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Abstract

Over the years, different data assimilation methods have been implemented to acquire improved

estimations of model parameters by adjusting the uncertain parameter values in such a way that the

mathematical model approximates the observed data as closely and consistently as possible. However,

most of these methods are developed on the assumption of Gaussianity, e.g. Ensemble Kalman Filters,

which is not the case in practical situations, and hence they result in poor estimations. In this work,

the estimations of uncertain parameters are acquired from an Ensemble Square Root Kalman Filter

and from a novel method, an Ensemble Transform Particle Filter, that does not have an assumption

of Gaussianity. The latter method is developed on the backbone of Bayesian approach of sequential

Monte Carlo with the framework of linear transport problem and has proved to be highly beneficial

for systems with non-Gaussian distributions. We examine the performance of these methods in a

twin experiment setup, when the observations of pressure are synthetically created based on the

assumed true values of the uncertain parameters and implementing the Darcy flow model as the

forward model, which is used for the data assimilation algorithm as well. We consider two test

cases based on different geometrical configurations and distributions of permeability field across the

domain representing low and high dimensional systems with small and large number of uncertain

parameters, respectively. The numerical experiments demonstrate that Ensemble Transform Particle

Filter provides comparable results with that of Ensemble Square Root Kalman Filter for the low

dimensional system and outperforms it for the high dimensional system.

Keywords: Bayesian inference, data assimilation, ensemble Kalman filter, particle filter, subsurface
flow, parameter estimation.

1 Introduction

Accurate estimation of subsurface geological properties like permeability, porosity etc. is essential for
many fields specially where such predictions can have large economic or environmental impact, for
instance prediction of oil or gas reservoir locations. If we know these geological parameters and model
variables of subsurface flow systems accurately enough, it becomes possible to solve a so-called forward
model and predict the outcome of any action. However, these subsurface reservoirs are buried thousands
of feet below the earth surface and exhibit a highly heterogeneous structure, which makes it difficult to
obtain their geological parameters. Usually a prior information about the parameters is given, which
still needs to be corrected by observations of pressure and production rates. These observations are,
however, known only at the well locations that are often hundreds of meter apart and moreover are
corrupted by errors. This gives us instead of a well-posed forward problem an ill-posed inverse problem
of estimating uncertain parameters, since many possible combinations of parameters can result in equally
good matches to the observations.

There exists a vast literature describing various techniques that have been implemented to solve
such inverse problems and are generally termed as history matching methods in the field of reservoir
modeling. Different inverse problem techniques for groundwater and petroleum reservoir have been
developed and used by many researchers over the years, e.g. in [21] the authors implemented Markov
chain Monte Carlo methods with different perturbation approaches and tested their performance on a 2-D
reservoir model, [28] presented the implementation of Gauss-Newton method for estimation of reservoir
parameters, [30, 5] showed the application of neighborhood algorithm which approximates the posterior
distribution by partitioning the model parameter space into regions of roughly uniform distribution,
[25] applied representer method to estimate states and parameters for a 1-D two-phase reservoir model.
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This approach expands all the unknown variables using a finite sum of representer functions weighted
by the representer coefficients. The representer function describes the influence of the corresponding
measurement on the solution and the representer coefficients determines how strong each representer
should be accounted for in the final solution. In [33] authors used Levenberg–Marquardt method to
characterize reservoir pore pressure and permeability, [34, 7] reviewed methods for solving the output
least-squares problem using gradient and sensitivity based techniques. A more detailed discussion of
various history matching algorithm can be found in the review paper [20].

For reservoir models the term data assimilation and history matching are used interchangeably, as the
goal of data assimilation is the same as that of history matching, where we use observations to improve a
solution from a mathematical model by correcting uncertain parameters. Though data assimilation had
originally been employed in the field of meteorology and oceanography for state prediction by correcting
initial conditions [10], now-a-days it is one of the frequently employed approach for parameter estimation
in subsurface flow models as well [22], since it can easily be extended to estimate model parameters by
implementing the method of state augmentation [15]. The idea here is to expand the state space by
adding the uncertain parameters so that parameters act as the model variables in the data assimilation
system and the chosen assimilation algorithm can then be applied to the augmented system in a usual
way.

Over the years considerable efforts have been devoted to develop robust data assimilation techniques
which could provide better assessment of state at affordable computational costs. There are mainly
two classes of methods in data assimilation: variational approach which is based on minimization of
an appropriate cost functional subjected to model constraints providing a single estimate and ensemble
approach which provides an ensemble of estimates whose variability can directly be used to evaluate the
uncertainty.

Ensemble Kalman filters and particle filters are examples of ensemble based approaches. Ensemble
Kalman filter was developed to handle non-linear models at low computational cost. It updates the model
states based on the assumption of Gaussian probability distribution. There are different variations of
ensemble Kalman filters which can be broadly divided into two categories namely: stochastic approach
and deterministic approach. In stochastic approach random noise is added to the observations and in
deterministic approach a linear transformation is used to update the ensemble members. Ensemble
square root Kalman filter (EnSRF) is based on the later approach [31]. The advantage of EnSRF over
the stochastic approach is that it does not introduce an additional error due to the perturbation.

Initial application of ensemble Kalman filters in the field of groundwater hydrology is used for soil
moisture estimation and is demonstrated in [27]. In petroleum engineering, [17] presented the first
implementation of ensemble Kalman filter using a dynamic two-phase model of fluid flow in a well. Since
then it has been investigated by a variety of researchers in subsurface flow models, e.g. in [9] the authors
demonstrated the use of ensemble Kalman filter for 2-D reservoir models. They tuned both dynamic
variables (pressure and saturation) and static variables (permeability) providing improved estimations
of permeability. In [3] both 2-D and 3-D models of a single phase flow were used to demonstrate the
ability of ensemble Kalman filters to continuously update the hydraulic conductivity field and to study
the effect of ensemble size, incomplete prior statistics and measurements. [1] presents a detailed review
of the application of ensemble Kalman filter in reservoir engineering. As shown in these papers, the
resulting updated ensemble for ensemble Kalman filters efficiently approximates the theoretical posterior
distribution if the ensemble size is sufficiently large and the distributions are not far from Gaussian.
Though, as the update equations are of the form of Kalman filter equation which corrects only the mean
and covariance matrix, it limits the performance of EnKF for models with multimodal distributions, see
[36, 6].

