
ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

European Journal of Operational Research xxx (xxxx) xxx

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Production, Manufacturing, Transportation and Logistics

Optimizing pre-processing and relocation moves in the Stochastic

Container Relocation Problem

Bernard G. Zweers a , b , ∗, Sandjai Bhulai b , a , Rob D. van der Mei a , b

a Centrum Wiskunde & Informatica, Stochastics, Science Park 123, 1098XG Amsterdam, the Netherlands
b Vrije Universiteit Amsterdam, Department of Mathematics, De Boelelaan 1105, 1081HV Amsterdam, the Netherlands

a r t i c l e i n f o

Article history:

Received 24 July 2019

Accepted 28 November 2019

Available online xxx

Keywords:

Logistics

Stochastic Container Relocation Problem

Container pre-marshalling

Branch-and-bound

Local search

a b s t r a c t

In container terminals, containers are often moved to other stacks in order to access containers that

need to leave the terminal earlier. We propose a new optimization model in which the containers can be

moved in two different phases: a pre-processing and a relocation phase. To solve this problem, we de-

velop an optimal branch-and-bound algorithm. Furthermore, we develop a local search heuristic because

the problem is NP-hard. Besides that, we give a rule-based method to estimate the number of relocation

moves in a bay. The local search heuristic produces solutions that are close to the optimal solution. Fi-

nally, for instances in which the benefits of moving containers in the two different phases are in balance,

the solution of the heuristic yields significant improvement compared to the existing methods in which

containers are only moved in one of the two phases.

© 2019 Elsevier B.V. All rights reserved.

1

a

c

e

c

d

t

u

f

p

b

b

t

i

d

e

m

r

b

c

P

t

o

t

w

k

i

m

T

s

p

p

b

p

a

r

t

c

a

e

c

c

o

h

0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository
. Introduction

Shipping containers are the main way of transporting goods

round the world. About 75% of the volume of the total trade is

arried by sea and about half of this trade is shipped in contain-

rs (Lee & Song, 2017). A key part of this global supply chain are

ontainer terminals, at which containers are transshipped between

ifferent modes of transportation. As a result, for each part of the

ransportation, the most efficient mode of transportation can be

sed. Deep-sea vessels are used to ship thousands of containers

rom one continent to another and they only visit a few deep-sea

orts. At these deep-sea ports, the containers are transshipped to

arges or trains for the inland transportation. The barges or trains

ring from tens to a few hundred containers to an inland container

erminal. Afterward, a truck is used to ship the container from the

nland container terminal to its final destination.

Although the terminals facilitate the shipment of containers on

ifferent modes, the handling of a container at a terminal imposes

xtra costs. To make things worse, containers are most of the times

oved multiple times inside the terminal. After a container ar-

ives at the terminal, it is temporarily stored in a container yard

ecause the different modes of transportation are often not syn-

hronized. In order to save space, the containers are stacked on
∗ Corresponding author at: Centrum Wiskunde & Informatica, Stochastics, Science

ark 123, 1098XG Amsterdam, the Netherlands.

E-mail address: b.g.zweers@cwi.nl (B.G. Zweers).

r

a

i

r

w

ttps://doi.org/10.1016/j.ejor.2019.11.067

377-2217/© 2019 Elsevier B.V. All rights reserved.

Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
op of each other, but the handling equipment of a terminal can

nly access the top container. Ideally, each container that needs

o leave the terminal is located at the top of its stack. However,

hen a container arrives at the container terminal it is often not

nown when exactly it needs to leave the terminal. Consequently,

t frequently occurs that when a container needs to leave the ter-

inal, other containers are stacked on top of that target container.

hese blocking containers will then need to be relocated to other

tacks. These moves are called relocation moves and since they im-

ose extra costs and delays, they need to be prevented as much as

ossible.

At an inland terminal, all outbound import containers need to

e delivered to their final destinations. This last part of the trans-

ortation is almost always done with a truck and in order to serve

s many trucks as possible on a day, a terminal is interested in

educing the turnaround time of a truck. One way to reduce the

ruck’s turnaround time is to perform fewer relocation moves be-

ause the relocation moves are performed when a truck is waiting

t the terminal. At an inland terminal, the crane to handle contain-

rs is more often idle than at a deep sea terminal because fewer

ontainers are transshipped via an inland terminal. If the crane

ould do some pre-processing when it is idle to reduce the number

f relocation moves, then the turnaround times of trucks could be

educed. Consequently, fewer trucks might be needed to transport

ll containers. An inland terminal in the port of Amsterdam is fac-

ng the problem which pre-processing move to perform in order to

educe the number of relocation moves. To answer that question,

e present in this paper a new optimization problem, which we
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://core.ac.uk/display/301635315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ejor.2019.11.067
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:b.g.zweers@cwi.nl
https://doi.org/10.1016/j.ejor.2019.11.067
https://doi.org/10.1016/j.ejor.2019.11.067

2 B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

t

h

(

a

v

e

c

t

d

l

o

l

a

J

p

b

b

w

g

c

c

t

c

l

t

h

p

r

G

o

m

t

t

t

o

t

i

s

r

t

a

i

s

B

s

r

(

l

(

d

b

t

t

m

m

o

h

t

2

l

s

p
call the Stochastic Container Relocation Problem with Pre-Processing

(SCRPPP).

The contribution of this work is fourfold. First, we introduce a

new optimization problem faced by a real inland container ter-

minal. Second, we develop a heuristic to solve this problem and

third, we present an optimal algorithm for this problem. Finally,

a method to estimate the number of relocation moves for a given

bay is presented.

The SCRPPP is closely related to other operational problems in

container terminals. Hence, we start by describing the relevant lit-

erature for these problems in Section 2 . Afterward, we will give a

detailed description of the SCRPPP in Section 3 . In Section 4 , we

prove that the SCRPPP is NP-hard and derive bounds for the op-

timal solution and the maximum number of containers in a bay.

In order to solve the SCRPPP, we present in Section 5 both a local

search heuristic and an optimal algorithm. The optimal and heuris-

tic solutions are compared with each other in Section 6 . Finally, in

Section 7 , we draw conclusions and present directions for further

research.

2. Literature review

At a container terminal, many different types of optimization

problems are faced. For a general overview of these problems we

refer to (Stahlbock & Voß, 2008) and (Steenken, Voß, & Stahlbock,

2004). The focus of this paper is one specific type of problem,

namely stacking policies for containers. These stacking policies can

be applied to a yard with only inbound or outbound containers

or a combination of the two. For overview articles of the differ-

ent types of stacking problems we refer to Carlo, Vis, and Rood-

bergen (2014) , Caserta, Schwarze, and Voß (2011a) , and Lehnfeld

and Knust (2014) . In this work, we will only focus on the stacking

of outbound containers. There are two main problems concerning

the stacking of outbound containers: (i) the Container Relocation

Problem (CRP), sometimes also called blocks relocation problem,

and (ii) the Container Pre-Marshalling Problem (CPMP). To be more

precise, we will study a generalization of the CRP, which is called

the Stochastic Container Relocation Problem (SCRP). Since our

problem can be seen as a combination of the SCRP and the CPMP,

we will discuss the relevant literature for the two problems below.

In the CRP, each container has a unique label that indicates the

order in which the containers are picked up by a truck. Contain-

ers that are on top of a container that is retrieved need to be

relocated to other stacks. The objective of the CRP is to use as

few of these relocation moves as possible. The CRP was introduced

by Kim and Hong (2006) and is proven to be NP-hard (Caserta,

Schwarze, & Voß, 2012). As a result of this hardness, the litera-

ture concerning the container relocation problem can be divided

into two different categories. The first branch of the literature

deals with finding optimal solutions for the CRP and the second

stream of research focuses on heuristics for the CRP. One way to

solve the CRP to optimality is to use integer programming. Caserta

et al. (2012) were the first to introduce such a formulation. How-

ever, that formulation needed hours to solve instances of twenty

to thirty possible locations of containers. In Zehender, Caserta,

Feillet, Schwarze, and Voß (2015) , the formulation of Caserta

et al. (2012) is improved, but it is still not able to solve realistic

instances.

Heuristics have been proposed for the CRP to solve larger

instances in reasonable time. In Caserta, Voß, and Sniedovich

(2011b) , a heuristic for the CRP that is based on dynamic program-

ming is presented. As the number of states that are examined is

restricted this heuristic runs fast, but a heuristic that gives bet-

ter solutions is a rule-based heuristic described in Caserta et al.

(2012) . Another heuristic in which a restricted number of states is

considered is presented in Wu and Ting (2012) . In this article,
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
he beam search procedure is applied. Also, a few meta-heuristics

ave been developed for the CRP. In Jovanovic, Tuba, and Voß

2019b) the CRP is solved using ant colony optimization. A genetic

lgorithm is used in Hussein and Petering (2012) to solve a CRP

ariant in which the energy consumption is minimized. The en-

rgy consumption depends on the weight of a container, so heavy

ontainers should not move too far. They use the genetic algorithm

o find the best parameter settings of a constructive heuristic.

In Ji, Guo, Zhu, and Yang (2015) , a variant of the CRP is intro-

uced that also incorporates loading plans of ships. In this prob-

em, a stowage plan of a ship is given and the loading sequence

f the containers has to be decided such that the number of re-

ocations in the container yard is minimized. Ji et al. (2015) use

 genetic algorithm to find good solutions for this problem. In

ovanovic, Tanaka, Nishi, and Voß (2019a) , a GRASP heuristic is pro-

osed for the same problem and this heuristic gives significantly

etter solutions than the method of Ji et al. (2015) .

The SCRP, which is a generalization of the CRP was introduced

y Zhao and Goodchild (2010) . In the SCRP, the exact order in

hich containers are retrieved is not known anymore. It is only

iven in which time interval a container is retrieved, but multiple

ontainers could have the same interval. The retrieval order of the

ontainers in the same time interval is a uniform random permu-

ation. Using a simple heuristic, Zhao and Goodchild (2010) con-

lude that the value of information is important for this prob-

em. In Ku and Arthanhari (2016) , a more advanced heuristic called

he Expected Reshuffling Index is introduced. The idea behind this

euristic is to calculate a score for every stack based on the ex-

ected number of reshuffles needed for that stack. A container is

elocated to the stack with the smallest number of reshuffles. In

alle, Manshadi, Borjian Boroujeni, Barnhart, and Jaillet (2018) , an-

ther heuristic is introduced, which is called the Expected Min-

ax (EM) heuristic. In the EM heuristic, containers are relocated

o stacks in which they are relocated as late as possible. Besides

he EM heuristic, in Galle et al. (2018) an optimal formulation for

he SCRP using decision trees is presented. For small instances, the

ptimal solution can be computed which is close to the solution of

he EM heuristic.

The CPMP was introduced by Lee and Hsu (2007) and its goal

s to reshuffle the containers before any container is retrieved, in

uch a way that all containers can be retrieved without any further

elocations. The objective is to use as few moves as possible to ob-

ain such a layout. In Lee and Hsu (2007) , the CPMP is modeled as

 multi-commodity flow network, which can be solved to optimal-

ty using an integer program. Nevertheless, they are only able to

olve small instances to optimality. In Expósito-Izquierdo, Melián-

atista, and Moreno-Vega (2012) , an A

∗ algorithm is proposed to

olve the CPMP to optimality, but this method can also only solve

elatively small instances. The method of Expósito-Izquierdo et al.

2012) is improved by Tierney, Pacino, and Voß (2017) using the

ower bounds for the CPMP introduced by Bortfeld and Forster

2012) . In Parreño-Torres, Alvarez-Valdes, and Ruiz (2019) , eight

ifferent integer linear formulations are presented, which give the

est current mathematical models for the CPMP. Nevertheless,

he branch-and-bound algorithm of Tanaka and Tierney (2018) is

he current state-of-the-art algorithm to solve the CPMP to opti-

ality. However, for larger instances, the running time is still often

ore than an hour.

The CPMP has never been proven to be NP-hard, but since none

f the optimal algorithms produces a fast solution also heuristics

ave been developed. One of the heuristics that is proposed is

he Lowest Priority First Heuristic (LPFH) (Expósito-Izquierdo et al.,

012). The idea behind the LPFH is to place the container with the

argest time frame, i.e., the lowest priority, first in a rightly ordered

tack. Afterward, the container with the second lowest priority is

laced in a well-ordered stack, and so on. In Jovanovic, Tuba, and
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx 3

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Fig. 1. The layout of an RMGC and a container yard (Tierney et al., 2017).

V

a

t

i

(

C

i

g

t

p

t

i

(

i

p

c

3

n

w

t

b

a

t

i

a

a

o

t

i

m

t

t

t

c

p

m

t

c

m

m

t

t

n

b

S

p

t

m

M

a

a

t

i

F

o

t

t

e

F

I

t

o

F

y

n

a

b

q

t

t

s

&

i

d

i

t

o

h

R

H

i

T

m

three.
oß (2017) , an improved version of the LPFH is given. In Bortfeld

nd Forster (2012) , a tree search procedure is introduced to solve

he CPMP.

To the best of our knowledge, there is only limited work deal-

ng with uncertainty in the CPMP, namely Rendl and Prandtstetter

2013) and Tierney and Voß (2016) . These works study the Robust

ontainer Pre-Marshalling Problem in which for each container an

nterval in which the containers could be retrieved is given. The

oal is to place containers such that the latest possible departure

ime of a container is always earlier than the earliest possible de-

arture time of a container underneath it. The difference between

he intervals in this problem and in the SCRPPP is that here the

nterval width is container-dependent. In Rendl and Prandtstetter

2013) , this problem is solved using constraint programming and

n Tierney and Voß (2016) an IDA

∗ heuristic is introduced that out-

erforms the earlier work of Rendl and Prandtstetter (2013) both in

omputation time and solution quality.

