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Abstract

In high-throughput, distributed systems, such as large-scale
banking infrastructure, synchronization between actors be-
comes a bottle-neck in high-contention scenarios. This re-
sults in delays for users, and reduces opportunities for scaling
such systems. This paper proposes Static Local Coordination
Avoidance, which analyzes application invariants at compile
time to detect whether messages are independent, so that
synchronization at run time is avoided, and parallelism is in-
creased. Analysis shows that in industry scenarios up to 60%
of operations are independent. Initial performance evalua-
tion shows that, in comparison to a standard 2-phase commit
baseline, throughput is increased, and latency is reduced. As
a result, scalability bottlenecks in high-contention scenarios
in distributed actor systems are reduced for independent
messages.
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Domain specific languages; State systems; Model-driven
software engineering; « Applied computing — Enterprise
architectures; Event-driven architectures.
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1 Introduction

Enterprise software systems are large, complex, and hard to
maintain. For instance, banks such as ING Bank!, deal with
large and complex IT landscapes consisting of many hetero-
geneous communicating applications, under high transac-
tion loads. There is increased demand for high throughput
and scalability for such systems.

In a distributed setting, both throughput and latency
are heavily influenced by the amount of synchronization
that is required between distributed objects. For instance,
the generic atomic commit protocol Two-Phase Commit
(2PC) [9] only allows a single event to be in progress per ac-
tor, all other events are queued. For high contention objects
this leads to high latency and time-outs.

Recent work [3, 4] shows that invariants to maintain
program-level consistency can be leveraged to optimize the
implementation of synchronization. Invariant Confluence [3]
shows that for the TPC-C benchmark [18] ten of twelve in-
variants are invariant confluent and require no coordination.

In this paper we propose a similar, but novel concurrency
mechanism, called Local Coordination Avoidance (LoCA),
that allows multiple concurrent in-progress events per object,
when it can be determined that such events are independent
of each other. One event is independent of another if the
commit or abort of the latter can never invalidate the result
of the former. In that case, processing of the latter can be
started without waiting.

As an example, consider the text book example of a bank
account entity with withdraw and deposit events, where
withdraw has a precondition that the balance should be suf-
ficient for the withdrawal. In this case the deposit event is
independent of deposit itself, because depositing money can
never invalidate the requirements of a deposit. Deposit is
also independent of withdraw, because depositing money is
always possible, even if the in-progress withdraw would fail.
A withdraw event, however, is not independent from with-
draw, because the failure or success of in-progress withdraw
might influence the precondition of the second withdraw.

LoCA is informed by static analysis of state machine mod-
els. In our case, we use Rebel [23], a domain specific language
(DSL) to model financial products as state machines which
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communicate using atomic, synchronized events. LoCA con-
sists of statically analyzing application invariants declared
as pre- and postconditions in the state machine models. This
results in pairs of events that are independent, regardless of
local state at run time.

We have implemented the independent event analysis
by transforming Rebel state machine models to constraint
definitions for the Z3 Satisfiability Modulo Theory (SMT)
solver [6], which computes the set of independent event
pairs. This set is then input to the run-time system, which
safely skips the precondition check if a new event comes in
that is independent of all in-progress events,—otherwise it
falls back to 2PC.

We have run the analysis on state machine models manu-
ally derived from the standard TPC-C [18] benchmark, and
state machine models currently being prototyped inside ING
Bank. In both cases, the results show that around 60% of
event combinations are independent, suggesting that the
benefits of LOCA could be substantial. Initial performance
evaluation shows that LoCA, or a variant of LoCA that de-
tects independence at run time increases throughput and
reduces latency compared to vanilla 2PC in high contention
scenarios.

The contributions of this paper are as follows:

e We formalize the notion of Statically Independent
Events (SIE), a characterization of state machine mod-
els that captures when an event’s preconditions are
always independent of in-progress event’s effects, and
show how an SMT solver can be used to compute inde-
pendent pairs from state machine models (Section 2);

e We describe a novel run-time concurrency control
mechanism, Local Coordination Avoidance (LoCA),
which uses independent events to speed up synchro-
nization on distributed objects. We present a LoCA im-
plementation leveraging SIE analysis results: LoCA®
(Section 3);

e We evaluate the SIE analysis on two realistic examples:
the TPC-C benchmark and Rebel specifications devel-
oped at ING. We evaluate the performance of both 2PC
and LoCA variants, and show that LoCAS outperforms
2PC in high contention scenarios (Section 4).

Source code of the SIE analysis and LoCA implementation,
together with result data is found in [21].

We conclude with a discussion and limitations (Section 5);
related work (Section 6); further directions for research (Sec-
tion 7); and a conclusion (Section 8).

