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ABSTRACT

A new approach to parameterizing subgrid-scale processes is proposed: The impact of the unresolved dynamics

on the resolved dynamics (i.e., the eddy forcing) is represented by a series expansion in dynamical spatial modes

that stem from the energy budget of the resolved dynamics. It is demonstrated that the convergence in these so-

called energy modes is faster by orders of magnitude than the convergence in Fourier-type modes. Moreover, a

novel way to test parameterizations in models is explored. The resolved dynamics and the corresponding in-

stantaneous eddy forcing are defined via spatial filtering that accounts for the representation error of the equations

ofmotion on the low-resolutionmodel grid. In thisway, closures canbe testedwithin thehigh-resolutionmodel, and

the effects of different parameterizations related to different energy pathways can be isolated. In this study, the

focus is on parameterizations of the baroclinic energy pathway. The corresponding standard closure in ocean

models, the Gent–McWilliams (GM) parameterization, is also tested, and it is found that the GM field acts like a

stabilizing direction in phase space. TheGMfield does not project well on the eddy forcing and hence fails to excite

the model’s intrinsic low-frequency variability, but it is able to stabilize the model.

1. Introduction

It is crucial that climate models are able to accurately

simulate the climate’s internal variability, in addition to

the climate’s mean state and externally forced climate

changes (IPCC 2013). For example, a correct represen-

tation of internal climate variability is needed in climate

change detection and attribution studies. Such studies are

based on signal-to-noise estimates for which the climate’s

intrinsic low-frequency variability (LFV) must be esti-

mated, at least in part, from long control integrations of

climate models. Also for climate prediction studies a

correct representation of the intrinsic climate variability

is crucial such that internally generated sources of pre-

dictability can be exploited. Finally, the ability of models

to make quantitative projections of changes in climate

variability, including the statistics of extreme events

under a warming climate, is dependent on an accurate

representation of the climate’s internal variability.

The climate’s intrinsic LFV is typically described by

large-scale modes of climate variability, which are often

either statistical eigenmodes (e.g., EOFs) or dynamical

eigenmodes (e.g., linear instability modes; see von

Storch and Zwiers 1999; IPCC 2013; Dijkstra 2016). The

modes of climate variability are characterized as large

scale because they include large spatial structures such

as basinwide coupled modes of ocean–atmosphere var-

iability (e.g., El Niño–Southern Oscillation), Rossby

wave trains, midlatitude jets and storm tracks, and so on.

In particular with respect to the ocean, a number of

LFVmodes (i.e., frommultiannual to multidecadal time

scales) have been described (Deser et al. 2010; Dijkstra

2016). It is clear from observations that multidecadal

patterns of sea surface temperature variability exist, such

as theAtlanticmultidecadal oscillation (Schlesinger and

Ramankutty 1994; Kerr 2000) and the Pacific de-

cadal oscillation (Mantua et al. 1997; England et al. 2014).Corresponding author: Jan Viebahn, viebahn@cwi.nl
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Most of these modes have a particular regional or even

global manifestation whose amplitude can be larger than

that of human-induced climate change. For example, in-

trinsicmultidecadal variability of the ocean heat content has

been held responsible for the relatively low recent trend in

the globalmean surface temperature anomaly, also referred

to as the ‘‘global warming hiatus’’ (Meehl et al. 2011, 2013).

However, care is required when interpreting modes of

climate variability since 1) their interpretation depends

on how one separates modes of variability from forced

changes in the timemean, 2) theymay change drastically

in space, structure, or probability distribution in re-

sponse to climate change, and 3) in strongly nonlinear

regimes theymay be not strictly large scale but the large-

scale structures can be entangled with smaller-scale

structures such that some modes of climate variability

may not be entirely representable in climate models

with a too coarse spatial resolution.

Moreover, due to the fact that the real ocean dynamics

resides in a highly turbulent regime (with a large Reyn-

olds number leading to a high-dimensional unstable

manifold on the attractor) it still remains hard to un-

derstand the exact physical mechanisms behind the

ocean’s LFV (Berloff and McWilliams 1999a; Hogg

et al. 2005; Dijkstra 2016). Plenty of model studies an-

alyzing eddy-resolving ocean models show that LFV in

such models is commonplace (Berloff and McWilliams

1999a; Hogg et al. 2005), and it is now known that the

collective action of oceanic mesoscale eddies is one of

the main drives of the midlatitude LFV (Kwon 2010).

But at the same time the strong eddy field can obscure

many features of the circulation, making it difficult to

agree upon themechanisms underpinning the variability

(Hogg et al. 2005; Dijkstra 2016).

Central questions still need further clarification:

Which part of the ocean’s LFV is completely intrinsic to

the ocean and which part involves a dynamical coupling

to the atmosphere? Which part of the ocean’s intrinsic

LFV can be traced back to stationary modes at high

viscosity (i.e., low-order bifurcations) and which part

represents a genuinely eddy-driven turbulent phenom-

enon (i.e., physical mechanisms solely active at high

Reynolds numbers) (Hogg and Blundell 2006; Berloff

et al. 2007; Le Bars et al. 2016; Dijkstra 2016)?

Clarification of these questions is hampered by the fact

that computational limitations forcemost studies on climate

variability to employ climate models with ocean compo-

nents that do not resolve the internal Rossby deformation

radius (Hallberg 2013). In these coarse-resolution ocean

models (typically operating at a horizontal resolution of 18)
usually deterministic eddy parameterizations are applied

that are based on diffusive terms that aim to model the

potential andkinetic energy transfer from themeanfield to

the eddy field. These diffusive eddy parameterizations

achieve a reasonable representation of the time-mean effect

of the mesoscale eddy field on the time-mean flow (Bryan

et al. 2014; Griffies et al. 2015; Viebahn et al. 2016), but they

are not able to excite the ocean’s internal LFV observed in

eddy-resolving ocean model simulations (Le Bars et al.

2016). Consequently, the estimation of internal variability

uncertainty (stemming from the chaotic nature of the sys-

tem) in climate change detection or projections of climate

change is still strongly hampered by model uncertainty (i.e.,

limitations of a model’s representation of the chaotic nature

of the system) in many current climate change studies.

Hence, the search for suitable eddy parameterizations

remains a challenging theoretical topic with clear practical

dimension. Recently, efforts have been made toward eddy

parameterizations that aim to step out of the diffusive

parameterization framework and try to represent the eddy

effects in terms of stochastic eddy forcing (Berloff 2005c;

Grooms and Majda 2013; Porta Mana and Zanna 2014;

Verheul et al. 2017). Stochastic climate modeling is based

on the concept of scale separation in time (Franzke et al.

2015), namely, that the state vector of the system can be

decomposed into fast modes and slow (low frequency)

modes such that the time scales of these modes strongly

differ. The impact of the fast modes on the slow modes

appears as eddy forcing in the equations of motion for

the slow modes. The development of stochastic climate

models then proceeds by accounting for the effects of the

unresolved fast modes in a stochastic fashion.

Moreover, for models formulated in physical space

(likemost oceanmodels) the essential difference between a

high-resolution model and a low-resolution model is the

extent of spatial information. The eddy forcing actually

represents the impact of the spatially unresolved (or sub-

grid scale or small scale) processes on the spatially resolved

(or larger scale) processes. Consequently, for models in

physical space time-scale separation should imply scale

separation in space. That is, the patterns associated with

slow variability should exhibit strictly large-scale spatial

structures whereas the patterns associated with fast vari-

ability should show strictly small-scale spatial structures.

Otherwise, the slow modes and the fast modes cannot be

disentangled on the low-resolution model grid.

However, scale separation only holds for regimes in

which scales are weakly coupled whereas in turbulent re-

gimes different scales are strongly nonlinearly coupled. The

lack of time-scale separation introduces non-Markovian

memory effects and complicates the derivation of sys-

tematic parameterizations. The lack of scale separation

in space implies that the dynamical modes aremultiscale

patterns both in the horizontal and vertical directions.

For example, for the midlatitude ocean gyres it is found

that due to the background flow most eigenmodes
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contain a large variety of scales (Shevchenko et al.

2016). In this case, the LFV is not a single-mode pattern,

but rather a coherent pattern phenomenon consisting

of a large number of short period phase-related eigen-

modes interacting with each other. We note that this can

apply to both (high resolution) statistical eigenmodes

like EOFs (Gille and Kelly 1996) and linear eigenmodes

on a background flow (Shevchenko et al. 2016). Obvi-

ously, the small-scale structures of the dynamical modes

are not resolvable on a low-resolution model grid.

In this study, we approach the formulation of eddy

parameterizations in the following way: First, we define

the resolved dynamics and the corresponding instanta-

neous eddy forcing via spatial filtering (instead of, e.g.,

temporal averaging) such that we can account for the

representation error of the equations of motion on the

low-resolution model grid. Second, we represent the im-

pact of the unresolved dynamics on the resolved dy-

namics (i.e., the eddy forcing) in terms of a series

expansion in dynamical spatial modes that stem from the

energy budget of the resolved dynamics. These so-called

energy modes exhibit strictly large-scale spatial patterns

and are equipped with a clear physical interpretation.

In section 2, the resolved dynamics and the related

instantaneous eddy forcing are defined.We describe our

eddy-resolving ocean model and its LFV in section 2a.

