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Abstract
In this paper, we focus on parameter estimation for an elliptic inverse problem. We consider a 2D steady-state single-
phase Darcy flow model, where permeability and boundary conditions are uncertain. Permeability is parameterized by the
Karhunen-Loeve expansion and thus assumed to be Gaussian distributed. We employ two ensemble-based data assimilation
methods: ensemble Kalman filter and ensemble transform particle filter. The formal one approximates mean and variance of
a Gaussian probability function by means of an ensemble. The latter one transforms ensemble members to approximate any
posterior probability function. Ensemble Kalman filter considered here is employed with regularization and localization—
R(L)EnKF. Ensemble transform particle filter is also employed with a form of regularization called tempering and
localization—T(L)ETPF. Regularization is required for highly non-linear problems, where prior is updated to posterior
via a sequence of intermediate probability measures. Localization is required for small ensemble sizes to remove spurious
correlations. We have shown that REnKF outperforms TETPF. We have shown that localization improves estimations of both
REnKF and TETPF. In numerical experiments when uncertainty is only in permeability, TLETPF outperforms RLEnKF.
When uncertainty is both in permeability and in boundary conditions, TLETPF outperforms RLEnKF only for a large
ensemble size 1000. Furthermore, when uncertainty is both in permeability and in boundary conditions but we do not account
for error in boundary conditions in data assimilation, RLEnKF outperforms TLETPF.

Keywords Parameter estimation · Ensemble approximation · Tempering · Ensemble transform particle filter ·
Regularization · Ensemble Kalman inversion

1 Introduction

Ensemble-based data assimilation deals with estimation of
uncertain parameters and states of amodel constrained by avail-
able observations using an ensemble. It is widely employed
in many fields, for example meteorology [15] and reservoir
engineering [2]. While in meteorology one is interested in esti-
mation of uncertain initial conditions of a high-dimensional
chaotic system, in reservoir engineering—of estimating
high-dimensional uncertain parameters, of permeability for
example, of a deterministic non-chaotic system.

However, a source of model error is not only in random
coefficients of a PDE. In inverse problems, another source
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of model error is model reduction for example, where
a complex model is replaced by a simple one. It has
been acknowledged, i.e. [12], that accounting for model
error in data assimilation greatly improves parameter-
state estimation. Recent advances in accounting for model
error in ensemble-based data assimilation are extension of
iterative ensemble Kalman filter to include additive model
error [25], adding model error in the randomized maximum
likelihood though to correctly sample the posterior without
marginalization [7], nonadditive though Gaussian model
error update for Bayesian inversion [6], and adaptation of
machine learning technics for data assimilation [18]. By
additive model error we mean that if G is an erroneous
approximation of the true model Gtrue, then G(·) =
Gtrue(·) + q where q is model error.

However, most of these works have considered either
additive model error or Gaussian model error, with the
sole exception of [7] where Gaussian anamorphosis was
used. However, for high-dimensional problems, finding
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a transformation to multivariate Gaussian probability is
computationally challenging. Though the assumption of
additive Gaussian model error simplifies an optimization
problem, model error is not limited to being additive nor
Gaussian. Therefore, it is essential for a data assimilation
method to account for model error in a most general way. A
straightforward example of such a data assimilation method
is Markov Chain Monte Carlo (MCMC). However, for
high-dimensional systems, it is impractical.

An alternative to MCMC is particle filtering [1]. Particle
filtering is based on proposing an ensemble from a prior
that is not necessarily close to the target posterior and
to correct for this mismatch by computing importance
weights. The importance weights are defined as a function
of ensemble estimations and available observations. The
ensemble is then resampled according to the estimated
posterior. Particle filtering in its original form worked
only for low-dimensional problems. However, due to recent
advances of employing localization [10, 13] it has been
proven to strive for high-dimensional problems as well.

There are different approaches to resampling in parti-
cle filtering, but most of them are stochastic. An ensemble
transform particle filter [27] employs deterministic resam-
pling, which reduces sampling error and thus needs a
smaller ensemble than a typical particle filter. It also has a
localized version. In [28], we have employed the method
to an inverse problem of uncertain permeability. We have
shown that though localization makes the ensemble trans-
form particle filter deteriorates a posterior estimation of the
leading modes, it makes the method applicable to high-
dimensional problems. In [29], instead of localization, we
have implemented tempering to the ensemble transform par-
ticle filter (TETPF). We have shown that iterations based
on temperatures [21, 23] handle notably strongly nonlin-
ear cases and that TETPF is able to predict multimodal
distributions for high-dimensional problems.