2 Independent Events
2.1 Bank Account Example

Consider an example of a bank account state machine as
seen in Figure 1. For simplicity it has two states New and
Opened with an integer data field balance, and three Events:
Open, Deposit and Withdraw, the latter two with an integer

i,

22

Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju

Deposit(amount: Int)[amount > 0]/balance = balance + amount

Open()[]/balance = 0

Opened
balance: Int

Withdraw(amount: Int)[amount > 0, balance — amount > 0]/
balance = balance — amount

Figure 1. State machine of example simple account. Events
are defined in state chart notation: Event(fields)[guard]/effect

amount event parameter, that should be a positive integer.
The precondition on withdrawal (balance — amount > 0)
makes sure that the balance does not become negative. The
effect of the events are represented by labels on the edges in
state chart notation. The effect of Open sets the balance to 0
and the state to Opened. The effect of Deposit and Withdraw,
respectively increases or decreases the balance with the
events’ amount value.

Now, consider an instance of this bank account state ma-
chine running as an actor. The bank account actor handles a
single event at one moment in time. A sequence of events is
handled sequentially, one at a time. If an incoming event is
part of a distributed 2PC-transaction with other actor par-
ticipants, the actor first decides if the event is allowed by
checking its preconditions, but it cannot transition to the
next state yet. To maintain the serializability requirements
of the distributed transaction, the actor has to wait on the
whole transaction to either commit or abort the event. Other
incoming events have to wait on the in-progress event.

In this particular example it becomes clear that waiting
on in-progress events is not always necessary to ensure
valid state machine transitions. For example, an incoming
event Deposit(10)’s precondition check is independent of
an in-progress Withdraw(20)’s effect in state Opened(100).
It does not matter if the in-progress Withdraw(20)’s effects
are actually applied or not. The state machine stays in the
Opened state, the only difference is the balance, which is only
decremented on commit of the Withdraw(20) event. The
new incoming Deposit(10) can always already start, since
the Opened state allows it and the specific balance does not
invalidate the precondition of Deposit(10). The incoming
Deposit(1@) event is thus independent of the in-progress
Withdraw(20) event.

2.2 Independent Events

An incoming event e; is independent of an in-progress event
e, iff e, is accepted by the state machine, independent of
whether e;’s effects are actually applied or not.
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Table 1. Static independency of bank account events. E; in
rows, E, in columns.

SIE(Ey,E;) Open Deposit Withdraw
Open Deray Deray  REgjeCcT
Deposit Reject  AccepT DELAY
Withdraw RejecT AccepT DEeLAY

In order to formalize the notion of independent event pairs,
we consider a finite state machine, with states with data and
events with parameters. We assume that the transition func-
tion is encoded in the preconditions pre : Event X State —
Boolean. The predicate pre(e, s) is true iff event e is valid in
the given state s. An event is valid in a state if the transition
function and its transition guards, the preconditions, allow it.
The resulting outcome state of a transition, given the current
state and event is encoded in post : Event X State X State —
Boolean. post(e, sfrom. Sto) is true iff event e in state sgrom
leads to post state sy,.

Given an in-progress event e; and an incoming event
ez in some starting state s, the independent event relation
IE(eq, ey, s) is defined as follows:

Vs’ € State.
pre(ey, s) A post(ey, s,s’) — (pre(es, s) © pre(es,s’))

IE(ey, €2, s) denotes that e;’s acceptance is independent of
the outcome of e; in state s. The predicate pre(e;, s) makes
sure that e; has valid preconditions in s, describing the sit-
uation where e; is already accepted by the participant, but
has not yet committed nor aborted. post(es, s, s”) binds s’ to
the post state when e;’s effects are applied on s. An event e,
is independent of an event ey iff, for all possible post states
s’, the evaluation of the preconditions of e, in both s and s’
give the same result. Intuitively this means that whether e;
eventually commits or aborts and its effects are applied or
not, does not influence the precondition check of e;. There is
no possible way for the result of e; to influence the validity
of ey.

2.3 Statically Independent Events

The IE relation captures independence at run time: it consid-
ers preconditions and postconditions, given a current state
machine state (e.g., balance). This however, requires run-
time computation when dispatching incoming events, which
could be expensive. Here we introduce statically independent
events, which avoid this computation step.

Table 1 displays all statically independent event pairs of
the bank account example. It shows the decision on event
of type E, given that an event of type E; is in progress. For
instance, Deposit is statically independent of both Deposit
and Withdraw, because no matter the actual run-time state
of the bank account, deposits can always be directly accepted.
Similarly, if a Deposit is in progress, an Open event should
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be immediately rejected, since the state machine’s transi-
tion function disallows it. For all event pairs that are not
independent, the decision is delay.

SIE is a relation between two types of events, E; and Es,
without considering their parameter values or the run-time
state of an actor.

SIE(E, E;) = Vs € State, ey € E1, e € Ey.IE(eq, €, $)

where Ve; € E; means for all possible event instances of
type E;. SIE(Ey, E;) is true when all possible instances of the
event types E; and E; are independent in all possible starting
states s.

