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Abstract 

We claim that programming within the logic programming paradigm suffers from lack of 
attention given to iteration and arrays. To convince the reader about their merits we present 
several examples of logic and constraint logic programs which use iteration and arrays instead 
of explicit recursion and lists. These programs are substantially simpler than their counterparts 
written in the conventional way. They are easier to write and to understand, are guaranteed 
to terminate and their declarative character makes it simpler to argue about their correctness. 
Iteration is implemented by means of bounded quantification. 

I. Introduction 

Any systematic course on programming in the imperative style (say using Pascal), 

first concentrates on iteration constructs (say while or repeat) and only later deals with 
recursion. Further, the data structures are explained first by dealing with the static data 

structures (like arrays and records) and only later with the dynamic data structures 

(which are constructed by means of pointers). 
In the logic programming framework the distinctions between iteration and recursion, 

and between static and dynamic data structures are lost. One shows that recursion is 

powerful enough to simulate iteration and rediscovers the latter by identifying it with 

tail recursion. Arrays do not exist. In contrast, records can be modelled by terms, and 
dynamic data structures can be defined by means of clauses, in a recursive fashion (with 

the exception of lists for which in Prolog there is support in the form of built-in's and 

a more friendly notation). 
One of the side effects of this approach to programming is that one often uses a 

sledgehammer to cut the top of an egg. Even worse. simple problems have unnecessarily 

complex and clumsy solutions in which recursion is used when a much easier solution 

using iteration exists, is simpler to write and understand, and - perhaps even more 

important - is closer to the original specification. 
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In this paper we would like to propose an alternative approach to programming in 

logic and in constraint logic programming - an approach in which adequate stress is 

put on the use of arrays and iteration. Because iteration can be expressed by means 

of boum.lcd quantification. a purely logical construct. the logic programming paradigm 

is not .. violated". On the contrary, it is enriched, clarified and better tailored to the 

programming needs. 
Arrays are especially natural when dealing with vectors and matrices. The use of 

dynamic data structures to write programs dealing with such objects is unnatural. We 

shall try to illustrate this point by presenting particularly simple solutions to problems 

such as the 8 queens problem, the knight's tour. and the map colouring problem. 

Further. by adding to the language operators which allow us to express optimiza

tion, i.e. minimization and maximization, we can easily write programs for various 

optimization problems. like the cutting stock problem. 
For pedagogical reasons we limit here our attention to programs that involve arrays, 

iteration and optimization constructs. Of course, recursive data types and explicit recur

sion have their place both in logic programming and in constraint logic programming. 

One of the main purposes of this paper is to illustrate how much can be achieved 

without them. 
In the programs considered in this paper recursion is hidden in the implementation 

of the bounded quantifiers and this use of recursion is guaranteed to terminate. Conse

quently, these programs always terminate. As termination is one of the major concerns 

in the case of logic programming, from the correctness point of view it is better to use 

iteration instead of recursion, when a choice arises. Also, iteration can be implemented 

more efficiently than recursion (see [3] for an explanation how to extend WAM to 

implement iteration in Prolog). 
This work can be seen as an attempt to identify the right linguistic concepts which 

simplify programming in the logic programming paradigm. When presenting this view 

of programming within the logic programming paradigm we were very much influ

enced by the publications of Barklund and Millroth [5], Voronkov [23] and Kluiniak 

[ 15]. In fact. the constructs whose use we advocate, i.e. bounded quantification and 

arrays. were already proposed in those papers. Apart from providing further evidence 

for elegance of these constructs in logic programming, the only, possibly new, con

tribution of this paper is a proposal to integrate these constructs into constraint logic 
programming. 

