
On the Nature of Symbolic Execution

Frank S. de Boer1,2(B) and Marcello Bonsangue2

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
f.s.de.boer@cwi.nl

2 Leiden Institute Of Advanced Computer Science (LIACS), Leiden, The Netherlands
m.m.bonsangue@liacs.leidenuniv.nl

Abstract. In this paper, we provide a formal definition of symbolic exe-
cution in terms of a symbolic transition system and prove its correctness
with respect to an operational semantics which models the execution
on concrete values. We first introduce such a formal model for a basic
programming language with a statically fixed number of programming
variables. This model is extended to a programming language with recur-
sive procedures which are called by a call-by-value parameter mechanism.
Finally, we show how to extend this latter model of symbolic execution
to arrays and object-oriented languages which feature dynamically allo-
cated variables.

1 Introduction

Symbolic execution [1] plays a crucial role in modern testing techniques, debug-
ging, and automated program analysis. In particular, it is used for generating
test cases [2,3].

Although symbolic execution techniques have improved enormously in the
last few years not much effort has been spent on its formal justification. In
fact, the symbolic execution community has concentrated most of the effort on
effectiveness (improvement in speed-up) and significance (improvement in code
coverage) and payed little attention to correctness so far [3].

Further, there exists a pletora of different techniques for one of the major
problems in symbolic execution, namely the presence of dynamically allocated
program variables, e.g., describing arrays and (object-oriented) pointer struc-
tures (“heaps”). For example, in [15] a heap is modeled as a graph, with nodes
drawn from a set of objects and updated lazily, whereas [5] introduces a con-
straint language for the specification of invariant properties of heap structures.
In [11] the symbolic state is extended with a heap configuration used to maintain
objects which are initialized only when they are first accessed during execution.
In the presence of aliasing, the uncertainty on the possible values of a symbolic
pointer is treated either by forking the symbolic state or refining the generated
path condition into several ones [6]. Powerful symbolic execution tools [7–9]
handling arrays exploit various code pre-processing techniques, though formal
correctness of the theory behind these tools is acknowledged as a potential prob-
lem that might limit the validity of the internal engine, and is validated only
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 64–80, 2019.
https://doi.org/10.1007/978-3-030-30942-8_6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301635392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_6

On the Nature of Symbolic Execution 65

experimentally by testing [10]. The KeY theorem prover [18] supports symbolic
execution of Java programs which is defined in terms of the underlying dynamic
logic and which uses an explicit representation of the heap. In all of the above
work no explicit formal account of the underlying model of the symbolic execu-
tion, and its correctness, is presented.

The main contribution of this paper is a formal definition of symbolic exe-
cution in terms of a symbolic transition system and a general definition of its
correctness with respect to an operational semantics which models the actual
execution on concrete values. Our general starting point is that the basic idea of
symbolic execution is to represent the program state, i.e., the assignment of val-
ues to program variables, by a corresponding substitution which assigns to each
program variable an expression denoting its current value. Further, symbolic exe-
cution by its very nature is syntax-directed which implies that the abstraction
level of the symbolic transition system should coincide with that of the pro-
gramming language. This general requirement implies that symbolic execution
operates on substitutions which (only) assign programming expressions to the
variables (and no other expressions which express properties of the run-time).

The only other approach to a formal modeling of symbolic execution, we are
aware of, is the work presented in [4]. A major difference with our approach is
that in [4] symbolic execution is defined in terms of a general logic (called “Reach-
ability Logic”) for the description of transition systems which abstracts from the
specific characteristics of the programming language. A symbolic execution then
consists basically of a sequence of logical specifications of the consecutive tran-
sitions. On the other hand, a model of the logic defines a concrete transition
system. Thus correctness basically follows from the semantics of the logic. In
our approach we both model symbolic execution and the concrete semantics (of
any language) independently as transition systems. However, in both cases the
transitions are directly defined in terms of the program to be executed. This
allows to address the specific characteristics of the programming language (like
dynamically allocated variables) still in a general manner. In [4], however, these
specific characteristics (like arrays) need to be imported in the general framework
by corresponding logical theories which require an additional justification.

Detailed Plan of the Paper. In Sect. 2 we introduce a formal model of symbolic
execution for a basic programming language with a statically fixed number of
programming variables. The concrete transition system for this basic language
is standard (and therefore omitted). A configuration of the symbolic transition
system consists of the program statement to be executed, a substitution, and a
path condition. Correctness then states that for every reachable symbolic config-
uration and state which satisfies the path condition, there exists a corresponding
concrete execution. Conversely, completeness states that for every concrete exe-
cution there exists a corresponding symbolic configuration such that the initial
state of the concrete execution satisfies the path condition and its final state can
be obtained as a composition of the initial state and the generated substitution.

In Sect. 3, we extend the basic theory of symbolic execution to a programming
language with recursive procedures which are called by a call-by-value parameter

66 F. S. de Boer and M. Bonsangue

mechanism. This extension requires a formal treatment of local variables stored
on the stack of procedure calls.