2.4 Computing SIE

The SIE definition can be used to transform state machine
models to first-order logic formulas as input to SMT-solvers,
like Z3 [6] to find the statically independent event pairs
at compile time. For this we assume a mapping of the state
machine’s transition relation and the pre- and postconditions
of each type of event as formulas in first-order logic.

In order to let an SMT-solver find the statically indepen-
dent events, we let the solver search for counter examples,
the dependent event pairs. This means that for every combi-
nation of event types E; and E,, we ask the solver whether
the formula —=SIE(E, E,) can be satisfied. If it is satisfiable,
the resulting model represents a counter example witness-
ing the fact the E, is dependent on E;, otherwise they are
independent.

The negation of SIE(Ey, E,), after inlining the definition
of IE is:

s, s’ € State,e; € Ey,e; € Es.
pre(er, s) A post(er,s,s’) A = (pre(es, s) < pre(es, s’))

To satisfy this formula the solver needs to find a model in-
stance with some starting state s, and two event instances e;
and ey, for which it holds that event e; is valid in s and its
follow-up state is s’, but event e, should be invalid in only
one of states s or s’. Such a model instance denotes that e, is
dependent on e;’s outcome. The resulting e; and e, event in-
stances are the counter-example for the static independence
of E; on E;, making event type E; statically dependent on
event type E;.

Withdraw is not statically independent of Deposit and
the first instance found by Z3 is indeed an example of this:
Withdraw(35) is only allowed when the Deposit(1202) ac-
tually commits in state Opened(34), otherwise the balance
would not be sufficient. Another example is where Open is de-
pendent on the outcome of another Open in state New, which
makes sense since an account can only be opened once.

However, checking =SIE(Withdraw, Deposit) will return
“unsat” which means that no counter-example could be found
to show that the outcome of Withdraw would influence the
acceptance of Deposit.
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2.5 Always Accept or Always Reject?

The SIE relation determines whether one event is indepen-
dent of the other, but does not say if an event should always
be accepted or always be rejected, as shown in Table 1.

To obtain this information we partition the definition of
SIE in two variants SIEA?* and SIER¥*“! | where the equiv-
alence used in IE (Definition 1) is split in the case where the
preconditions of both events are true, and the case where
neither of them are true:

SIEA®“P(E E;) = Vs, s’ € State, e; € Ey, e; € Ey.
pre(er, s) A post(er,s,s’) — (pre(es, s) A pre(ez, s’))

SIERI*l(E\ E,) = Vs, s” € State, e; € Eq, e, € Es.
pre(er, s) A post(er,s,s’) — = (pre(es, s) V pre(es, s’))

To ensure that the solver does not return “junk” models in
which events are always invalid, regardless of the state (e.g.,
Withdraw(-1000)), we instruct the solver to only consider
such events by asserting s € State.pre(ey, s). Following the
same process as with SIE above, SIEA®¢?! and SIER¥*! can
be used to find statically independent event pairs, knowing
whether the decision should be accept or reject.

3 Local Coordination Avoidance (LoCA)

A run-time system for a state machine-based language like
Rebel is typically implemented as follows. A distributed ob-
ject receives a request as part of a 2PC distributed transaction.
It then becomes participant in this transaction. If the request
is valid according to the corresponding event’s preconditions,
the object is locked until the transaction completes. If the
preconditions do not hold, the object declines the request
immediately and does not have to lock.

In this case, for each incoming request, the participant ob-
ject has to check the preconditions and act accordingly. If the
request is valid, it votes to commit the transaction and the
object is locked for other requests in order to maintain the
consistency guarantees of 2PC. Even though the participant
object has voted to commit, it cannot continue until the coor-
dinator responds, since it does not know if other transaction
participants have voted to abort. Incoming transactions are
delayed in order of arrival until the transaction coordinator
commits or aborts the transaction. This results in potentially
high wait times and thus high transaction latency for busy
objects.

Local Coordination Avoidance (LoCA) is our novel concur-
rency control mechanism that leverages SIE information at
run-time to run multiple parallel 2PC requests per participant
object. IE allows an implementation to safely start processing
new events when previous events are still in progress. LoCA
first checks independence according to the pre-computed
results of the static independent event analysis (SIE). If two
types of events are not statically independent, the actual
event occurrences can still be dynamically independent; this
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is checked according to the IE relation at run time. If events
are dynamically dependent still, LoCA falls back to vanilla
2PC.

For evaluation purposes, we distinguish variants of LoCA
according to which kinds of independence checking are done
at run time: LoCA® (only checks based on SIE), LoCAP (only
checks based on IE [22]), and LoCAP (first SIE, then IE).

3.1 Static LoCA

Static LoOCA (LoCAY) first considers STEA®?! | then SIER¥ect,
and falls back to 2PC.

LoCAS leverages the SIE analysis results. In the case
where the transaction participant is waiting on a response of
an in-progress transaction’s coordinator, it can use the SIE
independent event pairs to determine if it is always safe to
start another incoming request in parallel.