In this paper, we consider a steady-state single-phase
Darcy flow model. This groundwater model was first used
as benchmark for inverse modelling in [11]. It has been
used as a test model for the identification of parameters,
for example with iterative regularization methods [20],
an ensemble Kalman approach [4], and in our previous
work with particle filtering [28, 29]. In this paper in
addition to uncertain log permeability defined as a Gaussian
process, we assume an error in boundary conditions that is
non-Gaussian distributed. We note that error in boundary
conditions of the groundwater model gives a non-linear
response; thus, model error is non-additive. We compare
T(L)ETPF to a regularized ensemble Kalman filter [3].

Regularized ensemble Kalman filter is a robust
ensemble-based data assimilation method, which assumes
Gaussian probabilities. It solves an optimization problem
for mean and approximates variance with an ensemble. It

has been employed for history matching applications for
example in [17, 22]. It has been shown that ensemble
Kalman filter is able to estimate skewed probabilities with
frequent observations [8, 26]. It, however, fails to estimate
multimodal probabilities, e.g. [29].

Our goal is to investigate whether pressure estimation is
sensitive to uncertain boundary conditions, and to compare
T(L)ETPF with R(L)EnKF (with and without localization).
We note that we have assumptions about precise information
of sources of errors and prior probability density function.
This is an idealized setting that however allows to check
sensitivity of a data assimilation method to uncertainty in
boundary conditions, which is also relevant for practical
applications.

1.1 Bayesian inference

Both T(L)ETPF and R(L)EnKF are based on Bayesian
inference. Assume u ∈ Ũ and q ∈ Q̃ are two
independent random variables. Later on, we will have
different assumptions on u and q. We denote by g : Ũ ×
Q̃ → Y the non-linear forward operator that arises from
a model under consideration. In other words, g maps the
space Ũ × Q̃ of uncertain quantities to the observation
space Y defined in terms of observable quantities, which are
related to the solution of the model as

y = g(u, q).

Assume that yobs ∈ Y is an observation of y. Then
according to the Bayes’ formula

π(u, q|yobs) ∝ π(yobs|u, q)π(u)π(q) (1.1)

up to a constant of normalization, where π is a probability
density function.

For any smooth function f : Ũ → Ũ , its expectation is
defined as

f (u) =
∫

duf (u)

∫
dqπ(u, q|yobs). (1.2)

It is common, e.g. [8], to express the joint probability
density function as

π(yobs|u, q)=
∫

π(yobs, y|u, q)dy =
∫

π(yobs|y)π(y|u, q)dy (1.3)

and π(y|u, q) = δ(y − g(u, q)), where the transition
density is the Dirac delta function.

2 Tempered ensemble transform particle
filter

The goal of the Bayesian approach is to compute the
posterior given by Eqs. 1.1–1.3. Sequential Monte Carlo
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(SMC) is an approximation of the Bayesian posterior. An
SMC method creates a finite sample from a prior, that
is easy to sample from, and corrects for the differences
between the prior and the posterior by computing so-called
importance weights. Finally, a resampling is performed
according to those weights in order to create a new
sample.

2.1 Importance weights

We consider discrete random variables and define U =
{u1, . . . ,uM} ⊂ Ũ , ui ∈ R

n, and Q = {q1, . . . ,qM} ⊂ Q̃,
qi ∈ R

m. The model has unknown quantities utrue ∈ R
n and

qtrue ∈ R
m that we wish to estimate from noisy observations

yobs ∈ R
κ , where κ < n and κ < m.

yobs := g(utrue,qtrue) + η,

where η ∼ N (0,R) with R being a known covariance
matrix of the observation noise. Then the conditional
probability density function is

π(yobs|y) ∝ exp

[
−1

2
(y − yobs)

′R−1(y − yobs)
]
.

Then a discrete approximation to Eq. 1.3 is

π(yobs|u,q) ∝ exp

[
−1

2

(
g(u,q) − yobs

)′ R−1 (
g(u,q) − yobs

)]
,

where ′ denotes the transpose. We assume the priors π(u)

and π(q) are uniform, then denoting v = [u q]′ the
expectation of a function f of v is

f (v) ≈
M∑
i=1

f (vi )wi .

Here the importance weights are

wi = h(vi )∑M
j=1 h(vj )

, where h(v) = exp

[
−1

2

(
g(u,q) − yobs

)′ R−1 (
g(u,q) − yobs

)]
. (2.1)

2.2 Tempering

An SMC method suffers when the likelihood h(v) (2.1) is
peaked, which could be due to very accurate data, amount
of data, or when the prior poorly approximates the posterior.
A tempering iterative approach tackles this problem by
introducing temperatures 0 = φ0 < · · · < φT = 1
and corresponding bridging likelihoods h(v)(φt−φt−1) for
t = 1, . . . , T . A tempering parameter φt is typically chosen
based on effective ensemble size

ESSt (φt ) :=
(∑M

i=1 wi

)2
∑M

i=1 w2
i

, (2.2)

such that ESS does not drop below a certain threshold 1 <

Mthresh < M . A bisection algorithm on the interval (φt−1, 1]
can be used to solve (2.2) [4]. If ESSt (1) > Mthresh, then
we can simply set φt = 1 as no further tempering is thus
required.