Our spatial filtering approach is introduced in section

2b. The corresponding filtered equations of motion and

the related eddy forcing terms are presented in section

2c, and in section 2d we analyze the resulting large-scale

and small-scale energetics. Subsequently, section 3 deals

with developing and testing closures with a focus on the

baroclinic energy pathway. We show how we can test

parameterizations in a high-resolution model (section

3a) and test the performance of the standard closure of

the baroclinic energy pathway in ocean models [i.e., the

Gent–McWilliams (GM) parameterization; Gent and

McWilliams 1990] in section 3b. Finally, in section 3c we

define and test the representation of the eddy forcing in

energy modes with a focus on representing the baro-

clinic energy pathway. We end with a summary (section

4) and discussion (section 5).

2. Framework: Eddy forcing of the large-scale flow

Our general starting point is the following (see, e.g.,

Berloff 2005a): First, an eddy-resolving (ER) model is

given (section 2a) in order to obtain a reference solution,

say with state vector c, which contains both the large-scale

and eddy components. Second, a non-eddy-resolving

(non-ER) model is supposed to have the same general

setup as the ER model (e.g., type of governing conserva-

tion equations, domain size, and boundary conditions; see

section 2c), but the former has a significantly coarser

horizontal grid resolution (by a factor of 10 in this study).

Consequently, the non-ERmodel has far fewer degrees of

freedom and it can only solve for the large-scale flow

evolution. Moreover, the non-ER model may contain

additional dynamical terms in the governing conservation

equations (e.g., the current deterministic eddy parame-

terizations) that are supposed to parameterize part of the

interactions between large-scale components and (sub)

mesoscale eddy components.

Finally, the eddy forcing (EF) is a (not necessarily

unique) dynamical term that still needs to be added to

the governing conservation equations of the non-ER

model at hand such that the non-ER solution, say with

state vector ĉ, correctly approximates the large-scale

structure of the original flow (i.e., of the ER model so-

lution c). That is, the EF represents interactions be-

tween the large-scale flow and eddy fluctuations that are

relevant for the large-scale flow evolution. The precise

form of the EF depends on 1) the specific definition of

the large-scale structure of the original flow (section 2b)

and 2) the eddy parameterizations already included in

the chosen non-ER model equations (section 3).

a. Eddy-resolving ocean model exhibiting
low-frequency variability

We consider a standard model of idealized ocean dy-

namics, namely, quasigeostrophic (QG) potential vorticity

(PV) equations in a classical double-gyre configuration

(see, e.g., Vallis 2006). The fluid-dynamic model describes

idealized, wind-driven midlatitude ocean circulation with

prescribed density stratification in a flat-bottom square

basin with north–south and east–west boundaries. We em-

ploy the QG PV conservation equations for two isopycnal

layers, representing the simplest description of baroclini-

cally unstable dynamics (Olbers et al. 2012). These are

›
t
q
1
1 J(c

1
, q

1
)5A

H
=4c

1
2

›
y
tx

r
0
H

1

, (1)

›
t
q
2
1 J(c

2
, q

2
)5A

H
=4c

2
, (2)

where the PV of the two isopycnal layers is given by

q
1
5=2c

1
1by1

f
0

H
1

h, q
2
5=2c

2
1by2

f
0

H
2

h , (3)

with the interface displacement h5 (f0/g
0)(c2 2c1),

and horizontal velocities given by ui 5 (ui, yi)5=
:
ci 5

(2›yci, ›xci).

In our numerical model simulations, the flow is driven

at the surface by the asymmetric double-gyre zonal wind

stress (as, e.g., in Berloff 2005a,c):
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tx(y)5 t
0

�
cos

�
2p(y2L/2)

L

�
1 2 sin

�
p(y2L/2)

L

��
,

ty 5 0, (4)

where t0 5 0:04Nm22, and L5 3500km is the size of

the square basin with 0# x, y#L. The first internal

Rossby radius of deformation, R5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0H1H2/(Hf 20 )

p
,

represents a length scale of baroclinic eddies. It is set to

R 5 40km, a typical value for the midlatitude ocean

circulation. We use mean isopycnal layer thicknesses of

H1 5 250mand H2 5 3750m, such that the mean ocean

depth is H 5 4000m. We also use typical values for the

mean density of seawater r0 5 1000kgm23 and the ref-

erence Coriolis parameter f0 5 8:34 1025 s21, such that

we have for the meridional variation of the Coriolis

parameter b5 1:87 10211 m21 s21 and for the reduced

gravity g0 5 g(r2 2 r1)/r1 ’ 0:048m s22. Finally, we use

an eddy-resolving horizontal resolution of 10 km with

a correspondingly small lateral viscosity coefficient,

AH 5 100m2 s21, as well as no-slip boundary conditions

(similar to Berloff 2005a,c). The reference simulation is

500 years long and we analyze daily output.

Figure 1 shows a snapshot (Fig. 1c) and a temporal av-

erage (Fig. 1d) of the upper-layer streamfunction [similar to

Figs. 1a,c in Berloff (2005a), and Figs. 1a and 2a in Berloff

(2005c)]. The upper-ocean time-mean circulation (Fig. 1d)

consists of the southern (subtropical) and northern (sub-

polar) gyres that fill about 2/3 and 1/3 of the basin, re-

spectively, which is consistent with the wind stress pattern.

The time-mean flow is characterized by the Sverdrup

balance in most parts of the basin. Only in regions related

to the pair of the western boundary currents and their

eastward jet (EJ) extensions do nonlinear and frictional

terms become dominant (Pedlosky 1996).We note that for

our specific model setup the boundary currents do not

merge with each other but the subpolar gyre enters the

subtropical region near thewestern boundary such that the

point of separation from the coast of the subtropical

western boundary current is pushed southward relative to

the line of zero wind stress curl (similar to Berloff 2005a,c).

This is a robust regime that appears at large Reynolds

number in the stratified and baroclinically unstable

double-gyre flow with no-slip boundary conditions (e.g.,

Haidvogel et al. 1992; Berloff and McWilliams 1999b;

Siegel et al. 2001). In terms of the fluctuations, the basin

can be partitioned into the more energetic ‘‘western’’ part,

characterized by strong vortices, and the less energetic

‘‘eastern’’ part, dominated by the planetary waves [see

Berloff et al. (2002) for details].

The corresponding reservoirs of kinetic energy (KE)

and available potential energy (PE) are given by

KE52
r
0

2

ð
(H

1
c
1
=2c

1
1H

2
c
2
=2c

2
) dA,

PE5
r
0
g0

2

ð
h2 dA . (5)

The two reservoirs are governed by the following con-

servation equations [obtained by multiplying Eqs. (1)

and (2) with 2r0Hici followed by global integration]:

dKE

dt
5C(PE,KE)1G(KE)1D(KE), (6)

dPE

dt
52C(PE,KE), (7)

where C(PE, KE) represents the conversion between

PE and KE, and the generation of KE [G(KE)] and the

dissipation of KE [D(KE)] are given by

G(KE)5

ð
c
1
›
y
tx dA,

D(KE)52A
H
r
0

ð
(H

1
c
1
=4c

1
1H

2
c
2
=4c

2
) dA . (8)

Figure 2 shows the temporal evolution of the ener-

getics of the reference simulation. The PE (Fig. 2a)

exhibits clear cycles of decadal variability. The about

4 times smaller KE also shows cycles of decadal vari-

ability, which lags the variability in PE by 1–2 years. The

wind energy inputG(KE) (Fig. 2b) is balanced by lateral

dissipation D(KE), with both showing also significant

high-frequency variability on top of low-frequency var-

iability, with higher variance in D(KE) than in G(KE).

Figure 1 also shows upper-layer streamfunction anoma-

lies corresponding to a low (Fig. 1e) and a high (Fig. 1f) in

PE (see years 52 and 56 in Fig. 2a). These anomaly patterns

are similar to those shown in Berloff et al. (2007) (see their

Figs. 2 and 4), and demonstrate that the variability is con-

centrated around the subtropical EJ. More precisely, the

decadal transitions are related to coherent meridional shifts

and variations of the intensity of the subtropical EJ, likely

governed by the nonlinear adjustment of the combined

EJ–eddies system [see Berloff et al. (2007) for details].

b. Flow decomposition into large-scale and eddy
components via spatial mode filtering

In this study, the large-scale flow structure is determined

by spatial mode filtering. For that the ER model solution

c is expanded in a set of spatial filter modes xi:

c(x, t)5 �
N

i

C
i
(t)x

i
(x) . (9)

Note that the spatial filter modes xi are time independent

(i.e., nondynamical). The corresponding large-scale (or
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filtered) component of c is given by a truncated expansion

(equivalent to applying a sharp spectral filter):

[c](x, t) :5 �
N̂,N

i

C
i
(t)x

i
(x) . (10)

The cutoff N̂ has to be determined such that the retained

spatial filter modes xi#N̂ have a consistent representation

on the coarse-resolution grid of the non-ERmodel (see the

consistency conditions below). The non-ER model solu-

tion ĉ (denoting spatial fields on the non-ER model grid

by a hat) would then optimally be given by1

FIG. 1. Large-scale component of an upper-layer streamfunction (a) snapshot and (b) time mean. (c),(d) The

corresponding reference (i.e., unfiltered) upper-layer streamfunctions. Anomalies of the reference (i.e., unfiltered)

upper-layer streamfunction [with respect to the timemean shown in (d)] corresponding to (e) a low and (f) a high in

the low-frequency variability of PE (see Fig. 2a). The contour interval in all panels is 2.5 Sv (1 Sv [ 106m3 s21).