2. Bounded quantifiers 

Bounded quantifiers in logic programming were introduced by Kluiniak [14] and are 

thoroughly discussed by Voronkov [23] (where earlier references in Russian are also 

given). They are also used by Kluiniak [15] (see also [16]) in a specification language 

SPILL-2 in which executable specifications can be written in the logic programming 
style. 



l33 

Following Voronko\' [23 j \\e write them as 3XEL Q (the bounded existential quan-

tifier) and vX':: L Q (the bounded unin:rsal where L is a list and Q a 4ucl). 

and define them as follows: 

3XE[Y Ys] Q Q{X/Y}. 

:JXE [Y Ys] Q 3XEYs Q. 
'v'XE [Y Ys] Q Q{X/Y}, vXic:Ys Q. 
vXE [] Q. 

To put these definitions into syntactically acceptable fom1at. we could introduce two 

relations. exists and for all, and writ<: exists (X, L, Q) for 3X EL Q and forall 

(X, L, Q) for 'v'XEL Q. For clarity. we shall use the original syntax. 

The bounded quantifier can be easily expressed using the usual quantifiers. 50 the 

above language extension is subsumed by the proposal of and Topor [19] lsec 

also [ 18]) in which the queries and bodies of clauses can be arbitrary first-order formu

las. Unfortunately, this modelling of bounded quantifiers yields unnecessarily complex 

programs. among others due to the use of negation and the iniroduction of new relation 

symbols. 

Moreover. as pointed out by Barklund and Hill [4]. this translation process introduces 

the possibility of incorrect use of negation which in some circumstances limits the use 

of the program to ground queries. This difficulty was originally pointed out by Bundy 

[6] in the context of another fom1 of bounded universal quantification. 

Voronkov [23] also discusses two other bounded quantifiers, written as Jx = L Q and 

VX CL Q. where X CL is to be read "X is a suffix of L", which we do not consider 

here. 
To some extent the use of bounded quantifiers allows us to introduce in some com

pact form the "'and" and the "or" branching within the program computations. This 

reveals some connections with the approach of Hare! [ l l ]. though we believe that 

the expressiveness and ease of programming within the logic programming paradigm 

makes Harel's programming proposal obsolete. 

E\'en without the use of arrays the gain in expressiveness achieved by means of 

bounded quantifiers is quite spectacular. Consider for example the following problem 

which shows the power of the VX E L ::JY E M combination. 

Problem I. Write a program which tests whether one list contains all the elements of 

another one. 

Solution 

subset(Xs, Ys) ._y XEXs ::l YEYs X=Y. 

Several other examples can be found in Voronkov [23]. Here we content ourselves 

with just one more, in which we use delay declarations very much like in modern 

versions of Pro log (for example ECL' PS" [ l]) or the programming language Godel of 

Hill and Lloyd [ 12]). 
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Problem 2. Write a program checking the satisfiability of a Boolean formula. 

Solution. We assume here that the input Boolean formula is written using Prolog 
notation, so for example ( •X, Y) ; Z stands for ( -iX /\ Y) V Z. 

sat(X) ~ X, generate(X). 
generate(X) ~ vars(X,Ls), VYELs :lZE [true, fail] Y Z. 

DELAY X UNTIL nonvar(X). 

This remarkably short program uses meta-variables and a mild extension of the 
delay declarations to meta-variables. The delay declaration used here delays any call 
to a meta-variable until it becomes instantiated; vars (t, Ls) for a term t computes 
in Ls the list of the variables occurring in t. Its definition is omitted. vars (X, Ls) 
can be easily implemented using the var (X) and uni v built-in's of Pro log. true and 
fail are Prolog's built-in's. 

In Godel the calls to negative literals are automatically delayed until they become 
ground. In the case of the above program such an automatic delay is not advisable as it 
would reduce checking for satisfiability of subformulas which begin with the negation 
sign to a naive generate and test method. 

Even though this program shows the power of Prolog, we prefer to take another 
course and use types instead of exploring extensions of Prolog, which is an untyped 
language. 