2.3 Deterministic resampling

In order to avoid filter degeneracy, each tempering iteration
t needs to be supplied with resampling. Resampling is
typically performed by a stochastic approach, which
introduces an additional error. In TETPF, a tempering
iteration t is accompanied by a deterministic resampling
based on optimal transportation. This resampling transforms

particles with weights defined in terms of bridging
likelihood

w
(t)
i =

h
(
v(t)
i

)(φt−φt−1)

M∑
j=1

h
(
v(t)
j

)(φt−φt−1)
,

where h(v) is from Eq.2.1, to particles with uniform weights
1/M by maximizing the correlation between the particles.
Thus, the optimal transport S is an M × M matrix with sij
that satisfy

sij ≥ 0,
M∑
i=1

sij = 1

M
,

M∑
j=1

sij =
h

(
v(t)
i

)(φt−φt−1)

M∑
j=1

h
(
v(t)
j

)(φt−φt−1)
,

(2.3)

and minimizes the cost function
M∑

i,j=1

sij

∥∥∥v(t)
i − v(t)

j

∥∥∥2 . (2.4)

This gives rise to a resampling with replacement and a
stochastic transport matrix S. In order to have a deter-
ministic optimal transformation, the following proposal is
adopted

ṽj = M

M∑
i=1

v(t)
i s̃ij for j = 1, . . . , M, (2.5)
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where s̃ij is a solution to the optimization problem (2.3)–
(2.4). To solve the linear transport problem for multivariate
variables (2.3)–2.4, we use FastEMD algorithm of [24].
Its computational complexity is of order M2 lnM , and
the algorithm is available as a MAT LAB and a Python

subroutine.

2.3.1 Localization

Ensemble Transform Particle Filter as any particle filter does
not have assumption about the posterior. Therefore, it still
demands a large ensemble. For high-dimensional problems,
this is computationally unfeasible. Hence, one has to
decrease the number of degrees of freedom, i.e. by distance-
based localization of [27, 28] abbreviated here LETPF.

Assume we have a numerical grid of N × N size with
grid cells denoted by Xl for l = 1, . . . , N2. Assume that
the uncertain parameter u is not grid-based. We assume,
however, that there exists a matrixA such that log(k) = Au
is grid-based, thus log(kl) = log[k(Xl)]. Then for the local
update of an uncertain parameter log(kl), we introduce a

diagonal matrix Ĉ
l ∈ R

κ×κ in the observation space with an
element

(Ĉl)�,� = ρ

( ||Xl − r�||
r loc

)
for � = 1, . . . κ . (2.6)

Here r� denotes the location of the observation, r loc is a
localization radius, and ρ(·) is a taper function, such as
Gaspari-Cohn function by [9]

ρ(r) =
⎧⎨
⎩
1 − 5

3 r2 + 5
8 r3 + 1

2 r4 − 1
4 r5, 0 ≤ r ≤ 1,

− 2
3 r−1 + 4 − 5r + 5

3 r2 + 5
8 r3− 1

2 r4 + 1
12 r5, 1 ≤ r ≤ 2,

0, 2 ≤ r .

(2.7)

The localization radius r loc is typically tuned by a trial-and-
error approach in terms of estimation error.

LETPF modifies the likelihood (2.1) as follows:

hl(v) = exp

[
−1

2

(
g(u,q) − yobs

)′
(Ĉ

l
R−1)

(
g(u,q) − yobs

)]
,

(2.8)

where Ĉ
l
is the diagonal matrix given by Eq. 2.6. Then the

optimal transport Sl is an M ×M matrix with entries sl
ij that

satisfy

sl
ij ≥ 0,

M∑
i=1

sl
ij = 1

M
,

M∑
j=1

sl
ij =

hl
(
v(t)
i

)(φt−φt−1)

M∑
j=1

hl
(
v(t)
j

)(φt−φt−1)
,

(2.9)

and minimizes the cost function
M∑

i,j=1

sl
ij

[
log

(
k
l,(t)
i

)
− log

(
k
l,(t)
j

)]2
. (2.10)

The estimated parameter log(k̃l) is given by

log(k̃l
j ) = M

M∑
i=1

s̃l
ij log

(
k
l,(t)
i

)
for j = 1, . . . , M,

(2.11)

where s̃l
ij is a solution to the optimization problem

(2.9)–(2.10). We note that localization reduces LETPF
to a univariate transport problem. Solving the optimal
transport problem for univariate variables (2.9)–(2.10)
is computationally less expensive than for multivariate
variables (2.3)–(2.4), since the marginal computational cost
is in sorting M numbers. We use an algorithm described
in [27] to solve the univariate linear transport problem (2.9)–
(2.10). LETPF, however, loses direct dependence on the
parameters at other grid cells. Update of the uncertain grid-
based parameters log(kl) could be performed in parallel for
each l = 1, . . . , N2. Then the estimated model parameter is
ũ = A−1 log(k̃).

