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Abstract. In 1994, Feige, Kilian, and Naor proposed a simple protocol
for secure 3-way comparison of integers a and b from the range [0, 2].
Their observation is that for p = 7, the Legendre symbol (x | p) coincides
with the sign of x for x = a−b ∈ [−2, 2], thus reducing secure comparison
to secure evaluation of the Legendre symbol. More recently, in 2011,
Yu generalized this idea to handle secure comparisons for integers from
substantially larger ranges [0, d], essentially by searching for primes for
which the Legendre symbol coincides with the sign function on [−d, d].
In this paper, we present new comparison protocols based on the Legen-
dre symbol that additionally employ some form of error correction. We
relax the prime search by requiring that the Legendre symbol encodes
the sign function in a noisy fashion only. Practically, we use the major-
ity vote over a window of 2k + 1 adjacent Legendre symbols, for small
positive integers k. Our technique significantly increases the comparison
range: e.g., for a modulus of 60 bits, d increases by a factor of 2.9 (for
k = 1) and 5.4 (for k = 2) respectively. We give a practical method to
find primes with suitable noisy encodings.
We demonstrate the practical relevance of our comparison protocol by
applying it in a secure neural network classifier for the MNIST dataset.
Concretely, we discuss a secure multiparty computation based on the
binarized multi-layer perceptron of Hubara et al., using our comparison
for the second and third layers.

1 Introduction

Secure integer comparison has been a primitive of particular interest since the
inception of multiparty computation (MPC). In 1982, even before general multi-
party computation had been realized, Yao introduced the millionaires’ problem,
in which two millionaires want to determine who of them is richer without reveal-
ing any information beyond the outcome of this comparison to each other or to
any third party [21]. Secure comparison has been investigated extensively since.
A whole range of solutions is available with every solution aiming for a partic-
ular trade-off. Nonetheless, for arithmetic MPC schemes—as opposed to MPC
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schemes for Boolean circuits—secure comparison remains among the most ex-
pensive basic operations. Hence, for applications that require many comparisons,
achieving high throughput (important for privacy-preserving data processing ap-
plications) or low latency (crucial for certain applications, like blind auctions for
real-time advertisement sales) can be challenging.

1.1 Related Work

Whereas most secure comparison protocols work over finite fields of arbitrary or-
der, Yu [22] presents a comparison protocol that only works for specifically chosen
prime moduli. Although this clearly poses a restriction in terms of applicability,
the main benefit is that the specifically chosen prime modulus p enables Yu to
perform a comparison in a single round of communication in the online phase
(the offline preprocessing phase requires three communication rounds), albeit in
a range that is small compared to p (see Section 3.5 for explicit bounds). Namely,
he chooses p such that the pattern of quadratic residues and non-residues mod-
ulo p coincides with the sign function on a given interval symmetric around zero,
which is an idea that goes back to a protocol due to Feige, Kilian, and Naor [3],
who use it to compute the sign of an element x ∈ [−2, 2] in Z/7Z. Yu’s compar-
ison protocol for comparing arbitrary elements a, b ∈ Z/pZ essentially works by
breaking up the full-range comparison into several medium-range comparisons
of the above type by performing a digit decomposition.

1.2 This Paper

In this paper, we pursue the line of work initiated by Yu [22]. Our main contribu-
tion is that we achieve an improvement in the comparison range while keeping
the bit length of the prime modulus fixed. Concretely, we propose a protocol
that, for a fixed prime-length, achieves roughly a three-fold increase of the com-
parison range (over Yu’s results), while still enjoying a single-round online phase,
at the cost of a constant amount of additional communication and some addi-
tional local computations. Also, we present a two-online-rounds protocol that
achieves roughly a five-fold increase in the comparison range when compared to
Yu’s approach. In other words, to compare two integers that lie in a given range
(symmetric around zero), our methods require a smaller prime than the prime
required for the protocol from [22]. Keeping the finite-field modulus as small as
possible or within the machine’s word size could be important, for example, in a
setting where MPC protocols run on constrained hardware platforms. On such
platforms, the complexity of prime-field arithmetic (which is directly related to
the prime size) can have a significant impact on the runtime performance. Our
protocols can be found in Section 5.

The main idea is to somewhat relax the constraints on the prime modulus
p: instead of requiring that the Legendre symbols of all elements in the interval
[−d, d], for a given positive integer d, coincide with the sign function, we only
require this coincidence for most elements (in a specific sense). Let us, for some
fixed prime p, say that there is an error at position x ∈ [−d, d] if (x | p) 6= sgn(x).
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Our improvement is based on exploiting a “local redundancy” property enjoyed
by the sign function that lets us correct such errors as long as they are sufficiently
“sparse”, by means of inspecting also the Legendre symbols of some neighboring
positions and then performing a majority vote.

This new approach raises the question of how to find primes that give rise to
increased ranges. In Section 4, we present some results that considerably simplify
this search, including tables of suitable primes for various bit lengths, and leave
as an open problem to prove asymptotic lower and upper bounds on the growth
of the comparison range in the prime’s bit length.

1.3 Application: Efficient Neural Network Evaluation in MPC

To demonstrate the practical value of our work, we apply our new comparison
protocol to the problem of securely evaluating a neural network, in which the
sign function is used as non-linearity. We use a binarized multi-layer perceptron
(BMLP) for recognizing handwritten digits, as described in [7], which is trained
(in the clear) on the well-known MNIST handwritten-digits data set. We con-
sider an MPC scenario in which the input images are secret-shared between the
parties, which then securely evaluate the BMLP to obtain the estimated digit in
secret-shared form.

2 Preliminaries

Integer Intervals. Whenever we write [a, b], unless stated otherwise, we mean the
integer interval {a, . . . , b} ⊂ Z, which is empty if a > b. The half-open interval
(a, b] is defined as [a+ 1, b].

Arithmetic Black Box. We suppose that we are given a secure arithmetic black-
box (ABB) functionality that can securely evaluate multiplication and linear
forms over the finite field Z/pZ. We write [[x]] for the value x ∈ Z/pZ encrypted
under the ABB (e.g., x is secret-shared among a set of parties, or perhaps en-
crypted under some homomorphic encryption scheme). Abusing notation, for
small x ∈ Z/pZ we will also refer to x as an integer in Z, given as the canonical
lift of the residue class modulo p to the integers [−

⌊
p
2

⌋
,
⌊
p
2

⌋
].

Sign vs. Binary Sign. The sign function and the binary sign function are respec-
tively defined as

sgn(z) =


1 if z > 0,

0 if z = 0,

−1 if z < 0.

bsgn(z) =

{
1 if z ≥ 0,

−1 if z < 0.