In Sect. 4 we show how to extend symbolic execution in a strictly syntax-
directed manner to an object-oriented language which features dynamically allo-
cated variables. These dynamically allocated variables give rise to an infinite
number of program variables and corresponding substitutions with an infinite
domain. We show how to extend our theory of symbolic execution to such infinite
substitutions. Moreover, we introduce for a correct implementation a finite rep-
resentation of these substitutions, and discuss different strategies for managing
aliasing.

In the final technical Sect. 5 (unbounded) arrays, multithreading, and con-
current objects are discussed as a further illustration of the generality of our
theory of symbolic execution.

Because of space limitations, in this paper we do not introduce all syntactic
details of the programming languages we use, which however should be clear via
their transition system semantics.

2 Basic Symbolic Execution

We assume a set of Var of program variables x, y, u, . . ., and a set Ops of opera-
tions op, We abstract from typing information. The set Expr of programming
expressions e is defined by the following grammar.

e := x | op(e1, . . . , en)

where x ∈ Var and op ∈ Ops. A substitution σ is a function Var → Expr which
assigns to each variable an expression. By eσ we denote the application of the
substitution σ to the expression e, defined inductively by

xσ = σ(x)
op(e1, . . . , en)σ = op(e1σ, . . . , enσ)

A symbolic configuration is a triple 〈S, σ, φ〉 where S denotes the statement
to be executed, σ denotes the current substitution, and Boolean condition φ
denotes the path condition.

Next we describe a transition system for the symbolic execution of a simple
programming language which features assignments, sequential composition, a
choice and iteration statement.

Assignment

– 〈x = e;S, σ, φ〉 → 〈S, σ[x = eσ], φ〉

where σ[x = e](y) = σ(y) if x and y are distinct variables, and σ[x = e](x) = e
otherwise.

On the Nature of Symbolic Execution 67

Choice

– 〈if B {S1}{S2};S, σ, φ〉 → 〈S1;S, σ, φ ∧ Bσ〉
– 〈if B {S1}{S2};S, σ, φ〉 → 〈S2;S, σ, φ ∧ ¬Bσ〉

Iteration

– 〈while B {S};S′, σ, φ〉 → 〈S;while B {S};S′, σ, φ ∧ Bσ〉
– 〈while B {S};S′, σ, φ〉 → 〈S′, σ, φ ∧ ¬Bσ〉

We formalize and prove correctness with respect to a concrete semantics. A
valuation V is a function Var → Val , where Val is a set of values. By V (e) we
denote the value of the expression e with respect to the valuation V , defined
inductively by V (op(e1, . . . , en)) = op(V (e1), . . . , V (en)) where op denotes the
interpretation of the operation op as provided by the implicitly assumed under-
lying model. Composition is as usual: (V ◦ σ)(x) = V (σ(x))1.

Lemma 1 (Substitution). V ◦ σ(e) = V (eσ) .

Proof (Sketch). The proof of the lemma proceeds by induction on e. We have
the following main case:

V ◦ σ(op(e1, . . . , en)) = op(V ◦ σ(e1), . . . , V ◦ σ(en)) (semantics expressions)
= op(V (e1σ), . . . , V ((enσ)) (induction hypothesis)
= V (op(e1σ, . . . , enσ)) (semantics expressions)
= V (op(e1, . . . , en)σ) (substitution application)

The concrete semantics of our basic programming language is defined in
terms of transitions 〈S, V 〉 → 〈S′, V ′〉. The definition of this transition system
is standard and therefore omitted.

Let id be the identity substitution, i.e., id(x) = x, for every variable x. We
have the following main correctness theorem.

Theorem 1 (Correctness). If 〈S, id , true〉 →∗ 〈S′, σ, φ〉 and V (φ) = true then

〈S, V 〉 →∗ 〈S′, V ◦ σ〉

Proof. Induction on the length of 〈S, id , true〉 →∗ 〈S′, σ, φ〉 and a case analysis
of the last execution step. We consider the following cases.

First, we consider the case of an assignment as the last execution step:

〈S, id , true〉 →∗ 〈x = e;S′, σ, φ〉 → 〈S′, σ[x = eσ], φ〉

Induction hypothesis (note that V (φ) = true):

〈S, V 〉 →∗ 〈x = e;S′, V ◦ σ〉
1 In the sequel we omit the parentheses and write V ◦σ(e) for the application valuation

V ◦ σ to the expression e (as defined above).

68 F. S. de Boer and M. Bonsangue

Let V ′ = V ◦ σ. By the concrete semantics we have

〈S, V 〉 →∗ 〈x = e;S′, V ′〉 → 〈S′, V ′[x = V ′(e)]〉

where V ′[x = V ′(e)](x) = V ′(e) and V ′[x = V ′(e)](y) = V ′(y), for any other
variable y. Suffices to show V ◦ (σ[x = eσ]) = V ′[x = V ′(e)]. We treat the main
case:

V ◦ (σ[x = eσ])(x) = V (σ[x = eσ](x)) (def. ◦)
= V (eσ) (def. σ[x = eσ])
= V ◦ σ(e) (substitution lemma)
= V ′(e) (V ′ = V ◦ σ)
= V ′[x = V ′(e)](x) (def. V ′[x = V ′(e)])

Next we consider the case when the Boolean guard of a choice construct
evaluates to true:

〈S, id , true〉 →∗ 〈if B {S1}{S2};S, σ, φ〉 → 〈S1;S, σ, φ ∧ Bσ〉

We have that V (φ ∧ Bσ) = true implies V (φ) = true, so by the induction
hypothesis we obtain the concrete computation

〈S, V 〉 →∗ 〈if B {S1}{S2};S, V ◦ σ〉

Since V ◦ σ(B) = V (Bσ) = true, we derive

〈S, V 〉 →∗ 〈if B {S1}{S2};S, V ◦ σ〉 → 〈S1;S, V ◦ σ〉

All other cases are treated similarly.