1 Identity with respect to time evolution is meant in a statistical/

dynamical sense.
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ĉ(x, t)5 �
N̂

i

C
i
(t)x̂

i
(x) . (11)

More precisely, the specification of the spatial filter

modes xi and the cutoff N̂ is guided by the following

three consistency conditions:

Scale-content (or image) consistency (SCC): The

scale content of the spatial filter modes xi#N̂ has

to be resolvable by the non-ER model grid resolu-

tion in order to avoid aliasing effects. The scale

content of a spatial pattern is typically measured by

the familiar Fourier modes (i.e., eigenmodes of the

FIG. 2. Time series of (a) energy reservoirs, (b) energy generation and dissipation, (c) conversion be-

tween large-scale and small-scale kinetic energy, (d) conversion between large-scale kinetic energy and

large-scale available potential energy, (e) conversion between large-scale available potential energy and

small-scale available potential energy, and (f) temporal tendency of the large-scale available potential

energy reservoir. Note that the last three terms constitute the large-scale available potential energy

budget [Eq. (27)].
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Laplacian). The corresponding cutoff N̂Nyquist is

given by the well-known Nyquist criterion, which

states that the smallest wavelength included in

xi#N̂Nyquist
must not be smaller than twice the grid

spacing of the non-ER model. In particular, we

note that filtering of the ER model reference

solution c has to be done on the ER model grid

(i.e., by using xi#N̂ , and not by using x̂i#N̂ and the

injection of c on the coarse grid) since otherwise

aliasing errors occur.

Boundary conditions consistency (BCC): The large-

scale flow is supposed to be a solution of the non-

ER model equations and, hence, has to satisfy its

boundary conditions. In the governing model

equations, the differential operator with the

highest-order derivative (typically related to dis-

sipation) determines the number of boundary

conditions that have to be specified. Conse-

quently, the eigenmodes of this differential oper-

ator represent a set of spatial modes which are

always able to satisfy the boundary conditions (i.e.,

span the correct function space), and, hence,

represent the first choice if the Fourier modes

(i.e., eigenfunctions of the Laplacian) cannot sat-

isfy the boundary conditions.

Dynamical consistency (DC): The conservation

equations governing the evolution of [c] are

obtained by filtering the ERmodel equations (see

section 2c). The non-ER model equations are

supposed to represent these equations except that

the terms including interactions with eddy com-

ponents are replaced by eddy parameterizations.

For that to hold, the spatial derivatives appearing

in the governing equations have to be similar for

both xi#N̂ and x̂i#N̂ ; that is, the differences in

computing dynamical terms on the different grids

must be not be significant. Otherwise, the EF

would not solely represent the interactions be-

tween the large-scale flow and eddy fluctuations

that are relevant for the large-scale flow evolution

but would also have to compensate for differ-

ences simply induced by computing the dynami-

cal budget of the large-scale flow on different

grids.2 Consequently, one must generally require

N̂, N̂Nyquist.

In our ER model no-slip boundary conditions are

applied such that Fourier modes cannot be used as the

spatial filter modes xi (see the BCC condition). Conse-

quently, we use as spatial filter modes the eigenmodes of

the bi-Laplacian,

=4x
i
5 l

i
x
i
, (12)

for which no-slip boundary conditions can be prescribed.

Note that li represents the globally integrated lateral

dissipation related to the normalized3 xi since li 5Ð
xi=

4xi dx dy.

Figure 3 shows selected leading eigenmodes (ortho-

normalized) of the bi-Laplacian with no-slip boundary

conditions computed on the high-resolution (i.e., 10 km)

grid. The overall structure (i.e., the scale content) of the

xi is still very similar to the Fourier modes (but note that

the quantitative differences are nevertheless global

and not only localized at the boundary). Computing the

eigenspectrum of =4 on both the ER model grid (i.e.,

10-km resolution) and the non-ERmodel grid (i.e., 100-km

resolution) enables us to specify a cutoff N̂ in accordance

with condition DC. Figure 4 shows the corresponding ei-

genvalues and their relative difference. As a threshold we

choose 10% relative difference in globally integrated lat-

eral dissipation, which implies N̂’ 54. The corresponding

relative difference in globally integrated kinetic energy

(also shown in Fig. 4) is about 5%.

Figure 1 also shows the corresponding snapshot

(Fig. 1a) and temporal average (Fig. 1b) of the large-scale

(i.e., filtered with N̂5 54) upper-layer streamfunction.

The overall structure of the double-gyre circulation is

captured by the large-scale flow in both cases. In partic-

ular, the separation point of the subtropical western

boundary current is exactly recovered. However, local

differences are obvious (also in the time-mean patterns);

for example, the locations of the local extremes are shif-

ted. Consequently, spatial filtering and temporal filtering

are not equivalent.

c. Conservation equations of the large-scale flow

The conservation equations governing the evolution

of the large-scale flow [c] are obtained by applying the

filtering operation to the QG PV budget in Eqs. (1) and

(2). Filtering and application of the bi-Laplacian obvi-

ously commute for the eigenmodes of the bi-Laplacian.

However, for no-slip boundary conditions filtering with

the eigenmodes of the bi-Laplacian does not commute

with both the zonal derivative (i.e., linear beta term) and

2Note that this criterion is expressed here with respect to the

equations in physical space.With respect to the equations inmodal/

wavenumber space it says that the constant interaction coefficients

(obtained by computing the amplitude equations of the individual

modes) related to the resolved large-scale modes should not sig-

nificantly change whether computed from the high-resolution or

low-resolution representation of the modes.

3 Orthonormalized in the streamfunction norm (equivalent to

PE norm),
Ð
xixj dx dy5 dij.
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FIG. 3. Selected leading eigenmodes (orthonormalized) of the bi-Laplacian with no-slip boundary conditions computed on the high-

resolution grid (i.e., 3492 grid points).
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the Laplacian. Hence, filtering of the governing equa-

tions [Eqs. (1) and (2)] leads to the following equations

governing the filtered flow4:

›
t
[q

1
]1 J([c

1
], [q

1
])52R

1
1A

H
=4[c

1
]2

[›
y
tx]

r
0
H

1

, (13)

›
t
[q

2
]1 J([c

2
], [q

2
])52R

2
1A

H
=4[c

2
] , (14)

where the filtered PV reads

[q
i
]5=2[c

i
]1b[y]1

(21)i21
f
0

H
i

[h] .

The residual PV fluxes Ri, representing interactions be-

tween the large-scale flow and eddy fluctuations that are

relevant for the large-scale flow evolution, are given by

R
i
5RA

i 1RT
i , (15)

with the residual advection of PV RA
i and the residual

related to the time tendency of relative PVRT
i given by

RA
i [ [J(c

i
,q

i
)]2 J([c

i
], [q

i
]) , (16)

RT
i [ [›

t
=2c

i
]2 ›

t
=2[c

i
]5 [=2›

t
c
i
]2=2[›

t
c
i
] . (17)

The residual advection of PV can be further decom-

posed into RA
i 5Rb

i 1RM
i 1RB

i , with

Rb
i [b[›

x
c
i
]2b›

x
[c

i
] , (18)

RM
i [ [J(c

i
,=2c

i
)]2 J([c

i
],=2[c

i
]) , (19)

RB
i [

"
J

 
c
i
,
(21)i21

f
0

H
i

h

!#
2 J

 
[c

i
],
(21)i21

f
0

H
i

[h]

!

(20)

5 (21)i21 f 20
g0H

i

[J(c
1
,c

2
)]2 J([c

1
], [c

2
])

� �
, (21)

which are related to residual planetary vorticity ad-

vection, residual nonlinear momentum fluxes, and re-

sidual buoyancy fluxes (i.e., interface displacements),

respectively.

In the following, we focus on a twofold decomposition

of the residual PV fluxes Ri into

R
i
5RH

i 1RB
i , (22)

whereRB
i represents the part ofRi that is related to the

vertical density distribution/layer interaction/interface

height/APE, whereas RH
i [Rb

i 1RM
i 1RT

i is related

to the horizontal eddy PV fluxes. In this study, the main

focus will be on RB
i (see section 3).

d. Lorenz energy cycle

The Lorenz energy cycle (LEC) describes the bal-

ances of four mechanical energy reservoirs, the large-

scale circulation’s kinetic energy ([KE]) and available

potential energy ([PE]), the eddy kinetic energy (KE0)
and eddy available potential energy (PE0). The four

reservoirs are given by

[KE]52
r
0

2

ð
(H

1
[c

1
]=2[c

1
]1H

2
[c

2
]=2[c

2
]) dA,

KE0 5KE2 [KE], (23)

[PE]5
r
0
g0

2

ð
[h]2 dA, PE0 5PE2 [PE], (24)

and they are governed by the following conservation

equations, which are obtained by multiplying Eqs. (13)

and (14) with 2r0Hi[ci] and global integration:

FIG. 4. First 300 eigenvalues of the bi-Laplacian (left axis) for the

ER model (blue) and the non-ER model (red), and the relative

difference (right axis), i.e., j(l̂i/li 2 1)3 100j (green). Also shown is

the relative difference in globally integrated kinetic energy, i.e.,

j��Ð x̂i=
2x̂i dx dy

�
/
�Ð
xi=

2xi dx dy
�
2 1
�
3 100j (black). Note that the

number of eigenmodes for theER (non-ER)model is 3492 (342). The

Nyquist cutoff for the non-ER model is N̂Nyquist 5 172 5 289.