Comparing two integers a and b is achieved by evaluating the sign (or bsgn) of
their difference a − b. The sgn function gives rise to a three-way comparison,
while the bsgn function corresponds to two-way comparison. In this paper, we
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will start our analysis in terms of the sgn function, but for reasons that will
become clear later our protocols evaluate the bsgn function (i.e., achieve two-
way comparison). We will sometimes be a bit sloppy and use the word “sign”
also for the bsgn function; the precise meaning should nonetheless still be clear
from its context.

The Legendre symbol. Recall that for any odd prime p and any integer a, the
Legendre symbol is defined as

(a | p) =


0 if a ≡ 0 (mod p),

1 if a is a quadratic residue modulo p,

−1 otherwise.

The Legendre symbol is a completely multiplicative function, which means that
(a | p) (b | p) = (ab | p) for all a, b ∈ Z, and for any integer a the value of (a | p)
only depends on [a]p, the residue class of a modulo p. The identity (a | p) ≡ a

p−1
2

(mod p) is known as Euler’s criterion. The law of quadratic reciprocity asserts
that for odd primes p and q,

(p | q) (q | p) = (−1)
p−1
2

q−1
2 .

Securely evaluating Legendre symbols. In principle, we can securely evaluate the
Legendre symbol via Euler’s criterion, which would require O(log p) secure mul-
tiplications. The complete multiplicativity of the Legendre symbol enables the
following constant-rounds protocol for securely evaluating the Legendre symbol
in the preprocessing model with an single-round online phase. In the preprocess-
ing phase, we generate a secret-shared pair ([[r]], [[(r | p)]]) of a random non-zero
r together with its Legendre symbol. In the online (input-dependent) phase, we
securely multiply [[a]] · [[r]], open the result and then compute

[[(a | p)]] = (ar | p) [[(r | p)]].

Note that the security of the protocol requires that a 6≡ 0 (mod p), which should
be taken into account when using this protocol.

Blum primes. A prime p for which p ≡ 3 (mod 4) is called a Blum prime. By
Euler’s criterion,−1 is a quadratic non-residue modulo p if and only if p is a Blum
prime. Hence, for any Blum prime p, the map x 7→ (x | p) is an odd function for
x ∈ [−bp/2c, bp/2c] (which follows immediately from the multiplicativity of the
Legendre symbol), i.e., it enjoys the same symmetry around the origin as the
sign function.

3 Evaluating the Sign Function using Legendre Symbols

3.1 Redundancy Property of the Sign Function

In this section we show that the sign function enjoys a “local redundancy” prop-
erty, which lets us correct sign-flip errors by means of majority-decoding as long
as those errors occur sparsely (in a sense defined below).
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Definition 1. Let k ≥ 0 be an integer, and let T = [t1, t2] be an interval of
integers with t2 − t1 ≥ 2k. We say that a function e : T → {0, 1} is an error
function on T admissible for k if e(x) = 0 for all x ∈ [−(k + 1), k + 1] ∩ T and

if
∑k
i=−k e(y + i) ≤ k holds for all y ∈ [t1 + k, t2 − k].

Lemma 1. Let k and T be as in Definition 1, and let e be an error function on
T admissible for k. Then,

sgn

( k∑
i=−k

(−1)e(x+i)sgn(x+ i)

)
= sgn(x)

holds for all x ∈ [t1 + k, t2 − k].

The proof will clarify why we require in Definition 1 that an admissible error
function e(x) has an “error-free” region around x = 0; informally speaking, the
reason is that the sign function undergoes its sign change at x = 0, which means
that there is “less room” for errors under majority-decoding in this region.

Proof. We will prove the statement for T = [−a, a] where a ≥ k is any integer.
This implies the claim for any subinterval of T of cardinality at least 2k+1. Note
that because of symmetry (in the sign function as well as in the definition of an
admissible error function), it suffices to prove the statement for x ≥ 0. We distin-

guish three cases for x. If x = 0, we have
∑k
i=−k(−1)e(i)sgn(i) =

∑k
i=−k sgn(i) =

sgn(x) = 0, where the first equality follows because e is admissible for k and the
second equality follows from the fact that summing an odd function over an
interval symmetric around zero gives the value zero.

Second, if x > k, we have

k∑
i=−k

(−1)e(x+i)sgn(x+ i) =

k∑
i=−k

(−1)e(x+i) > 0,

where the equality follows because sgn(x + i) = 1 for all i ∈ [−k, k] and the
inequality follows because e is admissible for k.

For the third (and final) case, suppose that x ∈ [1, k]. We have

k∑
i=−k

(−1)e(x+i)sgn(x+ i) =

k−x+1∑
i=−k

sgn(x+ i) +

k∑
i′=k−x+2

(−1)e(x+i
′)sgn(x+ i′)

=

k+1∑
j=x−k

sgn(j) +

k+x∑
j′=k+2

(−1)e(j
′)sgn(j′)

= 1 + x+

k+x∑
j′=k+2

(−1)e(j
′)

≥ (1 + x) + (1− x) = 2

ut
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Fig. 1: Finite state machine generating bit strings with at most one 1 in every
three consecutive bits.

3.2 Counting Admissible Error Functions

How many admissible error functions can there be on a given set T and for a
given integer k? In this section, we will give an upper bound for k = 1. To prove
the upper bound, we will need the following lemma, which is well known.

Lemma 2 (“Volume Bound for Hamming Balls”). Let Sn be the set of
all bit sequences of length n produced using by concatenating bits from a binary
source X. Then, it holds that

2H(X)n−o(n) ≤ |Sn| ≤ 2H(X)n

where H(X) denotes the Shannon entropy of X.

In Figure 1, we show a finite state machine (FSM) that defines a language
of bit strings such that every string in the language has the following property:
for every window of three consecutive bit positions, at most one position will be
“1”. If we impose a probability distribution on the outgoing edges of state (a),
then we can view the FSM as a random binary source, which lets us compute
the entropy which we need to apply Lemma 2.

Proposition 1. Let T := [−t, t] with t ∈ N such that t ≥ 2. Let E1 be the set of
all error functions on T admissible for k = 1. Then,

|E1| ≤ 2t−2.

Proof. For all error functions e ∈ E1, it holds by definition that e(x) = 0 for
x ∈ [−2, 2]. We may choose the function values on remaining positions, that
is, the intervals [3, t] and [−t,−3], freely under the constraint that e(x − 1) +
e(x) + e(x + 1) ≤ 1 for all x ∈ [−t + 1, t − 1]. In each such interval, there are,
according to Lemma 2, N ≤ 2λ(t−2) choices, with λ := H(X), the entropy rate
of the FSM in Figure 1. It is easy to see that H(X) = 1/2: namely, the binary
decision in state a corresponds to one bit of entropy but produces on average
two output bits (either the length-1 output “0” or the length-3 output sequence
“100”). Because the choices for the two intervals are independent, in total there
are N2 choices for e, hence |E1| ≤ 2t−2. ut
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3.3 The Legendre Symbol as a “Noisy” Sign

Suppose that p is a Blum prime. We can view the Legendre symbol (x | p) for
x ∈ Z/pZ as a “noisy” version of the sign of x:

(x | p) = (−1)e(x)sgn(x), (1)

where e(x) is the error function that is determined by p. If we now plug (1) into
Lemma 1, we can conclude that we may compute the sign of x as the sign of the
sum of the Legendre symbols of positions in a length-(2k + 1) interval centered
at x, for all x ∈ [t1 + k, t2 − k], if e is an error function on the interval [t1, t2]
admissible for k.