. Problem description

The SCRPPP is inspired by a problem faced by an inland termi-

al in the port of Amsterdam. At the end of the day, it is known

hich containers will leave the terminal the next day. The con-

ainers that are going to their final destination will be picked up

y a truck. For each container, it is known in which time period

 truck will arrive to pick it up. However, due to external factors

his time period is not very precise and multiple trucks may arrive

n the same time interval. As a consequence, multiple containers

re picked up in the same time interval and we do not know the

rrival order of the trucks in that period. Furthermore, at the end

f the day, it is usually also less busy at the terminal than during

he course of the day. As a result, the crane driver is sometimes

dle and could do already some moves that reduce the number of

oves of the next day. However, he or she might not always have

ime to do all pre-marshalling moves from the CPMP. On top of

hat, it might not be motivating to move many containers in order

o prevent only one relocation move.

In order to model the situation sketched above, in the SCRPPP

ontainers can be moved in two different phases: the pre-

rocessing phase and the relocation phase. The pre-processing

oves can only be executed before any of the containers is re-

rieved, whereas the relocation phase starts the moment the first

ontainer is retrieved. The relocation moves are equivalent to the

oves executed in the SCRP. Although the pre-processing moves

ight look similar to the pre-marshalling moves in the CPMP,

here is one major difference: the containers might still need
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
o be relocated after we finish the pre-processing phase. This

ovel degree of freedom could be used to reduce the total num-

er of moves, but it also increases the problem’s complexity.

ince one has to decide when to stop with the pre-processing

hase.

To describe the SCRPPP in more detail, we will first describe

he operational process at a container terminal. In container ter-

inals, containers are stored in a rectangular yard, see Fig. 1 (a).

ost often, the equipment to handle the containers in a yard is

 Rail Mounted Gantry Crane (RMGC). In Fig. 1 , an illustration of

 container yard and an RMGC is given. As shown in Fig. 1 (a),

he RMGC is positioned above a single row of containers which

s called a bay . Using the trolley that is attached to the crane, see

ig. 1 (b), all stacks of containers in that bay can be accessed. Obvi-

usly, only the top container of each stack can be retrieved by the

rolley. If the trolley has retrieved a container it can either move

o another stack to place the container there or it can move to the

nd of the RMGC to place the container on a truck. The yard in

ig. 1 corresponds to a yard that is positioned parallel to the quay.

n some terminals, the lay-out of the yard is slightly different and

he yard is positioned perpendicular to the quay. In the latter type

f terminals, a vehicle cannot be positioned next to every bay as in

ig. 1 (b), but it can only receive at the first and/or last bay of the

ard. That means that if a containers is retrieved, the entire crane

eeds to move to the end of yard. In the following explanation, we

ssume for simplicity a yard that is positioned parallel to the quay

ut our methods also apply to a yard that is perpendicular to the

uay.

In case a container needs to be relocated to another bay, the en-

ire RMGC needs to move. Compared with moving only the trolley

his is time-consuming. On top of that, some terminals forbid for

afety reasons a crane to move when it is carrying a container (Lee

 Hsu, 2007). Hence, in the SCRPPP it is assumed that no container

s relocated to a different bay. Consequently, the SCRPPP is a two-

imensional problem, similar to Fig. 1 (b). The height of the RMGC

mposes a maximum height to a stack of containers because the

rolley needs to be able to move with a container from one side

f the bay to the other. For instance, in Fig. 1 (b) the maximum

eight of a stack is three containers. On top of that, the width of

MGC also imposes a maximum on the number of stacks in a yard.

ence, the total number of containers that can be placed in a bay

s limited. We refer to the available positions of containers as slots .

he bay given in Fig. 1 (b) contains twelve slots because the maxi-

um number of stacks is four that all have a maximum height of
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

4 B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

i

t

i

o

i

t

B

t

d

o

m

f

o

m

r

u

t

t

t

t

o

l

L

2

c

t

o

d

c

b

t

a

i

i

o

w

i

w

p

i

m

f

r

d

b

A

c

f

t

i

i

s

m

p

c

b

m

b

B

t

c

t
In order to have a good balance between the current practice

at container terminals and computational tractability five assump-

tions are made for the SCRPPP:

1. All containers in a bay will leave the bay before any new

containers arrive.

2. A container may only be moved in the relocation phase if it

is blocking the container that needs to be retrieved.

3. For each container, the time interval in which it is picked

up is known, but the retrieval order inside an interval is a

random uniform permutation.

4. The cost of moving a container from one stack to the other

does not depend on the stack to which a container is moved.

5. It is physically possible to stack every container on every

other container.

Assumption 1 is based on the fact that many terminals have desig-

nated areas for inbound and outbound containers. Moreover, when

containers are unloaded from a ship, they are mostly all placed in

empty bays. Therefore, a bay with outbound containers will have

no new containers arriving before it is empty. The problem that

arises when this assumption is not made is called the dynamic con-

tainer relocation problem (Akyüz & Lee, 2014).

To the best of our knowledge, Assumption 2 is always imposed

on the SCRP. Besides the fact that this assumption significantly de-

creases the problem’s complexity, it also represents the current

practice at container terminals (Caserta et al., 2012). In the deter-

ministic CRP, Assumption 2 is sometimes not made and the result-

ing problem is called the unrestricted CRP. We refer to Tanaka and

Mizuno (2018) for a recent article about the unrestricted CRP.

Assumption 3 is inspired by the situation in which a terminal

has a truck appointment system (Ku & Arthanhari, 2016). In such

a system, trucks make an appointment to pick up containers in a

certain time interval or also called time frame. The terminal then

knows which containers will be picked up in which interval, but it

does not know which one of the trucks in one interval will be the

first to arrive and pick up a container. The moment at which the

retrieval order of an interval is revealed gives two different models.

In the first model, the order of the other containers in an interval

remains unknown if the first container of an interval is revealed.

This model is called the online model (see, e.g., Ku & Arthanhari,

2016 and Zhao & Goodchild, 2010). Whereas, in the batch model ,

at the beginning of each interval the exact order of all containers

in that single interval is revealed. The batch model is more suit-

able for larger terminals in which the waiting time of a truck is

often larger than the time length of the interval (Galle et al., 2018).

As our problem setting is more applicable to less busy ports, we

choose to use the online model.

A consequence of Assumptions 2 and 3 is that it is easy to

check whether a container will be moved in the relocation phase.

A container will only be moved in the relocation phase if a con-

tainer that is positioned below it is retrieved earlier. If all time

frames of containers below a container are larger than its own

time frame, it will not need to be relocated. Otherwise, the ex-

pected number of relocation moves of a container is always larger

than 0. We say that a container for which no relocation moves are

needed is well-placed or correctly placed .

Another consequence of Assumption 3 is that the number of re-

location moves that need to be executed to retrieve all containers

is stochastic. The variability of the number of relocation moves is

more than one might expect at first sight. For example, consider a

stack that consists out of two containers from the same time inter-

val. If the top container is the first to be retrieved and the bottom

container the last, no relocation moves are needed. Whereas if the

bottom container is the first to be retrieved, one relocation move is

needed for the top container. Hence, with probability 1
2 no reloca-

tion moves are needed and with probability 1 one relocation move
2

Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
s needed for the containers in that interval. On top of that, note

hat the fact that the retrieval order of containers in one specific

nterval is stochastic does not only influence the expected number

f relocation moves needed to retrieve the containers from that

nterval. The relocation moves that are performed in one time in-

erval influence the layout of the bay after that interval has ended.

ecause of Assumption 2, it is only allowed to move containers

hat are on top of the target container. Therefore, the retrieval or-

er of the containers inside an interval has a big influence on the

rder in which relocation moves are performed. Consequently, it

ight be that each retrieval order of an interval results in a dif-

erent layout after the interval is finished. As a result, the retrieval

rder of the first interval might influence the number of relocation

oves needed for the last interval and thus, the total number of

elocation moves can vary across a wide range of values.

Assumption 4 is based on the fact that the time needed to pick

p and release a container with a trolley is considerably larger

han the time needed to move the trolley. As a result, the stack

o which a container is relocated does not have a big influence on

he total relocation time of a container. There are a few articles in

he literature in which Assumption 4 is relaxed and in which the

bjective is to minimize a weighted average of the number of re-

ocation moves and the total working time of the crane (see, e.g.,

in, Lee, & Lee, 2015 and da Silva Firmino, de Abreu Silva, & Times,

019). In a recent study, Voß and Schwarze (2019) show that if the

rane’s working time is the objective that is minimized, then also

he number of relocation moves is close to the minimum number

f relocation moves. A consequence of Assumption 4 is that the or-

er of the stacks is not relevant and any permutation of the stacks

an be treated as if it were the same instance.

Another consequence of Assumption 4 is that only the num-

er of moves is relevant in a solution. In the SCRPPP there are

wo different types of moves: moves in the pre-processing phase

nd moves in the relocation phase. We are interested in minimiz-

ng a weighted average of these two types of moves. The moves

n the pre-processing phase are executed when the crane would

therwise be idle, whereas during the relocation moves a truck is

aiting. Therefore, the weight assigned to pre-processing moves

s lower than the weight for relocation moves. We normalize the

eight for relocation moves to 1 and set the weight for pre-

rocessing moves to 0 < α < 1. The value of α can be seen as an

ndication of how inclined someone is to perform pre-processing

oves. If, for instance, α is set to 1
4 , then one is willing to per-

orm at most four pre-processing moves in order to prevent one

elocation move.

Since containers have different sizes, Assumption 5 is not evi-

ent for general containers because a container of forty feet cannot

e stacked on top of a single container of twenty feet. However,

ssumption 5 is an assumption that is not restricting from a practi-

al perspective because most terminals locate containers with dif-

erent sizes in different bays. Moreover, in case there would be cer-

ain containers on which we cannot stack a container, the SCRPPP

s easier: when we need to determine to which stack a container

s moved, we could simply ignore the stacks in which we cannot

tack the container.

After the assumptions for the SCRPPP, we will now give the for-

al objective of the SCRPPP. Let us call the initial bay before the

re-processing phase B . We can denote the movement of the top

ontainer from stack o to stack d as the pair (o , d). If p is the num-

er of pre-processing moves executed, the set of all pre-processing

oves can be denoted by: P = { (o 1 , d 1) , (o 2 , d 2) , . . . , (o p , d p) } . The

ay that is obtained by the pre-processing moves P will be called

 (P). Assume that there are n different retrieval orders of the con-

ainers and let σ i be one of those orders. If in a bay B the relo-

ation moves are performed according to a certain policy π , then

he number of relocation moves for the retrieval order σ i is given
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx 5

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Fig. 2. Example of an instance for the SCRPPP with 5 stacks that have a maximum

height of 4.

b

c

n

p

o

o

fi

m

T

p

m

r

o

p

c

m

t

p

w

l

w

r

a

o

p

s

p

h

w

t

e

p

R

S

g

F

m

t

W

i

s

Table 1

Notation for the SCRPPP.

B Specific layout of a bay

S Set of all stacks in a bay

B (s 1 , s 2) Layout of bay B after the top container of

stack s 1 has moved to stack s 2
Z Largest time frame in a bay

H Maximum height of a stack

C Set of containers in a bay

C Number of containers in a bay

n (s) Number of containers in stack s

l (s) Smallest time frame of stack s

h (s) Largest time frame of stack s

s (c) Stack of container c

u (c) Smallest time frame of containers underneath c

t (c) Time frame of container c

q (c) Category of container c

p (c) Position of a container c in stack s (c)

1 is the lowest and H the highest position

UB Upper bound for the optimal solution

LB Lower bound for the optimal solution

f (B) Estimated of expected number of relocation moves in bay B

T

t

t

b

c

f

t

I

e

f

{

p

p

f

t

c

b

m

p

t

P

i

w

α

4

n

e

N

n

o

a

S

i

S

w

4

p

r
y R π (B , σ i). A policy π can be any rule that decides, given the

omplete bay and a target container to which container a stack

eeds to be relocated. The goal of the SCRPPP is to find the pre-

rocessing moves P and the policy π such that the weighted sum

f the number of pre-processing moves and the expected number

f relocation moves is minimized. In other words, the goal is to

nd the following minimum:

in

P,π
α| P | +

1

n

n ∑

i =1

R π (B (P) , σi) . (1)

he part α| P | in Eq. (1) is equivalent to the costs for the pre-

rocessing moves. Since R π (B , σ i) is the number of relocation

oves for one specific retrieval order σ i , the expected number of

elocation moves is calculated via 1
n

∑ n
i =1 R π (B (P) , σi) . At first sight

ne might think that it is beneficial to perform that many pre-

rocessing moves such that no relocation moves are needed be-

ause pre-processing moves have a lower weight than relocation

oves. However, relocation moves have two advantages compared

o pre-processing moves. The first advantage is that during the pre-

rocessing phase all original containers are still in the bay, while

hen a relocation move is executed some containers have already

eft the bay. The second advantage of a relocation move is that

hen the container needs to be relocated at least some part of the

etrieval order inside an interval is known. On the contrary, when

 pre-processing move is done, no information about the retrieval

rder inside an interval is known.

If α is close to 1, the two benefits of the relocation moves out-

erform the advantage of the pre-processing moves which have a

lightly smaller weight. Hence, no pre-processing moves will be

erformed and the problem is similar to the SCRP. On the other

and, if α is close to 0 as many pre-processing moves as needed

ill be performed in order to prevent any relocation move and

he problem is equivalent to the CPMP. However, for more mod-

rate values of α it is hard to find the right balance between pre-

rocessing moves and relocation moves.

unning example

Throughout this paper, an example will be used to illustrate the

CRPPP and its solution methods. This instance for the SCRPPP is

iven in Fig. 2 and the viewpoint in this figure is the same as in

ig. 1 (b). The bay in Fig. 1 consists out of five stacks that all have a

aximum height of four containers. The numbers inside each con-

ainer represent the interval in which the container is retrieved.

e will number the stacks from left to right, so the leftmost stack

s stack number 1 and the rightmost stack is stack number 5. As-

ume for the moment that no pre-processing moves are performed.
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
hen one of the three containers with time frame 1 is the first con-

ainer to be retrieved. If the top container of the middle stack is

he first container to be retrieved, no relocation moves are needed

ecause no other containers are on top of it. However, the bottom

ontainer of the second stack is blocked by the container with time

rame 5. So if this container is the first to be retrieved, the con-

ainer with time interval 5 has to be relocated to another stack.

f one would use the optimal policy for the relocation moves, the

xpected number of relocation moves for the bay in Fig. 2 is 6 1 3 .