On the other hand, particle filters, also known as sequential Monte Carlo methods, seem to be quite
promising for such physical systems. They are also ensemble based methods in which the probability
density function is represented by a number of particles (also called samples or ensemble members)
and their evolution is computed by solving the forward model for each particle. These particles are
then assigned weights based on the information present in the observations of the true physical system.
Particle filtering in its original form faces the issue of ensemble collapse after a few data assimilation
steps and also struggles to represent the actual state of the physical systems if majority of the particles
are far away from the observation. Due to these reasons particle filters were earlier assumed to be
impractical for high-dimensional systems as they required a large number of particles making the process
computationally very expensive. However, recent developments help to overcome these limitations by
generating computationally efficient particle filtering methods for high-dimensional systems as discussed
in details in the review paper [32]. This paper discusses the existing strategies to reduce the variance
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in the weights in order to avoid ensemble collapse (particle degeneration). One of the most common
methods among these strategies is resampling and can be performed in different ways, e.g. residual
sampling, stochastic universal, Monte Carlo Metropolis-Hastings sampling etc. The basic idea here is
to abandon the low weight particles while generating new particles using the density of high weighted
particles and then uniformly dividing weight among them. There has been significant work done for
parameter estimation using particle filters in the area of hydrology. In [19] the authors used a conceptual
rainfall-runoff model to estimate the model parameters and state posterior distributions. In [35] the
authors presented a comparison among ensemble Kalman filter and particle filters with two different
resampling strategies for a rainfall-runoff forecast and found that as the number of particles increased
the particle filters outperformed ensemble Kalman filter. [18, 11] demonstrated application of particle
filters to correct the soil moisture state and estimate hydraulic parameters.

The disadvantage of resampling for parameter estimation is that it does not modify the high weight
particles and in the process of throwing away the low weight particles we lose some important information
regarding the parameter distribution. Another method to deal with the issue of ensemble collapse
is coupling, it transforms all the particles using a transformation matrix based on a linear transport
problem in such a way that all the particles end up with uniform weights. Ensemble transform particle
filter (EnTPF) [26] is a novel method based on the coupling methodology which presents a deterministic
approach to resampling, a discussion later in section 2.2. In this research work, our goal is to study the
performance of EnTPF in solving the inverse problem of parameter estimation for steady state single
phase Darcy flow model while using the results from the ensemble Kalman filter as a benchmark. We
perform two numerical experiments using twin experiment setup namely: two layer with fault but with
constant permeability across a layer, and two layer without fault but with spatially varying permeability
across a layer. For both cases we assume the permeability field across the domain defines the uncertain
parameters. Further, we discuss the limitations faced by these ensemble based data assimilation methods
and how the techniques like inflation and localization affect their performance. This paper is organized
as follows: in the section 2 we describe both the data assimilation methods for parameter estimation
problems. Section 3 explains the forward model and the numerical scheme used to discretize the Darcy
model in detail. In section 4 we discuss the numerical experiment set-up followed by the results for both
test cases and section 5 concludes the findings of this research work.

2 Data assimilation methods

We implement ensemble square root Kalman filter and ensemble transform particle filter for estimating
the parameters of subsurface flow. Both of these schemes are based on Bayesian framework. Assume
we have an ensemble of M model states {zm}Mm=1, then according to this framework, the posterior
distribution, which is the probability distribution π(zm|yobs) of model state zm given a set of observations
yobs, can be estimated by the pointwise multiplication of the prior probability distribution π(zm) of the
model state zm and the conditional probability distribution π(y

obs
|zm) of the observations given the

model state, which is also referred as the likelihood function,

π(zm|y
obs

) =
π(yobs|zm)π(zm)

π(y
obs

)
.

The denominator π(yobs) represents the marginal of observations and can be expressed as:

π(yobs) =

M
∑

m=1

π(yobs, zm) =

M
∑

m=1

π(yobs|zm)π(zm),

which shows that π(yobs) is just a normalisation factor. For parameter estimation using data assimilation

the model state zm =
[

Pm um

]T
, it includes both model variable Pm and uncertain parameters um

and a model is augmented by the trivial equation u̇m = 0, where u̇m is the time derivative of um.

2.1 Ensemble Square Root Kalman Filter

The concept of ensemble Kalman filter is based on the idea of using an ensemble of states to estimate the
mean and the covariance matrix and propagating these ensemble members in parallel. Ensemble Kalman
filter has several derivations depending on either stochastic or deterministic approach of generating
analysis. The ensemble square root Kalman filter (EnSRF) in particular is based on the deterministic
approach.
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Assume we have an ensemble of M initial model states {zbm}Mm=1, where b refers to a background
(prior) state, which are sampled from a chosen prior probability density function, then the ensemble
Kalman filter estimate (or analysis) {zam}Mm=1 is given by:

zam = zbm + K(y
obs

− Hzbm), m = 1, . . . ,M, (2.1)

Ca = Cb − KHCb,

where C is an error covariance matrix of either background (with superscript b) or analysis (with super-
script a) and K is the Kalman gain matrix which is given by

K = CbHT (HCbHT + R)−1.

Here R is the measurement error covariance and H is the observation operator which projects a model
state z to the observation phase space. We assume the observation operator H to be linear, though
it could be extended to nonlinear observation operator as well. The background error covariance is
represented by an ensemble of model states using ensemble anomalies as

Cb =
1

M − 1
Ab(Ab)T ,

with Ab being the background ensemble anomalies defined as

Ab =
[

(zb1 − z̄b) (zb2 − z̄b) . . . (zbM − z̄b)
]

,

where z̄b is the mean defined by

z̄b =
1

M

M
∑

m=1

zbm.

According to [31] EnSRF updates the ensemble anomalies using a transformation matrix S such that:

Aa := AbS,

Ca =
1

M − 1
AbSST (Ab)T ,

where S is an M ×M matrix involving a square root and hence the name ensemble square root Kalman
filter. For our numerical experiments we define S as

S =

[

I+
1

M − 1
(HAb)TR−1HAb

]

−1/2

, (2.2)

where I is an identity matrix of size M ×M . This gives us the analysis using a Kalman update formula
equivalent to (2.1)

zam = zbm +
1

M − 1
AbS2(HAb)TR−1(yobs − Hzbm), m = 1, . . . ,M.

To ensure that the anomalies of analysis remain zero centered we check whether Aa1 = AbS1 = 0, given

S1 = 1 and Ab1 = 0, where 1 is a vector of size M given by 1 =
[

1 1 . . . 1
]T

.

2.2 Ensemble Transform Particle Filter

In particle filtering we represent the probability distribution function of the states using ensemble mem-
bers (also called particles), as in ensemble Kalman filter. We start by assigning prior (background)
weight wb

m to the particles and then rescale the weights based on the observation by using the Bayes’
formula as shown below,

wa
m =

wb
mπ(yobs|zbm)

π(yobs)
, (2.3)

where wa
m is the new (analysis) weight, π(y

obs
|zbm) the likelihood and π(y

obs
) is the normalization factor.