3. Arrays and bounded quantifiers in logic programming 

Arrays in logic programming were introduced by Eriksson and Rayner [8]. Bark
lund and Bevemyr [3] proposed to extend Prolog with arrays and studied their use 
in conjunction with the bounded quantification. In our opinion the resulting extension 
(unavoidably) suffers from the fact that Prolog is an untyped language. In Klu:Z:niak 
[ 15] arrays are present, as well, where they are called indexable sequences. 

More recently, Barklund and Hill [4] proposed to add arrays and restricted quan
tification, a generalization of the bounded quantification, to Godel, the programming 
language which does use types. Also Greco et al. [9] suggested to extend Datalog, a 
simple logic programming based database language, with arrays. 

These developments should be contrasted with the early proposal of Kowalski [ 17] 
to encode arrays by means of unit clauses. 

In the programs below we use bounded quantification, arrays and type declarations. 
The use of bounded quantifiers and arrays makes them simpler, more readable and 
closer to specifications. We declare constants, types, variables and relations in a style 
borrowed from the programming language Pascal. 

We begin with two introductory examples which involve search through a sequence. 
The first one uses the universal quantifier while the second one employs the existential 
quantifier. 
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Problem 3. Check whether a given sequence of I 00 integers is ordered. 

Solution 

const n = 100. 

rel ordered: array [1 .. n] of integer. 
ordered (A) f- VIE [1. . n-1] A [I] ~ A [I +1] . 

This example shows that the terms denoting the array subscripts should be evaluated 
(so that we can identify 1+1 with 2, etc.), very much like the right-hand side of 
the is built-in of Prolog. In a more general set up we could view here "+" as an 
external procedure in the sense of Mafoszynski et al. [20]. This simple program ap
pears originally in Kowalski [ 17] though its procedural interpretation is not explained 
there. 

Note that the bounded universal quantifier VIE [1. . n] does not correspond to the 
imperative for i: =1 to n loop. The former is executed as long as a failure does 
not arise, i.e. up to n times, whereas the latter is executed precisely n times. The 
programming construct VIE [1 .. n] Q actually corresponds to the construct 

for i:= 1 to n do if -iQ then 
begin 

failure := true; exit 
end 

which is clumsy and unnatural within the imperative programming paradigm. 
(Feliks Klufoiak suggested to us the following, slightly more natural interpretation of 
VI E [1. . n] Q: 

i:=l; 
while i ~ n cand Q do i:=i+l; 
failure := i ~ n, 

where cand is the "conditional and" connective (see Gries [10, pp. 68-70].)) 

Problem 4 (Linear search). Check if an element is present in a given sequence of 
I 00 integers. If yes, return its position, otherwise terminate with a failure. 

const n = 100. 
type seq: array [1. .n] of integer. 
rel find: (integer, seq, [1..n]). 

find(E, A, J) f- :3I E [1. .n] (E = A [I], J = I). 

Here "=" is Prolog's built-in, defined by the single clause 

x = x. 
and called "is unifiable with". Now the query find(e,a,J) checks the presence of an 
element e in an array a. If the answer is positive, J is instantiated to the position of e 
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in a. Otherwise failure results. During the execution of this query "=" is used first to 
compare two ground terms and then to assign a value to a variable, J. 

It is instructive to note that the development of the corresponding solution to the 
linear search problem in the imperative programming style, together with the formal 
correctness proof, takes Sethi [21] three pages. 

Note that in contrast to the imperative programming case, the above solution can 
also be used to generate all elements of a with their corresponding positions, by means 
of the query find(E,a,J). In this case both uses of"=" result in assigning a value 
to a variable, first to E and then to J. 

The bounded existential quantifier 31 E [1 .. n] implements backtracking and has no 
counterpart within the imperative programming paradigm. Here the backtracking is very 
"shallow" and boils down to the execution of the test E = A [l] for specific values of 
E and A[l]. 

Of course, it would be preferable to use the above solution to the linear search 
problem for arrays of any type, not only of the type integer. This motivates intro
duction of polymorphic types in presence of arrays. Then the appropriate general
ization of the above solution to an arbitrary type is obtained by using the follow
ing generalized declarations, where "*" stands for a variable denoting an unknown 
type: 

type seq: array [ 1. . n] of * . 
rel find: ( *, seq, [1. . n]) . 

rel =: (*, *). 