Let us now consider a situation in which we perform

our pre-processing moves to the bay in Fig. 2 , namely P =
 (4 , 1) , (4 , 5) , (4 , 1) , (2 , 1) } . In Fig. 3 , the bays after all these four

re-processing moves are shown. The idea of the first three pre-

rocessing moves is to empty the fourth stack such that in the

ourth pre-processing move the container with time frame 5 from

he second stack can be placed in the fourth stack. Note that this

ontainer with time interval 5 was not placed correctly in stack 2,

ut that it is well-placed in the fourth stack. If we apply the opti-

al policy for the relocation moves to the bay in Fig. 3 (d), the ex-

ected number of relocation moves is 3. Hence, the objective func-

ion for the bay in Fig. 2 to which we apply pre-processing moves

 = { (4 , 1) , (4 , 5) , (4 , 1) , (2 , 1) } and the optimal relocation policy

s 4 α + 3 . As the objective function when no relocation moves

ere performed equals 6 1 3 , the moves P are beneficial as long as

≤ 3 1
3

4 =

5
6 .

. Bounds and complexity

In this section, we present bounds regarding the maximum

umber of containers in a bay and the optimal solution. How-

ver, first of all, we will show in Section 4.1 that the SCRPPP is

P-hard. In Section 4.2 , we will give a bound on the maximum

umber of containers that can be in a bay for a feasible solution

f the SCRPPP. Moreover, it is shown when it is possible to move

 container in the correct position in the pre-processing phase. In

ection 4.3 , an upper bound for the optimal solution of the SCRPPP

s given and a lower bound for the optimal solution is derived in

ection 4.4 . Throughout this paper, we will need some notation

hich is introduced in Table 1 .

.1. Complexity

In Caserta et al. (2012) , the CRP is proven to be NP-hard. In this

roof, the decision problem of Mutual Exclusion Scheduling (MES) is

educed to an instance of the decision version of the CRP. Solving
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

6 B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Fig. 3. Four pre-processing moves for the bay of Fig. 2 .

c

c

t

e

t

g

a

l

b

t

b

i

t

a

a

L

i

p

w

p

t

i

m
that instance is shown to be equivalent to a yes-instance of the

MES by Caserta et al. (2012) . That specific instance is also an in-

stance for the SCRPPP and it is trivial to show that it can be solved

in n pre-processing moves and no relocation moves if and only if

it corresponds to a yes-instance of the MES. Hence, deciding if the

objective function of the SCRPPP equals αn is equivalent to finding

a yes-instances of the MES. Therefore, the SCRPPP is also NP-hard.

4.2. Feasibility

If all stacks in a bay contain the maximum number of contain-

ers, it is likely that the SCRPPP does not have a feasible solution.

Since no pre-processing moves are possible and if relocation moves

are needed to retrieve the first container, then there are no empty

slots for the containers that need to be relocated. In Lemma 1 , we

give a bound on the maximum number of containers that can be

in a bay in order for the SCRPPP to have a feasible solution.

Lemma 1. If the number of containers C is bounded by C ≤ SH −
(H − 1) , then there exists a feasible solution for the SCRPPP.

The proof of Lemma 1 follows directly from the condition in

Caserta et al. (2012) that the number of containers in a bay does

not exceed SH − (H − 1) is sufficient for feasibility of the CRP.

The stochasticity of the SCRP does not influence this bound and

since not performing any pre-processing moves is feasible for the

SCRPPP, this bound also applies for the SCRPPP.
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
The bound given in Lemma 1 only considers the moves exe-

uted in the relocation phase. However, if there are SH − (H − 1)

ontainers in a bay, it might not be possible to move a container in

he pre-processing phase such that it becomes well-placed. As an

xample, consider a bay in which all stacks but one have reached

heir maximum height and the other stack contains only a sin-

le container. In this bay, exactly SH − (H − 1) containers are situ-

ted. If one of the completely filled stacks has a container with the

argest time frame Z as its top container, an empty stack is needed

efore this container can be well-placed. The reason for that is that

his container with time frame Z can only be well-placed at the

ottom of a stack. Since there are only H − 1 free slots in the bay,

t is impossible to get an empty stack and correctly place the con-

ainer with time frame Z . However, if we have H available slots in

 bay, it is possible to place any container to the bottom of a stack

s is shown in Lemma 2 .

emma 2. If there are H empty slots in a bay B with S > 2 stacks, it

s possible to move every container to the bottom of each stack in the

re-processing phase.

This lemma holds because if there are H free slots, it is al-

ays possible to arrange the containers in such a way in the pre-

rocessing phase that one stack is entirely empty. Moreover, if

here are more than two stacks, we can make sure that container c

s the top container of a stack. Since we have shown above that it

ight not be possible to move a container to the bottom of a stack
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx 7

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

i

i

t

l

C

c

p

P

p

i

t

c

I

s

a

t

s

m

c

s

i

L

s

o

{
P

p

A

o

p

s

H

n

a

i

a

a

p

a

b

t

t

i

i

g

w

a

b

o

d

a

t

t

u

o

H

s

s

o

t

t

t

a

i

t

I

i

c

s

b

h

T

1

t

i

F

t

m

t

w

b

t

p

C

p

C

2

t

w

4

b

r

a

p

r

t

p

w

t

i

w

s

o

i

a

f

o

c

b

i

m

L

o

f there are H − 1 free slots in a bay, we know that the bound given

n Lemma 2 has to be tight. A consequence of Lemma 2 is that if

he number of containers in a bay with more than two stacks is

imited by (S − 1) H, then each container can become well-placed.

orollary 1. If a bay B with S > 2 stacks has at most C ≤ (S − 1) H

ontainers, every container could be moved in the pre-processing

hase such that it becomes well-placed.

roof. By Lemma 2 we know that there is always an option to

lace a container at the bottom of a stack if there are H free slots

n a bay with more than two stacks. Since a container at the bot-

om of a stack is always well-placed, we know that each container

an become well-placed if the number of free slots is at least H .

f the number of containers in a bay is bounded from above by

(S − 1) H, the number of free slots should be at least H . �

In Lemma 2 , we have shown that there always exists a feasible

olution to move a container from one stack s to the bottom of

nother stack s ′ if there are H free slots in the bay. However, under

hat condition, one might need to move containers from a third

tack s ′′ . In the heuristic we give in Section 5.1 , we would like to

ove a container in the pre-processing phase from a stack s to a

orrect position in stack s ′ without moving containers from other

tacks. In Lemma 3 and Corollary 2 , we prove that that is possible

f there are 2(H − 1) free slots.

emma 3. If a bay B has 2(H − 1) empty slots, each container in

tack s ∈ S can be moved in the pre-processing phase to the bottom

f stack s ′ ∈ S without moving containers from the stacks S \ ({ s } ∪
 s ′ }) .
roof. Let container c be the container that is moved in the pre-

rocessing phase such that it is placed at the bottom of stack s ′ .
s a result of Assumption 4, we can reshuffle the stacks in any

rder without adjusting the problem. Thus, if container c is already

laced at the bottom of a stack, then we can shuffle the stacks

uch that container c is placed at the bottom of any other stack.

ence, without loss of generality, we assume that container c is

ot yet placed at the bottom of a stack.

We distinguish two cases: (i) the situation in which the origin

nd destination stacks s and s ′ are different, and (ii) the situation

n which they are the same. In the first case, we need to have

vailable slots for all containers in the destination stack s ′ which

re at most H containers. Moreover, at most H − 2 containers are

laced on top of container c . Hence, at most H − 2 slots should be

vailable for containers from the stack s . Therefore, the total num-

er of free slots needed to move container c from the origin stack

o the destination stack is H + H − 2 = 2(H − 1) .

In the second scenario, in which the origin and the destina-

ion stack are the same, the reasoning is slightly different. It is

mportant to realize that we need to store container c temporar-

ly in another stack and that no other containers from the ori-

in stack might be placed on top of container c because other-

ise it cannot be placed again in the origin stack. Hence, we need

t least two stacks with available slots. Since container c should

lock the smallest number of empty slots as possible it is placed

n the stack that already consists of the most containers. Let us

enote the stack in which container c is temporarily stored by s ′′
nd let p (c) be the position of container c in stack s ′′ . After con-

ainer c is placed in stack s ′′ we cannot use stack s ′′ anymore for

he other containers. The number of available slots that cannot be

sed in stack s ′′ equals H − p(c) . Hence, according to the condition

f this lemma, there should be at least 2(H − 1) − (H − p(c)) =
 + p(c) − 2 slots available for the other containers in the origin

tack. Since p (c) is by definition at least 1, there are at least H − 1

lots available for other containers and they can thus be placed in
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
ther stacks than stack s ′′ . Afterward, container c can be placed at

he bottom of the origin stack. �

Note that in Lemma 3 we do not impose the condition that

here are more than two stacks because this lemma also hold if

he number of stacks is one or two. If there is only one stack,

ll 2(H − 1) free slots should be in that single stack. The inequal-

ty 2(H − 1) ≤ H only holds for the trivial bay in which H = 1 and

here is only one container, or H = 2 and there are no containers.

n case there are two stacks, there can be at most two containers

n the bay if the number of free slots is at least 2(H − 1) . With two

ontainers, both containers can be placed at the bottom of a stack,

o the lemma also holds.

The bound given in Lemma 3 is tight. To see that, consider a

ay with three stacks, in which one has a height H , the second

as a height 2 and the third stack contains only a single container.

he number of free slots in this bay equals H − 2 + H − 1 = 2(H −
) + 1 . In order to place the top container of the second stack in

he third stack, the third stack needs to be empty. However, there

s no place for the container of the third stack in the first stack.

urthermore, it is also not possible to move the top container of

he second stack at the bottom of the second stack. We could

ove the top container of the second stack to the third stack, but

hen the bottom container of the second stacks has no stack in

hich it can be placed.

The minimum number of available slots given by Lemma 3 can

e used to get a bound on the maximum number of containers

hat can be in a bay such that every container can become well-

laced in a stack without moving containers from a third stack. In

orollary 2 , we derive a bound on this number of containers. The

roof of this corollary is similar to the proof of Corollary 1 .

orollary 2. If the number of containers C is bounded by C ≤ SH −
(H − 1) , then every container could be moved from stack s ∈ S in

he pre-processing phase to stack s ′ ∈ S such that it is well-placed

ithout moving containers from stacks S \ ({ s } ∪ { s ′ }) .

.3. Upper bound

It is not hard to find an upper bound for the optimal solution

ecause any feasible set of pre-processing moves P and policy for

elocation moves π is a feasible solution for the SCRPPP and thus

n upper bound for the optimal solution. In case P = ∅ , no pre-

rocessing moves are performed and all moves will be done in the

elocation phase. Hence, under this strategy the SCRPPP will get

he same solution as the SCRP.

Another strategy could be to continue with the pre-processing

hase as long as there are containers that are not correctly placed,

hich is equivalent to the CPMP. In the latter situation, one needs

o make the assumption that the number of containers in a time

nterval is always less than the number of stacks. Otherwise, there

ill always be two containers with the same time interval being

tacked on top of each other, which results in an expected number

f relocation moves of at least 1
2 .

For large values of α, not performing any pre-processing moves

s a rather good strategy, while for values of α close to 0 using the

lgorithms for the CPMP results in good solutions. An upper bound

or the optimal solution of the SCRPPP is the minimum value of the

bjective function under these two strategies. This upper bound

an be used as a benchmark to evaluate the benefits of the com-

ination of a pre-processing and a relocation phase. Furthermore,

t can also be used to get the maximum number of pre-processing

oves in the optimal solution as we will see in Lemma 4 .

emma 4. The maximum number of pre-processing moves p in the

ptimal solution is bounded by p ≤
⌊

UB
α

⌋
.
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

8 B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Fig. 4. Example of a bay layout to illustrate the lower bound.

c

m

T

c

p

m

p

i

c

m

n

e

α

o

s

t

s

f

i

c

t

b

s

f

w

t

d

t

i

t

m

r

S

F

w

A

L

g

P

A

s
This lemma follows directly from the fact that performing p

pre-processing moves yields an objective function of at least p α.

We will need this maximum number of pre-processing moves for

the branch and bound algorithm described in Section 5.3 below.

4.4. Lower bound

Besides a good upper bound, also a tight lower bound is needed

for the branch-and-bound algorithm that will be discussed in

Section 5.3 . Finding a good lower bound for the SCRPPP is more

complicated than the upper bound of the previous section. There

are multiple lower bounds known for the (S)CRP, (see, e.g., Galle

et al., 2018 and Scholl, Boywitz, & Boysen, 2018). One lower bound

for the CRP is to count how many containers have a container with

a lower time frame underneath them. These containers need to be

relocated at least once and all other container will never be relo-

cated. Hence, a lower bound for the CRP for bay B is:

LB CRP (B) =

∑

c∈C
1 t(c) <u (c) .

The lower bound for the SCRP from (Galle et al., 2018) is simi-

lar but also takes into account the fact that two containers in a

stack might have the same time frame. In this lower bound, the

probability that a container is blocking another container is calcu-

lated. If for a container c holds that t (c) < u (c), then it will never

be relocated and if t (c) > u (c) the probability of a relocation move

is 1. If t(c) = u (c) , it is slightly more complex to calculate the de-

sired probability. To derive that probability, let us define m (c) as

follows:

m (c) : = |{ c ′ ∈ C : s (c) = s (c ′) ∧ p(c) > p(c ′) ∧ u (c) = t(c)

= t(c ′) }| . (2)

The number m (c) represents the number of containers that are lo-

cated underneath container c and that have the same time frame.