To estimate q, we solve the optimal transport problem
with sGij that satisfy

sGij ≥ 0,
M∑
i=1

sGij = 1

M
,

M∑
j=1

sGij =
h

([
ũi q

(t)
i

]′)(φt−φt−1)

M∑
j=1

h

([
ũj q(t)

j

]′)(φt−φt−1)
,

(2.12)

and minimize the cost function

M∑
i,j=1

sGij

(∥∥ũi − ũj

∥∥2 +
∥∥∥q(t)

i − q(t)
j

∥∥∥2
)
. (2.13)

The estimated parameter q̃ is given by

q̃j = M

M∑
i=1

s̃Gijq
(t)
i , j = 1, . . . ,M, (2.14)

where s̃Gij is a solution to the optimization problem (2.12)–
(2.13). Finally, we set ṽ = [ũ q̃]′.

2.4 Mutation

The advantage of deterministic resampling is that it
reduces sampling noise. The disadvantage of deterministic
resampling is that for a deterministic and non-chaotic
system, the filter collapse is unavoidable unless particle
mutation is introduced. The mutation is performed over an
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index 1 < τ < τmax with prescribed τmax. At the first inner
iteration τ = 1, we assign v = ṽ.

We denote by v�
i a component of vi , where 1 ≤ � ≤ n +

m. If v�
i has a Gaussian prior, then we use the preconditioned

Crank-Nicolson pcn-MCMC method from [14]

v
�,prop
i =

√
1 − β2v�

i + βξi for i = 1, . . . , M, (2.15)

where {ξi}Mi=1 is from normal distribution. The parameter
β ∈ [0, 1) is a free parameter. For uniform prior U [a, b],
we use random walk

v
�, prop
i = v�

i + ξi for i = 1, . . . , M, (2.16)

where ξi ∼ U [a−b, b−a], and we project v�, prop
i to [a, b]

when necessary. The proposal (2.15)–(2.16) is accepted

v = vprop with the probability min

{
1,

h(vprop)φt+1

h(v)φt+1

}
,

(2.17)

and the inner iteration τ is increased by one. We choose β
based on acceptance rate being between 20 and 30% by the
last iteration T . The mutation (2.15)–(2.17) is repeated until
τ = τmax, then we assign v(t+1) = v.

After that, next tempering iteration proceeds by com-
puting the weights (2.1), new temperature φ based on

Eqs. 2.2 ESS ≥ Mthresh, performing deterministic resam-
pling either by Eqs. 2.3–2.5 for the non-localized method
or by Eqs. 2.9–2.14 for the localized method, and con-
cluding by mutation (2.15)–(2.17) for τmax iterations. The
algorithms stops when the final temperature φ reaches
one. Recall that T is the total number of tempering itera-
tions that corresponds to φ reaching one. Thus, T is not
predefined, which can lead to computationally unfeasible
iteration times. TETPF demands T M(τmax + 1) evalua-
tions of the model g, and TLETPF demands T M(τmax + 2)
evaluations of the model g.

3 Regularized ensemble Kalman Filter

REnKF is based on the Ensemble Kalman Filter with
perturbed observations

yη
i = yobs + ηi for i = 1, . . . , M,

where ηi ∼ N (0,R) with R being a known covariance
matrix of the observation noise. We define an M-
dimensional vector with all elements equal to 1 as 1M .
REnKF solves the following set of equations for t =
0, . . . , T − 1 with v(0) being an initial ensemble

Bgg = 1

M − 1

(
g(u(t),q(t)) − g(u(t),q(t))1′

M

) (
g(u(t),q(t)) − g(u(t),q(t))1′

M

)′
,

Bvg = 1

M − 1

(
v(t) − v(t)1′

M

) (
g(u(t),q(t)) − g(u(t),q(t))1′

M

)′
,

v(t+1)
i = v(t)

i + Bvg
(
Bgg + μ(t)R

)−1 (
yη
i − g(u(t)

i ,q(t)
i )

)
for i = 1, . . . ,M . (3.1)

The regularized parameter μ(t) is chosen such that

μ(t)

∥∥∥∥ R1/2
(
Bgg + μ(t)R

)−1 (
yobs − g(u(t),q(t))

)∥∥∥∥
≥ �

∥∥∥R−1/2
(
yobs − g(u(t),q(t))

)∥∥∥ (3.2)

for predefined � ∈ (0, 1). This is achieved by the bisection
method μτ+1 = 2τμ0 for τ = 0, . . . , τmax and an initial
guess μ0. We assign μ(t) = μτmax , where τmax is the first
integer for which (3.2) holds.