Clearly, in general, more than one unknown type can be used in a program. 
The next example shows the power of the '<IX E L 3Y E M combination in presence 

of arrays and a nontrivial instance of the backtracking process. 

Problem 5. Arrange three 1 's, three 2's, ... , three 9's in sequence so that for all 
i E [l, 9] there are exactly i numbers between successive occurrences of i (see [7, p. 
193]). 

Solution 

rel sequence: array [1 .. 27] of [1 .. 9] . 

sequence (A) +-- VI E [1 .. 9] 3J E [1 .. 25-21] 
(A[J] =I, A[J+I+1] = l, A[J+21+2] = 1)). 

The range J E [1 .. 25-21] comes from the requirement that the indices J, J+ l +1, 

J+21 +2 should lie within [1. . 27]. Thus J+21 +2 ~ 27, that is J ~ 25-21. 

It is useful to note here that the corresponding solution to this problem in Prolog is 
15 lines long. 

Next, we show the usefulness of local definitions. 

Problem 6. Generate all permutations of a given sequence of 100 elements. 
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First we provide a solution for the case when there are no repeated elements in the 
sequence. 

Solution I 

const n = 100. 
rel permutation: (array [1 .. n] of *, array [1. . n] of *) . 

permutation(X, Y) +--- \iI E [1 .. n] 3J E [1 .. n] Y[J] = X[I]. 

Here, X is the given sequence. 
Note the similarity in the structure between this program and the one that solves 

problem 1. This program is incorrect when the sequence contains repeated elements. For 
example for n = .3 and X: = [O, 0, 1], the array Y: = [O, 1, 1] is a possible answer. 

To deal with the general case we use local array declarations and refine the above 
program. 

Solution 2 

const n = 100. 
relpermutation: (array [1 .. n] of*, array [1 .. n] of*). 
permutation(X, Y) +-

var A: array [1. . n] of [1. . n] . 

\t'IE [1. .n] :lJE [1. .n] A[J] I, 
\t'I E [1. . n] Y [I] X [A [I]] . 

This solution states that A is an onto function from [1. . n] to [1. . n] and that a 
permution of a sequence of n elements is obtained by applying the function A to its 
indices. 

Next, consider two well-known chess puzzles. 

Problem 7. Place 8 queens on the chess board so that they do not check each other. 

First, we provide a naive generate and test solution. It will be of use in the next 
section. 

Solution 1 

const n = 8. 

type board: array [ 1. . n] of [1. . n] . 

rel queens, generate, safe: board. 

queens (X) <-- generate (X) , safe (X). 

generate (X) <-- \t'I E [ 1 .. n] :JJ E [1. . n] 

safe(X) <-- \t'IE [1. .n] \iJE [1+1..n] 

(X[I] =f X[JJ, X[I] =f X[J]+(J-I), 

X [I] J. 

X[I] =f X[J]+(I-J)). 
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To improve readability board is explicitly declared here as a type. Declaratively, 
this program states the conditions which should be satisfied by the values chosen for 
the queens. "#" is a built-in declared as 

rel rf.: (*, *). 

and defined by the single clause 

x # Y +- -, ex = Y) . 

In this section we use it only to compare ground terms. A more general usage of "#" 
will be explained in the next section. 

Next, we give a solution which involves backtracking. 

Solution 2 

const n = 8. 

type board: array [1. .n] of [1. .n]. 

rel queens: board. 

queens ex) +- '\/J E [1. .n] 3K E [1. .n] 

ex [JJ = K, 
'\/I E [1.. J-1] 

(X[I] # X[J], X[I] # X[J]+(J-I), X[I] # X[J]+(I-J))). 

Declaratively, this program states the conditions each possible value K for a queen 
placed in column J should satisfy. In its last line X [J] could be replaced by K. 