The only possibility that container c does not have to be relocated,

is when it is retrieved before any of the m (c) containers. This sce-

nario occurs with probability 1
m (c)+1

. Hence, the probability that

container c does need to be relocated is 1 − 1
m (c)+1

=

m (c)
m (c)+1

. Com-

bining this expression with the lower bound for the CRP the lower

bound for the SCRP of Galle et al. (2018) , LB SCRP (B), is formally

given by:

LB SCRP (B) =

∑

c∈C
1 t(c) <u (c) +

m (c)

m (c) + 1

. (3)

From this lower bound for the SCRP, we can derive a trivial lower

bound for the SCRPPP. The container c needs to be moved at least

1 t(c) <u (c) +

m (c)
m (c)+1

times. Ideally, this move is done in the pre-

processing phase at a cost of α, thus a lower bound for the SCRPPP

is αLB SCRP (B).

The bay in Fig. 4 will be used to illustrate the lower bound for

the SCRPPP. In this bay, all but two containers have only containers

with a larger time frame underneath them. The two containers

that have a positive number of relocation moves are the containers

with time frame 3 in the first stack and the container with time

frame 2 in stack 1 that is located on top of the other container

with time frame 2. The probability that the container with time

frame 3 is relocated is 1 and the probability that the container

with time frame 2 is relocated is 1
2 . Therefore, the lower bound

of Eq. (3) for this bay is 1 1 2 , so the trivial lower bound for the

SCRPPP would be 1 1 2 α.

One extra insight helps us to get a tighter lower bound than

αLB SCRP (B): it is only possible to move a container in the pre-

processing phase if all the containers on top of it are also moved

in the pre-processing phase. If only a single container c is consid-

ered, the lower bound for the number of moves for that container
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
 is given by:

in

{
1 t(c) <u (c) +

m (c)

m (c) + 1

, α(n (s (c)) − p(c) + 1)

}
. (4)

he first part of the minimum is the expected number of relo-

ation moves if the container is not moved in the pre-processing

hase and is the same as in Eq. (3) . The second part of the mini-

um is the cost associated with moving the container in the pre-

rocessing phase. The height of the stack in which container c

s positioned is given by n (s (c)). As p (c) indicates the position of

ontainer c in stack s (c), in total n (s (c)) − p(c) + 1 containers are

oved if container c is moved in the pre-processing phase. It is

ot possible to sum the expression in Eq. (4) over all contain-

rs because if there are multiple containers in a stack for which

(n (s (c)) − p(c) + 1) ≤ 1 t(c) <u (c) +

m (c)
m (c)+1

the pre-processing move

f the top container of a stack is counted twice. Nevertheless, if a

tack is considered from the top to the bottom, Eq. (4) can be used

o obtain a lower bound for an entire bay. In Algorithm 1 , it is

hown in detail how this lower bound is constructed.

Algorithm 1 consists of two main for-loops. In the first for-loop,

or each container the probability that it is relocated is calculated

n the same way as in Eq. (3) . In the second for-loop, for every

ontainer the current lower bound for that container and all of

he containers on top of it is calculated. If the sum of these lower

ounds is larger than α times the number of containers under con-

ideration, pre-processing all these containers is beneficial. Hence,

or each of these containers the lower bound is set to α. Other-

ise, it is not beneficial to perform any pre-processing moves and

he lower bound remains the same.

As an example, consider again the bay as given in Fig. 4 . In or-

er to move any container from the first stack, the container with

ime frame 1 on top of that stack also needs to be relocated. Thus,

f we would like to relocate the container with time frame 3 from

hat stack in the pre-processing phase, at least two pre-processing

oves are needed. Since these two pre-processing moves are only

esulting in one relocation moves less, it is only beneficial if α ≤ 1
2 .

o the lower bound produced by Algorithm 1 for the bay from

ig. 4 is 3 α if α ≤ 1
2 and 1 1 2 if α ≥ 1

2 . We will close this section

ith Lemma 5 that shows that the lower bound that is given by

lgorithm 1 is tight.

emma 5. The lower bound for the optimal solution of the SCRPPP

iven by Algorithm 1 is tight.

roof. The example in Fig. 4 can be used to prove this lemma.

s stated previously, the lower bound for 0 < α ≤ 1
2 for this in-

tance is 3 α and for 1 ≤ α < 1 it is 1 1 . It can be easily verified
2 2

Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx 9

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Algorithm 1: Lower bound for the SCRPPP.

Input: Bay B and 0 < α < 1 .

for c ∈ C do

if t(c) > u (c) then

lb(c) = 1 .

else

if t(c) = u (c) then

lb(c) =

m (c)
m (c)+1

.

else
lb(c) = 0 .

end

end

end

for s ∈ S do

for t = 0 : n (s) − 1 do

g 1 (t) :=

∑

c: s (c)= s ∧ p(c) ≥n (s) −t lb(c) .

g 2 (t) := (n (s) − t + 1) α.

if g 2 (t) < g 1 (t) then

for c ∈ C : s (c) = s ∧ p(c) ≥ n (s) − t do

lb(c) = α.

end

end

end

end

Output: LB =

∑

c∈C lb(c) .

t

F

m

o

m

m

t

e

t

b

5

t

S

i

m

t

o

f

o

t

g

a

u

t

5

t

i

h

w

w

h

5

e

t

t

g

w

e

t

o

v

p

p

t

m

t

t

s

t

n

v

n

w

a

r

t

t

l

t

5

c

F

i

Algorithm 2: Local search heuristic for pre-processing phase

of the SCRPPP.

Input: Bay B and 0 < α < 1 .

Initialize pre-processing moves P = ∅ .
for p = Z, Z − 1 , . . . , 1 do

A p = { c ∈ C : t(c) = p}
for i = 1 , . . . , | A p | do

Select randomly a container c with time frame p that

is not placed correctly,

Use Algorithm 5 to get f (B) .

for s ∈ S do

Move container c to stack s according to Algorithms

3 and 4.

Let m (s) be the number of performed

pre-processing moves and B s the resulting bay.

Use Algorithm 5 to estimate f (B s) .

I(s) = f (B) − (αm (s) + f (B s)) .
end

if max s ∈S { I(s) } > 0 then

Place container c in stack s ′ = arg max s ∈S { I(s) } .
Add the respectively pre-processing moves to P The

resulting bay is the new bay B .

end

A p = A p \ { c} .
end

end

Output: Set of pre-processing moves P .
hat the expected number of relocation moves for the bay in

ig. 4 is 1 1 2 , thus if one decides to perform no pre-processing

oves, then the objective function for the SCRPPP is also 1 1 2 . An-

ther solution could be to perform the following pre-processing

oves: P = { (1 , 2) , (1 , 3) , (1 , 3) } . After these three pre-processing

oves, no relocation moves are needed and the value of the objec-

ive function of the SCRPPP is 3 α. Hence, if we apply the first strat-

gy for 1
2 ≤ α < 1 and the second strategy for values of 0 < α <

1
2 ,

he objective function for the SCRPPP is the same as the lower

ound. �

. Solution methods

In this section, we present both a heuristic method and an op-

imal branch-and-bound algorithm for the SCRPPP. As shown in

ection 4.1 , the SCRPPP is NP-hard, thus we expect that for larger

nstances the branch-and-bound algorithm cannot produce an opti-

al solution in reasonable time. Therefore, the local search heuris-

ic is needed to produce solutions for large-sized instances. More-

ver, the branch-and-bound algorithm needs a good upper bound

or the optimal solution in order to run efficiently and the solution

f the heuristic is a good upper bound for the optimal solution.

In Section 5.1 , we will describe a local search heuristic to solve

he SCRPPP. This heuristic needs, as a subroutine, a fast method to

et an estimate for the expected number of relocation moves for

 given bay. In Section 5.2 , we will describe the method that is

sed to get such an estimation. Finally, an optimal algorithm for

he SCRPPP is given in Section 5.3 .

.1. Local search heuristic

In this section, we will describe a local search method to solve

he SCRPPP. Our main focus is on the pre-processing phase because

n Galle et al. (2018) it is shown that the Expected Minmax (EM)

euristic produces fast and good solutions for the SCRP. Therefore,

e will use that heuristic for the relocation phase. In Section 5.1.1 ,

e first give a general overview of the local search heuristic. The

euristic is described in more detail in Section 5.1.2 .
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
.1.1. General overview

The general idea of the local search heuristic is to check for ev-

ry container that is not correctly placed if there is a stack to move

hat container to such that the container is correctly placed and

he objective function improves. We call this container the investi-

ated container . Similar to the LPF heuristic for the CPMP, we start

ith investigating the movement of the containers with the high-

st time frame. These containers are the most difficult containers

o place correctly because they can only be placed at the bottom

f a stack. Let us call the stack to which we try to move the in-

estigated container, the destination stack . We try every stack as

ossible destination stack and if there is a stack that yields an im-

rovement, then the investigated container is moved to the stack

hat gives the largest improvement. If for none of the stacks the

ovement of the investigated containers gives an improvement in

he objective function, then the next container is considered.

For the investigated container to be placed correctly in the des-

ination stack, two types of containers need to be moved to other

tacks. First of all, the investigated container might not be at the

op of a stack, so the containers above the investigated container

eed to be moved to other stacks. Furthermore, to place the in-

estigated container correctly in the destination stack, it might be

eeded to remove containers from that destination stack. Ideally,

e would like to place both types of containers in a stack in which

ll containers are correctly placed and in which itself is also cor-

ectly placed. In that case, it is likely that we do not need to move

he container a second time. If such a stack does not exist, the con-

ainer is placed in a stack in which the minimum time frame is as

ow as possible. That decision is based on the fact that in this stack

he fewest containers can be correctly placed.

.1.2. Detailed description

In this section, we give a more detailed description of the lo-

al search heuristic. The structure of the local search is given in

ig. 5 . Algorithm 2 is the main algorithm and in this algorithm,

t is decided which container is the investigated container and to
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

10 B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Select largest
unexplored time frame

Pre-processing phase
Algorithm 2

Algorithm 5

Different stack

Algorithm 3

Same stack

Algorithm 4

Algorithm 5 Perform best
improvement move

While unexplored containers

Bay
0 1

Relocation phase
EM heuristic

Fig. 5. Structure of the local search heuristic for the SCRPPP.

Algorithm 3: Pre-processing moves to move container c to a

correct position in stack s � = s (c).

Input: Bay B with S stacks, container c, stack s , 0 < α < 1 ,

1 ≤ λ1 ≤ S and 1 ≤ λ2 ≤ S.

P = ∅ .
O c = { c ′ ∈ C : s (c ′) = s (c) ∧ p(c ′) > p(c) } .
M c = { c ′ ∈ C : s (c ′) = s ∧ u (c ′) < t(c) } .
while O c ∪ M c � = ∅ do

Let o and m be the top container of, respectively, the sets

O c and M c .

if t(m) ≥ t(o) then

c ′ = m .

M c = M c \ { c ′ } .
p 1 = s .

else
c ′ = o.

O c = O c \ { c ′ } .
p 1 = s (c) .

end

if There exists a stack s ′ ∈ S \ ({ s (c) } ∪ { s }) for which

n (s ′) < H and l(s ′) > t(c) and f (B, s ′) ≤ α then

For all stacks s ′ ∈ S \ ({ s } ∪ { s (c) } with n (s ′) < H and

f (B, s ′) ≤ α, select randomly a stack s ′′ out of the at

most λ1 stacks with the smallest values for l(s ′) > t .

else
For all stacks s ′ ∈ S \ ({ s } ∪ { s (c) }) with n (s ′) < H,

select randomly a stack s ′′ out of the at most λ2 stacks

with the smallest values for l(s ′) .
end

Relocate container c ′ to stack s ′′ .
P = P ∪ { (p 1 , s

′′) } .
end

P = P ∪ { (s (c) , s) } .
Output: Pre-processing moves P and bay B .
which stack it should be moved. In Algorithms 3 and 4 , it is de-

cided how all containers should be moved such that the investi-

gated container can be placed in the destination stack. The differ-

ence between Algorithms 3 and 4 is that Algorithm 3 is used if the

destination stack is different from the stack in which the investi-

gated container is located and Algorithm 4 if these two stacks are

the same.

In Algorithm 2 , the containers are considered in decreasing

order of their time frame. If there are multiple containers with

the same time frame, a random container is selected. We use

Algorithm 5 to get an estimate for the number of relocation

moves in a bay (f (B)). We use Algorithm 3 and 4 to move the con-

tainer to another stack. After that, Algorithm 5 is run again to get

an estimate for the number of relocation moves in the new bay

and with that the improvement in the objective function (I (s)) can

be calculated. If the number of containers in a bay is fewer than

or equal to SH − 2(H − 1) , we know by Corollary 2 that every con-

tainer can be placed in every stack using Algorithms 3 and 4 . In

case there are more than SH − 2(H − 1) containers in the bay, it

might be infeasible to place a container in a certain stack. If a

move is infeasible, the improvement is set to −∞ . If there is a

stack that gives a strictly positive improvement, the container is

moved to the stack that gives the best improvement.

The way that a container is moved to a given stack is de-

scribed in Algorithms 3 and 4 . Algorithm 3 is used to move a con-

tainer to a different stack than that it is currently located, whereas

Algorithm 4 is used when the container needs to be positioned

in a correct position in its current stack. In Algorithm 3 , we need

to move three different types of containers. The first type is con-

tainer c itself that needs to move to its destination stack. However,

it is only possible to access container c if we have moved the set

of containers that are stacked on top of container c . We denote

this second set by O c . Finally, container c needs to be positioned

in stack s such that it does not need to be relocated. All containers

that need to be removed such that container c can be placed cor-

rectly in stack s are in the set M c . Before container c can be moved,

the containers in O c and M c need to be moved to a different
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei, Optimizing pre-processing and relocation moves in the Stochastic

Container Relocation Problem, European Journal of Operational Research, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx 11

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Algorithm 4: Pre-processing moves to move container c to a

correct position in stack s = s (c) .