Finally, REnKF is stopped based on discrepancy
principle, namely when
∥∥∥R−1/2

(
yobs − g(u(t),q(t))

)∥∥∥ ≤ 1/�

∥∥∥R−1/2η

∥∥∥ (3.3)

with η being the observation noise. Thus, the total number
of iterations T is not predefined, as in T(L)ETPF. The rule
of thumb is to choose � ∈ (0.5, 1), and we choose � = 0.7
for all the numerical experiments. REnKF demands T M +1
evaluations of the model g.

3.1 Localization

In Ensemble Kalman filter, covariance-based localization
of the Kalman gain [16, 19] can be applied in order to
remove spurious correlations due to a small ensemble size.
We assume again having a numerical grid of N × N size
with grid cells denoted by Xl for l = 1, . . . , N2. Assume
that the uncertain parameter u is not grid-based. We assume,
however, that there exists a matrixA such that log(k) = Au
is grid-based, thus log(kl) = log[k(Xl)]. Then Eq. 3.1
for a localized EnKF, denoted here LEnKF, is rewritten
as

log
(
k(t+1)

i

)
= log

(
k(t)

i

)
+ Ĉ ◦ Bkg

(
Bgg + μ(t)R

)−1

×
(
yη
i −g(u(t)

i ,q(t)
i )

)
for i = 1, . . . , M,

q(t+1)
i = q(t)

i + Bq g
(
Bgg + μ(t)R

)−1

×
(
yη
i −g(u(t)

i ,q(t)
i )

)
for i = 1, . . . , M .
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Here ◦ denotes the element-wise product and Ĉ is a distance-
based correlation matrix, an element of which is

Ĉl,� = ρ

(||Xl−r�||
r loc

)
for l=1, . . . , N2 and �=1, . . . , κ,

(3.4)

where r� denotes the location of the observation, r loc is
a localization radius, and ρ is given by Eq. 2.7. The
covariance matrices Bgg , Bkg and Bqg are as follow:

Bg g = 1

M − 1

(
g(u(t), q(t)) − g(u(t), q(t))1′

M

)

×
(
g(u(t), q(t)) − g(u(t), q(t))1′

M

)′
,

Bkg = 1

M − 1

(
log(k(t)) − log(k(t))1′

M

)

×
(
g(u(t), q(t)) − g(u(t), q(t))1′

M

)′
,

Bq g = 1

M − 1

(
q(t) − q(t)1′

M

) (
g(u(t), q(t)) − g(u(t), q(t))1′

M

)′
.

RLEnKF also demands T M +1 evaluations of the model g,
as REnKF.

4 Numerical experiment

We consider a test case of estimating uncertain Gaussian
permeability. We consider a steady-state single-phase Darcy
flow model defined over an aquifer of two-dimensional
physical domain D = [0, 6] × [0, 6], which is given by
−∇ · [k(x, y)∇P(x, y)] = F(x, y) for (x, y) ∈ D,

where ∇ = (∂/∂x ∂/∂y)′, · is the dot product, P(x, y) is the
pressure, k(x, y) is the permeability, and the source term is

F(x, y) =
⎧⎨
⎩
0 for 0 ≤ y ≤ 4,
137 for 4 < y ≤ 5,
274 for 5 < y ≤ 6.

The boundary conditions are a combination of Dirichlet and
Neumann boundary conditions

P(x, 0) = 100,
∂P

∂x
(6, y) = 0,

−k(0, y)
∂P

∂x
(0, y) = 500(1 + q),

∂P

∂y
(x, 6) = 0,

where q denotes error in boundary conditions.
We implement a cell-centred finite difference method to

discretize the domain D into N × N grid cells Xl of size
x2. We solve the true forward model G on a fine grid
N = Nf = 140 for the true solution. Then the synthetic
observations are obtained by

yobs = L( Ptrue) + η.

An element of L(Ptrue) is a linear functional of pressure,
namely

L�( Ptrue) = 1

2πσ 2

N2
f∑

l=1

exp

(
−||Xl − r�||2

2σ 2

)

Ptrue,lx2
f for � = 1, . . . , κ,

where r� denotes the location of the observation, κ = 36 the
number of observations, xf = 6/Nf, and σ = 0.01. The
observation locations are displayed in Fig. 4 as circles.