4 Note that there is a subtlety here: We assume that the

terms ›t=
2[ci]5=2[›tci], b›x[ci], J([ci], [=

2ci]), and Jð[ci],

((21)i21
f0/Hi)[h]Þ5 (21)i21(f 20 /g

0Hi)J([c1], [c2]) do not project

on modes that lie outside the subspace defined by the filter cutoff

N̂. Of course, every model discretized and stepped forward in

physical space (and not directly in modal/wavenumber space)

suffers from the fact that energy can be transferred to small-scale

modes that cannot be adequately represented on the spatial grid

(leading, e.g., to aliasing). However, since we use the eigenmodes

of the frictional term (which typically represents the most small-

scale patterns) we expect to essentially remain within the subspace

spanned by the large-scale modes (defined via the filter cutoff N̂).
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d[KE]

dt
5C(KE0, [KE])1C([PE], [KE])

1G([KE])1D([KE]), (25)

dKE0

dt
52C(KE0, [KE])1C(PE0, KE0)

1G(KE0)1D(KE0) ,
(26)

d[PE]

dt
5C(PE0, [PE])2C([PE], [KE]) , and (27)

dPE0

dt
52C(PE0, [PE])2C(PE0, KE0) . (28)

The respective generation and dissipation terms are

given by

G([KE])5

ð
[c

1
][›

y
tx]dA , (29)

G(KE0)5G(KE)2G([KE]), (30)

D([KE])52A
H
r
0

ð
(H

1
[c

1
]=4[c

1
]

1H
2
[c

2
]=4[c

2
]) dA, and (31)

D(KE0)5D(KE)2D([KE]), (32)

and the terms related to energy exchange between the

large-scale flow and eddy components read

C(KE0, [KE])5 r
0

ð�
H

1
[c

1
]RH

1 1H
2
[c

2
]RH

2

�
dA , (33)

C(PE0, [PE])5 r
0

ð�
H

1
[c

1
]RB

1 1H
2
[c

2
]RB

2

�
dA (34)

52r
0
f
0

ð
[h][J(c

1
,c

2
)]dA . (35)

Note that all LEC terms are instantaneously given due

to our spatial (instead of temporal) filtering approach.

Figure 5 shows the different terms of the LEC aver-

aged in time (over 500 years of daily output) and sum-

marizes the time-mean state and variance of the

different energy reservoirs and energy pathways (for the

reference simulation described in section 2a). The fil-

tered termsG([KE]) and [PE] capture 96% and 89% of

the full (i.e., unfiltered) G(KE) and PE values, re-

spectively, implying that G(KE) and PE are dominated

by large-scale structures. In contrast, D([KE]) is very

small [1.8% of D(KE)], implying that D(KE) is domi-

nated by small-scale structures. Consequently, almost all

of G(KE) has to be transferred to the eddy field via

eddy fluxes. Both conversion terms, C([PE], PE0) and

C([KE], KE0), have the same order of magnitude but

C([PE], PE0) dominates (almost twice as large both in

temporal average and variance). The two eddy energy

reservoirs are of similar magnitude with KE0 being al-

most 5 times larger than [KE] (capturing 83% of KE).

The overall picture is similar to the one found in re-

alistic global ocean models (e.g., von Storch et al. 2012).

Common in both the ocean and the atmosphere is that

the dominant power pathway is the baroclinic pathway

[PE] / PE0 / KE0 characterized by a conversion

C([PE], PE0) from the large-scale available potential en-

ergy to the eddy available potential energy that has about

the same magnitude5 as the conversion C(PE0, KE0) from
the eddy potential energy to the eddy kinetic energy. That

is, as in the atmosphere, oceanic mesoscale eddies are, to a

large extent, generated by baroclinic instability, which is

themainmechanism in converting the large-scale available

potential energy into the eddy kinetic energy in the ocean.

FIG. 5. Lorenz energy cycle (temporal average and standard

deviation) of the two-layerQGmodel based on spatial filtering and

500 years of daily output. Shown are the reservoirs of large-scale

available potential energy ([PE]), large-scale kinetic energy

([KE]), eddy available potential energy (PE0), and eddy kinetic

energy (KE0), as well as the corresponding energy generation G,

dissipation D, and conversion C terms.

5 In ourmodel setup the two conversion terms are identical in the

time mean (see Fig. 5) due to the absence of buoyancy sources/

sinks.
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Moreover, and in contrast to the atmosphere, the two con-

version terms connected to the large-scale kinetic energy

[KE]—that is, C([KE], KE0) and C([KE], [PE])—are di-

rected away from [KE] in the ocean. That is, the two

main power pathways in the ocean are [KE] /
[PE] / PE0 / KE0 and [KE] / KE0. The oceanic

large-scale circulation, being fueled by the winds,

converts its kinetic energy into the large-scale avail-

able potential energy by Ekman pumping. This con-

version substantially facilitates density differences

and hence the large-scale available potential energy

from which the baroclinic pathway originates. The

oceanic large-scale circulation converts also its kinetic

energy into the eddy kinetic energy.

Figure 2 shows different terms of the LEC evolving in

time. The variability in [PE] (Fig. 2a) and G([KE])

(Fig. 2b) is essentially identical to the variability in PE

and G(KE), respectively. This means that the low-

frequency variability in these fields is indeed large

scale, and hence can in principle be adequately captured

by a non-ER model. The converse is true for lateral

dissipationD(KE) (Fig. 2b) for which also the variability

(next to the time-mean value) of its large-scale compo-

nent D([KE]) is very small. The KE reservoir (Fig. 2a)

represents an intermediate quantity in the sense that its

large-scale component [KE] only captures part of the

low-frequency variability.

The large-scale wind energy input G([KE])

(Fig. 2b) is balanced by the energy transfer to the

eddy components via C([KE], KE0) (Fig. 2c) and

C([KE], [PE])/C([PE], PE0) (Figs. 2d,e). Most im-

portantly, both C([PE], PE0) andC([KE], KE0) regularly
show backscatter, that is, energy transfer from the

eddy components to the large-scale components. More-

over, the variances of C([PE], PE0) and d[PE]/dt [both

part of Eq. (27)] are significantly larger than the variances

of C([KE], KE0) and C([KE], [PE]). We note that

C([PE], PE0) and d[PE]/dt are highly anticorrelated with

a correlation coefficient of 20.89 {they tend to be posi-

tively correlated when C([KE], [PE]),C([KE], KE0)},
whereas the correlation coefficient of C([PE], PE0) and

C([KE], [PE]) {d[PE]/dt andC([KE], [PE])} is 0.42 (0.12).

3. Closures for the baroclinic energy pathway

In stratified flows two distinctively different types of

energy conversions between large-scale and eddy com-

ponents exist: the energy conversion C([PE], PE0) in-

volving density perturbations [see Eq. (34)], and the

energy conversion C([KE], KE0) solely related to (hor-

izontal) velocity perturbations [see Eq. (33)]. In the

temporal average (see Fig. 5), the latter represents a sink

of [KE], whereas the former represents a sink of [PE] as

part of the baroclinic energy pathway, [PE] / PE0 /
KE0. Instantaneously, both conversion terms can also

backscatter, that is, transfer energy from the small-scale

components to the large-scale components (Figs. 2c,e).

In a non-ERmodel these two energy transfers have to be

adequately modeled. In this study, we focus on closures

forC([PE], PE0), corresponding toRB
i in the large-scale

PV budget [see Eqs. (34) and (20)], and leave the

development of adequate closures for C([KE], KE0)
(i.e., RH

i ) for future work {note that C([PE], PE0) gen-
erally dominates over C([KE], KE0); see Fig. 5}.

a. Testing closures in an eddy-resolving model

To be able to isolate the direct effects of RB
i and the

performance of corresponding closures we adopt the

following approach: For a large-scale flow defined via

spatial filtering (section 2b) the corresponding conser-

vation equations (section 2c) can be computed in-

stantaneously from the corresponding eddy-resolving

model equations (section 2a). In other words, the non-

ER model, Eqs. (13) and (14), can be considered as part

of the ER model, Eqs. (1) and (2). To be able to test

closures for RB
i [Eq. (20)] in an isolated way, that is,

without the need to also parameterize RH
i , we perform

simulations with the ERmodel Eqs. (1) and (2) in which

we employ the following decomposition of the Jacobian

J at every time step:

J

 
c
i
,
(21)i21

f
0

H
i

h

!
5

"
J

 
c
i
,
(21)i21

f
0

H
i

h

!#
1DJ

5
Eq. (20)

J

 
[c

i
],
(21)i21

f
0

H
i

[h]

!
1RB

i 1DJ , (36)

where DJ[ J(ci, ð(21)i21f0/Hi)hÞ2 [Jðci, ((21)i21f0/

Hi)hÞ] corresponds to the small-scale component6

of Jðci, ((21)i21
f0/Hi)hÞ. Note that J([ci], ((21)i21

f0/

Hi)[h]) can be computed from the large-scale fields

and only redistributes large-scale energy but does

not contribute to large-scale energy dissipation/

generation.

Then a parameterization ofRB
i , say

~RB
i , can be tested

by performing simulations with the ER model Eqs. (1)

and (2) and including at every time step the replacement

RB
i /

~RB
i in Eq. (36). That is, the large-scale compo-

nent of the Jacobian, RB
i (which is needed in the non-

ER model), is parameterized whereas the small-scale

component, DJ, remains explicitly computed. We em-

phasize that the ‘‘true’’ RB
i is always available since we

6Note that [DJ]5 0 since we use a sharp filter.