Input: Bay B with S stacks, container c, stack s , 0 < α < 1 ,

1 ≤ λ1 ≤ S and 1 ≤ λ2 ≤ S.

P = ∅ .
S 1 = { c ′ ∈ C : s (c ′) = s ∧ p(c ′) > p(c) }
S 2 = { c ′ ∈ C : s (c ′) = s ∧ p(c ′) < p(c) ∧ u (c) < t(c) }
while S 1 � = ∅ do

Let c ′ be the top container of stack s . if There exists a stack

s ′ ∈ S \ { s (c) } for which n (s ′) < H and l(s ′) > t(c ′) and

f (s ′) ≤ α then

For all stacks s ′ ∈ S \ { s } with n (s ′) < H and

f (B, s ′) ≤ α, select randomly a stack s ′′ out of the the

at most λ1 stacks with the smallest values for

l(s ′) > t(c ′) .
else

For all stacks s ′ ∈ S \ s with n (s ′) < H, select randomly

a stack s ′′ out of the the at most λ2 stacks with the

smallest values for l(s ′) .
end

Relocate container c ′ to stack s ′′ .
S 1 = S 1 \ { c ′ } .
P = P ∪ { (s, s ′′) } .

end

Move container c to the highest stack s ′′′ with n (s ′′′) < H and

update s (c)

P = P ∪ { (s, s ′′′) } .
while S 2 � = ∅ do

Let c ′ be the top container of stack s .

if There exists a stack s ′ ∈ S \ ({ s (c) } ∪ { s }) for which

l(s ′) > t(c ′) and n (s ′) < H and f (s ′) ≤ α then

For all stacks s ′ ∈ S \ ({ s } ∪ { s (c) }) with n (s ′) < H and

f (B, s ′) ≤ α, select randomly a stack s ′′ out of the at

most λ1 stacks with the smallest values for

l(s ′) > t(c ′) .
else

For all stacks s ′ ∈ S \ ({ s } ∪ { s (c) }) with n (s ′) < H,

select randomly a stack s ′′ out of the at most λ2 stacks

with the smallest values for l(s ′) .
end

Relocate container c ′ to stack s ′′ .
S 2 = S 2 \ { c ′ } .
P = P ∪ { (s, s ′′) } .

end

Move container c to stack s .

P = P ∪ { (s (c) , s) } .

s

c

l

c

c

r

c

c

S

t

b

c

t

e

o

f

Algorithm 5: Algorithm to estimate the expected number of

relocation moves for a bay B ..

Input: Bay B

for All containers c in C do

if u (c) > t(c) then

q (c) = 1 .

else

if u (c) = t(c) then

q (c) = 2 .

else

if u (c) > min s ∈S { h (s) } or t(c) < max s ∈S { l(s) } then

q (c) = 3 .

else
q (c) = 4 .

end

end

end

end

Output:
∑

c∈C 1 . 4 ∗ 1 q (c)=4 + 1 q (c)=3 + 0 . 5 ∗ 1 q (c)=2 .

Algorithm 6: Branch-and-bound algorithm to solve the

SCRPPP to optimality.

Input: Bay B and 0 < α < 1

UB := the solution of the pre-processing moves of Algorithm

2 with λ1 = λ2 = 1 and relocation moves of the PBFS

algorithm.

LB := the lower bound from Algorithm 1.

d :=

⌊
UB
α

⌋
OP T := UB

Q := (B, d, LB)

I := ∅
while LB < OP T and Q � = ∅ do

Find the triplet (B ′ , d ′ , LB ′) ∈ Q with the smallest LB ′ . If
there are multiple bays, choose the bay with the smallest

value of d ′ . In case there are still multiple bays left,

choose the bay that was the earliest added to Q .

Compute the optimal expected number of relocation

moves R for bay B ′ using the PBFS algorithm.

Q = Q \ { (B ′ , d ′ , LB ′) } and I = I ∪ { (B ′ , d ′ , LB ′) }
Set VAL = R + α(d − d ′) .
if VAL < OP T then

OP T = VAL

end

if d ′ > 0 then

for s 1 , s 2 ∈ S and s 1 � = s 2 , n (s 1) > 0 and n (s 2) < H do

Compute the lower bound LB ′′ for bay

B ′′ = B ′ (s 1 , s 2) using Algorithm 1.

if LB ′′ + (d − (d ′ − 1)) ∗ α < OP T and

{ (B, d, LB) ∈ Q ∪ I : B = B ′′ ∧ d ≥ d ′ − 1 } = ∅ . then

Q = Q ∪ { (B ′′ , d ′ − 1 , B ′′) }
end

end

end

end

Output: OP T

s

a

s

s

p

t

tack. From the containers in the sets O c and M c only the top

ontainer can be relocated. In Algorithm 3 , the container with the

argest time frame of these two top containers is moved first. The

ontainer with the largest time frame is selected because if that

ontainer can be correctly placed, the other container can be cor-

ectly placed on top of it.

When a container is moved to a different stack, the algorithm

hecks first if there exists a stack that satisfies the following three

onditions: the first condition is that the stack has an empty slot.

econdly, the stack should only contain containers with a higher

ime interval than the container we are going to place in that stack

ecause then the container does not need to be relocated. The final

ondition is that no pre-processing moves are performed for con-

ainers in that stack. This is equivalent to checking whether the

xpected number of relocation moves for that stack is fewer than

r equal to α. A stack that satisfies these three conditions is re-

erred to as a correct stack . If there are multiple correct stacks, the
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
tacks for which the smallest time frame is as small as possible

re preferred. Since these stacks are for fewer containers correct

tacks. If there are fewer than λ1 correct stacks, a random correct

tack is selected. In case there are at least λ1 correct stacks, we

ick randomly one of the λ1 stacks with the smallest minimum

ime frame.
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

12 B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

(a) Situation after the container
with time frame 5 from the
fourth stack of Figure 2 is placed
in the fourth stack according to
Algorithm 3.

(b) Situation after the container
with time frame 5 from the
fourth stack of Figure 2 is placed
in the fourth stack according to
Algorithm 4.

Fig. 6. Two different outcomes after moving the container with time frame 5 in the fourth stack of the bay of Fig. 2 in the pre-processing phase if α ≥ 1
2

.

t

m

w

t

c

o

f

t

f

M

o

p

t

o

t

t

r

s

c

i

s

t

s

c

w

s

c

i

o

f

c

I

s

f

p

b
If there are no correct stacks for a container, we would like to

place the container in a stack with the minimum smallest time

frame. This approach is similar to the LPF heuristic and its rationale

is that a stack that has a container with a low time frame is less

likely to be a correct stack for other containers. Hence, it is better

to fill this stack with a container that has to be moved again than

a stack that has for more containers the potential to be a correct

stack. We select randomly one of the at most λ2 stacks with the

smallest minimum time frames.

Algorithm 4 is similar to Algorithm 3 when it comes to deciding

the destination stack of a container. However, the sets of contain-

ers that need to be moved are different. Besides container c , there

are again two different sets: S 1 and S 2 . Set S 1 contains all contain-

ers that are placed on top of container c and set S 2 consists of all

containers that are placed below container c and need to be moved

to another stack in order to place container c in a correct position.

Contrary to Algorithm 3 , we do not need to determine which of the

two top containers from the sets need to be moved first because

the containers in set S 2 can only be moved when the containers

from the set S 1 are moved to other stacks. After all containers in

the set S 1 are moved to other stacks, container c needs to be tem-

porarily stored in another stack. The containers of set S 2 cannot

be placed in that stack because then it is impossible to move con-

tainer c back to stack s . As a consequence, in Algorithm 4 container

c is placed in the highest stack because then the fewest slots for

the containers in set S 2 are blocked.

Running example continued

We will illustrate Algorithms 2, 3 , and 4 with the bay as given

in Fig. 2 . Moreover, we set the value of α to α ≥ 1
2 and the param-

eters λ1 and λ2 are both set to 2. Algorithm 2 first examines the

containers with the largest time frame, in this case time frame 5.

Let us say that the container with time frame 5 in stack 4 is the

first container to be moved in the pre-processing phase. Further-

more, let us denote this container by c . We will first discuss how

this container is placed in the second stack using Algorithm 3 , and

then, how it is placed according to Algorithm 4 in the fourth stack.

In Fig. 6 (a), the situation after the placement of container c in
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
he second stack is depicted and the bay after that container c is

oved to the fourth stack is shown in Fig. 6 (b).

If container c is placed in stack 2, then set O c is the container

ith time frame 3 above container c and the set M c is equal to the

wo containers located in the second stack. Since the time frame of

ontainer c is larger than 1, also the bottom container of the sec-

nd stack needs to be removed. The order in which the containers

rom the sets O c and M c are moved to other stacks is: first the con-

ainer with time frame 5 from M c , second the container with time

rame 3 from O c and finally the container with time frame 1 from

 c . When the first container from M c needs to be moved to an-

ther stack there is no correct stack for the container. Hence, it is

laced in one of the λ2 = 2 stacks with the smallest time frames

hat have an empty slot. Since stack 3 has no empty slot, there are

nly two stacks possible, namely 1 and 5. Let us say that the con-

ainer is placed in the fifth stack. Thereafter, the container with

ime frame 3 from the set O c is moved. The expected number of

elocation moves for the first stack and because α ≥ 1
2 , the first

tack is a correct stack for this container. Moreover, it is the only

orrect stack for this container, thus the container is always placed

n that stack. Finally, the container with time frame 1 from M c has

tacks 1 and 5 as correct stacks. Let us assume that it is placed in

he first stack, then the situation after container c is placed in the

econd stack is as given in Fig. 6 (a).

When container c is placed in the fourth stack, the set S 1 is the

ontainer with time frame 3 above container c and the container

ith time frame 2 constitutes on its own the set S 2 . Similar to the

ituation in Fig. 6 (a), the first stack is the only correct stack for the

ontainer with time frame 3. Afterward, container c is also placed

n the first stack because that is the only stack that has a height

f 3. Thereafter, no correct stack exists for the container with time

rame 2 of set S 2 . It could be placed in both stack 2 and 5 be-

ause stacks 1 and 3 have already reached its maximum height.

n Fig. 6 (b), we have assumed that the container is placed in the

econd stack after which container c could be placed back to the

ourth stack.

In both Figs. 6 (a) and (b) four pre-processing moves have been

erformed from the situation as shown in Fig. 2 . The final bays for

oth scenarios have in common that container c is placed at the
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx 13

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

b

H

t

m

c

5

t

i

i

i

a

n

p

r

n

t

r

M

a

u

c

o

o

t

m

e

t

c

e

t

w

a

e

t

t

I

o

f

n

s

s

c

t

t

c

a

t

N

h

i

a

c

a

t

c

i

t

i

I

e

d

b

w

g

r

r

h

w

b

w

c

h

a

w

m

t

a

c

4

b

∑

T

l

p

t

w

c

T

i

S

h

f

s

p

t

g

c

R

a

c

A

o

b

o

d

p

p

t

c

e

l

u

R

F

a

h

t

g

t
ottom of a stack and thus that it does not need to be relocated.

owever, to examine which situation is better, we need to know

he expected number of relocation moves for the complete bay. A

ethod how this number can be estimated could be done is dis-

ussed in the next section.

.2. Estimation number of relocation moves

For the local search heuristic described in Section 5.1 , a fast es-

imation method for a bay’s number of expected relocation moves

s needed. It is important to note that in the heuristic, as sketched

n Fig. 5 , the relocation phase will not be solved to optimality, but

nstead the EM heuristic is used. Hence, we are not interested in

n estimation of the optimal number of relocation moves, but the

umber of moves for the EM heuristic. One way to obtain the ex-

ected number of relocation moves for a bay is to simulate a set of

etrieval orders and use the EM heuristic to compute the average

umber of relocation moves. However, in the local search heuris-

ic of Algorithm 2 , we need to compute the expected number of

elocation for many different bays, so a faster method is preferred.

oreover, simulation will inherently result in stochastic outcomes

nd we prefer to have a deterministic estimation. Therefore, we

se a rule-based estimation method that is given in Algorithm 5 .

The main idea of Algorithm 5 is to estimate the number of relo-

ation moves needed for one specific container. If a container has

nly containers with a higher time frame underneath it, it is obvi-

us that it will never be relocated. However, if a container needs

o be relocated, it is hard to get the exact number of relocation

oves that will be needed for that container. In order to get a good

stimation of the number of relocation moves we divide the con-

ainers into four categories: category 1, 2, 3 and 4. Containers in

ategory 1 do not need to be relocated. For the containers in cat-

gories 2, 3 and 4 we expect less than one, exactly one and more

han one relocation move, respectively. It is important to note that

e use the word ‘expect’ here because it is hard to compute ex-

ctly how often a container needs to be relocated.

In Algorithm 5 , the containers are divided into different cat-

gories and these categories are used to get an estimation for

he expected number of relocation moves. The algorithm iterates

hrough all containers in a bay and consists of three if-statements.

n the first if-statement, it is checked if the smallest time frame

f the containers underneath container c is higher than the time

rame of container c . If this is the case, container c will definitely

ot be relocated and it is assigned to category 1. Secondly, if the

mallest time frame of the containers underneath c is exactly the

ame as the time frame of container c , container c is assigned to

ategory 2. In this situation, it is unsure if container c will need

o be relocated. If it is to be retrieved before the container(s) with

he same time frame in the same stack, it does not need to be relo-

ated. However, it might also happen that container c is retrieved

fter a container from the same stack and the same interval. In

hat case, container c will have to be relocated to another stack.

evertheless, at that time all containers with a lower time frame

ave already left the bay, so container c can, most likely, be placed

n a stack in which it does not have to be relocated again. All in

ll, the expected number of relocation moves for the containers in

ategory 2 is likely to be less than one.