Theorem 1 guarantees that all possible inputs satisfying a path condition
lead to a concrete state with variables conform to the substitution of the cor-
responding symbolic configuration. Correctness, however, is about coverage [4],
meaning that satisfiable symbolic execution paths can be simulated by concrete
executions. The converse of correctness is completeness and is about precision [4]:
every concrete execution can be simulated by a symbolic one. To this end we
introduce the following relation between symbolic and the concrete transition
systems: Let 〈S, V 〉 � 〈S, σ, φ〉 denote that V = V0 ◦ σ and V0(φ) = true, for
some valuation V0.

Theorem 2 (Completeness). The relation � between symbolic and concrete
configurations is a simulation relation, i.e., if 〈S, V 〉 � 〈S, σ, φ〉 then 〈S, V 〉 →
〈S′, V ′〉 implies the existence of a corresponding symbolic transition 〈S, σ, φ〉 →
〈S′, σ′, φ′〉 such that 〈S′, V ′〉 � 〈S′, σ′, φ′〉.

The proof of this theorem proceeds by a straightforward case analysis of the
concrete execution steps.

On the Nature of Symbolic Execution 69

3 Recursion

We extend the basic programming language with procedure declarations P (ū) ::
S and procedure calls P (ē), assuming a call by value parameter passing mech-
anism. A program then consists of set of procedure declarations and a main
statement. We assume absence of name clashes between the global variables of
a program and its local variables (e.g., the formal parameters of the procedure
declarations). A symbolic configuration is of the form 〈Σ, σ, φ〉, where

– Σ denotes the stack of closures (τ, S), where τ is a local substitution (assign-
ing expressions to formal parameters),

– σ is the current global substitution (mapping expressions to global variables),
– φ is a Boolean condition denoting the path condition.

In the sequel we indicate by ⊥ the absence of local variables in a closure (⊥, S)
which represents a continuation of the execution of the main statement which
does not contain local variables (for technical convenience we do not consider
the introduction of local variables by block statements). By τ ∪ σ we denote the
union of the substitutions τ and σ (defined in terms of their graphs). This is
well-defined because of the absence of name clashes between local and global
variables of a programs. We have the following symbolic transitions.

Procedure Call. Given the procedure declaration P (ū) :: S′, we have

– 〈(τ, P (ē);S) · Σ, σ, φ〉 → 〈(τ ′, S′) · (τ, S) · Σ, σ, φ〉, where τ ′(ū) = ē(τ ∪ σ).

Procedure Return

– 〈(τ, ε) · Σ, σ, φ〉 → 〈Σ, σ, φ〉, where ε denotes the empty statement.

Choice

– 〈(τ, if B {S1}{S2};S) · Σ, σ, φ〉 → 〈(τ, S1;S,) · Σ, σ, φ ∧ B(τ ∪ σ)〉
– 〈(τ, if B {S1}{S2};S) · Σ, σ, φ〉 → 〈(τ, S2;S) · Σ, σ, φ ∧ ¬B(τ ∪ σ)〉

Iteration

– 〈(τ,while B {S};S′) · Σ, σ, φ〉 → 〈(τ, S;while B {S};S′) · Σ, σ, φ ∧ B(τ ∪ σ)〉
– 〈(τ,while B {S};S′) · Σ, σ, φ〉 → 〈(τ, S′) · Σ, σ, φ ∧ ¬B(τ ∪ σ)〉

Assignment Global Variable Let x be a global variable.

– 〈(τ, x = e;S) · Σ, σ, φ〉 → 〈(τ, S) · Σ, σ[x = eθ], φ〉, where θ = τ ∪ σ.

Assignment Local Variable Let x be a local variable.

– 〈(τ, x = e;S) · Σ, σ, φ〉 → 〈(τ [x = eθ], S) · Σ, σ, φ〉, where θ = τ ∪ σ.

70 F. S. de Boer and M. Bonsangue

Proposition 1. For any computation 〈(⊥, S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉
where S denotes the main statement, we have that τ(x), for every local vari-
able x in its domain, and σ(x), for every global variable x, does not contain
local variables.

Proof. By induction on the length of the computation, using that eθ, for any
programming expression e, does not contain local variables, where θ = τ ∪σ and
τ(x), for every local variable x, and σ(x), for every global variable x, does not
contain local variables.

Corollary 1. For any computation 〈(⊥ S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉 where
S denotes the main statement, the generated path condition φ does not contain
local variables.