APRIL 2019 V I EBAHN ET AL . 1085



solely perform simulations with the ER model. Hence,

quantities like the relative error
��RB

i 2
~RB
i

��/��RB
i

�� can
be computed at every time step. As demonstrated in the

following (sections 3b and 3c), it is by no means a trivial

task to parameterize RB
i in such a way that the energy

level and low-frequency variability of the large-scale

flow are captured.

b. Standard GM parameterization

In general, the GM parameterization is interpreted as

the standard downgradient parameterization for the

horizontal component of the isopycnal eddy flux (Vallis

2006; Olbers et al. 2012). In a layer model, this corre-

sponds to downgradient diffusion of interface displace-

ment h. More precisely, the isopycnal interface PV flux

is given by uih. Assuming a Reynolds decomposition

into mean (denoted by an overbar) and eddy (denoted

by a prime) components (e.g., via temporal averaging;

see, e.g., Pope 2000), the isopycnal interface eddy PV

flux is given by u0
ih

0, and the GM parameterization reads

u0
ih

0 52K
GM

=h , (37)

where KGM is an interfacial diffusivity typically

O(1000)m2 s21. Finally, the divergence of the interface

eddy PV flux (which actually appears in the mean PV

budget) becomes

J(c
0
,h

0
)5= � u0

ih
0 52= �K

GM
=h . (38)

The equivalent to J(c
0
i, h

0
) in case the eddy components

are defined via spatial filtering is RB
i [Eq. (20)]. That is,

in our case the GM parameterization reads

~RB
i 52

(21)i21
f
0

H
i

= �K
GM

=[h] , (39)

such that the unresolved buoyancy fluctuations are repre-

sented as local interfacial diffusion. Inserting Eq. (39) into

Eq. (34) and assuming a spatially constantKGM. 0 we get

~C(PE0, [PE])5 r
0
g0K

GM

ð
[h]=2[h]dA# 0. (40)

Consequently, the GM parameterization represents a

sink of [PE] at every instant of time and, hence, excludes

any backscatter [Eq. (40) actually corresponds to the

kinetic energy of the large-scale baroclinic mode].

1) CONSTANT GM DIFFUSIVITY

A constant KGM can be directly estimated from the

energetics of the reference simulation by combining the

temporal average (denoted by an overbar) of Eq. (34),

shown in Fig. 5, and the temporal average of Eq. (40),

such that7

K
GM

5
C(PE

0
, [PE])

r
0
g0
ð
[h]=2[h] dA

. (41)

This way the GM parameterization accounts exactly for

the time-mean [PE] dissipation, given the reference

large-scale flow. For our model results we get a typical

value of KGM ’ 1067m2 s21.

Figure 6a shows time series of PE resulting from

simulations in which the GM parameterization with a

constant KGM is employed (blue and green lines). To

assure numerical stabilityKGM$ 1500m2 s21 is necessary

in our model.8 The GM parameterization does its job by

extracting [PE] from the large-scale flow such that a sta-

tistical equilibrium results. However, the low-frequency

variability exhibited by the reference simulation (black

line) is absent. The dynamics exclusively reside below

the PE-level of the low-PE regime of the reference sim-

ulation. That is, the low-frequency transitions in phase

space to the high-PE regime are suppressed in case the

GM parameterization with a constant KGM is used. Pre-

sumably, backscatter is necessary for the dynamics in

order to be able to reach high-PE states.

2) TIME-DEPENDENT GM DIFFUSIVITY

For a time-dependent KGM the GM parameterization

[Eq. (39)] reads

~RB
i 52

(21)i21
f
0

H
i

K
GM

(t)=2[h] . (42)

We diagnoseKGM from the model results via projection

on =2[h] (equivalent to a least squares estimation),

that is,

K
GM

(t)52
H

i

(21)i21
f
0

ð
RB

i =
2[h]dx dyð

(=2[h])2 dx dy

, (43)

where RB
i represents the explicitly computed residual

PV flux. That is, KGM represents the expansion co-

efficient of RB
i in =2[h] [see also section 3c, Eq. (44)].

7 Note that this estimation is not affected by rotational eddy

fluxes since it is not computed on the level of fluxes [like Eq. (37)]

but on the level of dynamical terms appearing in the PV budget.
8 Note that the model blows up if ~RB

i is simply set to zero, con-

sistent with the fact that RB
i acts as a sink of time-mean [PE] (see

Fig. 5).

1086 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 49



Figure 6a shows the time series of PE resulting

from a simulation in which the GM parameterization is

employed with KGM obtained from projection [i.e.,

Eq. (43)] at every time step (red line). Now a form of

low-frequency variability is indeed excited but the cor-

responding high-PE regime resides at and below the

low-PE regime of the reference simulation (black line),

and the PE variability has smaller variance (see also the

second row of Table 1). The low-frequency variability

actually oscillates around the PE level of the simulation in

which the GM parameterization withKGM5 1500m2 s21

is employed (blue line). This is consistent with the fact

that the time mean of KGM obtained from projection

is given by KGM ’ 1585m2 s21 (see the second row of

Table 1 and also the next paragraph). Consequently,

also in case of the GM parameterization with a time-

dependentKGM obtained from Eq. (43) the transitions in

phase space to the high-PE regime of the reference sim-

ulation are not captured.

Figure 6b shows the estimated pdf of KGM computed

from Eq. (43) and either employed in the GM parame-

terization (red) or just diagnosed from the reference

simulation (black). BothKGM distributions are unimodal

and slightly positively skewed. Most striking, however, is

that in both cases KGM captures a significant amount of

negative values. Negative KGM values are not consistent

with a diffusion model. Hence, the low-frequency vari-

ability (red line in Fig. 6a) presumably emerges from the

wrong reason, namely, backscatter due to a negative

diffusivity. We also note that the temporal average

and standard deviation of KGM is significantly smaller

when only diagnosed from the reference simulation

(448 6 697m2 s21) than when the GM parameterization

is actually applied (1585 6 1374m2 s21; see also the sec-

ond rowof Table 1).We discuss this difference in detail in

the next section [sections 3c(3) and 3c(4)].

Finally, we emphasize that the relative error��RB
i 2

~RB
i

��/��RB
i

�� of theGMparameterization is about

97% and hence extremely high (see the second row of

Table 1). This holds for when the GM parameterization

is employed as well as for when the GM parameteriza-

tion is just diagnosed from the reference simulation [see

also Fig. 7a, discussed below in sections 3c(3) and 3c(4)].

c. Dynamical spatial mode representation of the eddy
forcing based on energetics

It is well known that the diffusive closure approach is

limited since eddies also act upgradient in geophysical

turbulence (Starr 1968; Berloff 2005a), implying energy

transfer from the eddy components to the large scale

(i.e., backscatter; see Figs. 5c,e). Consequently, instead

of aiming for an improved turbulent diffusion closure

(e.g., via a spatially/temporally/stochastically varying

eddy diffusivity tensor) we seek for additional dynami-

cal large-scale spatial fields (next to the large-scale iso-

pycnal gradient) to represent the eddy forcing more

adequately. That is, in order to extend or replace the

GM parameterization we think in terms of a dynamical9

spatial mode expansion of the eddy forcing,

FIG. 6. (a) Potential energy corresponding to the reference simulation (black; same as in Fig. 2a), and for sim-

ulations in which theGMparameterization [Eq. (39)] is employedwithKGM either a constant (blue, green) or given

via Eq. (43) (red). (b) Estimated probability density function of KGM [computed via Eq. (43)] for a simulation in

which the GM parameterization is employed (red) and for the reference simulation (black; the GM parameteri-

zation is not employed in the model but KGM is just diagnosed). The average and standard deviation are 1585 6
1373m2 s21 (red) and 448 6 697m2 s21 (black).

9 Dynamical modes are time-dependent and budget-based in the

sense that their computation explicitly involves the governing

conservation equations (see, e.g., Dijkstra 2016). In contrast, for

example, statistical modes (e.g., EOFs) are data based and not

budget based.

APRIL 2019 V I EBAHN ET AL . 1087



~RB
i (x, t)5 �

l

k51

j
k
(t)u

k
(x, t) , (44)

with time-dependent spatial modes uk(x, t), and

evolution coefficients jk(t). The GM parameteriza-

tion in Eq. (42) represents a special case with l5 1,

j1 52((21)i21
f0/Hi)KGM(t), and u1 5=2[h].

Optimally, the spatial modesuk(x, t) can be efficiently

obtained from terms of the large-scale flow equations,

and the evolution coefficients jk(t) have clear dynami-

cal or statistical properties such that they may be mod-

eled deterministically or stochastically, jk(t)/ jk(t;v).

Also a small set of modes should be sufficient in order to

assure feasibility. However, dynamical modes are typi-

cally constructed via generalized eigenproblems (e.g.,

linear instability modes; Dijkstra 2005; Berloff 2005b;

Shevchenko et al. 2016) or optimization problems (e.g.,

Lyapunov vectors, CNOPs; Dijkstra 2013; Dijkstra and

Viebahn 2015) and, hence, are generally expensive to

compute, if at all.