Because p is a Blum prime, the pattern of Legendre symbols has odd symme-
try, which implies that we can w.l.o.g. define T such that it is symmetric around
zero. A natural question, for a given Blum prime p, non-negative integer k, and
T = [−d, d] for a positive integer d ≥ k, is how large d can maximally be such
that e is an error function on T that is admissible for k. This gives rise to the
following equivalent definition, in which we leave the error function implicit.

Definition 2. Let k be a non-negative integer, and let p > 2k + 1 be a Blum
prime. We define the k-range of p, denoted dk(p), to be the largest integer d such
that for all integers x with 1 ≤ x ≤ d it holds that

k∑
i=−k

(x+ i | p) > 0, (2)

and we set dk(p) = 0 if no such d exists.

Note that d0(p) tells us the maximum size of Yu’s “Consecutive Quadratic
Residues and Non-Residues Sign Module” for a given prime p, i.e., in Yu’s ter-
minology and notation: a Blum prime p qualifies for ±`-CQRN for all ` ≤ d0(p).

Lower bound on dk(p). If p > 2k + 1 and d0(p) > k, then dk(p) ≥ d0(p).

Example. Let us illustrate Definition 2 by means of an example. Let us take
p = 23; note that this is a Blum prime. Below, we have evaluated the first 16
Legendre symbols.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

(x | p) 0 1 1 1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1

We can now read off that d0(23) = 4. Furthermore, it is easy to verify that
d1(23) = 5, d2(23) = 8, and d3(23) = 7.
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3.4 Avoiding Zero by Restricting to Odd Positions

As mentioned in the preliminaries, if we use the single-online-round protocol
for securely evaluating the Legendre symbol, we may not evaluate the Legendre
symbol on the zero element. A simple trick to avoid zero (also used in [22]) is
to restrict to evaluation of odd inputs by using the map x 7→ 2x+ 1. Note that
this implies that we cannot compute sgn(x) using the single-online-round proto-
col; instead we will evaluate bsgn(x). Removing the conditions on the Legendre
symbols at even positions gives rise to the following definition.

Definition 3. Let k be a non-negative integer, and let p > 2k + 1 be a Blum
prime. We define d∗k(p) as the largest integer d such that for all integers x with
1 ≤ x ≤ d it holds that

k∑
i=−k

(2(x+ i) + 1 | p) > 0, (3)

and we set d∗k(p) = 0 if no such d exists.

Note that for any Blum prime p for which d0(p) > 1 (which implies that d0(p)
is even), it is easy to see that it holds that d∗0(p) = 1

2d0(p)− 1. For k > 0, such
simple relations do not seem to exist. This means, for example, that a prime p
that gives rise to a high value for d1(p), does not necessarily give a high value
for d∗1(p), and vice versa.

3.5 Bounds on d0(p)

The value d0(p) can be interpreted as the position just before the appearance
of the first quadratic non-residue. Let n1(p) denote the smallest quadratic non-
residue. Finding bounds on n1(p) is a well-known problem in number theory, with
important contributions from Polyà, Vinogradov and Burgess, among others.
The best explicit upper bound that is currently known (for p a Blum prime) is
due to Treviño [19]:

d0(p) + 1 = n1(p) ≤ 1.1 4
√
p log p.

Graham and Ringrose [5] proved an unconditional asymptotic lower bound (im-
proving on a previous result by, independently,4 Fridlender [4] and Salié [14]),
namely, that there exist infinitely many primes for which

d0(p) + 1 = n1(p) ≥ c · log(p) · log log log p.

for some absolute constant c.5

Lamzouri et al. [10] prove that conditional on the Generalized Riemann Hy-
pothesis, for all primes p ≥ 5 it holds that

d0(p) + 1 = n1(p) < (log p)2.
4 Ankeny [2] attributes this result to Chowla, but does not provide a reference.
5 In the literature, this is also written as n1(p) = Ω(log(p) · log log log p), where Ω is

Hardy–Littlewood’s Big Omega: f(n) = Ω(g(n)) ⇐⇒ lim supn→∞ |f(n)/g(n)| > 0.
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3.6 Bounds on d1(p)

Hudson [8] proves an upper bound on the least pair of quadratic non-residues.
Formally, let n2(p) be the smallest value such that n2(p) and n2(p) + 1 are
quadratic non-residues. For k = 1, it must hold that d1(p) < n2(p), because an
“error pattern” consisting of two consecutive quadratic non-residues (such that
n2(p) ∈ [1, (p− 3)/2]) cannot be corrected using a majority vote in a window of
length 2k + 1 = 3. Hudson’s bound is as follows. For every p ≥ 5 we have that

d1(p) < n2(p) ≤ (n1(p)− 1)q2,

where q2 is the second smallest prime that is a quadratic non-residue modulo p.
Hildebrand [6] proves another upper bound on n2(p): for every ε > 0 there

exists a constant p0 such that for all p ≥ p0,

d1(p) < n2(p) ≤ p1/(4
√
e)+ε.

Sun [17] gives a construction for generating all elements n in Z/pZ such that
n and n+ 1 are quadratic non-residues.

Lemma 3 ([17]). Let p be an odd prime and let g be a primitive root of p.
Then,

U :=

{
n ∈ Z/pZ

∣∣ (n | p) = (n+ 1 | p) = −1

}
=

{
uk ∈ Z/pZ

∣∣ uk ≡ (g2k−1 − 1)2

4g2k−1
mod p, k = 1, . . . ,

⌊
p− 1

4

⌋}

We can interpret this lemma as giving a collection of upper bounds on d1(p),
that is, d1(p) < n2(p) ≤ uk holds for every k = 1, . . . , b(p− 1)/4c.

An error pattern that consists of two quadratic non-residues that are sepa-
rated by one arbitrary position can also not be corrected using a majority vote
in a window of length 2k+1 = 3. Inspired by Sun, we prove the following lemma.