It is important to note here that particle filters do not change the state z of the system, they only modify
the weight of particles. For any dynamical system these weights become non-uniform just after a few
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data assimilation steps, with only one particle having all the weight, while all the other particles have
weights closer to zero, causing degeneracy of the particle filter. In this case the entire statistics of
the system gets influenced by just that one particle, which might be far away from the true state and
hence does not represent the real state of the system. Moreover, since particle filters do not modify the
ensemble members but only rescale the weights, a sophisticated perturbation needs to be implemented
for parameter estimation in non-chaotic systems. To deal with these limitations, particle filter has been
modified using for example a coupling methodology known as ensemble transform particle filter (EnTPF).

EnTPF looks for a coupling between two discrete random variables B1 and B2 so as to convert the
ensemble members belonging to the random variable B2 with probability distribution π(B2 = zbm) = wa

m

to the random variable B1 with uniform probability distribution π(B1 = zbm) = 1/M . The coupling
between these two random variables is an M ×M matrix T whose entries should satisfy

tmj ≥ 0, m, j = 1, . . . ,M, (2.4)

M
∑

m=1

tmj =
1

M
, j = 1, . . . ,M, (2.5)

M
∑

j=1

tmj = wa
m, m = 1, . . . ,M. (2.6)

We assume that initially all particles have equal weight, thus wb
m = 1/M for m = 1, . . . ,M , and that the

likelihood is Gaussian with error covariance matrix R, then from (2.3) wa
m is given by

wa
m =

exp
[

− 1

2
(Hzbm − yobs)

TR−1(Hzbm − yobs)
]

∑M
j=1

exp
[

− 1

2
(Hzbj − yobs)

TR−1(Hzbj − yobs)
]
, m = 1, . . . ,M. (2.7)

We look for an optimal coupling matrix T∗ with elements t∗mj which minimizes the squared Euclidean
distance and is characterized by a linear programming problem [29] as shown below

J(tmj) =

M
∑

m,j=1

tmj ||zbm − zbj ||2.

Once we have the optimal coupling matrix T∗ the analysis ensemble members are then calculated by the
following linear transformation

zaj = M

M
∑

m=1

t∗mjz
b
m, j = 1, . . . ,M. (2.8)

We use FastEMD algorithm developed by Pele & Werman [24] to solve the linear transport problem
and get the optimal transport matrix.

Remark : An important property of EnTPF is to retain the imposed interval bounds of ensemble
members. Consider an ensemble of background states {zbm}Mm=1 given by

zbm =
[

abm bbm cbm
]T

, m = 1, . . . ,M,

where we assume all the parameters {abm}Mm=1, {bbm}Mm=1 and {cbm}Mm=1 are bounded between 0 and 1.
Therefore, the following inequalities hold:











0 < amin ≤ abm ≤ amax < 1, m = 1, . . . ,M,

0 < bmin ≤ bbm ≤ bmax < 1, m = 1, . . . ,M,

0 < cmin ≤ cbm ≤ cmax < 1, m = 1, . . . ,M.

Now we assume two discrete random variables B1 and B2 have probability distributions given by

π(B1 = zbm) = 1/M, π(B2 = zbm) = wa
m,

with wa
m ≥ 0, m = 1, . . . ,M and

∑M
m=1

wa
m = 1. As, EnTPF looks for a matrix T∗
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which defines coupling between these two probability distributions, each entry of this coupling matrix
satisfies the conditions given by equations (2.4)–(2.6). These conditions assure that each entry of the
coupling matrix will be non-negative and less than 1.

Therefore, since the analysis given by (2.8) is

zam =





ab1(Mt∗1m) + ab2(Mt∗2m) + · · ·+ abM (Mt∗Mm)
bb1(Mt∗1m) + bb2(Mt∗2m) + · · ·+ bbM (Mt∗Mm)
cb1(Mt∗1m) + cb2(Mt∗2m) + · · ·+ cbM (Mt∗Mm)



 , m = 1, . . . ,M,

these conditions lead to










0 < amin ≤ aam ≤ amax < 1, m = 1, . . . ,M,

0 < bmin ≤ bam ≤ bmax < 1, m = 1, . . . ,M,

0 < cmin ≤ cam ≤ cmax < 1, m = 1, . . . ,M.

Thus the coupling matrix bounds the analysis ensemble members to be in the desired range. This is not
observed in EnSRF as the matrix S given by (2.2) does not impose any of the non-equality and equality
constraints (see expressions (2.4)–(2.5)), so it results in values outside the bound as well.

2.3 Limitations of EnSRF and EnTPF algorithms

All variations of ensemble Kalman filter and particle filter are limited by the ensemble size. Since, even
if the size of the model state is just upto a few thousands, a large ensemble size will make each run of
the model computationally very expensive. This limit of small ensemble size to evaluate model statistics
introduces sampling error. To deal with the issue of small ensemble size researchers have introduced
techniques like localization and ensemble inflation.

Localization reduces the impact of spurious correlations due to small ensemble size. We will use
a distance based localization method, according to which all the observations outside a certain radius
around the grid point in concern do not have any effect on the update of the state at that grid point.
Since EnSRF updates anomalies in the linear space of ensemble instead of model space we implement the
"local analysis" localization method by updating the transformation matrix S [13]. For the local update
of ith element of an ensemble member depending on the grid point i, we first introduce the diagonal
matrix Ĉi ∈ RNy×Ny in observation space which depends on the distance between the updated element
and the observation, as defined by,

(Ĉi)ll = ρ

( |Xi − rl|L
rloc

)

, (2.9)

where i = 1, . . . , n2, l = 1, . . . , Ny, n
2 is the dimension of the model space, Ny is the dimension of the

observation space, rl denotes the location of the observation, rloc is the localisation radius and ρ(·) is a
taper function, such as Gaspari-Cohn function [8]

ρ(s) =























1− 5

3
s2 +

5

8
s3 +

1

2
s4 − 1

4
s5, 0 ≤ s ≤ 1,

−2

3
s−1 + 4− 5s+

5

3
s2 +

5

8
s3 − 1

2
s4 +

1

12
s5, 1 ≤ s ≤ 2,

0, 2 ≤ s.

Now to implement this in the algorithm we need to define ensemble anomalies at each grid point Xi

Ab(Xi) =
[

(zb1(Xi)− z̄b(Xi)) (zb2(X)i − z̄b(Xi)) . . . (zbM (Xi)− z̄b(Xi))
]

,

and using this we can define local analysis ensemble anomalies as Aa(Xi) := Ab(Xi)S(Xi). The localised
transformation matrix is then given by:

S(Xi) =

[

I +
1

M − 1
(HAb)T (ĈiR

−1)HAb

]

−1/2

.