1) SPECIFICATION OF SPATIAL ENERGY MODES

In this study, we explore whether spatial fields that

stem from the large-scale energetics can suit as dynam-

ical spatial modes uk(x, t) [as in Eq. (44)] to parame-

terize the eddy forcing. More precisely, we focus on

large-scale available potential energy budget, Eq. (27),

since the eddy forcing related to the baroclinic route,

RB
i , directly appears therein. The capital letters in

Eq. (27) denote globally integrated LEC terms. To ex-

press the respective LEC terms as spatially extended PV

fields (i.e., as integral kernels of the globally integrated

energetics) we use lowercase letters. We then have

›
t
[pe]5 c(pe0, [pe])2 c([pe], [ke])5

c(pe0, [pe])5 ›
t
[pe]1 c([pe], [ke]) , (45)

with

›
t
[pe]52

1

R2
›
t
[h] , (46)

c(pe0, [pe])5
f
0

g0

�
RB

1 2RB
2 1

1

R2
J([c

1
], [c

2
])

�
(47)

5
f
0

g0R2
[J(c

1
,c
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)] , (48)

2c([pe], [ke])5
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0
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�
RH

1 2RH
2 1 J([c

1
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])
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0
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0
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1
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h]2 [›
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H
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0
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tx]

r
0
H

1
g0
. (50)

Note that multiplication of Eq. (45) with2r0g
0R2[h] and

global integration gives Eq. (27). For the two-layer

TABLE 1. Temporal average and standard deviation of PE, the GM diffusivity KGM, and the relative error of the eddy forcing for

different model setups with ~RB
i expanded in either filter modes [indicated by F(number of filter modes) and based on Eq. (59)] or energy

modes [indicated by E(number of energy modes) and based on Eq. (57) with Dt5 3 h]. The values are based on daily output of about 200

years. Note that the values are still subject to small trends since for perfect convergence simulation lengths of O(1000) years would be

necessary (see also Fig. 9).

Setup PE (PJ) KGM (m2 s21)
��RB

i 2 ~RB
i

��/��RB
i

��
Reference 967 6 116 — —

GM 685 6 58.3 1585 6 1374 0.97 6 0.03

J-GM 743 6 74.9 1126 6 1140 0.80 6 0.11

J-GM-F(2) 855 6 56.3 1713 6 1477 0.78 6 0.11

J-GM-F(4) 843 6 78.1 1931 6 1607 0.77 6 0.11

J-GM-F(6) 770 6 88.9 1720 6 1446 0.77 6 0.11

J-GM-F(8) 803 6 96.7 1750 6 1511 0.77 6 0.11

J-GM-F(10) 868 6 74.8 1726 6 1508 0.77 6 0.11

J-GM-F(20) 778 6 107 1315 6 1223 0.73 6 0.11

J-GM-F(30) 952 6 104 1063 6 1054 0.67 6 0.12

J-GM-E(2) 782 6 103 8.0 6 28 0.67 6 0.11

J-GM-E(4) 893 6 126 2.2 6 33 0.51 6 0.10

J-GM-E(6) 940 6 99.6 1.1 6 24 0.37 6 0.08

J-GM-E(8) 946 6 99.9 0.7 6 18 0.28 6 0.07

J-GM-E(10) 959 6 113 0.6 6 14 0.21 6 0.06

J-GM-E(20) 971 6 123 0.02 6 1 0.01 6 1023

J-GM-E(30) 973 6 117 1023 6 0.02 1025 6 1025
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model considered in this study, Eq. (45) corresponds to

the PV evolution equation of the large-scale interface

displacement [h] (i.e., first baroclinic mode), which is

obtained by subtracting Eq. (13) from Eq. (14). Com-

bining Eq. (20) with Eq. (48) gives

RB
i 5

(21)i21

H
i

�
f
0
R2c(pe0, [pe])2

f 20
g0
J([c

1
], [c

2
])

�
(51)

5
Eq. (45) (21)i21

H
i

�
f
0
R2 ›

t
[pe]1 c([pe], [ke])

� �
2

f 20
g0
J([c

1
], [c

2
])

�
, (52)

such that RB
i is solely expressed in terms of large-scale

(i.e., filtered) quantities.

This motivates us to consider the following two types

of dynamical spatial energy modes

ur
t(x, t) :5 ›

t
[pe](x, t2 t), and

uc
t(x, t) :5 c([pe], [ke])(x, t2 t) , (53)

where ur
t is related to the temporal change of the APE res-

ervoir at previous time t2 t, t, and uc
t is related to the

conversion between large-scale APE and KE at previous

time t2 t, t. Here t represents the lag relative to the cur-

rent time t. Note that ›t[pe] and c([pe], [ke]) are not avail-

able inanumericalmodel at time tbutaregivenonlyafter the

equations of motion are solved. Additionally, the temporal

derivatives of the spatial energy modes ur
t and uc

t can be

considered (since e.g., these may improve the convergence

behavior of Eq. (44) analogous to a Taylor expansion).

Hence, in terms of a numerical model with a discrete

time stepDt the overall set of spatial energymodes reads

F :5 <
‘

k,l51
f›l21

t ur
kDt, ›

l21
t uc

kDtg . (54)

The set F is obviously infinite. Moreover, the energy

modes are generally nonorthogonal. Note that the eddy

forcing of the previous time step [i.e., RB
i (x, t2Dt)] is

exactly given via the energy fields ur
Dt and uc

Dt [see

Eq. (52)]. Consequently, it is essentially the increment of

the eddy forcing, RB
i (x, t)2RB

i (x, t2Dt), that has to

be modeled by Eq. (44) with energy modes.

2) SELECTION OF FINITE SUBSET OF SPATIAL

ENERGY MODES

To compute a dynamical spatial mode expansion of the

eddy forcing as in Eq. (44) in a numerical model one has

to select a finite subset of energy modes out of F. A de-

tailed analysis of (finding) the optimal subset of energy

fields is a topic for future research (see discussion section

5). In this study we investigate the following subsets ofF:

Fn
Dt :5 fur

Dt,u
c
Dtg<

n

k51
f›

t
ur
(Dt1(k21)Dt), ›tu

c
(Dt1(k21)Dt)g,

(55)

where Dt represents the lag step size, and n determines

the cardinality ofFn
Dt, given by jFn

Dtj5 21 2n. Note that

for each Fn
Dt the contained energy modes vary in time

but Dt and n are fixed.

In other words, the subspace spanned by Fn
Dt is en-

larged by increasing n, which corresponds to additionally

including realizations of the fields ›tur, ›tuc further in the

past. Enlarging the subspace used to approximate the

eddy forcing by field realizations further in the past is a

form of delay embedding (Takens 1981). Moreover, it is

motivated by the Mori–Zwanzig formalism, which dem-

onstrates that the representation of unresolved physics

includes (the estimation of) a memory term that involves

the past history of the resolved physics (Wouters and

Lucarini 2013; Gottwald et al. 2017). The possible rele-

vance of the flow history for ocean eddy parameteriza-

tions has also been pointed out recently byBachman et al.

(2018) in the context of a non-Newtonian fluidmechanics

approach to eddy parameterization.

More precisely, in the following sections we investi-

gate the convergence behavior of the following dy-

namical spatial mode expansion of the eddy forcing:

~RFn
Dt

i :5 jJ0(t)J

 
[c

i
],
(21)i21

f
0

H
i

[h]

!
1 jr0(t)u

r
Dt 1 jc0(t)u

c
Dt

1 �
n

k51

ðjrk(t)›tur
(Dt1(k21)Dt) 1 jck(t)›tu

c
(Dt1(k21)Dt)Þ .

(56)

In this studywe consider 0# n# 16 andDt 2 f3, 6, 12g h.
For completeness we also include the large-scale Jacobian,

J([ci], ((21)i21
f0/Hi)[h]), in the expansion [see Eq. (52)].

For each choice of n and Dt the expansion in Eq. (56)

represents a parameterization of the eddy forcing RB
i .

The expansion coefficients in Eq. (56) are computed

at each model time step by using ordinary least squares

with respect to RB
i . Analyzing the dynamical and sta-

tistical behavior of the expansion coefficients as well as

proposing a (possibly stochastic) model for the expan-

sion coefficients in order to build a fully self-consistent

closure is a topic for future research (see discussion

section 5). Here the aim is to investigate how well the

expansion in Eq. (56) approximates (converges to) RB
i .

Finally, we contrast the convergence behavior of

Eq. (56) in two ways. We first consider the similar dy-

namical spatial mode expansion:
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~RFn
Dt ,GM

i :5 jJ0(t)J

 
[c

i
],
(21)i21

f
0

H
i

[h]

!
1 jGM

0 (t)=2[h]1 jr0(t)u
r
Dt 1 jc0(t)u

c
Dt 1 �

n

k51

ðjrk(t)›tur
(Dt1(k21)Dt)

1 jck(t)›tu
c
(Dt1(k21)Dt)Þ , (57)

where the GM term [see Eq. (42)] is additionally in-

cluded in the expansion. In this way we investigate the

impact of the GM field on the convergence behavior.

In addition, we also analyze the convergence behavior

of the spatial filtermodes xi as given
10 in section 2b. That

is, we consider the same expansions as in Eqs. (56) and

(57) but instead of using the energy modes Fn
Dt we use

the filter modes xi (ordered by decreasing eigenvalue/

wavenumber). The expansions read

~RFn

i :5 jJ0(t)J

 
[c

i
],
(21)i21

f
0

H
i

[h]

!
1 �

n

k51

j
f
k(t)xk

,

and (58)

~RFn ,GM
i :5 jJ0(t)J

 
[c

i
],
(21)i21

f
0

H
i

[h]

!
1 jGM

0 (t)=2[h]

1 �
n

k51

j
f
k(t)xk

. (59)

Again, the expansion coefficients are computed at each

model time step by using ordinary least squares with

respect to RB
i .

3) APPROXIMATION OF THE EDDY FORCING ON

THE REFERENCE ATTRACTOR

In the following we analyze the approximation of the

eddy forcing RB
i by the different series expansions de-

fined in the previous section [see Eqs. (56)–(59)]. In this

section the terms in Eqs. (56)–(59) are diagnosed from

the reference simulation (described in section 2a). That

is, the replacement RB
i /

~RB
i (see section 3a) is not

applied in the simulation and, hence, the state vector is

always on the attractor of the reference ER model.