If the incoming event’s type is an independent accept for
all the in-progress events’ type, as determined by SIEA¢¢P!,
it can be started immediately without checking its precon-
ditions. If not matched by SI EAccept and the incoming event
is an independent reject, determined by SIER¥*!, for all in-
progress events, it can be immediately rejected. If the request
is not statically independent for both sets, the incoming event
is dependent on at least one of the in-progress events’ type
and has to be delayed until it is finished.

Figure 2 shows sequence diagrams to compare vanilla 2PC
to LoCAS in the case that LoOCAS can directly accept an
event. For 2PC an action is delayed when another action is
in progress. For LOCA® the action’s transaction is started
when SIEA¢P! allows it. In Figure 2a, (1) a 2PC-participant
receives a VOTEREQUEST(e;) message, and responds with
VoteCoMMIT(e; ) because the preconditions pre(ey, s) allow it.
This locks the resource until e; commits or aborts. When e; is
still in progress, the participant receives (2) a VOTEREQUEST
for another event ey, and it is delayed until e; completes.
On receiving of GLoBALCoMMIT(e;) (3), the effects of e; are
applied, the state is updated and acknowledgement is replied.
Now the delayed e, is started (4), and a VOTECOMMIT(ey) is
send. e; is eventually committed, and its effects applied.

In Figure 2b, a LoCAS-participant receives (1) a
VOTEREQUEST(e;) message, and similarly accepts the event
because the precondition pre(e;, s) holds. Unlike 2PC the re-
source is not locked, but guarded by static independence
guarantees. When VOTEREQUEST(e;) arrives (2), it now
checks if it is safe to execute e; in parallel with e;, by
checking the event’s types in SIEAP!(E;, E,). In this case
SIEAceP!(E,, E;) holds and VoTECoMMIT(ey) is readily sent.
Now e, commits earlier (3), and in order to maintain serial-
izability, the effects of e, are delayed to preserve the original
order. When e; is allowed to commit (4), its effects are ap-
plied, and the postponed effects of e; as well. The case for
immediate reject is analogous.
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(b) Static Local Coordination Avoidance

Figure 2. 2PC and LoCAS®, Direct Accept.

4 Evaluation

In this section we evaluate static local coordination avoid-
ance to answer two questions:

RQ 1. How often are events independent in realistic scenarios?

RQ 2. What is the effect of LOCA on performance in terms of
throughput and latency?

4.1 Independence in Realistic Scenarios (RQ 1)

In order to evaluate the relevance of SIE analysis we have
analyzed two sets of Rebel models and computed the inde-
pendence results. The first set consists of Rebel state machine
models manually derived from the standard TPC-C bench-
mark [18], the second set consists of models of payment
infrastructure developed at ING Bank.

TPC-C There is no direct mapping for TPC-C’s transac-
tions to Rebel, but we can model the tables and the trans-
action’s operations on them. TPC-C consist of 9 database
tables and 5 transactions, which we model as state machines
where transactions are represented as events.

Some TPC-C transactions make decisions based on data
which is read from the state machine. To avoid that in-
progress events modify such data, we model this data flow
using event parameters.

While this approach makes sure that exposed values
are not changed by in-progress events, it is an over-
approximation and leads to false negatives of dependent
event pairs. Incorrectly detected dependent event pairs can-
not be parallelized at run time, which is still correct, but not
as efficient as when correctly identified.

Table 2 shows the SIE analyses’ results for each table
specification and a percentage describing the ratio between
independent and all event pairs. As can be seen, many events
are independent for this case. This is the case because often

RIGHTS L

Table 2. TPC-C SIE Analyses

TPC-C #States / #Direct Accept/ Indep.
Table #Events #Direct Reject Ratio
Stock 1/2 4/0 100%
NewOrder 3/3 2/2 44%
Order 2/2 4/0 100%
District 1/3 6/0 67%
Customer 1/4 12/0 75%
OrderLine 2/4 6/3 56%
Warehouse 1/1 1/0 100%
History 2/1 0/0 0%
Item 2/2 0/1 25%
Total 15/ 22 35/6 64%

the specific tables’ data is only read, and not used for deci-
sions later in the transaction. Note that these results are only
for local independency decisions in a state machine instance,
representing a single row in the database tables.

ING Bank Account Models 1In order to evaluate SIE effec-
tiveness on an industrial use case, we run the analysis on
Rebel specifications being developed at ING Bank, containing
multiple types of bank accounts and Single Euro Payments
Area (SEPA) bank transactions. Our specification data set
consists of 29 Rebel specifications. 7 of them used features
not yet supported by our analysis tool. The remaining 22
specifications are analyzed with small changes. For some of
them the data types and preconditions are simplified, in such
a way that it does not influence the SIE analysis, for instance
changing DateTime fields to Integer fields and mapping
static set membership tests to string equality.