Lemma 4. Let p be a Blum prime, let b =
(

(2 | p) + 1
)
/2 ∈ {0, 1} and let g be

a primitive root of p. Then,

V :=

{
n ∈ Z/pZ

∣∣ (n | p) = (n+ 2 | p) = −1

}
=

{
vk ∈ Z/pZ

∣∣ vk ≡ (g2k−b − 1)2

2g2k−b
mod p, k = 1, . . . , (p− 3)/4

}
.

Also this lemma can be viewed as giving a collection of upper bounds on d1(p).
If (n | p) = (n+ 2 | p) = −1, then a decoding error (under majority decoding
with k = 1) will occur at position n + 1, hence we have that d1(p) ≤ vk holds
(instead of strict inequality) for every k = 1, . . . , (p− 3)/4.
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Proof. Let χ(x) = (x | p) for all x ∈ Z/pZ. Jacobsthal [9] proves that for p a
Blum prime,

∣∣{n ∈ Z/pZ
∣∣ χ(n) = χ(n+ 2) = −1 ∧ χ(n+ 1) = 1}

∣∣ =
p− 1 + 2 (2 | p)

8
,

and
∣∣{n ∈ Z/pZ

∣∣ χ(n) = χ(n+ 1) = χ(n+ 2) = −1}
∣∣ =

p− 5− 2 (2 | p)
8

.

Hence, by summing the cardinalities of the above sets, we get that

∣∣{n ∈ Z/pZ
∣∣ χ(n) = χ(n+ 2) = −1}

∣∣ =
p− 3

4
.

For j = 1, 2, . . . , (p − 3)/2, let rj ≡ (gj − 1)2/(2gj) mod p. Then, rj + 2 ≡
(gj + 1)2/(2gj) mod p. It now follows that χ(rj) = χ(rj + 2) = (−1)jχ(2) for
all j = 1, 2, . . . , (p− 3)/2. Hence, χ(r2k−(χ(2)+1)/2) = χ(r2k−(χ(2)+1)/2 + 2) = −1
for all k = 1, 2, . . . , (p− 3)/4.

It remains to prove that rs 6= rt mod p for all s, t ∈ [1, (p− 3)/2] with t 6= s;
for this part we can re-use Sun’s proof technique used in the proof of Lemma 3.
Namely, for all s, t ∈ [1, (p − 3)/2] with t 6= s, we have that gs+t 6≡ 1 mod p
(since g is a primitive root), which implies that gs− gt 6≡ (gs− gt)/gs+t mod p.
Hence, gs + g−s 6≡ gt + g−t mod p from which we obtain that rs 6≡ rt mod p.
We can now conclude that

{n ∈ Z/pZ
∣∣ χ(n) = χ(n+ 2) = −1} = {r2k−b ∈ Z/pZ

∣∣ k ∈ [1, (p− 3)/4]},

and the claim follows. ut

4 Finding a Prime for a Given k-Range

In order to find a prime that, for given integers k and Dk, gives rise to dk(p) ≥
Dk, we could in principle take a naive approach by letting a computer exhaus-
tively enumerate the primes in increasing order and compute the Legendre sym-
bols at a = 1, . . . , Dk, and stop when they are all 1. Although this approach
works for small values of k and Dk (say for D1 < 200), for larger Dk this will
become intractable.

We can speed up the calculation of dk by using the multiplicativity of the
Legendre symbol, the law of quadratic reciprocity and the Chinese Remainder
Theorem (CRT). Moreover, we may speed up the computation by enumerating
over values p that already satisfy some conditions on the Legendre symbols,
using a wheel data structure [13,16]. We will first review the problem for the
case k = 0 and then extend the method to the case k = 1. Our approach also
works for arbitrary k, and we supply the relevant extensions, but we note that
its practicality rapidly diminishes as k increases.
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4.1 Finding Primes with High d0(p)

Recall that finding a prime p′ such that d0(p′) ≥ D means that p′ must be a
Blum prime such that the elements 1, . . . , D are quadratic residues modulo p′.
By the complete multiplicativity of the Legendre symbol, it suffices to find a
Blum prime p such that all primes q ≤ D are quadratic residues modulo p.

Proposition 2. Let q be an odd prime, and p a Blum prime. Then, it holds that

(q | p) = (−p | q) .

Proof. It holds that (q | p) = (p | q)−1 (−1)
p−1
2

q−1
2 = (p | q) (−1)

q−1
2 =

(p | q) (−1 | q) = (−p | q), where the first equality holds by the law of quadratic
reciprocity, the second holds because p is a Blum prime, the third follows from
Euler’s criterion and the fourth follows from the multiplicativity property of the
Legendre symbol. ut

Let Rq = {[r]q : (−r | q) = 1}. Then, q is a quadratic residue modulo p if
and only if

[p]q ∈ Rq. (4)

This represents an (exclusive) disjunction of linear congruences:

p ≡ r1 (mod q) ∨ . . . ∨ p ≡ r` (mod q),

where Rq = {[r1]q, . . . , [r`]q}.
Let q1, . . . , qm denote all odd primes that are in [1, D]. The condition that all

integers [1, D] are quadratic residues modulo x thus gives rise to the following
system of simultaneous disjunctions of linear congruences:

x ≡ 7 (mod 8), [x]q1 ∈ Rq1 , . . . , [x]qm ∈ Rqm , (5)

where the first congruence ensures that (−1 | x) = −1 and (2 | x) = 1.
Suppose for each i = 1, . . . ,m we choose a residue class [ai]qi ∈ Rqi , and

we consider the resulting vector ([a1]q1 , . . . , [am]qm). We may choose the [ai]qi
independently since the qi are distinct primes. An element ([a1]q1 , . . . , [am]qm) ∈
Rq1 × · · · × Rqm =: R is in one-to-one correspondence with an arithmetic pro-
gression of step Q of solutions to the above system of congruences, that is,
x, x + Q, x + 2Q, . . . where Q = 8

∏
i∈[m] qi. Linnik’s theorem [11] (combined

with Xylouris’ bound [20]) asserts that there will be a prime in this arithmetic
progression whose size is bounded as O(Q5).

Finding the smallest such prime. Finding some prime that satisfies the above
system is relatively easy, since we may fix a vector ([a1]q1 , . . . , [am]qm) ∈ R. We
can then enumerate all positive integers x such that [x]qi = [ai]qi via the con-
structive proof of the CRT, and output the first solution that is prime. However,
finding the smallest prime that satisfies the above system is a (much) harder
task, as it involves searching over the full set R, whose cardinality is exponential
in m.