Observation noise is denoted by η and it is drawn from
N (0,R). Observation error covariance R is known, and we
choose it such that the norm of the noise is 1% of the norm
of the data. Such a small noise makes the data assimilation
problem hard to solve, since the likelihood is very peaked
and a non-iterative data assimilation approach fails.

Both the true permeability and an initial ensemble
are drawn from the same prior distribution as the prior
includes knowledge about geological properties. We assume
log permeability is generated by a random draw from
a Gaussian distribution N (log(5),C). Here 5 is an N2

vector with all elements being 5 and C is Whittle-Matern
correlation, an element of which is given by

Cl� = 1

�(1)

dl�

δ
ϒ1

(
dl�

δ

)
for l, � = 1, . . . , N2.

Here dl� is the distance between two spatial locations,
δ = 0.5 is the correlation length, � is the gamma function,
and ϒ1 is the modified Bessel function of the second kind
of order one. We denote by λ and γ eigenvalues and
eigenfunctions ofC, respectively, then following Karhunen-
Loeve expansion log permeability is

log(kl) = log(5) +
N2∑
�=1

√
λ�γ �lu� for l = 1, . . . , N2,

where u� is i.i.d. from a normal distribution for � =
1, . . . , N2.

Therefore, the initial parameter u is drawn fromN (0, 1),
while the initial boundary condition error q is drawn from
a uniform distribution U [0 0.5]. We then solve the incorrect
forward model g on a coarse grid N = Nc = 70.
The uncertain parameter u has the dimension n = 4900,
which makes the dimension of v n + m = 4901. We
perform 40 numerical experiments with both T(L)ETPF
and R(L)EnKF to check initial sample sensitivity. We
conduct numerical experiments with ensemble sizes 100
and 1000. We compare the methods with a pcn-MCMC
method without model error in boundary conditions. An
MCMC experiment was conducted using 100 chains with
the lengths 106, burn-in period 105, and thinning period 103
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each. For T(L)ETPF, we choose τmax = 20 and β = 0.045
for mutation, since it gives good mixing with acceptance
rate at the final tempering iteration around 20%. We set the
threshold for ESS to be Mthresh = M/3.

We define the root mean square error (RMSE) of a mean
field � = 1/M

∑M
i=1 �i as

RMSE(�) =
√(

� − �MCMC
)T (

� − �MCMC
)

for either log permeability � = log(k) or pressure � = P.
To choose a favouring localization radius, we perform a
numerical experiment with r loc ranging from one to six
with an increment of one. Then we define the favouring
localization radius as a localization radius that gives the
smallest RMSE in terms of mean log permeability for
that numerical experiment. For TLETPF, the favouring
localization radius is r loc = 1 for both ensemble sizes 100
and 1000. For RLEnKF, the favouring localization radius is
r loc = 3 for both ensemble sizes 100 and 1000.

4.1 Data assimilation without localization

In this section, we compare REnKF to TETPF, thus
without localization. In Fig. 1, we plot RMSE of mean log
permeability on the left and of mean pressure on the right at
different ensemble sizes for both TETPF and REnKF. When
uncertainty is only in permeability, REnKF outperforms
TETPF for estimation of log(k) and as a consequence for
estimation of pressure, as it can be seen in Fig. 1 a and b and
as it has been reported in the literature, e.g. [28, 29]. When
uncertainty is in both permeability and boundary conditions,
we investigate methods performance for two numerical set-
ups. First numerical set-up is when we account for model
error in boundary conditions. Second numerical set-up is
when we do not account for model error in boundary
conditions. In both set-ups, REnKF outperforms TETPF as
seen in Fig. 1c–f.

Let us now examine numerical experiments in more
detail. First, we compare numerical experiments when we
account for error in boundary conditions to numerical
experiments with no error in boundary conditions. Com-
paring Fig. 1d–b, we observe that pressure estimation does
not change. At the same time comparing Fig. 1c–a, we
observe that log permeability estimation becomes worse
when model error is present, as to be expected.

Next, we compare numerical experiments when we do
not account for error in boundary conditions with numerical
experiments when we do account for error in boundary
conditions. Comparing Fig. 1e–c, we observe that for
REnKF at ensemble size 1000 and TETPF at both ensemble
sizes, log permeability is better estimated when a method
does not account for error in boundary conditions. Pressure

is also better estimated by both methods when error in
boundary conditions is not accounted for, as seen from
comparing Fig. 1f–d.

In order to further investigate this result, we compare
REnKF and TETPF with an estimation from a pcn-MCMC
with error in boundary conditions. In Fig. 2, we plot the
posterior approximations of q. We recall that the prior for
q is U [0 0.5]. We observe that MCMC gives a skewed
posterior. TETPF has better resemblance to the posterior
obtained by MCMC, while REnKF gives negative values of
q (negative values of q for TETPF and MCMC are only
due to kernel representation for plotting). We, however,
observed that pressure is better estimated by both methods
when error in boundary conditions is not accounted for.
Thus, by allowing for error in boundary conditions and not
constraining it by data, we obtain better pressure estimation.