The analysis results of the resulting 22 specifications are
presented in Table 3. Most specifications are relatively small
in terms of number of states and events. Many independent
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Table 3. SIE Analyses’ results of ING product specifications

#States / #Direct Accept/ Indep.

Specification #Events #Direct Reject Ratio
CreditTransfer 9/9 1/52 65%
Restriction 3/4 6/3 56%
DepositBlock 3/4 2/5 44%
DirectDebitBlock 3/4 2/5 44%
WithdrawBlock 3/4 2/5 44%
Limit 5/5 1/12 52%
NoLimit 3/3 1/2 33%
RevolvingAccount 2/3 4/2 67%
DirectDebitAccount 2/3 4/2 67%
TreasuryAccount 4/4 4/8 75%
CreditTransferBatch 5/6 10/5 42%
CreditBooking 4/3 0/2 22%
DebitCreditorBooking 3/2 0/1 25%
FromExternalDebitBooking 3/2 0/1 25%
ToExternalDebitBooking 3/2 0/1 25%
DebitBooking 13/17 0/188 65%
CurrentAccount 3/4 4/4 50%
LocalCreditTransfer 6/5 0/12 48%
SepaCreditTransfer 6/8 15/29 69%
Arrangement 4/4 2/17 56%
BankPayment 4/4 0/6 38%
ThirdPartyPayment 5/3 0/5 56%
Total 96 /103 58 /357 61%

events pairs are direct reject, since many events are not al-
lowed in multiple states. More than 60% of all event pairs
are independent, suggesting that SIE analysis would be ben-
eficial in industrial scenarios. This analysis shows how often
events are independent in realistic scenarios answering RQ 1.

4.2 Throughput and Latency (RQ 2)

LoCAS is expected to show performance benefits when a
transaction participant is involved in multiple transactions
at the same moment in time and for independent events. In
low-contention scenario we expect little extra performance
in using LoOCA® compared to 2PC.

The goal of the performance evaluation is to find out if
this expectation holds. We ran several synthetic scenarios in
microbenchmarks in order to confirm these expectations.

In order to evaluate LOCA we prototyped a small account-
ing service providing dependent and independent events in
the state machine DSL Rebel [23]. The SIE Analysis trans-
lates Rebel specifications to SMT using Rascal [15] and runs
the analysis using the state-of-the-art SMT-solver Z3 [6]. The
SIE results are used in a LoCA implementation [? ], an actor-
based runtime system, based on the Akka actor toolkit [1],
on the JVM.

Akka enables fault tolerance and horizontal scalability by
sharding actors over multiple servers and provides locational
transparent message passing between them. These features
together with persistence and state machine primitives, are
used to implement LoCA and 2PC. The Rebel state machine
models are translated to communicating run-time actors.
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The 2PC implementation follows the description by Tanen-
baum and Van Steen [25]. In order to avoid deadlocks, we
make sure that all transactions participants are locked in
increasing order.

For all experiments in this paper, we limit the maximum
number of parallel events per actor for LoCA to a config-
urable limit of 8. A higher number results in reduced through-
put and worse latency when contention increases. This is a
problem, especially for LoCAP and LoCASP with run-time
dependent events, when the computation time grows expo-
nentially due to more concurrently in-progress actions.

We present multiple microbenchmarks and their through-
put and latency results on a single application node. Each
benchmark is run using the different synchronization im-
plementation variants, 2PC, LoCAS, LoCAP, LoCA®P, and
increasing contention rate. The benchmark scenarios are the
following:

e Statically dependent events — Withdraws on single ac-
count

e Statically independent events — Deposits on single
account

¢ Distributed transactions with statically dependent and
statically independent event — Money transfers be-
tween two accounts

e Distributed transactions with high-contention stati-
cally independent events and low-contention depen-
dent events — Tax direct debit use case: Deposits on
a single tax account & Withdraws on 10 000 taxed ac-
counts

The first two benchmarks represent statically dependent
and independent events. These are baseline benchmarks
to determine whether LoCAS improves throughput when
contention increases for independent events, but has to fall
back to 2PC for dependent events.

The distributed transaction cases are more realistic. In the
money transfer case between two accounts, the expectation
is that LoCA® improves performance only slightly over 2PC,
because the whole distributed transaction has to wait on the
slowest dependent event participant. On the other hand for
LoCAP and LoCASP we expect better performance, since
the Withdraws are run-time independent, because enough
balance is available for multiple parallel Withdrawals.

For the tax use case, the expectation is that LoOCAS per-
forms better than 2PC and is on par with LoCAP and
LoCA®P, because the statically independent Deposits on
the tax account can be parallelized.