Problem 8 (Knight's tour). Find a cyclic route of a knight on the chess board so that 
each field is visited exactly once. 

Solution. We assign to each field a value between 1 and 64 and formalize the state
ment "from every field there is a "knight-reachable" field with the value one big
ger". By symmetry we can assume that the value assigned to the field X [1, 1) is 
1. Taking into account that the route is to be cyclic we actually get the following 
solution. 

const n = 8. 

type board: array [1. .n, 1. .n] of [1. .n2]. 

rel knight: board. 

go_on: (board, [1 .. n], [1 .. n]). 

knight(X) +- "iIE[1..n] '\/JE[L.n] go_oneX,I,J), X[1, 1] = 1. 

go_on(X,I,J) +- 3I1E[1..n] 3J1E[1..n] 

eabs((I-I1)·(J-J1)) = 2, X[I1, J1] = (X[I, J] modn2)+1). 

DELAY go_on(X, I, J) UNTIL ground(X[I,J]). 
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Note that the equation abs (X·Y) = 2 used in the definition of go_on has exactly 
8 solutions, which determine the possible directions for a knight move. Observe that 
each time this call to "=" is selected, both arguments of it are ground. The efficiency 
of go_on could be of course improved by explicitly enumerating the choices for the 
offsets of the new coordinates w.r.t. the old ones. 

The behaviour of the above program is quite subtle. First, thanks to the delay dec
laration, 64 constraints of the form go_on (X, I , J) are generated. Then, thanks to the 
statement X [1, 1] = 1, the first of them is "triggered" which one by one activates 
the remaining constraints. The backtracking is carried out by choosing different values 
for the variables I1 and Jl. The delay declaration is not needed, but without it this 
program would be hopelessly inefficient. 

It is interesting to note that in Wirth [24], a classical book on programming in Pascal, 
the solutions to the last two problems are given as prototypical examples of recursive 
programs. These solutions are based on the same principle, namely backtracking. Here 
recursion is implicit in the implementation of bounded quantifiers. 

We conclude this section by one more program which shows the use of another type 
of quantifier. 

Problem 9. Let m = 50 and n = 100. Determine the number of different elements in 
an array X: array [ 1. . m, 1. . n] of integer. 

Solution 

const m 50. 

n = 100. 

type board: array [1. .m, 1. .n] of integer. 
rel count: (board, natural). 

count (X, Number) +

Number = m · n -
# ( I , J : I E [ 1. . m] , J E [ 1. . n] : 

) . 

(:lKE[l..I-1] :lLE[l. .n] X[I,J] = X[K,L]) 
% X[I,J] occurs in an earlier row 

V(:lLE[l..J-1] X[I,J] = X[I,L]). 
% X[I,J] occurs earlier in the same row 

In this program we used the counting quantifier introduced in Gries [10, p. 74] and 
adopted in Kluzniak [ 15] in the specification language SPILL-2. In general, given lists 
Ll, L2, the term #(I, J: IELl, JEL2: Q) stands for the number of pairs (i,j) 
such that iELl, j EL2 and the query Q{I/i, JI j} succeeds. It is possible to avoid 
the use of the counting quantifier at the expense of introducing a local array of type 
board. This alternative program is more laborious to write. 
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This concludes our presentation of selected logic programs written using arrays, 

bounded quantifiers and some other features. Other examples, involving among others 

numerical computation, can be found in Barklund and Millroth [5]. 

4. Arrays and bounded quantifiers in constraint logic programming 

In this section we illustrate the use of arrays and bounded quantifiers in constraint 

logic programs. We assume from the reader some familiarity with the basic principles 

of constraint logic programming (see e.g. the survey article of Jaffar and Maher [13]). 

The programs presented here are constraint programs with finite domains in the style 

of van Hentenryck [22], where we refer the reader for a number of unexplained notions. 

