And then extract the corresponding mark vectors from {C1, · · · , Cu}.
Use Csucc denote the set of these corresponding mark vectors.

5. Perform Logic Or operation on Csucc, the participants corresponding to
the items whose values are 0 in the result mark vector are cheaters, and
then add these participants to A, finally return A.

4 Security and Correctness Analysis

Theorem 1. In our proposed scheme, the probability that each participant suc-
cessfully guesses the secret s is 1/v.

Proof. The dealer D hides the secret s into the polynomial fl(x), where l ∈ [1, v]
is randomly chosen by D, therefore, the participants successfully guess the value
of l with the probability 1/v.

P = {P1, · · · , Pm} (t ≤ m ≤ n) denotes all participants who take part in the
secret reconstruction phase, PI = {Pi1 , · · · , Piα} ⊆ P denotes the set of cheaters
in P, P−I = P/PI denotes the set of honest participants in P.

Theorem 2. Under non-cooperative attack with synchronisation (NCAS), when
m > t, our scheme is secure and fair.

Proof. NCAS assumes that all participants present shares at the same time and
that there is no cooperation between cheaters. Suppose that in the k-round
reconstruction stage, the cheaters in PI send invalid secret shares. Since there
is no cooperation between the cheaters, their invalid secret shares can only be
random numbers in Zq. When m > t, these secret shares could not pass the
consistency test, and the attack is immediately detected. In order to restore s, the
attackers in PI need to guess in which polynomial s is hidden and which honest
participants are involved. According to Theorem 1, the maximum successful
probability is 1/v. If v is large enough, the probability can be ignored. Therefore,
under non-cooperative attack, when m > t, our scheme is secure and fair.

Theorem 3. Under non-cooperative attack with asynchronisation (NCAAS),
when {(m−α < t−1)∩(m > t)}∪{m−α≥t+1}, our scheme is secure and fair.

Proof. NCAAS assumes that all participants present shared shares successively
without cooperation between attackers. A cheater’ ideal attack is to show the
secret share at the end, because he can obtain all the shares before others.
When m − α ≥ t + 1, that is, there are no less than t + 1 honest participants,
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who show the secret shares firstly. Therefore, the attackers can reconstruct the
correct polynomial fk(x) (suppose in k-round) based on t real secret shares, and
then obtain the ak. The attackers can show the real secret shares in the first
l rounds and show a fake secret share in (l + 1)th round. However, the fake
secret share cannot pass the consistency test, and the attack behavior can be
detected, which trigger the execution of cheater identification algorithm. The
right identifier al+1 can be reconstructed based on the m − α real secret shares,

because
(

m − α

t

)
> 1, the al+1 is correct identifier which can be used to identify

the attackers, therefore, the attackers could not gain d from the dealer to obtain
s. When m−α < t + 1, for an attacker, even if he finally shows his secret share,
he can only obtain at most t − 1 real secret shares, so he can not reconstruct
any t − 1-degree polynomial, as a result he can not recover s. In order to detect
attacks, m should greater than t. In conclusion, when {(m − α < t − 1)∩(m >
t)}∪{m − α≥t + 1}, the proposed scheme is secure and fair.

Theorem 4. Under collusion attack with synchronisation (CAS), when {(α <
t) ∩ (m > t)} ∪ {(α ≥ t) ∩ (m − α > α + t − 1)}, our scheme is secure and fair.

Proof. CAS assumes that all participants present secret shares simultaneously
and that multiple attackers conspire to attack the scheme. Suppose there are
α cheaters in k-round. (i) When α ≥ t, if the number of honest participants
is less than t, that is, m − α < t, then cheaters can cooperate to forge a
set of invalid secret shares which can pass consistency detection. The spe-
cific process is as follows: Cheaters first use their secret shares to recover an
interpolation polynomial, then utilize the polynomial to calculate the secret
shares held by other honest participants, and then generate their false secret
shares based on the secret shares of other honest participants. For example,
α = t, m − α = t − 1, m = 2t − 1, use {P1, · · · , Pt−1} denote honest partic-
ipants, use {Pt, Pt+1, · · · , P2t−1} denote cheaters. Cheaters can use their true
secret share {stk

, st+1k
, · · · , s2t−1k

} to calculate the interpolation polynomial
fk(x), so they can show the true secret shares in the first l rounds, and in
(l + 1)th round, they can use fl+1(x) to obtain other honest participants’
secret shares {s1l+1 , · · · , st−1l+1}, and calculate another (t − 1)-degree polyno-
mial f ′

l+1(x) by using secret shares {s1l+1 , s2l+1 , · · · , st−1l+1} and a random value
s′
tl+1

. And then, cheaters use f ′
l+1(x) to calculate t − 1 invalid secret shares

{s′
tl+1

, s′
t+1l+1

, · · · , s′
2t−1l+1

}. Finally, the secret shares shown by all participants
as follows: {s1l+1 , s2l+1 , · · · , st−1l+1 , s

′
tl+1

, s′
t+1l+1

, · · · , s′
2t−1l+1

}. These m secret
shares can pass consistency detection when m − α ≥ t. The secret shares forged
by the above method in (l + 1)th round cannot pass consistency detection. By
executing the identification algorithm, m real secret shares can used to recon-

struct the correct identifier al+1 at
(

m − α

t

)
times, while t−1 real secret shares

and an invalid secret share can be utilized to reconstruct a wrong identifier

a′
l+1 at

(
α + t − 1

t

)
times. Therefore, we have

(
m − α

t

)
>

(
α + t − 1

t

)
. That

is, m − α > α + t − 1, under this condition, the invalid secret shares can be
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detected, and cheaters cannot obtain d from the dealer and recover s. But the
honest participants can gain d and reconstruct s. (ii) If α < t, these α cheaters
can not use their real secret shares to forge the invalid secret shares that can
pass the consistency detection. When m > t, this attack can not pass the consis-
tency detection. If cheaters want to reconstruct s, they can only guess the value
of l, the probability of successfully guessing is only 1/v. From what has been
discussed above, when {(α < t) ∩ (m > t)} ∪ {(α ≥ t) ∩ (m − α > α + t − 1)},
our scheme is secure and fair.