After the first two if-statements, all containers that are not yet

ssigned to a category have at least one container with a lower

ime frame underneath them. These containers will always be relo-

ated at least once. In the third if-statement, it is checked whether

t is possible that there is a good stack available for container c at

he first time it will be relocated. A good stack is defined as a stack

n which container c will not need to be relocated a second time.

t is hard to determine exactly, in an efficient way, whether there

xists a good stack for a container at the time it is relocated. This
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
ifficulty lies in the fact that we do not know the layout of the

ay before the container under consideration is relocated. Hence,

e use two rules of thumb to check whether it is likely that a

ood stack is available for container c at the time it needs to be

elocated.

The first rule of thumb exploits the fact that container c will be

elocated at time u (c). If there is a stack for which all containers

ave a lower time frame than u (c), all containers from that stack

ill already be retrieved at time u (c). Therefore, that stack might

e empty at time u (c) and container c could be placed in that stack

ithout any further relocation moves. The second rule of thumb

hecks whether there exists a stack for which all time frames are

igher than the time frame of container c . In case there exists such

 stack, it is likely that container c can be placed on that stack

ithout any further relocation moves. For both rules of thumb, it

ight be that the good stack is not available anymore at the time

he container needs to be relocated because another container is

lready placed in that stack. If one of the two rules are satisfied,

ontainer c belongs to category 3, otherwise, it falls under category

.

After all containers have been assigned to a category, the num-

er of relocation moves for a bay is estimated using the formula:

c∈C
1 . 4 ∗ 1 q (c)=4 + 1 q (c)=3 + 0 . 5 ∗ 1 q (c)=2 . (5)

he coefficients for the categories in this sum are both based on

ogical reasoning and numerical experiments. Below we will ex-

lain how these coefficients are derived. We definitely know that

he containers in category 1 will never be relocated, so they get a

eight of 0 in the sum. In order to find a good coefficient for the

ontainers of categories 2, 3 and 4, we have used linear regression.

he ‘true’ number of relocation moves is determined by simulat-

ng 1,0 0 0 retrieval orders for each of the 1,440 instances for the

CRP as created by Ku and Arthanhari (2016) and by using the EM

euristic to solve them. This average number of relocation moves

or an instance will act as an independent variable. For each in-

tance, the number of containers in categories 2, 3 and 4 are ex-

lanatory variables. Hence, there are 1,440 independent variables

hat could be explained by three dependent variables. If linear re-

ression is used, we get the coefficients 0.515 for the category 2

ontainers, 1.035 for category 3 and 1.39 for category 4 and an

2 of 0.968. If we round the coefficients for the categories 2, 3

nd 4 to respectively 0.5, 1 and 1.4, then the R 2 only slightly de-

reases to 0.966. Therefore, we choose these values in Eq. (5) and

lgorithm 5 .

The mean absolute percentage difference between the outcome

f the simulations and Algorithm 5 which is only 5.16%. It should

e noted that this is based on solving the original SCRP instances

f Ku and Artanhari (2016) . Nevertheless, it is easier to make a pre-

iction for the expected number of relocation moves after some

re-processing moves have been performed. Since, the more pre-

rocessing moves are done, the more containers are placed such

hat they do not need to be relocated. These containers belong to

ategory 1 which is the only category for which we can derive the

xact expected number of relocation moves. Hence, the further the

ocal search heuristic proceeds the more accurate the prediction

sing Algorithm 5 will be.

unning example continued

To illustrate Algorithm 5 , the containers as previously given in

ig. 2 are assigned to categories in Fig. 7 . The green containers are

ll containers from the first category. All green containers either

ave no containers at all, or only containers with a strictly higher

ime frame underneath them. The containers in the second cate-

ory are colored yellow. For these containers, the container with

he smallest time frame underneath them has exactly the same
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

14 B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Fig. 7. Categories of containers in the bay from Fig. 2 . The colors green, yellow,

orange and red correspond to, respectively, to category 1, 2, 3 and 4.

t

p

A

5

s

t

G

i

t

F

c

i

b

m

t ∑

t

p

t

t

p

t

e

m

A

p

b

S

t

u

t

F

o

b

S

m

t

w

λ

e

A

t

a

f

t

e

w

s

f

e

w

t

b

w

c

f

b

z

r

i
time frame as they have. The top container of the fourth stack

belongs to the third category and is thus orange because the sec-

ond criterion of the third if-statement is true. The maximum of the

smallest time frame of the first stack is 4, which is strictly smaller

than 3. Hence, we expect that this container can be relocated to

the first stack and afterward does not need to be relocated again.

The red containers are from category 4 because they do not satisfy

any of the conditions in the if-statements.

If Algorithm 5 is run for the bay of Fig. 7 , we get an esti-

mation of the total number of relocation moves that is equal to:

3 ∗ 1 . 4 + 1 + 2 ∗ 0 . 5 = 6 . 2 . Since this is a small example we can cal-

culate the expected number of relocation moves used by the EM

exactly, which is 6 1 3 . All in all, the prediction of Algorithm 5 is

rather accurate for this bay.

After a method to estimate the number of relocation moves is

developed, we can look again at the two bays in Fig. 6 to see if

these pre-processing moves yield an improvement to the original

bay. In the bay in Fig. 6 (a), there are two containers from category

2, namely the upper container with time frame 4 in the first stack

and the upper container with time frame 1 in the third stack. Fur-

thermore, two containers belong to category 3: the container with

time frame 4 in the third stack and the container with time frame

5 in stack 5. The container with time frame 4 in the third stack

belongs to category 2, because in stack 4 are only containers with

a larger time frame. On the other hand, the container with time

frame 5 in the fifth stack belongs to category 3 because stack 2

only contains a container with time frame 1, which is already re-

trieved before the container with time frame 5 needs to be relo-

cated. Since, there are no containers from category 4 in the bay

of Fig. 6 (a), the number of relocation moves can be estimated by:

2 ∗ 1 + 2 ∗ 0 . 5 = 3 .

In the bay of Fig. 6 (b), the same containers are in category 2 as

in Fig. 6 (a). Besides that, the container with time frame 4 in the

third stack is also in category 3 together with the container with

time frame 2 in stack 2. Both of these containers would namely

be well-placed if we would move them to stack 4. The container

with time frame 5 in the second stack, however, belongs to cat-

egory 4. Therefore, estimated number of relocation moves for the

bay of Fig. 6 (b) is: 1 ∗ 1 . 4 + 2 ∗ 1 + 2 ∗ 0 . 5 = 4 . 4 .

Recall that both the bays in Figs. 6 (a) and (b) were obtained

after four pre-processing moves from Fig. 2 . Combined with the

estimated number of pre-processing moves, the estimated objec-

tive of the bay in Fig. 6 (a) is 4 α + 3 and for the bay in Fig. 6 (b)

the estimated objective function is 4 α + 4 . 4 . The bay in Fig. 6 is
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
hus always preferred over the bay in Fig. 6 (b). Moreover, the four

re-processing moves that lead to this bay are only carried out in

lgorithm 2 if 6 . 2 − (4 α + 4 . 4) > 0 , or stated otherwise if α < 0.45.

.3. Branch-and-bound algorithm

In this section, a branch-and-bound algorithm is presented to

olve the SCRPPP to optimality. Similar to the local search heuris-

ic in Section 5.1 , we focus on the pre-processing phase because in

alle et al. (2018) , an optimal algorithm for the relocation phase

s given. The idea of the branch-and-bound algorithm is to inves-

igate all possible pre-processing moves in the most efficient way.

or this optimal algorithm, Lemma 4 (see Section 4.3) is crucial be-

ause it states that the maximum number of pre-processing moves

n the optimal solution is d :=

⌊
UB
α

⌋
. On top of that, for a given

ay, we could perform at most S(S − 1) different pre-processing

oves because for every stack s ∈ S we could place its top con-

ainer in every other stack. Therefore, in total there are at most
 d
i =0 (S(S − 1)) i different solutions for the pre-processing phase of

he SCRPPP. Even for small instances with 5 stacks, the number of

ossible solutions of the pre-processing phase is for d = 7 more

han a billion.

In order to find the optimal number of relocation moves,

he optimal algorithm for the relocation phase has to be ap-

lied to every single solution of the pre-processing phase. Since

he relocation phase is NP-hard, the optimal algorithm of Galle

t al. (2018) for the relocation phase does not run in polyno-

ial time. Fortunately, using the branch-and-bound algorithm in

lgorithm 6 it is possible to reduce the number of solutions of the

re-processing phase for which we need to find the optimal num-

er of relocation moves.

In Algorithm 6 , the branch-and-bound algorithm to solve the

CRPPP to optimality is given. The first step of this algorithm is

o compute an upper bound for the optimal solution. Firstly, we

se the local search heuristic of Algorithm 2 with λ1 = λ2 = 1 for

he pre-processing phase. Afterward, we apply the Pruning-Best-

irst-Search (PBFS) algorithm of Galle et al. (2018) to obtain the

ptimal expected relocation moves for the resulting bay. The com-

ination of the two algorithms will give a feasible solution for the

CRPPP and thus an upper bound of the optimal solution. Further-

ore, Algorithm 1 is used to compute a lower bound for the op-

imal solution. In case the lower and upper bounds are the same,

e have proven that the pre-processing moves of Algorithm 2 with

1 = λ2 = 1 result in an optimal solution. Otherwise, we start with

xploring all possible pre-processing moves in the while-loop in

lgorithm 6 . In this while-loop, we have a set of candidate solu-

ions Q , and a set I of all solutions for which the optimal solution

lready has been computed. The while-loop ends either if we have

ound a set of pre-processing moves for which the objective func-

ion equals the lower bound of the initial bay or if the set Q is

mpty. In the while-loop, we select the element in Q for which

e have the smallest lower bound. In case of a tie, we select the

olution for which the most pre-processing moves have been per-

ormed. If there are still multiple of those solutions, we select the

lement that was the first to be added to Q . We prefer an element

hose lower bound is smaller because this solution is the solution

hat is the most likely to have the lowest objective function.

For the element in Q that we have selected, the optimal num-

er of relocation moves is calculated using the PBFS algorithm and

ith that, the objective function for that element is computed. In

ase the objective function is lower than the best-known solution

ound so far, OPT is updated. Afterward, if the remaining num-

er of pre-processing moves in the current solution is larger than

ero, we investigate all possible pre-processing moves for the cur-

ent solution. For every possible resulting bay, we firstly compute

ts lower bound. In case this lower bound is smaller than OPT we
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx 15

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Table 2

Number of instances solved to optimality using Algorithm 6 and their running times.

α 0.25 0.5 0.75

H S Fill rate 50% 67% 50% 67% 50% 67%

3 5 Solved 30/30 30/30 30/30 30/30 30/30 30/30

Time (s) 0.03 3.1 0.03 0.9 0.02 0.5

10 Solved 30/30 27/30 30/30 29/30 30/30 30/30

Time (s) 1.6 265.1 1.0 90.3 0.1 3.3

4 5 Solved 30/30 28/30 30/30 30/30 30/30 30/30

Time (s) 1.6 426.1 0.6 94.3 0.2 0.5

10 Solved 22/30 3/30 25/30 7/30 29/30 11/30

Time (s) 644.0 1702.2 106.7 828.8 182.8 152.6

5 5 Solved 27/30 4/30 29/30 4/30 30/30 13/30

Time (s) 462.4 1174.4 82.9 495.5 45.4 552.2

10 Solved 3/30 0/30 7/30 1/30 16/30 4/30

Time (s) 1707.9 − 1593.8 518.9 303.5 2112.0

6 5 Solved 9/30 0/30 14/30 0/30 20/30 1/30

Time (s) 1068.9 − 722.4 − 271.4 81.9

10 Solved 0/30 0/30 2/30 0/30 6/30 0/30

Time (s) − − 73.9 − 917.2 −

c

r

n

b

i

p

6

q

g

a

u

o

s

t

i

a

s

a

c

i

c

i

w

s

a

t

S

t

e

6

S

d

b

i

i

c

F

t

e

m

o

o

s

o

f

o

w

r

b

i

i

b

d

i

n

i

e

n

S

n

f

n

a

b

t

h

b

o

T

n

T

s

i

a

f

S

b

h

t

heck if the same bay with fewer pre-processing moves is not al-

eady in either Q or I . If the element is not already in Q or I it

eeds to be investigated and is added to Q . In checking whether a

ay is already in Q or I we make use of the fact that a specific bay

s considered to be the same as a bay in which the same stacks are

laced in a different order.

. Numerical results

In this section, we will use numerical experiments to check the

uality of the local search heuristic and the branch-and-bound al-

orithm presented in Section 5 . Both these methods will be evalu-

ted according to their solution quality and running time. We will

se the SCRP instances introduced by Ku and Arthanhari (2016) as

ur problem instances for the SCRPPP. This set of instances con-

ists of 1,440 instances with the number of stacks ranging from 5

o 10 and the maximum stack height from 3 to 6. For half of the

nstances, the number of containers is half of the available slots

nd the other half of the instances have a fill rate of 2
3 . For each

pecific combination of number of stacks, maximum stack height

nd fill rate there are 30 instances. All these instances satisfy the

ondition of Corollary 2 which is that the number of containers

s smaller than SH − 2(H − 1) . Therefore, the local search heuristic

an be applied to all instances without checking whether a move

s feasible.

The remainder of this section is organized as follows. First,

e will investigate in Section 6.1 the maximum size of an in-

tance that can be solved to optimality by the branch-and-bound

lgorithm. Second, in Section 6.2 , we will compare the results of

he local search heuristic with the optimal solution. Finally, in

ection 6.3 , the solutions for the SCRPPP will be compared with

he solutions for the SCRP and CPMP in order to see what the ben-

fits of pre-processing are.