Each of these programs has a similar pattern: first constraints arc generated, and then 

resolved after the possible values for variables arc successively generated. We explain 

here briefly how individual constraints arc processed, but do not discuss the strategies 

for constraint solving and constraint propagation. This calls for a generalization of 

the constraint solvers proposed in the literature to a more general situation in which 

subscripted variables are used. 

We begin by providing here alternative solutions to two problems discussed in the 

previous section. 

Problem 10. Solve Problem 7 by means of constraints. 

Solution 

const n = 8. 

type board: array [1. .n] of [1. .n]. 

rel queens, safe, generate: board. 

queens (X) <- safe (X), generate (X). 

safe(X) <- '\IIE[l..n] VJE[I+l..n] 

(X[I] ::J X[J], X[I] =f X[J]+(J-1), X[I] i X[J]+(I-J)). 

generate(X) <- VIE[l..n] ]JEdom(X[I]) X[I] = J. 

Here dom(X), for a (possibly subscripted) variable X, is a built-in which denotes the 

list of current values in the domain of X, say in ascending order. The value of dom(X) 

can change only by decreasing. This can happen only by executing a constraint, so in 

the above program an atom of the form X f t. 

The relation "::J" was used in the previous section only in the case when both 

arguments of it were ground, so known. Here we generalizes its usage, as we now 

allow that one or both sides of it are not known. In fact, "l" is a built-in defined as 

in van Hentenryck (22, pp. 83,84], though generalized to arbitrary non-compound types. 

We require that one of the following holds: 

- Both sides of "::J" are known. This case is explained in the previous section. 
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- At most one of the sides of "=/=" is known and one of the sides of "=/=", denoted 
below by X, is either a simple variable or a subscripted variable with a known 
subscript. 

In the second case X =I= t is defined as follows, where for a term s, Val (s) stands 
for the set of its currently possible values: 

if Val(X) n Val(t) = 0 then succeed 
elseif Val ( t) is a singleton then 

% t is known, so X is not known, i.e. dom (X) has at least 2 elements 
begin dom(X) := dom(X) - Val(t); 
% remove the value of t from dom (X) 

ifdom(X) = [f] then X:= f 
end. 

If neither Val (X) n Val ( t) = 0 nor Val ( t) is a singleton, then the execution of 
X =/= t is delayed. We treat t =/= X as X =/= t. 

So for example in the program fragment 

type bool: [false, true]. 
rel p: (bool, bool, bool) . 
p (A, B, C) +--- A =/= B, B =/= C, C = true, ... 

during the call of p (A, B, C) the constraints A =I= B and B =/= C are first delayed and 

then upon the execution of the atom C = true the variable B becomes false and 
subsequently A becomes true. 

In turn, in the case of the solution to the 8 queens problem given above, dur

ing the call of safe (X) the execution of an atom of the form X [I] = K for some 
I,KE[1. .n] can affect the domains of the variables X[J] for JE[I+1. .n] via the 

execution of a constraint of the form X [I] =/= X [J] +t. 
This solution to the 8 queens problem is a forward checking program (see van Hen

tenryck [22, pp. 122-127]). Note the textual similarity between this program and the 

one given in Solution I to Problem 7. Essentially, the calls to the safe and gener

ate relations are now reversed. The generate relation corresponds to the labeling 
procedure in van Hentenryck [22]. In the subsequent programs the definition of the 

generate relation has always the same format and is omitted. 

Problem 11. Solve Problem 6 by means of constraints. 

Solution 

const n = 100. 

rel permutation: (array [1. .n] of*, array [1. .n] of*). 

permutation(X, Y) +-

type board: array [1. . n] of [1. . n] . 
rel one_one, generate: board. 
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one_one (Z) +--- VIE [ 1. . n] 'v' J E [I+ 1. . n] Z [I] =/::. Z [J] . 

var A: board. 
one_one(A), generate(A), 
'v'IE[l .. n] Y[I] = X[A[I]]. 