We omit the details of the standard concrete semantics which instead of
substitutions is defined in terms of valuations both for the local variables and
the global variables, where V ∪ L(e) denotes the result of the evaluation of the
expression e in the global valuation V and the local valuation L. We have the
following correctness theorem of the symbolic execution of recursive programs.

Theorem 3 (Correctness). If 〈(⊥, S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉 and
V (φ) = true then

〈(⊥, S), V 〉 →∗ 〈(V ◦ τ, S′) · V ◦ Σ,V ◦ σ〉
where V ◦ τ ′(x) = V (τ ′(x)), for any local environment τ ′ and local variable x,
and V ◦ Σ denotes the result of replacing every local environment τ ′ in Σ by
V ◦ τ ′ (and by ⊥, in case of the empty local environment ⊥). Note that by the
above proposition and corollary τ(x) and φ do not contain local variables.

Proof. As above, we proceed by induction on the length of the symbolic com-
putation and a case analysis of the last execution step. Given the procedure
declaration P (ū) :: S′, we consider the case of a procedure call:

〈(⊥, S), id , true〉 →∗ 〈(τ, P (ē);S′′) · Σ, σ, φ〉 → 〈(τ ′, S′) · (τ, ;S′′) · Σ, σ, φ〉
where τ ′(ū) = ē(τ ∪ σ). By the induction hypothesis we obtain the concrete
computation

〈(⊥, S), V 〉 →∗ 〈(V ◦ τ, P (ē);S′′) · V ◦ Σ,V ◦ σ〉
We observe that V ◦ τ ′(ū) = V (ē(τ ∪ σ)) = V ◦ (τ ∪ σ)(ē) = (V ◦ τ ∪ V ◦ σ)(ē).
So we obtain that

〈(V ◦ τ, P (ē);S′′) · V ◦ Σ,V ◦ σ〉 → 〈(V ◦ τ ′, S′) · (V ◦ τ, ;S′′) · V ◦ Σ,V ◦ σ〉
As in the basic case, we have a similar completeness result for recursive

procedures also expressed in terms of a simulation relation between the symbolic
and the concrete transition system.

On the Nature of Symbolic Execution 71

4 Object Orientation

We distinguish between the global variables appearing in the main statement,
the local variables (i.e., the formal parameters of methods, including the keyword
this), and the instance variables (of the classes) of the given program. For mod-
eling symbolically the dynamic creation of new objects, we assume a (countable)
infinite set of global variables. We abstract from the typing information of the
variables. We have the following syntax of programming expressions e in class
definitions

e := x | op(e1, . . . , en)

where x is a local or instance variable2 and op denotes a built-in operation.
The syntax of heap variables H and heap expressions E is defined by the

following grammar:

H := x | H.y
E := H | op(E1, . . . , En) ,

where x is a global variable and op an operation. In the last clause defining heap
variables we implicitly assume that y is an instance variable of the class of the
object represented by H.

A symbolic heap σ is a substitution which assigns to each heap variable a
heap expression. A local environment (of a given method) τ is a substitution
which assigns to each formal parameter a general heap expression. Note that
thus τ(x) does not contain local variables.

We have the following inductive definition of the application of a substitution
θ which consists of the union τ ∪σ of a symbolic heap σ and a local environment
τ to a programming expression e (as above, assuming absence of name clashes
between the formal parameters, on the one hand, and the instance and global
variables, on the other hand).

xθ = τ(x) local variable
xθ = σ(τ(this).x) instance variable
op(E1, . . . , En)θ = op(E1θ, . . . , Enθ)

A heap update σ[x = E], where x is a global variable, is defined by σ[x =
E](x) = E and σ[x = E](H) = σ(H), for any other heap variable H. Next we
define a symbolic heap update σ[H.x = E] by

– σ[H.x = E](H ′.x) = if σ(H ′) = σ(H) then E else σ(H ′.x) fi,
– σ[H.x = E](H ′) = σ(H ′), for any other heap variable H’.

It is important to note that the resulting expression in the first clause is a
conditional heap expression which captures possible aliases. Note further that
the case σ[H.x = E](H.x) simplifies to E.
2 In the main statement only global variables are used.

72 F. S. de Boer and M. Bonsangue

Given a program, i.e., a set of class definitions and a main statement, a
symbolic configuration is defined as above. We have the following symbolic tran-
sitions (the transitions for the assigning local variables, the choice and iteration
constructs are as above).

Assignment Global Variable. As above, absence of local variables in the main
statement is indicated by ⊥.

– 〈(⊥, x = e;S), σ, φ〉 → 〈(⊥, S), σ[x = eσ], φ〉
Note that a closure representing the execution of the main statement is always
at the bottom of the stack.

Assignment Instance Variable

– 〈(τ, x = e;S) · Σ, σ, φ〉 → 〈(τ, S) · Σ, σ[τ(this).x = eθ], φ〉, where θ = τ ∪ σ.

Object Creation. We describe the assignment of a new object to a local variable3.