.1. Optimal solution

To test the efficiency of the branch-and-bound algorithm of

ection 6 , we solve the instances of Ku and Arthanhari (2016) for

ifferent parameter settings. As stated before, the minimum num-

er of stacks for these instances is 5 and the maximum is 10. We

nvestigate the optimal solution for both this minimum and max-

mum number of stacks. The stack height can range from 3 to 6

ontainers and the fill rate of the bay can either be 50 % or 67%.

or each combination, there are 30 instances that are all solved for
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
he following values of α: α = 0 . 25 , α = 0 . 5 and α = 0 . 75 . For ev-

ry single instance and value of α the running time is set to at

ost one hour.

Table 2 shows how many of the 30 instances were solved to

ptimality within the hour. Furthermore, the average running time

f all instances that were solved to optimality is given. As one can

ee, for the instances with five stacks and a maximum stack height

f three, all instances were solved and on average it took at most a

ew seconds. However, for instances with a maximum stack height

f six, almost none of the instances could be solved to optimality

ithin an hour. The running time of the branch-and-bound algo-

ithm increases extremely fast as the stack size increases. It can

e concluded from Table 2 that the branch-and-bound algorithm

s able to solve small instances for the SCRPPP, but that for larger

nstances the running time is too large. However, it should also

e noted that there is a large fluctuation in the running time for

ifferent instance of the same size. For example, nineteen of the

nstance with H = 4 , S = 10 , α = 0 . 75 and a fill rate of 67% are

ot solved to optimality within an hour. Nevertheless, the eleven

nstances that are solved to optimality within an hour, have an av-

rage running time of only 152.6 seconds.

The number of stacks has a much smaller influence on the run-

ing time than the maximum height of a stack. The bays with

 = 10 and T = 3 and the bays with S = 5 and T = 6 have the same

umber of containers in them, but the former can be solved much

aster than the latter. This can be explained by the fact that the

umber of moves in a bay with lower stacks is smaller than in

 bay with higher stacks. Hence, both the lower and the upper

ound for the SCRPPP is stronger if the stacks are lower. In case

he value of the upper bound is larger, the value for d is also

igher. Since the number of possible pre-processing moves is given

y
∑ d

i =0 (S(S − 1))
i
, the value of d has a larger impact on the size

f the solution space than the value of S .

A similar reasoning applies to instances with a fill rate of 67%.

hese instances need more moves than instances with the same

umber of stacks and maximum height, but a fill rate of 50%.

herefore, the upper bound and the value of d is larger for in-

tances with a fill rate of 67%. As a result, the running time for

nstances with a higher fill rate is larger. For some values of S , H

nd α the running time that is given in Table 2 is sometimes lower

or instances with a fill rate of 67% than for 50%, see for instance

 = 10 , H = 6 and α = 0 . 75 . However, for these instances the num-

er of instances with a fill rate of 67% that are solved within an

our is less than the number of instances with a fill rate of 50%

hat are solved in less than an hour.
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

16 B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Table 3

Objective function under the optimal relocation policy for the bay obtained af-

ter pre-processing according to the branch-and-bound algorithm (B&B), the lo-

cal search heuristic for λ1 = λ2 = 1 (DPP) and the local search heuristic with

λ1 = λ2 = 3 (RPP).

α 0.25 0.5 0.75

H S Fill rate 50% 67% 50% 67% 50% 67%

3 5 B&B 0.642 1.250 1.222 2.328 1.503 2.836

RPP + PBFS 0.725 1.356 1.222 2.439 1.508 2.916

DPP + PBFS 0.750 1.434 1.222 2.469 1.511 2.942

10 B&B 1.000 1.867 1.922 3.534 2.581 4.606

RPP + PBFS 1.192 2.083 2.172 3.622 2.592 4.631

DPP + PBFS 1.200 2.175 2.172 3.656 2.592 4.647

a

t

i

b

l

m

(

o

w

0

i

q

α

o

s

a

f

e

s

s

t

l

t

D

4

h

D

l

s

S

E

s

l

t

n

t

r

a

R

a

o
Furthermore, from Table 2 it can be concluded that the larger

the value of α, the faster the branch-and-bound algorithm runs.

An explanation for this result is that the maximum number of

pre-processing moves that can be used in the optimal solution

is bounded by
⌊

UB
α

⌋
. The larger the value of α, the fewer pre-

processing moves could be performed and thus the fewer solutions

need to be investigated in Algorithm 6 . Finally, it should also be

noted that the larger the value of α the smaller the difference be-

tween the instances with a fill rate of 50% and 67%.

6.2. Local search heuristic

In the previous section, we have seen that the branch-and-

bound algorithm is able to find the optimal solution for small in-

stances, but that it is not able to solve larger instances within

reasonable time. This should not be surprising because we have

shown that the SCRPPP is NP-hard. In this section, we will inves-

tigate whether the quality of the local search heuristic is close to

the optimal solution for small instances and whether the running

time of the heuristic is acceptable for larger instances.

The quality of the pre-processing moves that are performed in

Algorithm 2 is compared with the optimal pre-processing moves

in Algorithm 6 . In order to make sure that we only look at the ef-

fect of the pre-processing moves, for both scenarios the relocation

moves are solved to optimality according to the PBFS. We use two

different variants of the local search heuristic. In the first variant,

λ1 = λ2 = 3 is used and the second method uses λ1 = λ2 = 1 . If

λ1 = λ2 = 3 , the local search heuristic is a randomized algorithm

and we refer to it as Randomized Pre-Processing (RPP). Since it is a

randomized algorithm, the algorithm is run 150 times or it stops
Table 4

Objective function for the DPP + EM and RPP + EM and the ave

α 0.25

H Fill rate 50%

3 DPP + EM Objective 0.98

RPP + EM Objective 0.96

Time pre-processing (s) 0.2

Time relocation (s) 0.2

4 DPP + EM Objective 1.86

RPP + EM Objective 1.80

Time pre-processing (s) 0.5

Time relocation (s) 0.3

5 DPP + EM Objective 3.14

RPP + EM Objective 2.88

Time pre-processing (s) 0.9

Time relocation (s) 0.8

6 DPP + EM Objective 4.39

RPP + EM Objective 3.93

Time pre-processing (s) 1.5

Time relocation (s) 1.9

Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
fter 100 runs without an improvement. This set-up is the same as

he set-up of the LPFH in order to make a fair comparison possible

n Section 6.3 . After each of these runs, the optimal expected num-

er of relocation moves for the bay after pre-processing is calcu-

ated. If Algorithm 2 uses λ1 = λ2 = 1 as parameters, it is a deter-

inistic algorithm and we refer to it as Deterministic Pre-Processing

DPP). This deterministic algorithm is obviously only run once.

In Table 3 , we give the objective function for the three meth-

ds described above for instances with five and ten stacks and

ith a maximum height of three. The value of α is set to 0.25,

.5 and 0.75. The first thing to note is that the RPP is perform-

ng better than the DPP, but that the difference between them is

uite small. Another observation is that the smaller the value of

, the larger the difference between the heuristic values and the

bjective obtained by the optimal branch-and-bound. This makes

ense because for larger values of α fewer pre-processing moves

re performed in all solutions and the relocation moves contribute

or a large share to the objective function. Furthermore, the differ-

nce between the optimal and heuristic solution is larger for in-

tances with ten stacks than with five stacks. Instances with ten

tacks have more possible pre-processing moves, so it makes sense

hat the heuristic is performing worse for these.

Although the gap between the heuristic and the optimal so-

ution differs per parameter setting, the average gap between

he optimal branch-and-bound algorithm and the RPP + PBFS and

PP + PBFS over all instances reported in Table 3 is respectively

.6% and 5.8%. Hence, we may conclude that the quality of the

euristic is reasonably good.

After it is shown that the value of the objective function of the

PP and RPP is close to optimal for small instances, we will solve

arger instances with the DPP and RPP. In Galle et al. (2018) , it is

hown that the PBFS is not able to solve larger instances of the

CRP to optimality within an hour. Hence, we decided to use the

M heuristic for the relocation phase. We have chosen to use 1,0 0 0

imulations of the retrieval order to get the average number of re-

ocation moves. In Table 4 , the value of objective function for both

he DPP + EM and RPP + EM is given. Furthermore, the average run-

ing time of the pre-processing phase and the relocation phase for

he RPP + EM per instance is given. The deterministic DPP + EM is

un only once, so the running times of the pre-processing phase

nd the relocation phase is an order of 100 smaller than for the

PP + EM. As the total average running time of the DPP + EM is

lways less than a second for every instance, we have chosen to

nly report the running times of the RPP in combination with EM
rage running time per instance for the RPP + EM.

0.5 0.75

67% 50% 67% 50% 67%

1.79 1.72 3.15 2.08 3.93

1.72 1.70 3.11 2.08 3.89

0.4 0.1 0.4 0.1 0.4

0.2 0.1 0.7 1.0 4.2

3.45 3.25 5.88 4.07 7.47

3.11 3.22 5.66 4.04 7.32

0.7 0.4 1.0 0.4 1.2

0.8 0.4 4.0 3.4 19.7

5.65 5.46 9.81 6.83 12.55

4.93 5.29 9.16 6.74 11.88

1.6 0.9 1.9 1.1 2.7

1.8 3.6 10.2 14.3 42.5

8.69 7.65 14.86 9.70 18.66

7.03 7.17 13.00 9.41 17.20

2.5 1.4 3.7 1.7 4.2

4.1 4.8 18.9 25.7 67.3

Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx 17

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

Table 5

Objective function for the RPP + EM, the EM and the LPFH.

α 0.25 0.5 0.75

H Fill rate 50% 67% 50% 67% 50% 67%

3 RPP + EM 0.96 1.72 1.70 3.11 2.08 3.89

EM 2.47 4.34 2.47 4.34 2.47 4.34

LPFH 0.84 1.62 1.68 3.24 2.52 4.86

4 RPP + EM 1.80 3.11 3.22 5.66 4.04 7.32

EM 4.63 8.12 4.63 8.12 4.63 8.12

LPFH 1.63 3.16 3.26 6.33 4.89 9.49

5 RPP + EM 2.88 4.93 5.29 9.16 6.74 12.55

EM 7.48 13.00 7.48 13.00 7.48 13.00

LPFH 2.84 5.48 5.67 10.95 8.51 16.43

6 RPP + EM 3.93 7.03 7.17 13.00 9.41 17.20

EM 10.32 18.43 10.32 18.43 10.32 18.43

LPFH 4.03 9.55 8.07 19.10 12.10 28.65

h

s

i

w

n

α

f

n

o

F

t

t

p

t

m

a

D

6

s

S

f

n

c

S

a

t

L

o

f

t

W

s

t

s

i

9

f

t

a

H

a

p

i

f

T

a

p

i

m

p

g

o

t

t

f

m

7

l

A

P

b

t

b

t

h

n

m

l

a

i

c

I

e

m

f

t

t

f

s

a

i

i

i

o

t

b

e

r

f

i

a

i

t

i

p

g

b

c

o

s
euristic in Table 4 . Contrary to Tables 2 and 3 , not only the re-

ults of the instances with five and ten stacks are given, but all

nstances with stacks five up to ten are used.

The total running time of the RPP + EM heuristic increases

hen the maximum stack size and α increase. Especially, the time

eeded for the EM heuristic in the relocation phase is larger when

= 0 . 75 . For this value of α, fewer pre-processing moves are per-

ormed and thus the relocation phase is harder. Although the run-

ing times of the RPP + EM are higher than for the DPP + EM, the

bjective for the RPP + EM is also smaller than for the DPP + EM.

or α = 0 . 25 , the difference between the objective function for the

wo methods is the largest. This is caused by the fact that for

his value of α more containers are moved in the pre-processing

hase and for α = 0 . 75 more containers are moved in the reloca-

ion phase. Furthermore, the more containers are in the bay the

ore one can gain by performing different pre-processing moves

nd thus the percentage difference between the RPP + EM and

PP + EM is bigger for larger values of H and a fill rate of 67%.

.3. SCRP and CPMP

In this section, we will compare the newly proposed local

earch heuristic with two existing heuristics for the CPMP and

CRP. The LPF heuristic is a heuristic for the CPMP and can be used

or the pre-processing phase. The LPF heuristic stops the moment

o relocation moves are left. It is also possible to perform no relo-

ation moves after which we could apply the EM heuristic for the

CRP for the relocation phase. The results of these two methods

re compared with the RPP + EM method in Table 5 .

The EM method does not use any pre-processing moves and

hus the value of the objective function is independent of α. The

PF heuristic does perform pre-processing moves, but the number

f moves is not influenced by α because it always tries to find the

ewest moves such that no relocation moves are needed. Hence,

he value of the objective function is just a linear function of α.

e see in Table 5 that for α is 0.25 and 0.5, the LPF heuristic re-

ults in a lower value of the objective function than the EM heuris-

ic. On the other hand for α = 0 . 75 the EM heuristic gives a better

olution.

The RPP + EM outperforms both the EM and LPFH for almost all

nstances. On average the objective function for RPP + EM is about

% lower than that of the minimum of the EM and LPFH. Only

or the instances with a small number of containers and α = 0 . 25 ,

he LPFH is slightly better. For α = 0 . 25 , it is beneficial to move

 container in four pre-processing moves to a correct position.

ence, for smaller instances it is almost always possible to place

ll containers in the correct position. Since the LPFH is tailored for
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
lacing the containers in the correct position in the fewest moves,

t is logical that it outperforms the RPP + EM.

Furthermore, we see in Table 5 that for large instances the dif-

erence between the RPP + EM and the EM and LPFH is bigger.

his can be explained by the fact that the more containers are in

 bay, the more difficult it is to place a container in the correct

osition in the pre-processing phase. Furthermore, if a container

s moved in the relocation phase, then for larger instances it has

ore containers on top of it. Hence, for larger instance more pre-

rocessing and relocation moves are needed and the more can be

ained by balancing those two type of moves. Similarly, the trade-

ff between pre-processing and relocation moves is more impor-

ant if α = 0 . 5 and thus the difference between the RPP + EM and

he EM and LPFH is also bigger for this value of α. For instance,

or α = 0 . 5 , H = 6 and the fill rate of 67% the improvement is even

ore than 40%.