4.2 Data assimilation with localization

Next we compare RLEnKF with TLETPF, thus with
localization. In Fig. 3, we plot RMSE of mean log
permeability on the left and of mean pressure on the
right at different ensemble sizes for both TLETPF and
RLEnKF. When uncertainty is only in permeability,
TLETPF outperforms RLEnKF for estimation of log(k) and
as a consequence for estimation of pressure, as it can be seen
in Fig. 3 a and b. This shows that localization drastically
improves TETPF, such that it outperforms RLEnKF even
for normally distributed log(k).

Next, we compare numerical experiments when we
account for error in boundary conditions with numerical
experiments with no error in boundary conditions. Com-
paring Fig. 3d–b, we observe that pressure estimation does
not change. At the same time comparing Fig. 3c–a, we
observe that log permeability estimation becomes worse
when model error is present, as to be expected. Here
TLETPF again outperforms RLEnKF but only at a large
ensemble size 1000. For comparison, we show results of
MCMC, when error in boundary conditions is accounted
for. In Fig. 4, we plot mean of log permeability at the top
and variance of log permeability at the bottom for MCMC,
TLETPF, and RLEnKF at ensemble size 1000. We observe
that both methods give a reasonably good approximation of
the MCMC mean log permeability. The variance, however,
is underestimated.

Next, we compare numerical experiments when we do
not account for error in boundary conditions with numerical
experiments when we do account for error in boundary
conditions. Comparing Fig. 3e–c, we observe that for
RLEnKF and TLETPF log permeability is better estimated
when a method accounts for error in boundary conditions.
This is opposite to results of REnKF and TETPF. When
it comes to pressure estimation, TLETPF gives equivalent
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Fig. 1 RMSE for log(k) is on the left. RMSE ×103 for pressure is on
the right. A dashed line is for the median, a shaded area is for 25 and
75 percentiles over 40 simulations. Ensemble size is on x-axis. REnKF

is shown in grey. TETPF is shown in blue. a, b For no model error, c,
d for accounting for model error, and e, f for not accounting for model
error

Fig. 2 Posterior of error in
boundary conditions q. On the
left is TETPF and on the right is
REnKF. Results for the
ensemble size 100 are shown in
blue and for 1000 in pink, where
one line is for one simulation out
of 40. MCMC is shown in black
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Fig. 3 RMSE for log(k) is on the left. RMSE ×103 for pressure is on
the right. A dashed line is for the median, a shaded area is for 25 and 75
percentiles over 40 simulations. Ensemble size is on x-axis. RLEnKF

is shown in grey. TLETPF is shown in blue. a, b for no model error, c,
d for accounting for model error, and e, f for not accounting for model
error

performance for all three test cases. This means that
TLETPF is not sensitive to error in boundary conditions
in terms of pressure estimation. RLEnKF, however, better
estimates pressure when error in boundary conditions is
not accounted for, as seen from comparing Fig. 3f–d. The
same was observed in experiments with REnKF. When
comparing RLEnKF and TLETPF in terms of the posterior
approximations of q shown in Fig. 5, we observe that none
of the methods gives estimations close to MCMC.

4.2.1 R(L)EnKF at large ensemble size

We further investigate R(L)EnKF (with and without
localization) performance in case when error in boundary
conditions is not accounted for. We increase ensemble size
to M = 6000 for localized version and to M = 7700 for
non-localized version. We have tested localization radius
between 1 and 8 with an increment of 1, and r loc = 6
gave the smallest RMSE. We compute RMSE of mean log
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Fig. 4 Mean log(k) at the top
and variance of log(k) at the
bottom for a numerical
experiment where error in
boundary conditions is
accounted for. MCMC is on the
left, with circles for the
observation locations. A
simulation with ensemble size
1000 is in the middle for
TLETPF and on the right for
RLEnKF.