For EnTPF we localize the impact of observations by modifying the likelihood of zbm given observation
y

obs
. Thus (2.7) becomes

wa
m(Xi) =

exp
[

− 1

2
(Hzbm − yobs)

T (ĈiR
−1)(Hzbm − yobs)

]

∑M
j=1

exp
[

− 1

2
(Hzbj − y

obs
)T (ĈiR

−1)(Hzbj − y
obs

)
] , m = 1, . . . ,M,
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where Ĉi is a diagonal matrix as defined by (2.9). wa
m(Xi) describes the weight of mth ensemble member

of analysis at ith grid point Xi. Moreover, for finding the optimal coupling matrix T∗ we define the
associated distance at each grid point by

||zbm − zbj ||2i = [zbm(Xi)− zbj(Xi)]
2, m, j = 1, . . . ,M,

which reduces the localized EnTPF to a univariate transport problem [26].
In addition to localization, inflation is often used to compensate for a small ensemble. Inflation

increases ensemble spread about its mean in order to avoid underestimation of system error covariance,
as it can lead to the divergence of the filter. For EnSRF we implement multiplicative inflation [2], where
inflated ensemble members are defined as,

zbm = z̄b + αAb
m, m = 1, . . . ,M.

Here z̄b is background empirical mean, Ab
m represents background ensemble anomalies and α is the

inflation factor (usually 1 < α < 1.2).
EnTPF can lead to creation of identical or near-identical analysis ensemble members, thus we im-

plement additive inflation [12] to avoid filter divergence and the creation of identical analysis ensemble
members by modifying (2.8) to:

zaj = M

M
∑

m=1

t∗mjz
b
m + ǫj , j = 1, . . . ,M, (2.10)

where {ǫj}Mj=1 are independent realizations of random variables from Gaussian distribution N(0, τCb),

τ > 0 here is the rejuvenation factor and it relates to inflation factor by α =
√
1 + τ2 [4]. For our

numerical experiments we use a value of τ ranging from 0 (denoting no rejuvenation) to 0.4, this gives
us a range of α from 1 to 1.07. In the rest of the paper we will refer both τ and α as inflation factor,
and both multiplicative and additive inflation as inflation.

For parameter estimation, the quality of the initial guess about the uncertain model parameters
influences the ability of data assimilation methods to obtain an accurate estimation of those parameters.
If we do not have adequate knowledge about it then the available data may not be enough to improve
a poor initial guess. In such cases, it has been found useful to iterate the filter globally as it provides a
new and improved initial guess which is closer to the true solution to restart the procedure [16]. There
exist several approaches for iterative Kalman filters though that is not the case for EnTPF. Therefore,
in this article we use the iterative approach for both EnSRF and EnTPF. Hence, the algorithm runs
as follows. We start with an initial guess of parameters {ub

m}Mm=1 and solve the forward model to
evaluate the corresponding state {Pb

m}Mm=1. This gives us a background ensemble {zbm}Mm=1 for the
first iteration. Then using a data assimilation method with all the observations we obtain an analysis
{zam}Mm=1 at the end of the first iteration of the data assimilation cycle. Since the updated values of
the state are conditioned on the observations we expect {ua

m}Mm=1 to be closer to the true value of
parameter as compared to {ub

m}Mm=1, therefore {ua
m}Mm=1 are used in the forward problem to generate a

new background state for the next iteration. The next iteration is done by rerunning a data assimilation
method based on the same set of observations. This procedure is usually repeated until we meet any of
the imposed stopping criteria. Though we have knowledge regarding these stopping criteria for ensemble
Kalman filter from earlier research works, e.g. [14], there is still no literature available regarding it for
EnTPF. Hence, to have a fair comparison of these two methods we run the simulations for a fixed number
of iterations to study the behavior of the resulting error with number of iterations.

3 Numerical approximation of forward model

We consider a steady-state single-phase Darcy flow model defined over an aquifer of two-dimensional
physical domain D = [0, 1]× [0, 1], which is given by,

−∇ · (k(x, y)∇P (x, y)) = f(x, y), (x, y) ∈ D (3.1)

P (x, y) = 0, (x, y) ∈ ∂D (3.2)

where ∇ =
[

∂/∂x ∂/∂y
]T

, T denotes the transpose, · the dot product, P (x, y) the pressure, k(x, y) the
permeability, f(x, y) the source term, which we assume to be 2π2sin(πx)sin(πy), and ∂D the boundary
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of domain D. The forward problem of this second order elliptical equation is to find the solution of
pressure P (x, y) for given f(x, y) and k(x, y).

C

χi,j

E

χi+1,j

W

χi−1,j

N

χi,j+1

S

χi,j−1

∆x

∆x

∆y

x

y

Fig. 1: Grid point cluster

We implement cell-centered finite difference method to discretize the partial differential equation by
employing the grid point cluster shown in figure 1, see e.g. [23]. We divide the entire domain D uniformly
(∆x = ∆y) in n× n axis-parallel cells of size ∆x2. Each of these cells is denoted by χi,j , i, j = 1, . . . , n,
and has a value of pressure Pi,j at its center. For the shaded cell χi,j as shown in Figure 1, the grid
point C is the interior point as it is surrounded by cells χi+1,j , χi−1,j , χi,j+1 and χi,j−1 in all directions.
For C the grid point in its east side, E, has a value of pressure Pi+1,j , the grid point W in west side has
a value of pressure Pi−1,j , the grid point N on the north side has a value of pressure Pi,j+1 and the grid
point S in south has a value of pressure Pi,j−1. Integrating (3.1) by parts for cell χi,j and replacing the
normal derivative on the edges by

(

∂P

∂x

)

C,E

=
Pi+1,j − Pi,j

∆x
,

(

∂P

∂x

)

C,W

=
Pi,j − Pi−1,j

∆x
,

(

∂P

∂y

)

C,N

=
Pi,j+1 − Pi,j

∆y
,

(

∂P

∂y

)

C,S

=
Pi,j − Pi,j−1

∆y
,

gives the finite difference equation for the interior points as

−ki−1/2,j(Pi−1,j−Pi,j)−ki+1/2,j(Pi+1,j−Pi,j)−ki,j−1/2(Pi,j−1−Pi,j)−ki,j+1/2(Pi,j+1−Pi,j) = fi,j∆x2.
(3.3)

Here ki−1/2,j = k(xi−1/2, yj) is the value of permeability on the edge between grid points W and C. If k
is discontinuous along the interface we take ki−1/2,j as the harmonic mean of the neighboring grid points
as

ki−1/2,j =
2ki−1,jki,j
ki−1,j − ki,j

, (3.4)

and similarly ki+1/2,j , ki,j−1/2 and ki,j+1/2 are defined. We implement the Dirichlet boundary conditions
(3.2) with the discretized equation (3.3) to derive finite difference equations for the grid points near
boundaries, and finally end up with a set of linear equations of the form

KP = F, (3.5)

where K is a sparse, symmetric, positive definite matrix of size n2 × n2, P is a vector with entries of Pi,
i = 1, . . . , n2 and F is a vector with entries fi for i = 1, . . . , n2.