The microbenchmarks are run using JMH [14] and mea-
sure the maximum throughput in transactions per second
and transaction latency. The hardware used is a dual core In-
tel i7-7567U 3.5GHz up to 4.0GHz with 32GB of ram on Linux
using Java AdoptOpenJDK HotSpot 11.0.2+9 64bit. Each run
consists of 5 warmup cycles and 20 measure cycles of each
10 seconds.
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Figure 3. Statically Dependent and Independent events’
throughput. Higher is better.

To increase contention, multiple parallel events are re-
quested in batches. The batch size is varied in order to find
out when contention becomes a problem and determines the
maximum number of events in-progress on a participant.

Microbenchmark results The throughput results for the
statically dependent and independent events are shown in
Figure 3. For statically dependent events, in low-contention
scenarios (Batch Size = 1), all variants reach 1800 transac-
tions per second. As expected for higher contention (Batch
Size > 1), LoCAS performs the same as 2PC, because both
algorithms only allow a single event to be in progress for stat-
ically dependent events. Since LoOCA®P falls back to LoCAP
for run-time independent events there is a higher maximum
throughput around 5000 transactions per second. At run
time LOCAP determines that the Withdraw events can be
safely run concurrently because enough balance is available.

For statically independent events, 2PC has the same maxi-
mum throughput as the statically dependent variant, because
it handles all events sequentially. LoCA® reaches higher max-
imum throughput than the dependent variant, around 7000,
because for independent events, it can immediately accept.
LoCA®P has similar performance, because for independent
events it is equivalent to LoCA® and does not have to fall
back to LoCAP. LoCAP also detects the independence at
run time, but suffers a computational overhead compared to
LoCA?, resulting in a lower maximum throughput, but still
performs better than 2PC.

Interestingly, LoOCA®P performs the best in both cases. It
leverages the static knowledge when events are independent
so no precondition calculations are necessary, and in the
dependent case it can profit from IE’s dynamic independence
check.

Distributed transaction: Money transfer Figure 4
shows the throughput results for the money transfer mi-
crobenchmark. As expected, all variants perform the same
in the low-contention case (Batch Size = 1). 2PC and LoCA®
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Figure 5. Tax microbenchmarks’ throughput

have similar maximum throughput at 1000 transactions per
second. This is expected because, although the Deposit is
statically independent, the whole transaction has to wait
on the statically dependent Withdraw, limiting the overall
throughput. Both LoCAP and LoCA®P perform better at
around 2500 transactions per second, which can be explained
by the dynamic independence of Withdraw.

Distributed transaction: Tax collection For the tax col-
lection, the throughput results shown in Figure 5 are as
expected. 2PC performs up to 1750 transactions per second
and for higher contentions slowly drops, which is explained
by larger batch size having to wait longer for the sequential
handling by the tax account. LoCAS and LoCASP perform
similar, up to 3000 tps, since throughput is limited by the
tax account. LOCAP performs slightly worse because of the
computational overhead.

Latency Results For all microbenchmarks, latency results
were also collected [21]. Overall, the latency percentiles fol-
low the same curve for all algorithm variants, where higher
throughput corresponds to lower latency per operation.
Overall, all LoCA variants outperform 2PC, both in
throughput and latency, except for the low-contention case,
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where it performs similar. We thus answer RQ 2 on the effect
of LoCA and variants on performance.

5 Discussion

The performance evaluation has shown that SIE analysis
may increase performance both in throughput and latency,
for situations where multiple requests arrive at objects in
a small amount of time. The statically independent events
make sure that only the event types have to be inspected.

In distributed transactions with statically independent
events, LOCASP and LoCAS perform better than LoCAP
since LOCAP is computationally more expensive when the
number of parallel events increases. However, in scenarios
where the independence can only be determined dynamically,
the combined version LoCA®P still outperforms 2PC. It turns
out that all LoCA variants, LoOCAS, LoCAP and LoCASP,
perform as least as well as 2PC, and can therefore be used as
a replacement in all cases where pre- and postconditions are
known. The SIE analysis finds the independent events pairs
in order of seconds per state machine model.

SIE analysis is applicable in the specific scope where re-
questers of operations are only interested in the success or
failure of the operation. The requester receives the acknowl-
edgement directly, but not yet the post state of an entity,
when this depends on other in-progress events. The new
state can be queried in a new transaction.

IE is an asymmetric relation, and also does not require
events to be commutative. Even though multiple events can
be in progress at the same time, their effects always are ap-
plied in order or arrival, leading to serializable behavior and
commutativity is not necessary. In our specific implementa-
tion unconditional acceptance of events is already commu-
nicated to the requester, but not the outcome state.

Limitations LoCA results in performance gains in the spe-
cific scenario of independent actions and high-contention.
SIE can find independent events, but from this information
it is not directly clear if this independent result allows LoCA
to speed up performance in practice, since it might not be a
high-contention scenario. In practice the events could very
well be low-volume or the requests are already spread out
on many different specification instances.