Fig. 5 Posterior of error in
boundary conditions q. On the
left is TLETPF and on the right
is RLEnKF. Results for the
ensemble size 100 are shown in
blue and for 1000 in pink, where
one line is for one simulation out
of 40. MCMC is shown in black

Fig. 6 RMSE for log(k) is on the left, and RMSE ×103 for pressure is
on the right for the test case where error in boundary conditions is not
accounted for. A dashed line is for the median, a shaded area is for 25

and 75 percentiles over 40 simulations. On the x-axis, numbers stand
for ensemble sizes and L stands for a localized method. R(L)EnKF is
shown in grey. TLETPF for ensemble size 1000 is shown in pink
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Table 1 Mean over 40 simulations of number of iterations for
T(L)ETPF and R(L)EnKF at ensemble size 1000

TETPF TLETPF REnKF RLEnKF

No ME 13 28 8 11

Accounting for ME 14 35 11 15

Not accounting for ME 19 30 19 19

permeability and mean pressure and display them in Fig. 6
in grey for R(L)EnKF. We observe that as ensemble size
increases, pressure becomes better estimated. For 1000 and
6000 members, the improvement in P can be explained by
the improvement in log(k), as seen on the left of Fig. 6.
Comparing RLEnKF with 6000 members to REnKF with
7700 members, we observe that better pressure estimation
can only be explained by better estimation of q. In Fig. 6, we
show TLETPF with ensemble size 1000 in pink. We observe
that R(L)EnKF outperforms TLETPF greatly. For TLETPF,
we were not able to increase the ensemble size beyond 1000
due to high computational costs.

4.3 Computational costs

In Table 1, we show the number of iterations a method
takes on average. We should note that for R(L)EnKF, we
put a limit of 20 iterations. When performing numerical
experiments where no model error is present or when model
error is accounted for, we observed that R(L)EnKF attains
the stopping criterion (3.3) in less than 20 iterations for
� = 0.7. When performing numerical experiments when
model error is not accounted for, we observed that in the
majority of experiments after 20 iterations, the data misfit
starts to increase and the stopping criterion is not attained.
Decreasing � to values less than 0.5 solves the issue of
attaining the stopping criterion but the data misfit is too high
for sensible estimations. By the try-and-error approach, we
discovered that it is preferable to keep � = 0.7 and put a
limit of 20 total iterations. For T(L)ETPF, we do not put any
limit on total number of iterations. The wall clock of one
iteration of TETPF is 70 s, of TLETPF is 78 s, of REnKF is
9 s, and of RLEnKF is 10 s.

5 Conclusions

We have considered 2D steady-state Darcy flow with
uncertain permeability. Observations of pressure at 36
locations were used to infer permeability at a grid 70 ×
70. The corresponding inverse problem was solved using
two methods: regularized (localized) ensemble Kalman
filter—R(L)EnKF—and tempered (localized) ensemble

transform particle filter—T(L)ETPF. Ensemble Kalman
filter updates uncertain parameters based on an assumption
of Gaussian probabilities. Therefore, mean and variance
need to be estimated. Ensemble Kalman filter makes
further assumption that variance can be approximated by
an ensemble. Due to small ensemble size, variables exhibit
spurious correlations. Spurious correlations can be removed
by employing localization—where covariance matrix in
Kalman gain is multiplied by a distance-based matrix, for
example. Moreover, it has been recognized that ensemble
Kalman filter overfits observations and thus requires
regularization. Therefore, in our numerical experiments,
we have used regularized (localized) ensemble Kalman
filter.

Ensemble transform particle filter makes an assumption
that probability can be approximated by empirical measure.
It employs optimal transport to transform prior measure
into posterior. It correctly estimates mean but not variance.
Ensemble transform particle filter is computationally
demanding algorithm, since its complexity is of order
M2 lnM where M is ensemble size. Ensemble transform
particle filter suffers spurious correlations as ensemble
Kalman filter and thus requires localization. There exists
only one type of localization for ensemble transform particle
filter, which requires solving a univariate optimal transport
problem at every grid though that can be done in parallel.
It has been also recognized that when observations are very
accurate or numerous, ensemble transform particle filter
needs tempering—where prior is transformed into posterior
over iterations. Therefore, in our numerical experiments, we
have used tempered (localized) ensemble transform particle
filter.

We have performed experiments with ensemble sizes
100 and 1000 for both R(L)EnKF and T(L)ETPF. We have
shown that localization improves estimations obtained by
REnKF and TETPF in all considered numerical experiments
with 2D steady-state Darcy flow. First, we have considered
uncertainty only in permeability. For ensemble sizes 100
and 1000, we have shown that TLETPF outperforms both
REnKF and RLEnKF. Next, we have considered uncertain
permeability and uncertain boundary conditions. We have
shown that TLETPF outperforms both REnKF and RLEnKF
but only at a large ensemble size of 1000. Finally, we have
considered uncertainty in both permeability and boundary
conditions but we did not account for error in boundary
conditions in data assimilation. In this set-up, RLEnKF
outperforms both TETPF and TLETPF.

T(L)ETPF is computationally more demanding than
R(L)EnKF and requires more iterations than R(L)EnKF.
Moreover, TETPF used here is first-order accurate, since it
underestimates the ensemble spread. There exists second-
order accurate ensemble transform particle filter [5], which
we plan to investigate for an inverse problem in future.
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