(i) Relative error of eddy forcing

Figure 7a shows the time-mean relative error of the

eddy forcing for the filter mode expansion either with

GM term [black, Eq. (59)] or without GM term [red,

Eq. (58)]. The two curves are almost identical, which

demonstrates that the GM term is not able to signifi-

cantly reduce the relative error of the eddy forcing.

In other words, the GM field (as a direction in phase

space) is largely orthogonal to the eddy forcing field. For

both curves the decrease in relative error (i.e., the slope of

the curve) is minimal at the beginning and monotonically

increasing with increasing number of filter modes. The

value of the relative error for the filter modes is on the

order of 1021 and only reaches a very small value [i.e.,

O(10213)] when all filter modes are used. That is, the

convergence of Eqs. (58) and (59) is slow.

Figure 7b shows the time-mean relative error of the

eddy forcing for the energy mode expansion Eq. (57)

with Dt 5 3h (blue), Dt 5 6 h (black), and Dt 5 12h

(magenta). Note the logarithmic scale on the ordinate.

The effect of the GM term on the relative error is again

very small such that the curves related to Eq. (56) are

indistinguishable from the shown curves. In contrast to

the filter modes, the decrease in relative error (i.e., the

slope of the curve) is maximal at the beginning and

monotonically decreasing with increasing number of

energy modes (for comparison the curve of the filter

modes is shown by the blue dashed line). With only four

energymodes used in Eq. (56) the relative error drops to

O(1025) and for Dt 5 3 h a relative error of O(10212) is

reached with 30 energy modes. That is, the convergence

of Eqs. (56) and (57) is very fast since adding energy

modes reduces the order of magnitude of the relative

error. Finally, it holds for the reference simulation that

the smaller Dt is, the smaller the relative error.

(ii) GM diffusivity

Figure 8a shows the time-mean GM diffusivity KGM

for the filter mode expansion with GM term [blue,

Eq. (59)]. The GM diffusivity KGM decreases nearly

linearly due to the subsequent inclusion of more and

more filter modes. However, the value of KGM remains

on the order of 100m2 s21. Only when almost all filter

modes are included the value of KGM becomes small

and, hence, the impact of the GM term is insignificant.

Figure 8b shows the time-mean GM diffusivity KGM

for the energy mode expansion with GM term [Eq. (57)]

with Dt 5 3h (blue), Dt 5 6 h (black), and Dt 5 12h

(magenta). The behavior of KGM resembles the behav-

ior of the relative error (Fig. 7b). Note again the loga-

rithmic scale on the ordinate. Including energy modes

drastically reduces the value KGM, that is, by orders of

magnitude. With only four energy modes used in

Eq. (57) the value of KGM drops to O(1023)m2 s21,

10 Loosely speaking, these are Fourier-type modes. More pre-

cisely, the spatial filter modes xi are eigenmodes of the bi-

Laplacian in this study.
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indicating that the GM term is essentially without im-

pact. Finally, it holds for the reference simulation that

smaller Dt correlates with smaller KGM.

4) APPROXIMATION OF THE EDDY FORCING IN

THE PRESENCE OF ERROR PERTURBATIONS

In this section we analyze the approximation of the

eddy forcing RB
i by the different series expansions de-

fined by Eqs. (56)–(59). At each time step the corre-

sponding replacement RB
i /

~RB
i is performed (see

section 3a), resulting in a different simulation for each

parameterization (e.g., series expansion). Consequently,

error perturbations due to the approximate represen-

tation of the eddy forcing RB
i are introduced in each

simulation, and hence the state vector can be pushed

away from the attractor of the reference simulation. If

the parameterization of the eddy forcing is accurate

enough it can compensate for the error perturbations

and can keep the system within or near the attractor

of the reference simulation. On the other hand, if the

parameterization of the eddy forcing is not accurate

enough then the respectivemodel will exhibit a different

attractor.

(i) Relative error of eddy forcing

Figure 7a shows the time-mean relative error of the

eddy forcing for the filter mode expansion either with

theGM term [blue, Eq. (59); see also Table 1] or without

the GM term [magenta, Eq. (58)]. The relative error

for the simulations with error perturbations is slightly

smaller than for the reference simulation (black and red

curves). Nevertheless, the overall behavior is very sim-

ilar to the reference simulation: The blue and magenta

curves are nearly identical, which indicates that the GM

term is not able to significantly reduce the relative error

of the eddy forcing. For both curves the decrease in

relative error (i.e., the slope of the curve) is minimal at

the beginning and monotonically increasing with in-

creasing number of filter modes. The convergence of

Eqs. (58) and (59) is slow since the value of the rela-

tive error is on the order of 1021 and only reaches a

very small value [i.e., O(10213)] when all filter modes

are used.

A crucial point in Fig. 7a is that the filter mode ex-

pansion without the GM term [magenta, Eq. (58)] leads

to amodel blow-up if fewer than 10 filter modes are used

(the magenta curve only starts when the number of

modes 5 10). On the other hand, the filter mode ex-

pansion with GM term [blue; Eq. (59)] leads to stable

model simulations for any number of filter modes (see

also Table 1). Hence, the effect of the GM term becomes

clearer: the GM term cannot not significantly reduce the

relative error of the eddy forcing but it can stabilize the

model. In dynamical systems terms the GM term acts as a

stabilizing direction in phase space. That is, the GM term

cannot direct the system’s state along the attractor (it

cannot excite the intrinsic low-frequency variability

transitions in phase space as done by unstable di-

rections) but it mainly keeps the system from diverging.

Figure 7b shows the time-mean relative error of the

eddy forcing for the energy mode expansion Eq. (57)

with Dt 5 3 h (red; see also Table 1), Dt 5 6h (green),

and Dt 5 12h (cyan). Note the logarithmic scale on the

ordinate. The effect of theGM term on the relative error

is again very small such that the curves related to

Eq. (56) are indistinguishable from the shown curves.

On the other hand, the stabilizing effect of the GM term

also appears for the energy modes: for the application of

Eq. (56) (i.e., energymode expansion withoutGM term)

with only two energymodes themodel blows upwhereas

FIG. 7. Time-mean relative error of eddy forcing,
��RB

i 2 ~RB
i

��/��RB
i

��, with ~RB
i given by (a) the series expansions

in Eqs. (58) or (59) related to the filter modes and (b) the series expansion in Eq. (57) related to the energy modes

[the results for the series expansion in Eq. (56) are virtually identical]. Here ‘‘ref’’ refers to the reference simulation

( ~RB
i is only diagnosed) and ‘‘app’’ refers to simulations in which ~RB

i is applied. The lag step sizeDt is given in hours.
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for the application of Eq. (57) (i.e., energy mode ex-

pansion with GM term) the model is stable.

The overall behavior of the relative error for the

simulations with error perturbations (red, green, cyan) is

similar to the results of the reference simulation (blue,

black, magenta). That is, the relative error decreases

much faster (adding energy modes reduces the order

of magnitude of the relative error) than for the filter

modes (shown for comparison by the blue dashed line).

However, because of the induced error perturbations

the decrease in relative error is weaker than for the

reference simulation. For example, for 30 energy modes

and Dt 5 3h the relative error is O(1025) instead of

O(10212) for the reference simulation. Moreover, the

impact of Dt is more complicated than for the reference

simulation. Roughly speaking, if fewer than 20 energy

modes are used in Eq. (56) or (57) then the relative error

is slightly smaller for larger Dt whereas if more than 20

energy modes are used then the situation of the refer-

ence situation is reencountered (i.e., the smaller Dt the

smaller the relative error).

(ii) GM diffusivity

Figure 8a shows the time-mean GM diffusivity KGM

for the filter mode expansion with GM term [red,

Eq. (59); see also Table 1]. The behavior is largely

similar to the results of the reference simulation (blue),

namely, the GM diffusivity KGM decreases nearly

linearly due to the subsequent inclusion of more and

more filter modes. However, the value of KGM is sig-

nificantly larger (about one order of magnitude) than

when diagnosed from the reference simulation. This

in accordance with the interpretation of the GM term

as a stabilizing direction in phase space because in the

presence of error perturbations (driving the system

away from the attractor) the eddy forcing will project

more on stable directions (driving the system back to

the attractor). In other words, in the presence of error

perturbations the GM term has work to do.

Figure 8b shows the time-mean GM diffusivity KGM

for the energy mode expansion with GM term [Eq. (57)]

with Dt 5 3h (red; see also Table 1), Dt 5 6 h (green),

and Dt 5 12h (cyan). The behavior is largely similar to

the results of the reference simulation (blue, black,

magenta): including energy modes drastically reduces

the value KGM, that is, by orders of magnitude. It also

largely holds that the smaller Dt, the smaller KGM. On

the other hand, the value of KGM is larger than when

diagnosed from the reference simulation (i.e., the sta-

bilizing direction projects on the error perturbations).

Nevertheless, the value of KGM is still significantly

smaller [O(1) for only four energy modes] compared

to the values typically used in ocean models [O(1000)].

(iii) Time series of potential energy

Figure 9 shows time series of PE related to simulations

employing the filtermode expansion withGM term [red,

Eq. (59); see also Table 1] and the energy mode ex-

pansion with GM term and Dt 5 3 h [blue, Eq. (57); see

also Table 1]. For comparison the time series of the PE

of the reference simulation is shown in black.