– 〈(τ, x = new C;S) · Σ, σ, φ〉 → 〈(τ [x = y], S) · Σ, σ′, φ〉
The global variable y (of type C) is fresh and σ′ results from σ by assigning
nil to y.x, x an instance variable of C. Freshness is defined with respect to
the computation (which thus requires recording the set of new global variables
introduced so far, the details of which are straightforward and therefore omitted).

Method Call. Given a method declaration m(ū){S}, we have

– 〈(τ, y = e0.m(ē);S′) · Σ, σ, φ〉 → 〈(τ ′.S) · (τ, y =?;S′) · Σ, σ, φ′〉,
where τ ′(ū) = ē(τ ∪ σ) and τ ′(this) = e0(τ ∪ σ). The question mark in the
assignment y =? serves as a placeholder of the return expression (see below).
Further, φ′ denotes the path condition φ ∧ e0(τ ∪ σ) �= nil .

Method Return

– 〈(τ, return e) · (τ ′, x =?;S) · Σ, σ, φ〉 → 〈(τ ′[x = eθ], S) · Σ, σ, φ〉,
where θ = (τ ∪ σ). For an assignment of the return expression to an instance
variable we have a similar transition.

We have the following basic proposition about the expressions generated by
a symbolic computation.

Proposition 2. For any computation 〈(⊥, S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉
where S denotes the main statement, we have that τ(x) and σ(x) do not contain
local variables and do not dereference a global variable that does not occur in the
main statement (i.e., a global variable used to denote a newly created object).

Proof. The proof proceeds by a straightforward induction on the length of the
symbolic computation.
3 We model a call x = new C(ē) of a constructor method by the object creation

statement x = new C followed by a method call x.C(ē).

On the Nature of Symbolic Execution 73

Corollary 2. For any computation 〈(⊥ S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉 where
S denotes the main statement, the generated path condition φ does not contain
local variables and derefences only global variables appearing in the main state-
ment (in other words, global variables which do not appear in the main statement
are not dereferenced).

In order to define and prove the correctness of the above symbolic transition
system for object-oriented programs, we first introduce the notion of a global
valuation V which assigns to each heap variable a value (of the corresponding
type) and which satisfies the following two conditions:

– V (H) = V (H ′) implies V (H.x) = V (H ′.x), for every heap variables H and
H ′ and instance variable x (belonging to the class of the object).

– V (x) �= V (x′), for any two distinct global variables x and x′ which do not
appear in the main statement (unique name assumption).

A concrete local valuation L assigns to every formal parameter x of the
corresponding method a value L(x) (of the appropriate type).

An update V [x = v] of a global valuation V , where x is a global variable
and v a value of corresponding type, is defined by V [x = v](x) = v and V [x =
v](H) = V (H), for any other heap variable H. On the other hand, an update
V [H.x = v] is defined by

– V [H.x = v](H ′.x) =
{

v if V (H ′) = V (H)
V (H ′.x) otherwise

– V [H.x = v](H ′) = V (H ′), for any other heap variable H ′.

An initial configuration 〈(⊥, S), V 〉 of the concrete semantics of a given program
consists of the main statement S (as above, ⊥ indicates the absence of local
variables) and an initial global valuation V such that for any global variable x
which does not appear in the main statement and heap variable H rooted in a
global variable we have that V (x) �= V (H). Any global variable is a heap variable
rooted in a global variable, and if H is such a heap variable, so is H.x, for any
instance variable x. We thus can use these initially unreachable objects in the
concrete semantics as a repository of fresh object identities (which are selected
non-deterministically, as the fresh global variables in the symbolic semantics).
Since every executing object is reachable (from a global variable) we can define
the concrete semantics of an assignment x = e to an instance variable e as
follows. Given the above update of a global valuation V and a local environment
L (which assigns values to the local variables of the executing method), we can
define the resulting global valuation of the execution of the assignment x = e by
the object L(this) by V [H.x = v], where H is such that V (H) = L(this), and v
is the result of evaluating the expression e in the local environment L and the
valuation V .

We omit the further details of the standard concrete semantics (which thus,
instead of substitutions, is defined in terms of valuations both for the local
variables and the heap variables).

74 F. S. de Boer and M. Bonsangue

We have the following correctness theorem of the symbolic execution of
object-oriented programs.

Theorem 4 (Correctness). Given an object-oriented program with main
statement S we have that if 〈(⊥, S), id , true〉 →∗ 〈(τ, S′) · Σ, σ, φ〉 and V (φ) =
true, where V is an initial valuation, then

〈(⊥, S), V 〉 →∗ 〈(V ◦ τ, S′) · V ◦ Σ,V ◦ σ〉
where V ◦ τ and V ◦ Σ are defined as above.

Proof. As above, the proof proceeds by induction on the length of the symbolic
computation and a case analysis of the last execution step. For the case of an
assignment x = e to an instance variable, it suffices to show that

V ◦ (σ[τ(this).x = eθ]) = (V ◦ σ)[τ(this).x = V (eθ)]

where θ = τ ∪ σ. Here we go: First, for any heap variable H not of the form
H ′.x, for some H ′, we have

V ◦ (σ[τ(this).x = eθ])(H) = V (σ[τ(this).x = eθ](H)) (def. ◦)
= V (σ(H)) (def. update σ[τ(this).x = eθ])
= (V ◦ σ)(H) (def. ◦)
= (V ◦ σ)[τ(this).x = V (eθ)](H) (def. update(V ◦ σ)[τ(this).x = V (eθ)]) .