. Conclusion

In this paper, we have introduced a new optimization prob-

em that is faced by an inland container terminal in the port of

msterdam: the Stochastic Container Relocation Problem with Pre-

rocessing. In this problem, the best trade-off has to be found

etween moving containers in the pre-processing phase and in

he relocation phase. We have developed an optimal branch-and-

ound algorithm to solve this problem. Since we have also proven

hat this problem is NP-hard, we have developed a local search

euristic to solve larger instances. That heuristic makes use of a

ewly developed estimation method for the number of relocation

oves. For small instances, the heuristic gives close to optimal so-

utions. Furthermore, for larger instances and moderate values of α
 large improvement is made compared to only moving containers

n the pre-processing or relocation phase.

The optimal branch-and-bound algorithm that we propose

ould be improved if sharper upper and lower bounds are derived.

f the upper bound is smaller, then the search tree could be pruned

arlier. Furthermore, if the lower bound is larger, then the opti-

al number of relocation moves would need to be calculated for

ewer bays. In the lower bound that we use, the moves needed

o remove containers from a stack in order to place another con-

ainer in that stack are not taken into account. It is not straight-

orward how one would incorporate these moves because if one

tack is empty it might be that many containers benefit from that

nd could be placed in that stack. Nevertheless, taking these moves

nto account would improve the lower bound.

The local search heuristic that we have proposed might improve

f a better estimation method for the number of relocation moves

s used. The quality of this estimation method is important in

ur local search algorithm because it is used in deciding whether

he bay after pre-processing moves has improved. The rule-based

ased method is effective but simple, and it might be that other

stimation methods that, for instance, use machine learning will

esult in better prediction and thus an improvement of the per-

ormance of the local search heuristic. If the local search heuristic

s improved, also a better upper bound for the branch-and-bound

lgorithm is available.

The current model is a first step in incorporating pre-processing

n solving the SCRP and showing that a balanced trade-off be-

ween pre-marshalling and relocation moves is possible. However,

n practice it might be more realistic to limit the total number of

re-processing moves that can be done. The branch-and-bound al-

orithm benefits from a limited number of pre-processing moves

ecause then the search tree is smaller. However, although we

ould incorporate a maximum number of pre-processing moves in

ur current local search heuristic, it is not likely to give good re-

ults. The reason for this is that if the number of pre-processing
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1016/j.ejor.2019.11.067

18 B.G. Zweers, S. Bhulai and R.D. van der Mei / European Journal of Operational Research xxx (xxxx) xxx

ARTICLE IN PRESS

JID: EOR [m5G; December 19, 2019;13:29]

K

L

L

L

L

P

R

S

S

T

T

T

T

V

W

Z

Z

moves is limited it might not be beneficial to start with performing

the moves on the container with the largest time frame. It could

be better to pre-process the containers that can easily be correctly

placed. Hence, another solution method would be needed for this

problem.

Acknowledgments

This work was partly supported by a Public-Private Partnership

between the Centre for Mathematics and Computer Science (CWI)

and container terminal CTVrede in the Netherlands.

References

Akyüz, M. H., & Lee, C. Y. (2014). A mathematical formulation and efficient heuristics

for the dynamic container relocation problem. Naval Research Logistics, 61 (2),
101–118. doi: 10.1002/nav.21569 .

Bortfeld, A., & Forster, F. (2012). A tree search procedure for the container pre-

marshalling problem. European Journal of Operational Research, 217 , 531–540.
doi: 10.1016/j.ejor.2011.10.005 .

Carlo, H. J., Vis, I. F. A., & Roodbergen, K. J. (2014). Storage yard operations in con-
tainer terminals: Literature overview, trends, and research directions. European

Journal of Operational Research, 235 , 412–430. doi: 10.1016/j.ejor.2013.10.054 .
Caserta, M. , Schwarze, S. , & Voß, S. (2011a). Container rehandling at maritime con-

tainer terminals. In J. W. Böse (Ed.), Handbook of terminal planning . In Operations

Research/Computer Science Interfaces Series: vol. 49 (pp. 247–269). Springer .
Caserta, M., Schwarze, S., & Voß, S. (2012). A mathematical formulation and com-

plexity considerations for the blocks relocation problem. European Journal of Op-
erational Research, 219 , 96–104. doi: 10.1016/j.ejor.2011.12.039 .

Caserta, M., Voß, S., & Sniedovich, M. (2011b). Applying the corridor method
to a blocks relocation problem. OR Spectrum, 33 (4), 915–929. doi: 10.1007/

s0 0291-0 09 .

Expósito-Izquierdo, C., Melián-Batista, B., & Moreno-Vega, M. (2012). Pre-
marshalling problem: Heuristic solution method and instances generator. Expert

Systems with Applications, 39 , 8337–8349. doi: 10.1016/j.eswa.2012.01.187 .
Galle, V., Manshadi, V. H., Borjian Boroujeni, S., Barnhart, C., & Jaillet, P. (2018).

The stochastic container relocation problem. Transportation Science, 52 (5), 1035–
1058. doi: 10.1287/trsc.2018.0828 .

Hussein, M., & Petering, M. E. H. (2012). Genetic algorithm-based simulation op-

timization of stacking algorithms for yard cranes to reduce fuel consumption
at seaport container transshipment terminals. In Proceedings of the 2012 IEEE

congress on evolutionary computation (pp. 1–8). doi: 10.1109/CEC.2012.6256471 .
Ji, M., Guo, W., Zhu, H., & Yang, Y. (2015). Optimization of loading sequence and re-

handling strategy for multi-quay crane operations in container terminals. Trans-
portation Research Part E, 80 , 1–19. doi: 10.1016/j.tre.2015.05.004 .

Jovanovic, R., Tanaka, S., Nishi, T., & Voß, S. (2019a). A GRASP approach for solving

the blocks relocation problem with stowage plan. Flexible Services and Manufac-
turing Journal, 31 , 702–729. doi: 10.1007/s10696- 018- 9320- 3 .

Jovanovic, R., Tuba, M., & Voß, S. (2017). A multi-heuristic approach for solving the
pre-marshalling problem. Central European Journal of Operations Research, 25 (1),

1–28. doi: 10.1007/s10100-015-0410-y .
Jovanovic, R., Tuba, M., & Voß, S. (2019b). An efficient ant colony optimization al-

gorithm for the blocks relocation problem. European Journal of Operational Re-

search, 274 , 78–90. doi: 10.1016/j.ejor.2018.09.038 .
Kim, K. H., & Hong, G. (2006). A heuristic rule for relocating blocks. Computers &

Operations Research, 33 (4), 940–954. doi: 10.1016/j.cor.20 04.08.0 05 .
Please cite this article as: B.G. Zweers, S. Bhulai and R.D. van der Mei,

Container Relocation Problem, European Journal of Operational Researc
u, D., & Arthanhari, T. S. (2016). Container relocation problem with time windows
for container departure. European Journal of Operational Research, 252 , 1031–

1039. doi: 10.1016/j.ejor.2016.01.055 .
ee, C.-Y., & Song, D. P. (2017). Ocean container transport in global supply chains:

Overview and research opportunities. Transportation Research Part B, 95 , 442–
474. doi: 10.1016/j.trb.2016.05.001 .

ee, Y., & Hsu, N. Y. (2007). An optimization model for the container pre-marshalling
problem. Computers & Operations Research, 34 (11), 3295–3313. doi: 10.1016/j.cor.

20 05.12.0 06 .

ehnfeld, J., & Knust, S. (2014). Loading, unloading and premarshalling of stacks in
storage areas: Survey and classification. European Journal of Operational Research,

239 , 297–312. doi: 10.1016/j.ejor.2014.03.011 .
in, D.-Y., Lee, Y.-L., & Lee, Y. (2015). The container retrieval problem with respect

to relocation. Transportation Research Part C, 52 , 132–143. doi: 10.1016/j.trc.2015.
01.024 .

arreño-Torres, C., Alvarez-Valdes, R., & Ruiz, R. (2019). Integer programming models

for the pre-marshalling problem. European Journal of Operational Research, 274 ,
142–154. doi: 10.1016/j.ejor.2018.09.048 .

endl, A. , & Prandtstetter, M. (2013). Constraint models for the container pre-mar-
shalling problem. In G. Katsirelos, & C. G. Quimper (Eds.), Proceedings of the 12th

international workshop on constraint modelling and reformulation, ModRef 2013:
(pp. 44–56) .

choll, J., Boywitz, D., & Boysen, N. (2018). On the quality of simple measures pre-

dicting block relocations in container yards. International Journal of Production
Research, 56 (1–2), 60–71. doi: 10.1080/00207543.2017.1394595 .

da Silva Firmino, A., de Abreu Silva, R. M., & Times, V. C. (2019). A reactive GRASP
metaheuristic for the container retrieval problem to reduce crane’s working

time. Journal of Heuristics, 25 (2), 141–173. doi: 10.1007/s10732- 018- 9390- 0 .
Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: A liter-

ature update. OR Spectrum, 30 (1), 1–52. doi: 10.10 07/s0 0291-0 07-010 0-9 .

teenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and oper-
ations research - a classification and literature review. OR Spectrum, 26 (1), 3–49.

doi: 10.10 07/s0 0291-0 03-0157-z .
anaka, S., & Mizuno, F. (2018). An exact algorithm for the unrestricted block re-

location problem. Computers & Operations Research, 95 , 12–31. doi: 10.1016/j.cor.
2018.02.019 .

anaka, S., & Tierney, K. (2018). Solving real-world sized container pre-marshalling

problems with an iterative deepening branch-and-bound algorithm. European
Journal of Operational Research, 264 , 165–180. doi: 10.1016/j.ejor.2017.05.046 .

ierney, K., Pacino, D., & Voß, S. (2017). Solving the pre-marshalling problem to opti-
mality with A ∗ and IDA ∗ . Flexible Service and Manufacturing Journal, 29 , 223–259.

doi: 10.1007/s10696- 016- 9246- 6 .
ierney, K. , & Voß, S. (2016). Solving the robust container pre-marshalling problem.

In A. Paias, M. Ruthmair, & S. Voß (Eds.), Computational logistics . In Lecture Notes

in Computer Science 9855 (pp. 131–145) .
oß, S. , & Schwarze, S. (2019). A note on alternative objectives for the blocks reloca-

tion problem. In C. Paternina-Arboleda, & S. Voß (Eds.), Proceedings of the Com-
putational logistics. ICCL 2019 . In Lecture Notes in Computer Science: vol. 11756 .

Springer .
u, K. C. , & Ting, C. J. (2012). A beam search algorithm for minimizing reshuffle

operations at container yards. In Proceedings of the 2010 international conference
on logistics and maritime systems .

ehender, E., Caserta, M., Feillet, D., Schwarze, S., & Voß, S. (2015). An improved

mathematical formulation for the blocks relocation problem. European Journal
of Operational Research, 245 , 415–422. doi: 10.1016/j.ejor.2015.03.032 .

hao, W., & Goodchild, A. V. (2010). The impact of truck arrival information on con-
tainer terminal rehandling. Transportation Research Part E, 46 , 327–343. doi: 10.

1016/j.tre.20 09.11.0 07 .
Optimizing pre-processing and relocation moves in the Stochastic

h, https://doi.org/10.1016/j.ejor.2019.11.067

https://doi.org/10.1002/nav.21569
https://doi.org/10.1016/j.ejor.2011.10.005
https://doi.org/10.1016/j.ejor.2013.10.054
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0004
https://doi.org/10.1016/j.ejor.2011.12.039
https://doi.org/10.1007/s00291-009
https://doi.org/10.1016/j.eswa.2012.01.187
https://doi.org/10.1287/trsc.2018.0828
https://doi.org/10.1109/CEC.2012.6256471
https://doi.org/10.1016/j.tre.2015.05.004
https://doi.org/10.1007/s10696-018-9320-3
https://doi.org/10.1007/s10100-015-0410-y
https://doi.org/10.1016/j.ejor.2018.09.038
https://doi.org/10.1016/j.cor.2004.08.005
https://doi.org/10.1016/j.ejor.2016.01.055
https://doi.org/10.1016/j.trb.2016.05.001
https://doi.org/10.1016/j.cor.2005.12.006
https://doi.org/10.1016/j.ejor.2014.03.011
https://doi.org/10.1016/j.trc.2015.01.024
https://doi.org/10.1016/j.ejor.2018.09.048
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0021
https://doi.org/10.1080/00207543.2017.1394595
https://doi.org/10.1007/s10732-018-9390-0
https://doi.org/10.1007/s00291-007-0100-9
https://doi.org/10.1007/s00291-003-0157-z
https://doi.org/10.1016/j.cor.2018.02.019
https://doi.org/10.1016/j.ejor.2017.05.046
https://doi.org/10.1007/s10696-016-9246-6
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30979-8/sbref0031
https://doi.org/10.1016/j.ejor.2015.03.032
https://doi.org/10.1016/j.tre.2009.11.007
https://doi.org/10.1016/j.ejor.2019.11.067

	Optimizing pre-processing and relocation moves in the Stochastic Container Relocation Problem
	1 Introduction
	2 Literature review
	3 Problem description
	Running example

	4 Bounds and complexity
	4.1 Complexity
	4.2 Feasibility
	4.3 Upper bound
	4.4 Lower bound

	5 Solution methods
	5.1 Local search heuristic
	5.1.1 General overview
	5.1.2 Detailed description
	Running example continued

	5.2 Estimation number of relocation moves
	Running example continued

	5.3 Branch-and-bound algorithm

	6 Numerical results
	6.1 Optimal solution
	6.2 Local search heuristic
	6.3 SCRP and CPMP

	7 Conclusion
	Acknowledgments
	References