11



In practice, we may simply enumerate all integers x in ascending order, and
check whether x satisfies the system of Equation (5) rather than computing the
Legendre symbols at 1, . . . , D0 explicitly. We can speed up the computation by
precomputing the sets Rqi and storing them in memory. We can check many
congruences at once by combining sets of congruences using the CRT. For ex-
ample, for moduli q, q′ we have that [x]q ∈ Rq and [x]q′ ∈ Rq′ if and only if
[x]qq′ ∈ Rqq′ ,

Rqq′ := (Rq + {0, q, . . . , (`/q − 1)q}) ∩ (Rq′ + {0, q′, . . . , (`/q′ − 1)q′}), (6)

where ` = lcm(q, q′) and ‘+’ denotes Minkowski addition. Note that we have
abused notation here slightly, and represented the sets Rm for each modulus
m as the set of integers in [0,m − 1] that are the canonical lifts of the residue
classes mod m. By recursion, the above extends to combining more than two
sets of congruences.

4.2 Finding Primes with High d1(p)

For k > 0, for dk(p) ≥ D to hold for some positive integer D, it is no longer nec-
essary that p satisfies each disjunction of congruences in Equation (5); instead,
some subsets suffice. For example, for d1(p) ≥ 6 we need (2 | p) = 1 and at least
one of (5 | p) = 1 or (6 | p) = (2 | p) (3 | p) = (3 | p) = 1, otherwise Equation (2)
fails to hold for a = 5.

In order for Equation (2) to hold, we have one set of congruences for every
length-(2k + 1) subinterval of [−k, d]; even for k = 1 this quickly grows pro-
hibitively large for non-trivial lower bounds D on dk(p). While for k > 0 the
density of primes p satisfying dk(p) ≥ D is greater than for k = 0, the search
becomes a lot more expensive.

For k = 1, we simplify our search for p with d1(p) ≥ D1 with an extra

condition: we also require d0(p) ≥ D0 where D1 ≤ (D0)
2
. This ensures that each

integer in (D0, D1] has at most one prime factor greater or equal to D1. Under
this restriction, we get a condition equivalent to d1(p) ≥ D1 which requires fewer
computations to check.

Definition 4. Let D0, D1 be non-negative integers with D0 < D1 ≤ (D0)
2
. Let

q, q′ be distinct primes. We say that {q, q′} is a related pair on (D0, D1] if D0 <
q, q′ ≤ D1 and there exist positive integers x, y < D0 such that |xq − yq′| ≤ 2
and max{xq, yq′} ≤ D1.

Proposition 3. Let D0, D1 be non-negative integers with D0 < D1 ≤ (D0)
2
,

and let p be a Blum prime with d0(p) ≥ D0. Then d1(p) ≥ D1 − 1 if and only if
the following condition holds: for every related pair of primes {q, q′} on (D0, D1]
it holds that (q | p) = 1 ∨ (q′ | p) = 1.

Proof. Let a be any positive integer such that a ≤ D1. First, we show that
(a | p) = −1 if and only if a has a prime factor q > D0 and (q | p) = −1. Suppose
a has a prime factor q > D0 with (q | p) = −1. Since a

q <
a
D0
≤ D1

D0
≤ D0, we

12



have (a/q | p) = 1, hence (a | p) = −1. If a does not have a prime factor q > D0

with (q | p) = −1, then taking any prime factor q′|a, it must hold that q′ > D0,
in which case (q′ | p) = 1 by assumption, or q′ ≤ D0, in which case (q′ | p) = 1
by d0(p) ≥ D0.

We now finish the proof by showing d1(p) < D1 − 1 if and only if there
is some related pair q, q′ such that (q | p) = (q′ | p) = −1. We have d1(p) <
D1 − 1 if and only if there exists an integer x such that 1 < x ≤ D1 − 1 and
(x− 1 | p)+(x | p)+(x+ 1 | p) < 0. This latter inequality holds if and only if at
least two of {x− 1, x, x+ 1} have Legendre symbol −1. By the above, this holds
if and only if two of these numbers have respective prime factors q, q′ > D0 and
(q | p) = (q′ | p) = −1. For these q, q′, we have that they constitute a related
pair, since they each have a multiple in {x − 1, x, x + 1} and x + 1 ≤ D1.
Conversely, for any related pair there exists such an interval {x − 1, x, x + 1}
with 1 < x ≤ D1 − 1. ut

Proposition 3 gives sufficient conditions for d1(p) > D1−1 in terms of related
pairs of primes that have to satisfy certain disjunctions of congruences. If we want
to include those disjunctions in a system as shown in Equation (5), we need to
represent them in the same form. For every pair of related primes {q, q′}, the
condition that (q | p) = 1 ∨ (q′ | p) = 1 in Proposition 3 corresponds to taking
the union of the associated residue sets Rq and R′q of the related primes q and
q′. That is, let ` = lcm(q, q′), then

Rq,q′ := (Rq + {0, q, . . . , (`/q − 1)q}) ∪ (R′q + {0, q′, . . . , (`/q′ − 1)q′}),

where ‘+’ denotes Minkowski addition, and again we abuse notation and canoni-
cally lift residue classes modulo m to the integers [0,m−1]. We can now express
the related-primes disjunction of congruences as

[x]` ∈ Rq,q′ .

Since this disjunction of congruences has exactly the same form as the other
disjunctions in Equation (5) we can also take intersections (using Equation (6))
between a related-primes congruence Rq,q′ and another disjunction of congru-
ences.

4.3 Finding Primes with High dk(p)

Definition 5. Let D0, Dk be non-negative integers with D0 < Dk ≤ (D0)
2
. Let

Q = {q0, . . . , qk} be a set of k+1 distinct primes. We say that Q is a related set
on (D0, Dk] if Q ⊆ (D0, Dk] and there exist positive integers x0, . . . , xk < D0

such that:

1. for any i with 0 ≤ i ≤ k we have xiqi ≤ Dk

2. for any i, j with 0 ≤ i < j ≤ k it holds that |xiqi − xjqj | ≤ 2k

Proposition 4. Let D0, Dk be non-negative integers with D0 < Dk ≤ (D0)
2
,

and let p be a Blum prime with d0(p) ≥ D0. Then dk(p) ≥ Dk − k if and only if
the following condition holds: for every set Q of k+ 1 distinct primes related on
(D0, Dk], it holds that there exists some q ∈ Q with (q | p) = 1.
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Fig. 2: Graphical comparison of the comparison range achieved by Yu’s method
(d0 and d∗0) vs. our method. The data for d0 is taken from [12, Table 6.23] (and
d∗0 follows from applying the relation discussed in Section 3.4, i.e., d∗0 = d0/2−1).

The proof goes along the same lines as that of Proposition 3.

Remark 1. Although we have presented Proposition 4 for general k, in practice
we shall mostly use k ∈ {1, 2}. For larger k, the restriction D0 < Dk ≤ (D0)2

causes the conditions for d0(p) ≥ D0 to dominate the search.

In Table 1 we show a list of primes for which dk(p) is strictly increasing, for
k ∈ {1, 2}. See also Figure 2, where we graphically compare our method to Yu’s
work in terms of the achieved comparison range.