Further,

V ◦ (σ[τ(this).x = eθ])(H.x)
= (def. ◦)
V (σ[τ(this).x = eθ](H.x))
= (def.update σ[τ(this).x = eθ])
V (if σ(H) = σ(τ(this)) then eθ else σ(H .x) fi)
= (semantics of conditional heap expression)
if V (σ(H)) = V (σ(τ(this))) then V (eθ) else V (σ(H.x))
= (def.update (V ◦ σ)[τ(this).x = V (eθ)])
(V ◦ σ)[τ(this).x = V (eθ)](H.x) .

Again, completeness can be established by means of a simulation relation
between the symbolic transition system and the concrete one.

Implementation

An implementation of the above symbolic execution of object-oriented programs
requires a finite representation of the generated substitutions (note that we
have a countable infinite set of heap variables). As an example, we can rep-
resent the generated substitutions by (possibly empty) sequences {H1.x1 =
E1}, . . . , {Hn.xn = E1} of updates of instance variables. Such a sequence ρ
simply represents the substitution ρ̄ which results from the identity substitution
id by applying the updates [H1, x1 = E1], . . . , [Hn.xn = En], as defined above,
consecutively. For such a sequence of updates ρ we define ρ(H) inductively by

On the Nature of Symbolic Execution 75

– id(H) = H,
– ρ{H.x = E}(H ′.x) = if ρ(H ′) = ρ(H) then E else ρ(H ′.x) fi,
– ρ{H.x = E}(H ′) = ρ(H ′), for any other heap variable H ′.

It is easy to prove by induction on the length of the sequence ρ that ρ(H) = ρ̄(H),
for every heap variable. We then can define e(τ∪ρ) in the same manner as e(τ∪σ)
defined above. Thus we can now define the following transition for an assignment
to an instance variable

〈(τ, x = e;S) · Σ, ρ, φ〉 → 〈(τ, S) · Σ, ρ{τ(this).x = eθ}, φ〉

where ρ is a sequence of updates and θ = τ ∪ ρ. In general, we abstract from the
infinite number of heap variables by simply replacing in the symbolic transitions
the substitution σ by the sequence of updates ρ. In particular, we have the
following adaptation of the transition describing object creation

〈(τ, x = new C;S) · Σ, ρ, φ〉 → 〈(τ [x = y], S) · Σ, ρ′, φ〉

where, as above, the global variable y (of type C) is fresh and ρ′ results from ρ
by adding the updates {y.x = nil}, for every an instance variable x of C.

Other implementation issues concern the aliasing of heap variables. There
are various ways to manage (resolve) aliasing. We briefly describe the following
enhancements. First, we can import information from the path condition φ into
the evaluation of ρ(H):

ρ{H.x = E}(H′.x) =

⎧
⎨

⎩

E if φ � ρ(H) = ρ(H′)
ρ(H′.x) if φ � ρ(H) �= ρ(H′)
if ρ(H ′) = ρ(H) then E else ρ(H′.x) if otherwise

Here � denotes logical entailment.
Further, there are various ways of branching the symbolic execution by resolv-

ing aliasing of heap variables. For example, we can resolve aliasing in the symbolic
transition of an assignment x = e as follows:

〈(τ, x = e;S) · Σ, ρ, φ〉 → 〈(τ, S) · Σ, ρ{τ(this).x = E}, φ′〉

where 〈e(τ ∪ρ), φ〉 ⇒∗ 〈E, φ′〉 and ⇒∗ denotes the reflexive, transitive closure of
the rewrite system consisting of the rules which resolve conditional expression,
like

– 〈op(. . . , if B then E1 else E2fi , . . .), φ〉 ⇒ 〈op(. . . , E1, . . .), B ∧ φ〉
– 〈op(. . . , if B then E1 else E2 fi, . . .), φ〉 ⇒ 〈op(. . . , E2, . . .),¬B ∧ φ〉
In a similar manner, we can resolve aliasing which results from the symbolic
evaluation of the Boolean condition of the choice and iteration constructs. For
example, we have the following symbolic transition for the choice construct.

〈(τ, if B {S1}{S2};S) · Σ, ρ, φ〉 → 〈(τ, S1;S,) · Σ, ρ,B′ ∧ φ′〉

where 〈B(τ ∪ ρ), φ〉 ⇒∗ 〈B′, φ′〉.

76 F. S. de Boer and M. Bonsangue

5 Arrays, Multithreading, and Concurrent Objects

To illustrate the generality of our theory of symbolic execution we discuss the
following extensions and applications.

Arrays. Arrays and object structures (i.e., heaps) are similar because both give
rise to a (countable) infinite number of program variables. Instead of an infinite
number of heap variables, arrays give rise to an infinite number of so-called
subscripted variables.