The energy mode expansion exhibits monotonic and

fast convergence behavior in terms of PE (i.e., low-

frequency variability). If only two energy modes are

used (Fig. 9d) the PE variability is still significantly dif-

ferent from the reference PE. Intense low-frequency

variability is present but it is situated between the low-

PE regime of the reference simulation and another very-

low-PE regime. Already with four energy modes in the

expansion the high-PE regime of the reference simulation

is regularly reached (not shown). But the low-PE regime

is still bit lower than for the reference case. For six or

FIG. 8. Timemean of theGM diffusivityKGM for (a) the series expansion in Eq. (59) and (b) the series expansion

in Eq. (57). Here ‘‘ref’’ refers to the reference simulation ( ~RB
i is only diagnosed) and ‘‘app’’ refers to simulations in

which ~RB
i is applied. The lag step size Dt is given in hours.
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FIG. 9. Time series of PE for the reference simulation (black) and for simulations with ~RB
i

expanded in either filter modes [red; with F(number of filter modes) and based on Eq. (59)] or

energy modes [blue, with E(number of energy modes) and based on Eq. (57) with Dt5 3 h].
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more energy modes (Figs. 9f,h,j) the PE variability of the

reference simulation appears to be essentially recovered.

As expected, the situation is different for the filter

mode expansions. The convergence behavior is non-

monotonic. Even for 20 filter modes (Fig. 9i) the PE

variability is significantly different from the reference

simulation. When using filter modes it appears to be

difficult to reach the high-PE regime of the reference

simulation. Either the PE variance is significantly

smaller than for the reference simulation (Figs. 9c,g) or

the low-PE regime is lower than for the reference sim-

ulation (Figs. 9e,i). This is also visible in Table 1.

4. Summary

The three key points of this study can be summarized

as follows: First, we propose a new approach to param-

eterizing subgrid-scale processes. In this approach the

impact of the unresolved dynamics on the resolved dy-

namics (i.e., the eddy forcing) is represented by a series

expansion in dynamical spatial modes stemming from

the energy budget of the resolved dynamics. More pre-

cisely, the so-called energy modes are directly obtained

from the equations of motion of the resolved flow by

identifying the integral kernels that lead to the different

reservoir, generation, dissipation, and conversion terms

in the large-scale energy budget. Hence, the energy

modes exhibit strictly large-scale patterns and they are

equipped with a clear physical interpretation in terms of

energetics. Convergence toward the eddy forcing is ac-

complished via delay embedding by including additional

realizations of these fields further in the past. We also

note the relation to theMori–Zwanzig formalism, which

indicates that the representation of unresolved physics

needs to include a memory term that involves the past

history of the resolved physics. For the two-layer QG

ocean model considered in this study, we demonstrate

that the convergence of a series expansion in the energy

modes is orders of magnitude faster than the conver-

gence of a series expansion in Fourier-type modes. That

is, the eddy forcing can be accurately approximated

with a very limited number of energy modes, which

enables a feasible parameterization.

Second, we explore a novel way to test parameteriza-

tions in models. The resolved dynamics and the corre-

sponding instantaneous eddy forcing are defined via

spatial filtering, which accounts for the representation

error of the equations of motion on the low-resolution

model grid. In this way closures can be tested within the

high-resolutionmodel.Whereas in low-resolutionmodels

all energy pathways between large-scale and eddy com-

ponents must be parameterized simultaneously, testing

parameterizations in the high-resolution model offers the

possibility to isolate the effects of a single parameteriza-

tion (related to a single energy pathway) while the other

large-scale eddy energy conversions are correctly com-

puted. For the two-layer QG ocean model considered in

this study,we focus on parameterizations of the baroclinic

energy pathway while the barotropic energy pathway is

correctly computed by the high-resolution model.

Third, we test the standard closure of the baroclinic

energy pathway in the ocean components of state-of-

the-art climate models [i.e., the Gent–McWilliams

(GM) parameterization with a scalar diffusivity] in the

high-resolution QG ocean model considered in this

study. It turns out that the GM field steers trajectories

along a stabilizing direction in phase space. That is, the

GM field does not project well on the eddy forcing (it

exhibits a very high relative error) and fails to excite the

model’s intrinsic low-frequency variability (i.e., it is not

able to propagate the model’s state along the correct

attractor e.g., along an unstable direction). TheGMfield

mainly stabilizes themodel. That is, if the representation

of the eddy forcing is very inaccurate (e.g., small number

of modes used in expansion) the GM term performs the

necessary dissipation of available potential energy such

that the model does not diverge.

5. Discussion

Finally, we elaborate on open issues of this study and

related future research directions.

a. Self-consistent closure of the baroclinic
energy pathway

A closure of the baroclinic energy pathway is self-

consistent if it does not involve the actual (‘‘true’’) baro-

clinic eddy forcing. However, in this study we still useRB
i

for the computation of expansion coefficients (i.e., the

coefficients that appear in a spatial mode expansion) via

ordinary least squares. Determining a self-consistent clo-

sure of the baroclinic energy pathway is related to three

intricate and intimately related issues: 1) determining

the optimal subset of energy fields [see Eq. (54)], 2) di-

agnosing the corresponding expansion coefficients, and 3)

proposing a (possibly stochastic) self-consistent model for

the expansion coefficients. The choices made with respect

to these three issues can have an effect on the accuracy of

the approximation (as indicated in this study by the dif-

ferent choices for Dt), the computational cost and com-

plexity of the model, the regularity of the expansion

coefficients, and the uniqueness and hence physical in-

terpretation of the series expansion in energy modes.

For example, a problem related to these issues and

well-known in statistics andmachine learning is the issue

of overfitting versus underfitting or the bias/variance
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trade-off. Low-bias approaches can usually give accu-

rate representation of the data but produce large vari-

ances. In contrast, models with higher bias produce

lower variances but less accurate representations. Reg-

ularization methods introduce bias into the regression

solution that can reduce variance considerably. In this

way the behavior of the expansion coefficients becomes

simpler and easier to model but the approximation be-

comes less accurate.

b. Self-consistent closure of the barotropic energy
pathway

To make the equations for the large-scale flow [Eqs.

(13) and (14)] completely self-consistent one also has to

specify a self-consistent closure of the barotropic energy

pathway (i.e., RH
i ). The standard closure of the baro-

tropic energy pathway is lateral viscous dissipation with

an enhanced ‘‘eddy’’ viscosity coefficient. Similar to the

GM parameterization the lateral viscosity parameteri-

zation suffers from the lack of backscatter (see Fig. 2).

But an adequate closure of the energy exchange be-

tween large-scale and eddy components is necessary in

order to be able to perform low-resolution model sim-

ulations exhibiting eddy-driven low-frequency variabil-

ity. One option is to proceed in a way similar to this

study: exploring whether spatial fields that stem from

the large-scale kinetic energy budget can suit as dy-

namical modes to parameterize the eddy forcing RH
i .

c. Dynamical systems analysis of the large-scale flow
in the turbulent regime

As soon as adequate closures for both the baroclinic

and the barotropic energy pathways are available it is

in principle possible (i.e., feasible due to low model

resolution) to analyze the dynamics of the large-scale

flow in the turbulent regime in a systematic way. In

the case of deterministic closures this is related to the

existence of multiple equilibria, stability properties, bi-

furcations, and chaotic attractors (Dijkstra 2005). In the

case of stochastic closures the investigation will be from

the perspective of random dynamical systems, which

is related to stochastic bifurcations (i.e., changes in

the probability density function), pullback attractors,

and invariant measures (Dijkstra 2013). We note that in

case of low model resolutions a whole set of numerical

techniques to investigate transitions in stochastic dy-

namical systems becomes feasible (Dijkstra et al. 2016).

For example, it becomes possible to numerically solve

the stochastic partial differential equations (SPDEs)

via dynamical mode expansions (Sapsis and Lermusiaux

2009) and to investigate the interaction of external noise

forcing with internal nonlinear variability in the turbu-

lent regime (Sapsis and Dijkstra 2013).

d. Comparison with other approaches to
eddy parameterization

In this study, we compared turbulence closures based

on energy modes with the GM eddy parameterization

approach. We focused on a positive and spatially con-

stantKGM because it is straightforward to diagnose (e.g.,

not entering issues around rotational eddy fluxes), and,

more importantly, because a spatially homogenousKGM

is still regularly applied in state-of-the-art realistic ocean

models. On the other hand, the estimation and perfor-

mance of a spatially inhomogeneous (and possibly

tensor-valued) KGM remains a crucial topic (Eden et al.

2007, 2009; Viebahn and Eden 2010). The relation be-

tween energy modes and the GM parameterization, as

well as other approaches to eddy parameterization

(Porta Mana and Zanna 2014; Jansen and Held 2014;

Bachman et al. 2018), will hopefully be further eluci-

dated in future studies.

e. More realistic ocean model configurations

The oceanmodel considered in this study is situated at

themore idealized end in the hierarchy of oceanmodels.

Several features and processesmust be included in order

to make the details more realistic. These include higher

vertical resolution, diabatic terms like buoyancy forc-

ing and buoyancy sinks, and realistic topography and

coastlines. We are currently extending our results to a

three-layer model including realistic topographic in-

teractions. Eventually, one also has to consider the

primitive equations in order to be able to investigate

global realistic oceanmodels. The corresponding energy

budgets are more complicated but detailed analyses are

becoming available nowadays (von Storch et al. 2012;

Wu et al. 2017; Jüling et al. 2018).

f. Climatemodel simulations subject to intrinsic (eddy
driven) low-frequency variability

Finally, when adequate closures for the energy path-

ways in realistic ocean models are available then long-

period low-resolution climatemodel simulations exhibiting

eddy-driven low-frequency variability become possible.

This is crucial since then issues related to anthropogenic

climate change (forced variability) versus intrinsic low-

frequency variability (internal variability) can be addressed

in a statistically significant manner.
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