4.4 Finding Primes with High d∗k(p)

We can also apply the method from Section 4.3 to find p with large d∗k(p), but
the search procedure needs to be modified slightly. We present the appropriate
modifications to the conditions.

Definition 6. Let D0, Dk be non-negative integers with D0 < Dk ≤ (D0)
2
. Let

Q = {q0, . . . , qk} be a set of k+1 distinct primes. We say that Q is a ∗-related set
on (D0, Dk] if Q ⊆ (D0, Dk] and there exist positive odd integers x0, . . . , xk < D0

such that:

1. for any i with 0 ≤ i ≤ k we have xiqi ≤ Dk

2. for any i, j with 0 ≤ i < j ≤ k it holds that |xiqi − xjqj | ∈ {2, 4, 6, . . . , 4k}

Proposition 5. Let D0, Dk be non-negative integers with D0 < Dk ≤ (D0)
2
,

and let p be a Blum prime with d∗0(p) ≥ 1
2D0. Then d∗k(p) ≥ 1

2Dk−k if and only
if the following condition holds: for every set Q of k+1 distinct primes ∗-related
on (D0, Dk], it holds that there exists some q ∈ Q with (q | p) = 1.
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Table 1: Sequence of primes in increasing order (and their bit lengths `) for
which dk(p) is strictly increasing, for k ∈ {1, 2}. The primes below the dashed
lines (for ` ≥ 37) have been found via our simplified search method, which means
that there could exist smaller primes that give rise to the same or higher values
of d1(p) resp. d2(p). The primes below “? ? ?” are the 64 bit primes with the
highest k-range that we found.

` p d1(p)

5 23 5
5 31 10
7 71 11
8 167 13
8 191 19

10 599 20
11 1319 37
12 3119 40
14 9719 45
14 14951 60
17 110039 65
18 211559 66
19 283631 67
19 289511 72
19 333791 109
21 1884791 129
22 2817239 140
24 10522511 149
25 25155191 156
25 29036999 157
27 79107311 179
27 89658791 217
30 927633671 227
31 1514970551 276
36 56709623759 277
36 60221191631 281

37 81720228911 291
37 86345286719 339
38 187800947879 396
43 8714428081631 431
44 10422103551551 437
44 13729797542471 443
47 78991232073599 452
47 100395799811999 461
54 12210981354571991 577
54 13162388389217591 639
57 93521022740468231 641
57 141840650661890879 683
60 692038256994017639 685
61 1507647405383450231 756
63 5831572531519229351 809

? ? ?
64 12367130975574671999 732

` p d2(p)

5 23 8
5 31 10
7 71 11
8 167 14
8 191 19
8 239 20
9 359 26
9 479 35

11 1151 38
11 1511 41
12 3527 43
12 3911 58
13 6551 59
14 8951 66
14 12239 89
15 25679 140
19 289511 176
20 662639 182
22 2798351 212
24 10328111 223
24 16178399 226
25 17431391 250
25 19632791 255
25 25380911 276
25 30809159 280
26 53422151 290
27 92989511 308
28 246241511 318
29 442696271 329
30 721250351 379
30 984093431 458
35 18233703479 498
35 29919732911 502

37 95110047119 508
38 149120083199 562
38 241922449271 570
40 696567525359 588
40 700217963639 608
41 1291095727151 640
41 2088877265999 668
43 8590297237079 720
44 10268163904319 724
45 18623040462311 743
45 21505791039431 785
46 49223854293071 878
48 154272279972359 884
52 3392073984672071 931
55 21749977880115911 938
56 38746340388406031 1046
56 47155355205792599 1265
60 984926255933291591 1283
63 7143849267677035679 1336

? ? ?
64 13030782144247916831 1316
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Table 2: Sequence of primes in increasing order (and their bit lengths `) for which
d∗k(p) is strictly increasing, for k ∈ {1, 2}. Primes below the dashed lines have
been found via our simplified search method, which means that there could exist
smaller primes that give rise to the same or higher values of d∗1(p) resp. d∗2(p).
For the primes above the dashed lines, it holds that the prime is the smallest
possible for a given d∗k(p). The prime below “? ? ?” is the 64 bit prime with the
highest value of d∗2(p) that we found.

` p d∗1(p)

5 23 1
6 47 4
7 83 5
8 131 7
8 239 8
8 251 14

10 1019 16
11 1091 24
13 4259 30
14 10331 33
14 12011 34
17 74051 42
17 96851 44
19 420731 47
20 831899 52
20 878099 53
20 954971 68
23 5317259 78
25 19127891 79
25 31585979 94
28 140258219 98
30 697955579 104
31 1452130811 112
31 1919592419 115
33 4323344819 116
33 4499001491 117
33 6024587819 118
34 9259782419 138
35 19846138451 143
36 34613840351 151
37 73773096179 153

37 119607747731 174
38 163030664579 182
38 170361409391 207
43 4754588149211 229
48 171772053182831 242
48 178774759690511 243
48 205152197251811 258
52 2950193919326891 259
52 3705750905778011 284
54 10624213337944379 296
55 26259748609914431 321
57 141840650661890879 340
59 321961111376298371 345
61 1158960903343074191 348
61 1561357330831673339 378
64 9409569905028393239 383

` p d∗2(p)

6 47 3
7 83 6
8 131 8
8 179 15

10 1019 16
11 1091 26
11 1427 31
11 1811 36
14 9539 51
15 19211 68
19 334619 78
20 717419 80
21 1204139 104
22 2808251 114
24 8774531 116
24 11532611 117
25 18225611 152
27 98962211 155
28 247330859 166
30 738165419 174
30 1030152059 188
31 1456289579 197
32 2451099251 206
34 11159531291 207
34 13730529419 216
35 17221585499 219
35 19186524419 232
35 26203369331 242
37 92830394411 248
37 128808841619 287
38 232481520059 324
39 408727560491 335
40 807183995411 370

44 15869813229371 373
45 19379613618119 411
46 46760546950211 412
48 240160967391791 425
49 294269750529611 456
53 8755197891979139 526
57 85283169141238571 528
58 148892345027857499 599
61 1915368196138563011 648

? ? ?
64 10807930853257193939 623
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4.5 Implementation and Results

We have implemented a search algorithm for primes p with minimal dk(p) and
d∗k(p) for k = 0, 1, 2 using the precomputation of linear congruences as detailed
above. We have enumerated all minimal p up to 64 bits with ascending d1(p)
and with d0(p) ≥ 64, and likewise for ascending d∗1(p) with d∗0(p) ≥ 32. Our
implementation is written in Rust and uses the wheel method from [16]. It is
publicly available on GitHub [1].

Table 2 shows results of our search for primes that give rise to as high as
possible values of d∗1(p) and d∗2(p).