4 Numerical Experiments

We perform numerical experiments with synthetic observations, where instead of a measuring device a
model is used to obtain observations. We implement cell-centered finite difference method to discretize the

8



domain D into 100× 100 grid cells and solve the forward model given by (3.5) with the true parameters.
Then the synthetic observations are obtained by

yobs = L(P) + η, (4.1)

where an element of L(P) is a linear functional of pressure, namely

Ll(P) =
1

2πσ2

n2

∑

i=1

exp

(

−|Xi − rl|2
2σ2

)

Pi∆x2, l ∈ 1, . . . , Ny (4.2)

where σ = 0.01 and Ny = 16 represents the number of observation locations. The observation locations
are spread uniformly across the domain D as shown by the dots in figure 3 and 9. η denotes the
observation noise and is assumed to be a random variable drawn from a normal distribution with mean
zero and standard deviation of 0.09. It is important to note that for the inverse problem we use grid size
of 50× 50 to make the problem in hand more challenging.

4.1 Low-dimensional test case

For our first numerical experiment, we consider a low-dimensional problem where the permeability field
is defined by mere 5 parameters. We assume that the entire domain D = [0, 1]× [0, 1] is divided into two
subdomains D1 and D2 as shown in figure 2. Each subdomain of D represents a layer and is assumed
to have a permeability function k(X), where an element of X is defined by Xi = χg,j , for i = 1, . . . , n2

and g, j = 1, . . . , n. The thickness of layer on both sides a and b, correspondingly, defines the slope of
the interface and a parameter c defines a vertical fault. The layer moves up or down depending on c < 0
or c > 0, respectively, and its location is assumed to be fixed at x = 0.5.

D2

D1

a

1− a

b

1− b

c

Fig. 2: Geometrical configuration: low-dimensional test case

Further, for this test case we assume piecewise constant permeability within each of the subdomains,
hence k(X) is given by

k(X) = k1δD1
(X) + k2δD2

(X), (4.3)

where k1, k2 represent permeability of the subdomain D1, D2, respectively, and δ is Dirac function. Then
the parameters defining the permeability field for this configuration are

u =
[

a b c k1 k2
]T

.

We assume the true value of the parameters which defines the geometry to be atrue = 0.6, btrue = 0.3,
ctrue = −0.15 and that of parameters defining the permeability in different layers as ktrue1 = 12 and
ktrue2 = 5. These parameter values are used to create the synthetic observations. Next, we assume all
the five uncertain parameters are drawn from a uniform distribution over a specified interval, namely
a, b ∼ U[0, 1], c ∼ U[−0.5, 0.5], k1 ∼ U[10, 15] and k2 ∼ U[4, 7]. Top row of figure 3 shows the true state of
permeability based on the true values of parameters with the dots representing the observation locations.
Bottom row of the figure illustrates some of the permeability fields defined by different ensemble members
providing an impression of the prior state.

As it was pointed out earlier in section 2.2, EnTPF takes into account the physical constraints on
the model parameters. However, the particle rejuvenation as given in (2.10) is essential for EnTPF, but
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increases the spread among ensemble members without considering these physical constraints. Therefore,
we need to change the variables to make sure the output of data assimilation algorithm remains physically
viable. As the domain D is [0, 1]× [0, 1], the parameters a and b should lie within the interval [0, 1]. To
enforce this constraint we substitute a according to:

a′ = log

(

a

1− a

)

, a′ ∈ R

and similarly b is substituted by b′. The parameter c, however, remains unchanged since we do not have
any constraint for it. Further, since permeability should only take non-negative values, we change the

parameter k to k′ = log(k). Thus the parameters are now given by u′ =
[

a′ b′ c k′1 k′2
]T

. The
state vector P is then augmented with u′ instead of u, which we later transform back to the parameter
u. This change of variables is performed for both EnTPF and EnSRF.

In order to avoid any bias due to initial ensemble we perform 10 simulations based on a random draw
of initial ensemble from the same prior distribution. Then to compare the performance of EnTPF and
EnSRF, we run a simulation for a maximum of 100 iterations and calculate the root mean squared error
(RMSE) at each iteration as:

RMSE(ar) =

√

√

√

√

1

M

M
∑

m=1

(aa,rm − atrue)2, r = 1, . . . , 10,

where M is ensemble size and r is the simulation number. We similarly evaluate RMSE for b, c, k1 and
k2 and use it to calculate the relative RMSE (RE) by

REr =
1

5

(

RMSE(ar)

atruth
+

RMSE(br)

btruth
+

RMSE(cr)

ctruth
+

RMSE(kr1)

ktruth1

+
RMSE(kr2)

ktruth2

)

, r = 1, . . . , 10. (4.4)
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Fig. 3: Permeabilities of low-dimensional test case. Top: truth with dots representing the observation locations. Bottom:
permeabilities defined by (4.3) from some samples of the prior.

We conduct the numerical experiments for ensemble sizes varying from 10 to 300 with an increment
of 20 and an inflation α ∈ [1, 1.077] for EnSRF which corresponds to τ ∈ [0, 0.4] for EnTPF.
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(c) Left: data misfit, right: RE. α = 1.0284
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(d) Left: data misfit, right: RE. τ = 0.24

0 50 100
Iterations

1

1.2

1.4

1.6

1.8

M
is

fi
t

0 50 100
Iterations

0

0.2

0.4

0.6

0.8

1

R
E

(e) Left: data misfit, right: RE. α = 1.077
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(f) Left: data misfit, right: RE. τ = 0.4

Fig. 4: RE over iterations for M=150 and different inflation factors for EnSRF (a, c, e) and EnTPF (b, d, f) with different
colors corresponding to the behavior of different experiments.