In this solution, apart of the local declaration of the variable A, we also use local 
type and relation declarations. The efficiency w.r.t. to the logic programming solution 
is increased by stating, by means of the call to the one_one relation, that A is a 1-1 
function. This replaces the previously used statement that A is an onto function. The 
call to one_one generates n · (n - 1 )/2 = 4950 constraints. 

We conclude this section by dealing with another classical problem - that of a map 
colouring. It shows the use of implication. 

Problem 12. Given is a binary relation neighbour between countries. Colour a map 
in such a way that no two neighbours have the same color. 

Solution 

type color: [blue, green, red, yellow]. 
countries: [austria, belgi um, france, i taly, .. .] . 

rel map_color, constrain, generate: array countries of color. 
neighbour: (countries, countries). 

map_color(X) +--- constrain(X), generate(X). 

constrain(X) +--- 'v'IEcountries 'v'JEcountries 
neighbour (I, J) ...... X [I] =/::. X [J] . 

The declarative interpretion of P ...... Q is as follows: 

(P-Q) <- P, Q. 

(P--7 Q) +--- ....,p, 

So P ...... Q corresponds to the IF P THEN Q statement of Godel. Obviously, an efficient 
implementation of P ...... Q should avoid the reevaluation of P. Note that in the above 
program, at the moment of selection of the P -+ Q statement, P is ground. 

Thus the constrain relation generates here the constraints of the form X [I] =/=X [J] 

for all I, J such that neighbour (I, J). 

5. Adding minimization and maximization 

Next, we introduce constructs allowing us to express in a compact way the re
quirement that we are looking for an optimal solution. To this end we introduce the 
minimization operator X = µQ which declaratively is defined as follows: 

X = µQ <- Q, -,(:JY (Y <X, Q{X/Y})). 
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We assume here that X and Y are of the type integer. The existential quantifier 
3X Q is defined by the clause 

3X Q +--- Q. 

The efficient implementation of the minimization operator should employ some spe
cialized methods, like the branch and bound technique, in order to limit the search 
process during the successive attempts of finding a minimal solution to the query Q. 

A dual operator, the maximization operator X = vQ, is defined declaratively by: 

X = vQ +--- Q, --,(:JY (Y > X, Q{X/Y})). 

To put these definitions into syntactically acceptable format, we could write min(X,Q) 

for X = µQ and max(X,Q) for X = vQ. 
In Barklund and Hill [4] the minimization and the maximization operators are in

troduced as a form of arithmetic quantifiers, in the style of the counting quantifier 
introduced earlier. 

We now show the use of the minimization operator. 

Problem 13. The cutting stock problem (see [22, pp. 181-187]). There are 72 con
figurations, 6 kinds of shelves and 4 identical boards to be cut. Given are 3 arrays: 

Shelves:array [1.. 72, 1. .6] of natural, 

Req:array [1.. 6] of natural, 

Waste: array [1. . 72] of natural. 

Shelves [K, J] denotes the number of shelves of kind J cut in configuration K, 
Waste [I] denotes the waste per board in configuration I and Req[J] the required 
number of shelves of kind J. The problem is to cut the required number of shelves of 
each kind in such a way that the total waste is minimized. 

Solution. We represent the chosen configurations by the array 

Conf: array [1 .. 4] of [1 .. 72] 

where Conf [I] denotes the configuration used to cut the board I. 

rel solve: (array [1..4] of [1..72], natural). 

generate: array [1. . 4] of [1. . 72] . 

solve(Conf, Sol) +-

Sol = µ 
% Sol is the minimal TCost such that: 

'VIE [1. .3] Conf [I] ,,;; Conf [I+1], 

% symmetry between the boards 

'v'JE[1. .6] L:j=1 Shelves[Conf[I] ,J] ~ Req[J], 
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% enough shelves are cut 
Sol L.j=l Waste [Conf [I]] , 

% Sol is the total waste 

generate(Conf). 