Open Problem. We leave open the problem of proving asymptotic lower bounds
(in the Hardy–Littlewood’s Big-Omega sense) as well as (better) upper bounds
on dk(p) and d∗k(p) for k ≥ 1.

5 Secure Protocols for bsgn

In this section we present several protocols for evaluating the bsgn function,
assuming that p is a Blum prime. Note that these protocols immediately imply
comparison protocols; from the triangle inequality it follows that correctness for
comparison is guaranteed if both inputs lie in [−bd/2c, bd/2c], where [−d, d] is
the input range of the bsgn protocol.

We first present protocol Legendre, shown as Protocol 1, for securely evaluat-
ing the Legendre symbol. The protocol is stated in terms of black-box invocations
of protocols RandomBit() for securely sampling a random bit {0, 1} ⊂ Z/pZ and
RandomElem((Z/pZ)∗)) for securely sampling a random element from (Z/pZ)∗.

Protocol 1 Legendre([[x]])

Offline Phase
[[s]]← 2 · RandomBit()− 1
[[u]]← RandomElem((Z/pZ)∗)
[[r]]← [[s]] · [[u]]2

Online Phase
c← [[x]] · [[r]]
return (c | p) · [[s]]

5.1 Secure Medium-Range bsgn Protocol for k = 1

In our protocol for k = 1, shown as Protocol 2, we compute the binary sign of
the sum of the Legendre symbols by means of the multivariate polynomial

f(x, y, z) =
x+ y + z − xyz

2
.

It is easy to verify that f correctly computes the sign of the sum of x, y, z ∈
{−1,+1}. The two secure multiplications required for the evaluation of f(x, y, z)
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can be combined with the secure evaluations of the Legendre symbols such that
the round complexity is not increased, as shown next.

Protocol 2 bsgn1Simple([[a]]), |a| ≤ d∗1(p)

[[x]]← Legendre(2[[a]]− 1)
[[y]]← Legendre(2[[a]] + 1)
[[z]]← Legendre(2[[a]] + 3)
return ([[x]] + [[y]] + [[z]]− [[x]][[y]][[z]])/2

Decreasing the round complexity in the online phase. Protocol bsgn1Simple re-
quires three rounds in the online phase. We can bring this down to a single round
by precomputing the product of the random Legendre symbols produced in the
offline phase of the Legendre protocol. This is shown in Protocol 3. The random
bit protocol has been concretely instantiated in the offline phase of Protocol 3 to
show that the product of the three random Legendre symbols can be computed
in parallel to the preparation of their corresponding random elements. The of-
fline phase requires two rounds in addition to the round complexity of securely
sampling random elements of (Z/pZ)∗.

Protocol 3 bsgn1SingleRound([[a]]), |a| ≤ d∗1(p)

Offline Phase
for i ∈ {1, 2, 3} do [[ti]], [[ui]]← RandomElem((Z/pZ)∗), RandomElem((Z/pZ)∗)

[[u]]← [[u1]] · [[u2]]

for i ∈ {1, 2, 3} do [[vi]], wi ← [[ti]] · [[ti]], [[ui]] · [[ui]]

[[s]]← [[u]] · [[u3]] ·
∏3

i=1 w
−1/2
i

for i ∈ {1, 2, 3} do [[ri]], [[si]]← [[vi]] · [[ui]] · w−1/2
i , [[ui]] · w−1/2

i

Online Phase
for i ∈ {1, 2, 3} do ci ← (2[[a]]− 3 + 2i) · [[ri]]
return

(∑3
i=1[[si]] · (ci | p)− [[s]] ·

∏3
i=1 (ci | p)

)
/2

5.2 Secure Medium-Range bsgn Protocol for k = 2

In our protocol for k = 2, shown as Protocol 4, we compute the binary sign of the
sum of the five Legendre symbols by means of another invocation of Legendre.
In the latter (outer) invocation of Legendre, we need not apply the x 7→ 2x+ 1
map because we sum an odd number of values in {−1,+1} which cannot become
zero. Note that this requires that d0(p) ≥ 5 for correctness of the protocol.

Similar to the k = 1 case, we may replace the evaluation of the Legendre
symbol at the end by the evaluation of a suitable polynomial. For instance, one
can use the univariate polynomial f(x) = (3x5−110x3+1067x)/960, which maps
x ∈ {1, 3, 5} to 1 and x ∈ {−1,−3,−5} to −1. This polynomial can be evaluated
in three rounds using ordinary secure multiplication. Alternatively, a 5-variate
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polynomial can be used, in which case the required secure multiplications can be
combined again with the secure evaluations of the Legendre symbols such that
the round complexity of the online phase is not increased (as in the k = 1 case).

Protocol 4 bsgn2([[a]]), |a| ≤ d∗2(p), d0(p) ≥ 5

[[x1]]← Legendre(2[[a]]− 3)
[[x2]]← Legendre(2[[a]]− 1)
[[x3]]← Legendre(2[[a]] + 1)
[[x4]]← Legendre(2[[a]] + 3)
[[x5]]← Legendre(2[[a]] + 5)
return Legendre([[x1]] + [[x2]] + [[x3]] + [[x4]] + [[x5]])

6 Application: Fast Neural Network Evaluation in MPC

In this section we demonstrate the usefulness of our secure binary-sign evaluation
technique for securely evaluating a neural network.

6.1 Binarized Multi-Layer Perceptron for MNIST

For our experiments, we take the binarized multi-layer perceptron of Cour-
bariaux et al. for recognizing handwritten digits from the well-known MNIST
benchmark data set [7], which we refer as BMLP below. The BMLP network
uses the sign function as its non-linear activation function, and is designed to be
evaluated using integer arithmetic only. This allows for a natural MPC imple-
mentation.

The MNIST data set contains images of 28-by-28 pixels, where the intensity
of each pixel is represented by a byte, i.e., an integer in B := [0, 255] (0 represents
black, 255 represents white, and the values in between represent shades of gray).
For the BMLP network, an input image is represented as a byte vector x ∈ B784.
Note that by reshaping a two-dimensional image into a (one-dimensional) vector
the spatial structure is lost, but this is not a problem for multi-layer perceptrons
(as opposed to convolutional neural networks, for instance).

Let n denote the number of neurons per layer. The BMLP network consists
of four layers, and uses n = 4096. We view each layer Li, i ∈ [1, 4], as a map
between an input and output vector:

L1 : B784 → {−1,+1}n,
Li : {−1,+1}n → {−1,+1}n, i ∈ {2, 3}
L4 : {−1,+1}n → Z10.