Figure 4 represents the variation of RE and data misfit ||yobs −L(P)||, where || · || denotes L2 norm,
for each of the 10 simulations with respect to iterations at an ensemble size of 150 and inflation factor
varying from the smallest we use α=1 (τ=0) to the highest α=1.077 (τ=0.4) for EnSRF (EnTPF). Here
same color lines represent the behavior of the same set of initial ensemble for both the data misfit plot
and the corresponding RE plot. We observe that at α=1 for EnSRF the data misfit and RE behave
similarly and converge to a minimum value, which moreover is nearly same for all the 10 simulations
as shown in figure 4(a). Thus, at low inflation factors EnSRF is independent of initial ensemble. At
α ≥ 1.0284 even though data misfit attains convergence the corresponding RE for some simulations
starts increasing with iterations as shown in figure 4(c). This is a well known fact and to avoid such
occurrence different regularization methods are applied to stop iterations before this trend begins. Any
further increment in α leads to more disastrous results for EnSRF as shown in figure 4(e). Therefore,
since we observe discrepancy between the behavior of data misfit and RE for M=150 at α ≥ 1.0284, we
study the effect of inflation in terms of ensemble size. In figure 5 we plot MRE over 10 simulations as
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defined by:

MRE =
1

10

10
∑

r=1

REr, (4.5)

as a function of ensemble size. In black line with circular markers we plot MRE at the last iteration at
no inflation, and in black line with star markers MRE at last iteration at optimal inflation (when MRE
is the lowest). It can be observed from this figure that for EnSRF inflation does not seem to improve
the results if we compare the MRE at the last iteration. However, if we compare the lowest MRE over
iterations at optimal inflation and no inflation as shown in figure 5 using red line with diamond markers
and red line with triangle markers, respectively, we see an improvement. The MRE is smaller due to
inflation but only at the lowest ensemble size M=10, and as the ensemble size increases α=1 (which
corresponds to no inflation) becomes the optimal inflation factor. Therefore, the behavior shown in
figure 4 (c) and (e) can be credited to large inflation which should be avoided. It should also be noted
that for ensemble size greater than 10 and no inflation the MRE at the last iteration is the same as the
lowest MRE over iterations.

In figure 4 (b, d, f) we show the RE with respect to the number of iterations for EnTPF at M=150
and τ ∈ [0, 0.4], where each curve represents the behavior of different initial ensemble. As it can be
seen from figure 4 (b) unlike EnSRF here behavior of each simulation differs from another at low values
of τ ∈ [0, 0.24], with each attaining a different minimum value of data misfit and especially RE. As
we increase the inflation factor τ > 0.24 we observe convergence among all the simulations and at
τ = 0.4 the data misfit as well as the RE attains maximum convergence (shown in figure 4 (f)). In
figure 5 (b) we show the MRE as a function of ensemble size for EnTPF. We plot the MRE at the last
iteration at no inflation and at optimal inflation in black without any markers and in black with square
markers, respectively. In red we plot the lowest MRE over iterations, where no markers refer to no
inflation and square markers to optimal inflation. It can be observed from the figure that unlike EnSRF
EnTPF performance improves with inflation, as EnTPF creates nearly identical ensemble members which
remain the same in a deterministic system unless inflation is applied. Also, for EnTPF the lowest MRE
over iterations is lower than the MRE at the last iteration for any ensemble size which suggests that
implementing stopping criteria might help to improve the results of EnTPF.
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Fig. 5: MRE as a function of ensemble size for EnSRF (a) and EnTPF (b). For EnSRF, black line represents MRE
at last iteration with star markers denoting optimal inflation and circular markers no inflation. Red line with diamond
markers and triangle markers represent the lowest MRE over iteration at optimal inflation and no inflation, respectively.
For EnTPF, black line denotes MRE at last iteration with square markers representing optimal inflation and without
markers representing no inflation. Red line with and without markers represents lowest MRE over iteration at optimal and
no inflation, respectively.

To have a better idea of the effect of inflation factor and ensemble size on the performance of EnSRF
and EnTPF we plot the heatmaps using the lowest MRE over iterations for both data assimilation
schemes in figure 6. It can be seen from the heatmap of EnSRF (b) that the results remain almost the
same for all ensemble sizes and α ≥ 1.0127 (τ ≥ 0.16). As the inflation factor increases the MRE starts
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increasing suggesting divergence of the algorithm. For EnTPF (figure 6 (a)), MRE improves as ensemble
size increases and the optimal inflation factor varies with the ensemble size.
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Fig. 6: Heatmaps showing the best MRE over iterations for EnTPF (a) and EnSRF (b). Lowest MRE over iteration using
optimal inflation factor is shown in solid red for EnTPF and solid blue for EnSRF with dashed lines representing minimum
and maximum RE among the 10 simulation corresponding to the lowest MRE (c).

Figure 6 (c) provides a clear comparison in performance between the data assimilation schemes. We
plot the lowest relative error over iterations at optimal inflation for EnSRF in blue and for EnTPF
in red. The solid lines represents the mean over 10 simulations (4.5) and the dashed line represents
the minimum and maximum RE (4.4) over 10 simulations. It can be observed from this figure that
EnSRF provides better results than EnTPF at lower ensemble sizes, though as ensemble size increases
we can see improvement in the results of EnTPF and at around M=70 it becomes comparable to that
of EnSRF. With further increase in the ensemble size (M ≥ 70) the results of EnTPF either remain the
same as EnSRF or become better. It can also be noted that the difference between the maximum RE
and minimum RE is large for EnTPF, which signifies the dependence of EnTPF on the choice of initial
ensemble. This suggests that the results of EnTPF can be improved if one makes a more educated guess
of initial ensemble. For EnSRF on the contrary the difference between the maximum and minimum RE
is almost negligible for M ≥ 30 making the method more robust.

Since the relative error does not provide a clear picture of the estimation of parameters individually,
we illustrate them in figure 7. We evaluate the mean and spread of parameters at the end of each
iteration, which we average over 10 simulations as:

¯̄aa =
1

10

10
∑

r=1

āa,r,

here āa,r = 1

M

∑M
m=1

aa,rm for r = 1, . . . , 10, and ¯̄aa ± 1.5āaspread, where

āaspread =
1

10

10
∑

r=1

√

√

√

√

1

M

M
∑

m=1

(aa,rm − āa,r)2,

where superscript a stands for analysis, and similarly for b, c, k1 and k2.
Figure 7 shows the mean of parameters over ensemble size at the optimal inflation factor and at the

iteration which provides the lowest MRE. In this figure, the solid black line represents the true value
of parameters, the solid blue line represents the mean parameter values for EnSRF and solid red line
for EnTPF. The dashed lines show ¯̄ua ± 1.5ūspread for EnSRF in blue and EnTPF in red. It can be
observed from figure 7 that for EnSRF from M = 10 until M = 50 the mean value of some of the
parameters improves while some others get worse but starting from M = 50 they all remain unchanged.
On the other hand, for EnTPF they keep fluctuating as ensemble size increases. It is evident from this
figure that neither EnTPF nor EnSRF provides consistently with a better estimation of each of the five
parameters, as at some ensemble sizes for parameter a and c it is EnTPF that provides with the best
results and for parameters b and k2 it is EnSRF. For k1, which denotes the high permeability, both these
methods fail to provide with a good estimation, as k1 leads to low pressure values which correspond to
very small values of data misfit ||yobs −L(P)|| and as a result does not provide an effective correction of
the ensemble members.
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Fig. 7: Variation for ¯̄ua and ¯̄ua
±1.5ūspread w.r.t ensemble size for at the iteration resulting in least MRE for EnTPF(red)

and EnSRF(blue) schemes. Solid black line represents the true value.