The constraints Conf [I] ~ Conf [I+ 1], for I E [ 1 .. 3], limit the number of gen

erated solutions and (like in [22]) are added here only for the efficiency purposes. 

ln this program we used as a shorthand the sum notation "I:. ... ". In general, it is 

advisable to use the sum quantifier (see [ 10, p. 72] ), which allows us to use ~}=k t as 

a term. The sum quantifier is adopted in SPILL-2 language of Klu:Zniak [15]. 

Klu:lniak's notation for this expression is: (S I: k ~ I ~ 1: t). The interpretation 

of the constraints of the form X ~ t, X ;?; t or X = t is similar to that of X =/= t 

and is omitted. 

6. Conclusions 

We have presented here several logic and constraint logic programs that use bounded 

quantification and arrays. We hope that these examples convinced the readers about the 

usefulness of these constructs. We think that this approach to programming is especially 

attractive when dealing with various optimization problems, as their specifications often 

involve arrays, bounded quantification, summation, and minimization and maximization. 

Constraint programming solutions to these problems can be easily written using arrays, 

bounded quantifiers, the sum and cardinality quantifiers, and the minimization and 

maximization operators. As examples let us mention the stable marriage problem, the 

knapsack problem and various scheduling problems. 

Of course, it is not obvious whether the solutions so obtained are efficient. We 

expect, however, that after an addition of a small number of built-in's, like deleteff 

and deleteffc of van Hentenryck [22, pp. 89-90] and specialized versions of the 

bounded quantifiers that allow us to alter the search order through the range, it will 

be possible to write simple constraint programs which will be comparable in efficiency 

with those written in other languages for constraint logic programming. 

When introducing arrays we were quite conservative and only allowed static arrays, 

i.e. arrays whose bounds are determined at compile time. Of course, in a more realistic 

language proposal also open arrays, i.e. arrays whose bounds are determined at run

time, should be allowed. One might also envisage the use of flexible arrays, i.e. arrays 

whose bounds can change at run-time. 
In order to make this programming proposal more realistic one should provide a 

smooth integration of arrays with recursive types, like lists and trees. In the language 

SPILL-2 of Klu:lniak [ 15] types are present but only as sets of ground terms, and 

polymorphism is not allowed. Barklund and Hill [4] proposed to add arrays to Godel 

(which does support polymorphism) as a system module. We would prefer to treat 

arrays on equal footing with other types. 
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We noticed already that within the logic programming paradigm the demarkation 
line between iteration and recursion differs from the one in the imperative programming 
paradigm. In order to better understand the proposed programming style one should first 
clarify when to use iteration instead of recursion. In this respect it is useful to quote 
the opening sentence of Barklund and Millroth [5]: "Programs operating on inductively 
defined data structures, such as lists, are naturally defined by recursive programs, while 
programs operating on "indexable" data structures, such as arrays, are naturally defined 
by iterative programs". 

We do not entirely agree with this remark. For example, the ''suffix" quantifiers 
mentioned in Section 2 allow us to write many list processing programs without 
explicit use of recursion (see [23]) and the quick sort program written in the logic 
programming style is more natural when written using recursion than iteration. 

The single assignment property of logic programming makes certain programs that 
involve arrays (like Warshall 's algorithm) obviously less space efficient than their im
perative programming counterparts. This naturally motivates research on efficient im
plementation techniques of arrays within the logic programming paradigm. 

Finally, a comment about the presentation. We were quite informal when explaining 
the meaning of the proposed language constructs. Note that the usual definition of 
SLD-resolution has to be appropriately modified in presence of arrays and bounded 
quantification. For example, the query X [1] = 0, I = 1, X [I] = 1 fails but this 
fact can be deduced only when the formation of resolvents is formally explained. 
To this end substitution for subscripted variables needs to be properly defined. One 
possibility is to adopt one of the definitions used in the context of verification of 
imperative programs (see [2, pp. 460-462]). We leave the task of defining a formal 
semantics of the constructs proposed here to another paper. 
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