Theorem 5. Under collusion attack with asynchronisation (CAAS), when
m − α > α + t − 1, our scheme is secure and fair.

Proof. CAAS assumes that all participants present secret shares successively and
that multiple cheaters conspire to attack the scheme. For cheaters, the ideal mode
of attack is to present the secret shares at the end, so that they can obtain the real
secret shares presented by previous honest participants. When m − α ≥ t, there
are not less than t honest participants, who first show the secret shares. Attackers
use t − 1 real secret shares (according to the method of Theorem 4) to forge
α invalid secret shares. Because m − α ≥ t, these invalid secret shares cannot
pass consistency detection. By executing the identification algorithm, m − α

real secret shares can be used to recover the correct identifier al+1

(
m − α

t

)

times, while t − 1 real secret shares and an invalid secret share can be utilized

to reconstruct a wrong identifier a′
l+1

(
α + t − 1

t

)
times. Therefore, we have(

m − α

t

)
>

(
α + t − 1

t

)
. Concretely, under m − α > α + t − 1, these invalid

secret shares can be detected, and cheaters cannot gain d from the dealer and
reconstruct s. But the honest participants can obtain d and recover s. Therefore,
when m − α > α + t − 1, the proposed scheme is secure and fair.

Theorem 6. Under the conditions mentioned above, our cheater identification
algorithm is correct.

Proof. The key to prove the correctness of the cheater identification protocol is
to prove the most frequently occurring value in {a1

k = f1
k (0), · · · , au

k = fu
k (0)}

is the correct value of ak. In the cheater identification protocol, interpolating
polynomials are reconstructed only based on t secret shares, therefore, only when
the t secret shares are real can the correct value of ak be recovered. To guarantee
the most frequently occurring value in {a1

k = f1
k (0), · · · , au

k = fu
k (0)} is the

correct value of ak, the following condition must be satisfied:
(

m − α

t

)
>

1
2

(
m

t

)
.
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We have,

(m − α)!
(m − α − t)!t!

>
1
2

· m!
(m − t)!t!

=
1
2

· (m − α)!α!
(m − t)!t!

⇒ (m − α)!
(m − α − t)!

>
1
2

· (m − α)!α!
(m − t)!

=
1
2

· (m − α)!
(m − α − t)!

Since the inequality is always true, our cheater identification algorithm is correct.

5 Performance

The following two examples are given to respectively calculate the maximum
number of attackers αmax under the four types of attack models. Taking (7,
n) threshold scheme as an example, assuming m = 9 and m = 11, where m
is the number of participants who take part in the secret reconstruction phase.
Under NCAS, according to Theorem 2, when m > t our scheme is secure and
fair, so αmax = 9. Similarly, under NCAAS, according to Theorem 3, when
{(m − α < t − 1)∩(m > t)}∪{m − α≥t + 1} our scheme is secure and fair,
which means αmax = 9. From the analysis of Theorem 4, Under CAS, when
{(α < t)∩ (m > t)}∪{(α ≥ t)∩ (m−α > α+ t−1)} the proposed scheme is safe
and fair, so αmax = 6. According to the analysis of Theorem 5, Under CAAS,
our scheme can defend at most 1 cheaters, as shown Table 1. Based on a similar
analysis process, when m = 11, the values of αmax are shown as in Table 1.

Table 1. (7,n)-threshold scheme, m = 9 or m = 11

Attack model Conditions αmax(m = 9) αmax(m = 11)

NCAS m > t 9 11

NCAAS {(m − α < t − 1)∩(m > t)}∪{m − α≥t + 1} 9 11

CAS {(α < t) ∩ (m > t)} ∪ {(α ≥ t) ∩ (m − α > α + t − 1)} 6 6

CAAS m − α > α + t − 1 1 2

Different from Tian and Peng’s [17] scheme, our scheme does not depend on
any security assumptions, it is a unconditional security scheme. Compared to
Tian’s [5], Harn’s [8], Harn-Lin’s [7] and Liu-Yang’s [16] secret sharing schemes,
our scheme achieves fairness but they do not have, as shown in Table 2.

Table 2. Security comparison

Scheme Tian [5] Harn-Lin [7] Liu-Yang [16] Tian-Peng [17] ours

Security assumption no no no ECDLP no

Fairness no no no no yes
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In [7], Harn and Lin proposed a secret sharing scheme that can identify
cheaters. In their scheme, the correct secret needs to be confirmed and the secret
share of each participant needs to be verified. In our scheme, we removed the pro-
cess of validating each participant’s secret share but achieves the same function
of [7]. Therefore, our scheme has higher operating efficiency than [7].

6 Conclusion

In this paper, we study the cheater identification issue and the fairness problem in
the reconstruction phase of secret sharing, and propose a fair (t, n) secret sharing
scheme including a efficient cheater identification algorithm. By comparing with
the existing verifiable secret sharing schemes, it can be found that our scheme
achieves fairness. Compared with the fair secret sharing scheme, our cheater
identification algorithm has a lower computational complexity. Moreover, we
analyzed the security of our proposed scheme under four different attack models.
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