4.2 High-dimensional test case

Next, we consider a high-dimensional problem. The domain D is again divided into two subdomains
D1 and D2 though without a fault as shown in figure 8. The parameters a and b define the thickness
of layers. However, unlike in the previous test case here we implement a spatially varying permeability
field which is defined at each grid point as:

k(X) = k1(X)δD1
(X) + k2(X)δD2

(X). (4.6)

Hence, the parameters defining the permeability field for this configuration are:

u =
[

k(X1) k(X2) . . . k(Xn2)
]T

,

where n2 is the grid size. Since permeability should only take non-negative values, we change the
parameter k to k′ = log(k). Thus the parameters for this test case are given by u′ = k′(X) where
k′(X) = log(k(X)). The state vector is then augmented with u′ instead of u, which we later transform
back to the parameter state u.

We assume the permeability in the subdomains D1 and D2 are generated by random draws from
Gaussian distributions N(1,C1) and N(5,C2), respectively. Here 1 is a n2 vectors represented by

1 =
[

1 1 . . . 1
]T

, 5 is a n2 vectors represented by 5 =
[

5 5 . . . 5
]T

, C1 is assumed to be a
spherical correlation with maximum correlation along π/4 and C2 to be an exponential correlation with
maximum correlation along 3π/4, an element of C1 and C2 is shown below using [22]:

C1i,j =







1− 3hi,j

2v
+

h3
i,j

2v3
, 0 ≤ hi,j ≤ v,

0, hi,j ≥ v,

(4.7)

C2i,j = exp(−3(|hi,j |/v)), (4.8)

for i, j = 1, . . . , n2. Here hi,j is the distance between two spatial locations and v is the correlation range
which is taken to be 0.5.
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Fig. 8: Geometrical configuration: high-dimensional test case

As the covariance matrices are symmetric (from (4.7) and (4.8)) we factorize them in upper and lower
triangular matrices using Cholesky decomposition and represent the upper triangular matrix of C1 with
G1 and of C2 with G2. Next, we generate realizations of a vector Z with dimension n2 from a Gaussian
distribution with mean zero and variance 1. Using this we create the permeability fields k′

1(X) with

mean k̄
′

1 and covariance C1 and k′

2(X) with mean k̄
′

2 and covariance C2 across the entire domain D as
follows:

{

k′

1 = k̄
′

1 + GT
1 Z,

k′

2 = k̄
′

2 + GT
2 Z,

(4.9)

where k̄
′

1 and k̄
′

2 are vectors of dimension n2 represented by k̄
′

1 =
[

log(1) log(1) . . . log(1)
]T

and

k̄
′

2 =
[

log(5) log(5) . . . log(5)
]T

, respectively. The parameter u′ is defined at each grid point by

{

u′

i = k′

1i, Xi ∈ D1,

u′

i = k′

2i, Xi ∈ D2.
(4.10)

For synthetic observation we use the grid size of 100 × 100, true intercept atrue = 0.11 and btrue =
0.86. Then we solve the forward problem (3.5) for exp(utrue′) according to (4.10) and create the noisy
observations of pressure by (4.1). The true permeability field of the system is shown in the top row of
figure 9 with dots representing the observation locations. For generating the prior we assume the domain
is divided into subdomains D1 and D2 using samples a, b ∼ U[0, 1] and grid size of 50 × 50, then u′

is defined according to (4.10) and (4.9) but with different realizations of Z. Thus the dimension of the
uncertain parameters is 2500. The bottom row of figure 9 shows some of the prior states.

We perform 10 different simulations based on a random draw of initial ensemble from the same
prior distribution, as in the previous test case. To compare the performance of EnTPF and EnSRF, we
calculate the root mean squared error (RMSE) at each iteration as:

RMSEr =
1

2500

2500
∑

j=1

√

√

√

√

1

M

M
∑

m=1

({ua,r
m }j − {utrue}j)2, r = 1, . . . , 10,

where M is the ensemble size and r is the simulation number. We implemented 20 iterations as the
maximum allowed iteration limit.

In figure 10 we represent the variation of RMSE and data misfit ||yobs − L(P)|| for each of the 10
simulations with respect to iterations at an ensemble size of 130 and inflation factor varying from the
smallest we use α=1 (τ=0) to the highest α=1.077 (τ=0.4) for EnSRF (EnTPF). It can be seen from
figure 10 (a) that unlike the previous test case here stopping criteria is required for EnSRF even at
α=1 (no inflation) as the RMSE starts increasing for few simulations after around 3 to 4 iterations.
However, for α < 1.0284 all the simulations attain convergence within 20 iterations. Figure 10 (b) and
(c) show that similar to the low-dimensional test case this numerical experiment encounters divergence
for α ≥ 1.0284, and hence reinforces the claim to avoid large inflation factors for EnSRF.
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Fig. 9: Permeabilities of high-dimensional test case. Top: truth with dots representing the observation locations. Bottom:
permeabilities defined by (4.6) from some samples of the prior.
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(a) Left: data misfit, right: RMSE. α = 1.0
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(b) Left: data misfit, right: RMSE. α = 1.0284
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(c) Left: data misfit, right: RMSE. α = 1.077

Fig. 10: RMSE and data misfit over iterations for EnSRF with random initial ensemble at M=130 and different inflation
factors.

In figure 11 we represent average of RMSE over 10 simulations (MRE) as defined by:

MRE =
1

10

10
∑

r=1

RMSEr. (4.11)

where RMSE is the lowest over iterations. It shows MRE at the optimal inflation factor as a function
of ensemble size. MRE for EnSRF using random initial ensemble is represented by solid black line. It
should be noted that EnTPF with random initial ensemble results in degenerative weights for at least
one of the 10 simulations at each ensemble size and inflation factor implemented, thus not shown in figure
11. This happens because EnTPF depends on the weight defined by the Gaussian likelihood function
(2.7) which approaches zero if the initial guess is extremely poor. This suggests that EnTPF is highly
dependent on the quality of initial ensemble, as it was observed in the low-dimensional case. Moreover,
the issue of degenerative initial weights arises in this test case since we estimate 2500 grid dependent
uncertain parameters using small ensemble sizes.
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Fig. 11: Best MRE over iterations as a function of ensemble size. EnSRF using random initial ensemble with and without
localization in solid black line with and without markers, respectively, and EnTPF using random initial ensemble with
localization in solid red line with markers. Dashed line of corresponding color represents MRE of EnTPF and EnSRF using
selected initial ensemble.