LoCA’s benefit is most visible when the following condi-
tions hold:

e objects are involved in many synchronization steps
from different objects, each with low load, but making
the single objects a bottleneck for all

e objects are involved in a single type of synchronization
step from the same objects

Both cases are a scalability limiting factor when request
volumes continue to increase and are typical for a bank like
ING Bank. If the machines are low volume and the instances
spread out, LOCA’s performance gain is limited, although it
will never worsen the performance compared to 2PC.
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6 Related Work

IE and LoCA focus on optimizing performance of a single ob-
ject, running in a single location, which is highly-contended.
It uses conventional actor architecture approaches to shard
actors over multiple machines. Much literature focusses on
how one can do parallel updates in multiple geo-distributed
locations without communication overhead, and only syn-
chronize if really necessary for application consistency.
Running multiple instances of the same object in order to
allow parallel operations, improves performance in high-
contention scenarios as well. SIE analysis is related to check-
ing which operations are commutative and violate invariants.
Many distributed databases focus on scaling by split-
ting data into partitions, such as Cassandra [5], H-
Store/VoltDB [24], Spanner [7]. Within partitions they fall
back to sequential operations, such as 2PC and Optimistic
Concurrency Control. LoCA focusses on avoiding coordina-
tion locally in these partitions and could thus be implemented
inside other database systems to speed up these sequential
operations, when program-invariants are known.

Program-level consistency The notion of program-level
consistency, instead of generic data-consistency, is a valid
way to capture what a program should functionally do and
also gives opportunity to improve performance while main-
taining the program invariants. Work in this direction tries to
find ways to characterize this notion, which in turn enables
optimized implementations.

The CALM theorem [10] says that monotonic programs
do not need coordination. So ideally programs should have
only monotonic parts. IE and LoCA describe on a local ob-
ject level, how one can execute events in parallel, improving
performance, and make sure the object only grows monoton-
ically in its lifecycle, by exploiting the programs functional
requirements.

Coordination Avoidance [2] states that coordination can
be avoided if all local commit decisions are globally valid. IE
describes local avoidance of coordination between events on
the object.

Explicit Consistency [4] also uses an SMT-solving ap-
proach to “identify which operations would be unsafe under
concurrent execution”. For unsafe operations, it presents
approaches on changes to make concurrent execution safe
or requires an explicit synchronization implementation. It
focusses on parallel changes on geo-located data centers.

Observable Atomic Consistency [26], related to RedBlue
Consistency[16], categorizes operations in two categories:
Commutative operations on CRDTs which can be handled
in any order by different replicas, and totally ordered opera-
tions, for which the replicas need to coordinate.

SIE and LoCA operate in a different design space, where
all operations on an object go through a single actor, which
is not designed for a geo-distributed setting. It would be
interesting to explore this space and an extension of LoCA.
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Conflict-free Replicated Data Types [8, 20] guarantee
Strong Eventual Consistency. This means that all replica’s
converge to the same state if they receive the same messages,
not necessarily in the same order. IE provides strong consis-
tency, meaning serializability, since events are processed in
the original order, but are internally processed concurrently.

Adahbi? [19] reasons that in many cases the high-
contention bottleneck in 2PC can be avoided by making
the precondition check of another participant a local de-
cision, for example by querying the data required for its
precondition check from the other participant. In that way
data flows only one way, and both participants can locally
decide, sometimes with data from the other, if the transac-
tions will commit or abort without waiting on each other. IE
focusses on local avoiding of delays, but still uses 2PC for
the coordination of the transaction.

Single node optimizations Phase Reconciliation [17] is a
run-time technique, that splits contended objects over mul-
tiple cores, and allows multiple commutative operations of
the same type in parallel on each core. After a configurable
window, the split versions are recombined in a reconciliation
phase maintaining serializability. This improves throughput
for contended objects. Similarly to LoCA, it thus allows safe
parallel operations on an object, and the operations should
not return values. Differences are that the operations are
limited to commutative operations and only allow a single
operation type per split phase. LOCA and IE do not require
commutativity for operations and allow different operation
types to run in parallel, as long as they are independent,
which is either detected statically or dynamically, without
special effort by the specification designer. Phase Reconcilia-
tion’s implementation does not support durable writes yet,
which LoCA explicitly supports. A difference in scope is that
LoCA applies effects in the original order. Its parallelism has
nothing to do with the kind of effects, but whether it influ-
ences preconditions of other events. Phase Reconciliation
splits up the effects over threads, which LoCA does not do.
Phase Reconciliation could be embedded within LoCA, to
speed up the applying of effects within a LoCA object.