To focus on the main ideas, we restrict this discussion to the extension of the
basic programming language with one-dimensional arrays. We have the following
syntax of expressions e in the basic programming language (abstracting from the
typing information).

e := x | a[e] | op(e1, . . . , en) ,

where x ∈ Var , a is an array variable, and op denotes a built-in operation.
A substitution then assigns to each (subscripted) variable an expression. An

update σ[x = e], where x is a program variable, is defined by σ[x = e](x) = e
and σ[x = e](y) = σ(y), for any other (subscripted) variable y. Next we define a
symbolic update σ[a[e] = e′] by

– σ[a[e] = e′](a[e′′]) = if σ(e) = σ(e ′′) then e ′ else σ(a[e′′]) if ,
– σ[a[e] = e′](y) = σ(y), for any other (subscripted) variable y.

As above, it is important to note that the resulting expression in the first clause
is a conditional expression which captures possible aliases.

Given this definition of a symbolic update we can define in a straightfor-
ward manner a symbolic transition system for the basic programming language
extended with arrays (possibly taking into account symbolically array bounds).
Correctness then is defined with respect to the notion of a global valuation V
which assigns to each (subscripted) variable a value (of the corresponding type)
and which satisfies the following condition:

– V (e) = V (e′) implies V (a[e]) = V (a[e′]).

It is straightforward to extend Theorem 1. In particular, correctness of a symbolic
update of a subscripted variable then can be proved in a similar manner as that
of a heap variable. Further, we can apply the same techniques as introduced for
heap variables to obtain a finite representation of the generated substitutions
and resolve aliasing.

We conclude this discussion on arrays with another approach which consists
of a functional view of arrays (see [13]). In this view array variables themselves
are expressions which denote functions, and a substitution assigns to each array
variable an expression which denotes a function. Notably, an expression (a[e] =
e′) denotes the function which results from updating the function denoted by a.
Applying a substitution σ then amounts simply to subtituting every occurrence
of an array variable a by the expression σ(a). Similarly, object structures can

On the Nature of Symbolic Execution 77

be viewed as a function h which symbolically represents the heap. However, the
abstraction level of such a functional view does not coincide with that of the
programming language (it extends the set of programming expressions).

Multithreading. It is straightforward to extend the symbolic transition system
introduced above with multithreading: A symbolic configuration 〈Threads, σ〉
then consists of a set Threads of stacks of closures and local symbolic transitions
of a single thread are extended to global transitions by the following rule:

〈T, σ, φ〉 → 〈T ′, σ′, φ′〉
〈{T} ∪ Threads, σ, φ〉 → 〈{T ′} ∪ Threads, σ′, φ′〉

where T and T ′ denote stacks of closures. For a call of the run method of a
thread class we need the following separate rule which spawns a new thread.

〈{(τ, e.run;S) · Stack} ∪ Threads, σ, φ〉
→

〈{(τ, S) · Stack , (τ ′, S′)} ∪ Threads, σ, φ〉
where τ ′(this) = e(τ ∪σ) and S′ denotes the body of the run method. The proof
of correctness is a straightforward extension of the correctness of the symbolic
execution of sequential object-oriented programs (as stated by Theorem 4).

Concurrent Objects. We briefly sketch how to extend the symbolic execution of
object-oriented programs to the Abstract Behavioral Specification (ABS) lan-
guage [14] which describes systems of objects that interact via asynchronous
method calls. Such a call spawns a corresponding process associated with the
called object. Return values are communicated via futures [12]. Each object
cooperatively schedules its processes one at a time. The processes of an object
can only access their local variables and the instance variables of the object. As
in Sect. 4, we assume a main statement that only contains global variables.

Symbolically, a system of concurrent objects in ABS can be described by a
configuration 〈P, σ, φ〉, where P is simply a set of closures (τ, S) which represent
the processes, and σ is a substitution, φ is a path condition, both as defined in
Sect. 4. To model the communication of the return values by futures we introduce
for each process a distinguished local variable dest which denotes its own future
(see below).

We have the following symbolic transition for an asynchronous call x =
e0!m(ē) to a method m with body S:

〈{(τ, x = e0!m(ē);S)} ∪ P, σ, φ〉 → 〈{(τ, x = y;S), (τ ′, S′)} ∪ P, σ[y = nil], φ′〉
where the newly generated future is symbolically represented by a fresh global
variable y which is initialized to nil (indicating that the return value has not yet
been computed). Further, τ ′(ū) = ē(τ ∪σ), τ ′(this) = e0(τ ∪σ), and τ ′(dest) = y.
Finally, φ′ denotes the path condition φ ∧ e0(τ ∪ σ) �= nil .

For returning a value we have the transition

〈{(τ, return e)} ∪ P, σ, φ〉 → 〈P, σ[τ(dest) = e(τ ∪ σ)], φ〉

78 F. S. de Boer and M. Bonsangue

Obtaining a returned value from a future by means of a “get” operation on
a future variable is described by the transition

〈{(τ, x = y.get);S)} ∪ P, σ, φ〉 → 〈{(τ [x = σ(y)], S)} ∪ P, σ, φ〉

where φ � σ(y) �= nil (that is, φ entails that σ(y) �= nil). Note that this transition
thus requires that the return value has been computed as recorded by the path
condition.