One of the approaches to overcome the degenerative weights is localization. We implement spatial
localization for both EnSRF and EnTPF with radius rloc ranging from 0.2 to 0.8. The inflation factor
values are kept the same, i.e. τ ∈ [0, 0.4]. EnSRF with localization shows similar behavior of the misfit
and RMSE as without localization, thus not shown. In figure 11 we show the lowest MRE obtained at a
combination of inflation factor and localization radius. It shows the effect of localization using random
initial ensemble by solid black line with square markers for EnSRF. As expected, localization provides
improved MRE for EnSRF for smaller ensemble sizes. For M ≥ 50 MRE of EnSRF with localization
converges with the MRE of EnSRF without localization, suggesting localization is futile at large ensemble
sizes.

For EnTPF the initial degeneracy of weights depends mostly on three factors, namely: extremely low
observation error, high number of observations and poor initial guess. Localization solves the problem of
degenerative weights locally by reducing the number of observations. Thus we are able to obtain MRE
for EnTPF with localization as shown in figure 11 in solid red line with square markers. However, the
low observation error and poor initial guess remain unchanged and can still cause divergence from the
true solution. As illustrated in figure 11, MRE of EnTPF with localization shows high fluctuation over
ensemble sizes with the worst performance at M=130. We represent the RMSE and misfit of each of
the 10 simulation for EnTPF with localization at M=130 in figure 12. The undesirable increase of data
misfit and RMSE is attributed to the fact that localization converts a global optimization problem to a
univariate transport problem which does not always provide the desired global data misfit and RMSE.
Moreover, localization does not provide any quality check of the initial ensemble, which impacts the
performance of EnTPF as for an extremely poor initial guess localization results in non-zero weights
locally but globally the weights remain zero. This suggests that the updated parameters are still away
from the truth causing the increase in the misfit and RMSE.
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(a) Left: data misfit, right: RMSE. τ = 0
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(b) Left: data misfit, right: RMSE. τ = 0.24
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(c) Left: data misfit, right: RMSE. τ = 0.4

Fig. 12: RMSE and data misfit over iterations for EnTPF with random initial ensemble and localization at M=130 and
different inflation factors.

Another approach to handle the degenerative weights is by introducing a quality control of an initial
ensemble. After a random draw from the prior distribution we compute the analysis weights given by
(2.3) and calculate the effective sample size using [26]:

Meff =
1

∑M
m=1

(wa
m)2

.

If the ensemble members fail to enclose the true state within their range then their respective weights
{wa

m}Mm=1 approach zero resulting in an undefined value of effective sample size. If we encounter such a
situation for any of our initial samples, we redraw a new ensemble and check the value of effective sample
size again. Once we have an ensemble which fulfills the above condition then we proceed with the data
assimilation iterations and we repeat this process until we have 10 such simulations. Selecting the initial
ensemble incurs additional computational cost, as for ensemble size 10 we have to make random draws
100 times, though as ensemble size increases to 50 the rejection rate goes down to 50% and for M > 70
it is around 30%.

We illustrate the RMSE and data misfit for numerical experiment with selected initial ensemble
without localization for EnTPF in figure 13. We observe that selected initial ensemble provides more
stable results than localization. However, at τ=0 some of the simulations start moving away from the
true state with iterations (figure 13 (a)). This is due to the creation of identical or near-identical members
by EnTPF, which without inflation behave similarly in a deterministic system. The effective sample size
for a few simulations dropped to 1 at M=130 without inflation resulting in the increase of misfit and
RMSE. For τ > 0.08 we do not observe such behavior (figure 13 (b) and (c)) which further asserts
the importance of inflation for EnTPF. As it was expected EnSRF with selected initial ensemble shows
similar behavior of the misfit and RMSE as with or without localization (not shown).

In figure 11 the dashed lines show the MRE at optimal inflation factor with selected initial ensemble
and without localization. As can be observed from this figure that EnTPF (dashed red line) results in
lower MRE than EnSRF for each ensemble size. It is also interesting to note here that for EnSRF the
MRE based on an improved guess of initial ensemble are lower than MRE based on random guess of
initial ensemble. As ensemble size increases MRE starts converging for all three variations of EnSRF
algorithms performed, suggesting its robustness.
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(c) Left: data misfit, right: RMSE. τ = 0.4

Fig. 13: RMSE and data misfit over iterations with selected initial ensemble at M=130 for EnTPF at various inflation
factors.

In figure 14 we show heatmaps for EnTPF(a) and EnSRF (b) using selected initial ensemble. EnTPF
provides lower MRE than EnSRF at each ensemble size. Moreover, high inflation factors deteriorate
the performance of EnSRF as observed in previous test case. Figure 14 (c) provides a clear comparison
between EnTPF (red) and EnSRF (blue). In this figure we plot the lowest MRE (solid lines) over
iterations along-with the minimum and maximum of lowest RMSE (dashed lines) over iterations among
the 10 simulations. It is interesting to note here that for EnSRF at optimal inflation factor the minimum
and maximum RMSE values approaches the MRE values as ensemble size increases, while for EnTPF the
difference among the minimum and maximum RMSE remains nearly the same at each of the ensemble
sizes.
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Fig. 14: Heatmaps showing the best MRE over iterations for EnTPF (a) and EnSRF (b). Lowest MRE over iteration
using optimal inflation factor is shown in solid red for EnTPF and solid blue for EnSRF with dashed lines representing
minimum and maximum RMSE among the 10 simulation corresponding to the lowest MRE (c).

5 Conclusions

In this work we investigated the performance of a new data assimilation method for parameter estimation
in subsurface flow models. The method is essentially a sequential Monte Carlo approach with a new
coupling based resampling technique and is known as ensemble transform particle filter. Important
aspects of EnTPF are that it does not make any assumptions of Gaussian distributions and the coupling
matrix used for transformation of forecast state to analysis state bounds the ensemble members in
a desired range. We tested the performance of EnTPF using the results of ensemble Kalman filter
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as a benchmark. The numerical experiments using 2-D Darcy flow model demonstrated that EnTPF
provides excellent estimations of permeability fields. Inflation, however, is indispensable for EnTPF for
any ensemble size in contrast to EnSRF where inflation is only needed for small ensemble sizes. For small
number of parameters (5), EnTPF performs comparably to EnSRF and for large number of parameters
(2500) it outperforms the ensemble Kalman filter. However, in order for EnTPF to have non-degenerative
weights in the high dimensional test case either localization or quality control has to be implemented.
It was observed that localization might results in the RMSE increase over iterations indicating that the
updated ensemble is further away from the truth than the initial ensemble. The quality control performed
in terms of the effective ensemble size, on the contrary, provided with decrease in the RMSE and lower
error than ensemble Kalman filter. We observed that EnSRF is also dependent on the quality of initial
guess at small ensemble sizes though as the ensemble size increases EnSRF becomes robust. Therefore
in future work, we plan to examine the performance of EnTPF with a smoother transition from the prior
to posterior distribution.
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