Flat Combining [11] and a distributed version of it [13]
show an interesting way to speed up concurrent access to
data by keeping track of concurrent operations on an object,
and letting the first thread obtain the lock, batch process all
the operations and notify the requesters with the result of
their operation. Flat Combining focusses on reads and writes
on data structures, and thus focusses on effects. LoCA differs
in the sense that it is focussed on distributed transactions,
where it is externally decided by other transaction partici-
pants if in-progress operations will be commit or aborted.
An interesting part of Flat Combining is the canceling out of
sequential operations, locally in the concurrent operations

Zhttps://dbmsmusings.blogspot.com/2019/01/its-time-to-move-on-from-
two-phase.html
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list, e.g. push and pops in a stack. This results in reduced
sending of operations to the actual data structure. Interesting
future work related to this, is to statically detect, using anal-
yses similar to SIE, which events can safely be combined,
and (partly) cancel each other out within invariant bounds.

7 Future Work

This paper describes Independent Events pairs on event type
level, ignoring parameters. It would be interesting to have a
more granular approach by including symbolic field values.
The SMT-solver can synthesize computationally cheap field
bound checks that LOCA can use at run time to determine
when events are independent.

In order to make IE more generally applicable, reading of
data can be added. Now, static independence is determined by
event types, resulting in either accept or reject. IE does not
support state or return values for events. This has to be sim-
ulated as seen in the TPC-C use case. If exposed (computed)
values are specified, this can be taken into account for the
analysis. The "exposed" effect describes which (computed)
values are exposed by events next to the postconditions,
which only describe internal state changes. This would re-
sult in support for SQL like transactions, which can use sub
queries and can represent TPC-C’s usage of data, resulting in
fewer false-negative dependent events. This can also support
analysis of nested synchronization in Rebel, by tracking if
nested participants rely on exposed event parameter values.

IE focusses on parallel distributed transactions. It would
be interesting to explore if the IE property can be exploited
in other non-transactional cases, for example in the context
of Active Objects [12].

The current SIE analysis can take false-positive dependent
event pairs into account, because the SMT-solver is allowed
to synthesize any state possible, also states that cannot occur
in the normal state machine life cycle. Extra assertions could
be added to make sure only reachable states are used. A
drawback could be that the state machine representations
becomes more involved and solve times can become higher.

In order to avoid deadlocks, transaction participants are
locked in increasing order. In many cases LoCA does not
need this, because it allows multiple transactions in parallel.
LoCA should only need increasing order locking when dead-
locks can happen for dependent events. Static analysis could
detect this and switch to parallel requesting of locks, saving
multiple round trip times in transaction latency, compared
to increasing order locking.

This paper presents microbenchmark performance evalua-
tions on a single application node. Since the implementation
is based on actors, which can run as-is in a clustered en-
vironment, it would be interesting to do further scalability
performance evaluation on a cloud environment. It would
be interesting to replicate ING’s workloads using LoCA to
find a benefit compared to their current implementation.


https://dbmsmusings.blogspot.com/2019/01/its-time-to-move-on-from-two-phase.html
https://dbmsmusings.blogspot.com/2019/01/its-time-to-move-on-from-two-phase.html

RIGHTS LI

AGERE ’19, October 22, 2019, Athens, Greece

Commutativity of statically independent events can most
probably be statically determined. This would allow reorder-
ing of events at run time and would allow requesters to see
outcome states earlier. Reordering would require designers
of specifications to take care with pre- and postconditions to
make sure that time sensitive or otherwise important event
orders are captured explicitly.

Offline analysis using SMT solvers can also be used to
support specification designers by giving insight in potential
performance bottlenecks at design time. Research directions
include detection of events which are used in multiple syn-
chronized steps but never independent, and suggestions on
how to make events independent. The latter can be done
by systematically removing preconditions from dependent
event pairs, until it becomes independent. This signals which
preconditions might be weakened by the specification de-
signer to reduce performance bottlenecks.

LoCA uses an atomic commitment protocol to implement
the actual transaction, which is now 2PC. Optimistic con-
currency control, instead of 2PC, could provide even more
performance improvements, since fewer rollbacks or aborts
would be required for independent events.

8 Conclusion

Atomic commitment protocols such as Two-Phase Commit
(2PC) may lead to bottlenecks for high-contention objects,
because requests have to wait on previous events to finish.
It is possible to improve throughput and latency, by increas-
ing parallelism of events on an object, while maintaining
application consistency.

Independent Event (IE) pairs capture when a state ma-
chine object can safely start processing events when other
events are still in progress. Statically Independent Events
(SIE) analysis enables detection of types of event pairs that
are always independent, at compile-time. We have imple-
mented the SIE analysis on top of the Rebel state machine
DSL by translating object invariants to SMT constraints and
checking the SIE property. Local Coordination Avoidance
(LoCA) leverages the resulting independence information to
start more events per object concurrently, when it is deter-
mined that new events cannot violate the object’s invariants.

We have shown that in two sets of realistic Rebel specifica-
tions, around 60% of events are always independent, which
suggests that LOCA potentially increases throughput in dis-
tributed systems. Preliminary performance evaluation shows
that, compared to 2PC, LoCA performs at least similar to
2PC, but LoCA does increase throughput and reduce latency
in high-contention scenarios with independent events.
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