Scheduling a process that is waiting on a Boolean condition is modeled by

〈{(τ, await e;S)} ∪ P, σ, φ〉 → 〈{(τ, S)} ∪ P, σ, φ ∧ eθ〉

where θ = τ ∪ σ and e is a Boolean condition. On the other hand, scheduling a
process that is waiting on a future is modeled by

〈{(τ, await x?;S)} ∪ P, σ, φ〉 → 〈{(τ, S)} ∪ P, σ, φ〉

where x is a future variable and φ � σ(y) �= nil .
The transitions for the usual statements, e.g., that of assigning an instance

variable of an object, are modeled in a straightforward manner after the corre-
sponding transitions in Sect. 4. Assuming that all method bodies start with the
awaittrue statement, we can globally constrain the scheduling of processes by
the invariant that for each object there exists at most one process with an initial
statement different from an await statement.

The concrete transition system for the ABS language can be defined as in
Sect. 4 in terms of valuations. Here we use the initially unreachable objects in the
concrete semantics additionally as a repository of fresh future identities. Again,
the proof of correctness is a straightforward extension of the correctness of the
symbolic execution of sequential object-oriented programs.

6 Conclusion

Despite the popularity and success of symbolic execution techniques, to the best
of our knowledge, a general theory of symbolic execution is missing which covers
in an uniform manner mainstream programming features like arrays and (object-
oriented) pointer structures, as well as local scoping as it arises in the passing of
parameters in recursive procedure calls. In fact, most existing tools for symbolic
execution lack an explicit formal specification and justification.

In this paper we proposed such a general theory which covers the above
mainstream programming features, and further illustrated the generality of our
approach by its application to both multithreading and concurrent objects. From
a practical point of view, we also illustrated how our theory sheds light on major
implementation issues related to dynamically allocated variables and aliasing.
This point of view we want to further explore by the development of proto-type
implementations of the presented formal models of symbolic execution, compare
performance with other tools, and investigate optimizations.

On the Nature of Symbolic Execution 79

Another interesting research direction is the development of a further exten-
sion of our theory for concolic execution, mixing symbolic and concrete execu-
tions [16], and the symbolic backward execution [17].

Acknowledgements. This work arose out of our Foundation of Testing master course
(LIACS) in 2018, and we thank the master students for their valuable comments. We
thank the anonymous reviewers for their valuable comments.

References

1. King, C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976)

2. Albert, E., Arenas, P., Gómez-Zamalloa, M., Rojas, J.M.: Test case generation
by symbolic execution: basic concepts, a CLP-based instance, and actor-based
concurrency. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer,
I. (eds.) SFM 2014. LNCS, vol. 8483, pp. 263–309. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07317-0 7

3. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018)

4. Lucanu, D., Rusu, V., Arusoaie, A.: A generic framework for symbolic execution:
a coinductive approach. J. Symbolic Comput. 80(1), 125–163 (2017)

5. Braione, P., Denaro, G., Pezzè, M.: Symbolic execution of programs with heap
inputs. In: Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015), pp. 602–613. ACM (2015)

6. Trt́ık, M., Strejček, J.: Symbolic memory with pointers. In: Cassez, F., Raskin,
J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 380–395. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11936-6 27

7. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS 2006), pp. 322–335. ACM (2006)

8. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation (OSDI
2008), pp. 209–224, USENIX Association (2008)

9. Elkarablieh, B., Godefroid, P., Levin, M.Y.: Precise pointer reasoning for dynamic
test generation. In: Proceedings of the 18th International Symposium on Software
Testing and Analysis (ISSTA 2009), pp. 129–140. ACM (2009)

10. Perry, D.M., Mattavelli, A., Zhang, X., Cadar, C.: Accelerating array constraints
in symbolic execution. In Proceedings of the 26th International Symposium on
Software Testing and Analysis (ISSTA 2017), pp. 68–78. ACM (2017)

11. Deng, X., Lee, J.: Bogor/Kiasan: a K-bounded symbolic execution for checking
strong heap properties of open systems. In: Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2006), pp.
157–166 (2006)

12. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71316-6 22

13. Gries, D.: The Science of Programming. Texts and Monographs in Computer Sci-
ence. Springer (1981)

https://doi.org/10.1007/978-3-319-07317-0_7
https://doi.org/10.1007/978-3-319-07317-0_7
https://doi.org/10.1007/978-3-319-11936-6_27
https://doi.org/10.1007/978-3-540-71316-6_22

80 F. S. de Boer and M. Bonsangue

14. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

15. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: a framework for generating
object-oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31980-1 24

16. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of the ACM SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI 2005), pp. 213–223. ACM (2005)

17. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weak-
est preconditions. In Proceedings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2009), pp. 363–374. ACM
(2009)

18. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbric, M.: Deduc-
tive Software Verification - The KeY Book - From Theory to Practice. LNCS, vol.
10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-540-31980-1_24
https://doi.org/10.1007/978-3-319-49812-6

	On the Nature of Symbolic Execution
	1 Introduction
	2 Basic Symbolic Execution
	3 Recursion
	4 Object Orientation
	5 Arrays, Multithreading, and Concurrent Objects
	6 Conclusion
	References