Let k1 = k2 = k3 = m2 = m3 = m4 = n and k4 = 10 and m1 = 784. In [7],
the output of Li is computed as

Li(x) :=

{
BinarySign(BatchNormki

Θi
(Wix+ bi)), i ∈ {1, 2, 3}

BatchNormki
Θi

(Wix+ bi) i = 4.
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Here Wi ∈ {−1,+1}ki×mi is a matrix of weights, and bi ∈ Zki is a vector of bias
values. The function BatchNorm, which applies batch normalization element-
wise, is defined as

BatchNorm`
Θi

: Z` → Z`
(x1, . . . , x`) 7→ (fΘi,1(x1), . . . , fΘi,`(x`))

where Θi := (µi, σ̃i,γi,βi) are the batch norm parameters for the ith layer:
µi = (µi,1, . . . , µi,`), σ̃i = (σ̃i,j)j∈[1,`], γ = (γi,j)j∈[1,`], and β = (βi,j)j∈[1,`], and

fΘi,j(x) := γi,j
(x− µi,j

σ̃i,j

)
+ βi,j .

The function BinarySign applies the bsgn function element-wise,

BinarySign : Zn → {−1,+1}n
(x1, . . . , xn) 7→ (bsgn(x1), . . . ,bsgn(xn)).

To obtain the final output of the BMLP, which is an integer y ∈ [0, 9], we
apply an (oblivious) argmax operation to the output of L4:

y := arg maxL4(L3(L2(L1(x)))).

Training the Network. We have trained the BMLP on a GPU using Courbariaux’
original implementation (described in [7]) which is publicly available on GitHub.

6.2 Eliminating Redundant Parts of Batch Normalization

In layers 1–3, the BinarySign function is applied directly to the output of the
BatchNorm function. Because the bsgn function is invariant to multiplying its
input by a positive scalar, the BatchNorm function might perform some opera-
tions that are immediately undone by the bsgn function. Indeed, it actually turns
out that the BatchNorm function (when followed by the BinarySign function)
reduces to an additional bias term; the authors of [7] seem to have overlooked
this. Formally,

fi(x) = γi
(x− µi

σ̃i

)
+ βi =

γi
σ̃i

(
x− µi +

βiσ̃i
γi

)
,

bsgn(fi(x)) = bsgn

(
x− µi +

βiσ̃i
γi

)
, γi, σ̃i > 0.

Hence, we update the bias vector in all layers except the last as follows,

b′i := bi − µi +
βiσ̃i
γi

where all operations (addition, subtraction, multiplication, and division) in the
above expression are performed element-wise. With this modification, evaluation
of the BMLP network simplifies to

Li(x) =

{
BinarySign(Wix+ b′i), i ∈ {1, 2, 3}
BatchNormki

Θi
(Wix+ bi) i = 4.
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6.3 Instantiating the BinarySign Function Per Layer

Our aim is to instantiate the BinarySign function using our medium-range bsgn
protocols. Nonetheless, for layer L1, the magnitudes of the elements in the vector
W1x+ b′1 for some image x ∈ B784 will typically be way too large compared to
the input range on which our bsgn protocols guarantee a correct answer. Hence,
for L1 we instantiate BinarySign as the element-wise application of an “off-the-
shelf” large-range bsgn protocol, such as Toft’s comparison protocol [18].

For layers L2 and L3 we instantiate BinarySign with (element-wise appli-
cations of) Protocol bsgn1Simple using a 64-bit prime modulus p for which
d∗1(p) = 383, and, in separate experiments, with bsgn2 using a 64-bit modu-
lus p′ for which d∗2(p′) = 594, and with Yu’s method, using a 62-bit modulus p′′

for which d∗0(p′′) = 134.6 Also for these layers, there seems to be a mismatch
between the input ranges of bsgn1Simple, bsgn2 and Yu’s method on which they
guarantee correctness, i.e., [−383, 383], [−594, 594] and [−134, 134] respectively,
and the magnitudes of the elements in the vector Wiy + b′i for i ∈ {2, 3}, where
y ∈ {−1,+1}n. The first term in this sum (the vector Wiy), can have elements
with magnitude equal to n in the worst case, where n = 4096. Nonetheless, the
distribution of values in the vector Wiy+ b′i for all i ∈ {2, 3} is strongly concen-
trated around zero, hence we will just ignore the fact that our bsgn-protocols
will be invoked a number of times on values outside the range for which they
guarantee correctness. As we show quantitatively in Table 3, for our protocols
this does not deteriorate the classification performance compared to a network
where the full-range sign protocol is also used in layers L2 and L3, while for Yu’s
method (with prime p′′) the error rate increases by 38%. (Surprisingly, using
bsgn1Simple even slightly improves the performance on the MNIST test set.)

6.4 Experimental Results (Neural Network Evaluation)

We have implemented the neural network in MPyC, a Python framework for
secure multiparty computation [15]. The case k = 0 comes down to applying the
map x 7→ 2x+ 1 to the input followed by invoking Protocol 1, for k = 1 we used
a mixture of Protocol 2 and Protocol 3, and for k = 2 we used Protocol 4, in all
cases expanding the calls to Protocol 1 to parallelize the secure computations
of the Legendre symbol as much as possible. As a baseline we use the MPyC
built-in secure comparison protocol, which is based on Toft’s protocol [18]. For
a meaningful performance evaluation, we set the bit length to 10 bits for the
built-in comparisons used in layers 2 and 3. We have also vectorized the code
for all these comparison protocols, handling n = 4096 comparisons at the same
time for layers 1–3, which increases the speed considerably.

We have run our experiments on a 3PC-LAN setup (CPUs: Intel four-core
4th generation Core i7 3.6 GHz). A complete evaluation between three parties
on a secret-shared input image, using secret-shared weights and bias vectors,

6 The prime moduli are p = 9409569905028393239, p′ = 15569949805843283171 and
p′′ = 3546374752298322551.
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Table 3: Classification performance of the BMLP on 10,000 MNIST test images

Full-Range Sign Yu (k = 0) bsgn1Simple bsgn2

Number of misclassifications 248 342 227 247
Error rate 0.0248 0.0342 0.0227 0.0247

runs in 59 seconds for k = 0, 60 seconds for k = 1, in 62 seconds for k = 2, and
in 67 seconds for full-range comparisons. For evaluation of a batch of 10 input
images the times are 205, 223, 235, and 302 seconds, respectively. The times
for processing all comparisons in layers 2 and 3 are 6, 20, 34, and 99 seconds,
respectively. Hence, in this experiment the Legendre-based comparisons with
k = 1 are about 5 times faster than full-range comparisons. Similar speedups
may be expected with other MPC frameworks for applications with comparisons
restricted to medium-sized integers.

To determine the error rate for our particular BMLP, we have also imple-
mented it in Python (including the Python counterparts of Yu’s method and
the Protocols bsgn1Simple and bsgn2, producing exactly the same errors outside
their input ranges). The results measured for the 10,000 MNIST test images are
shown in Table 3.
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