
On the Computational Complexity of Gossip Protocols

Krzysztof R. Apt
CWI, The Netherlands

University of Warsaw, Poland
apt@cwi.nl

Eryk Kopczyński
University of Warsaw, Poland

erykk@mimuw.edu.pl

Dominik Wojtczak
University of Liverpool, UK

d.wojtczak@liv.ac.uk

Abstract
Gossip protocols deal with a group of communicat-
ing agents, each holding a private information, and
aim at arriving at a situation in which all the agents
know each other secrets. Distributed epistemic gos-
sip protocols are particularly simple distributed pro-
grams that use formulas from an epistemic logic.
Recently, the implementability of these distributed
protocols was established (which means that the
evaluation of these formulas is decidable), and the
problems of their partial correctness and termination
were shown to be decidable, but their exact compu-
tational complexity was left open. We show that for
any monotonic type of calls the implementability
of a distributed epistemic gossip protocol is a PNP

‖ -
complete problem, while the problems of its partial
correctness and termination are in coNPNP.

1 Introduction
The aim of this paper is to study natural complexity questions
concerning gossip protocols. The set up of these protocols is
the following. Each agent holds a secret initially known only
to him. During the communications (for example phone calls)
the participating agents share the secrets they know. The aim
of the gossip protocols is to arrive at a situation in which all
agents know all secrets. One of the early results established by
a number of authors in the seventies, e.g., [Tijdeman, 1971], is
that for n ≥ 4 agents 2n− 4 phone calls is necessary and suf-
ficient to reach such a final situation. However, the protocols
solving the problem using 2n− 4 phone calls are centralized
in the sense that they require a centralized scheduler. We are
concerned here with the distributed gossip protocols that were
introduced in [Attamah et al., 2014b] and further studied with
different type of calls in [Apt et al., 2016]. These protocols
use as guards epistemic formulas and thus are examples of
knowledge based programs introduced in [Fagin et al., 1997].

The formulation of distributed gossip protocols as
knowledge-based programs considerably simplifies the task
of their verification. The reason is that these protocols are
defined simply as a parallel composition of simple loops in
which the agents repeatedly evaluate a guard, which is an epis-
temic formula, and subsequently perform a corresponding call.
As a result implementability of the protocol can be reduced

to the problem of decidability of semantics of the underlying
epistemic language and its partial correctness and termination
to the problem of decidability of truth for this language.

In [Apt and Wojtczak, 2016] we established that such dis-
tributed epistemic gossip protocols (in short, protocols) are
implementable, i.e., the problem of evaluating a guard after a
sequence of calls is decidable (implicitly shown there to be in
EXPTIME), and that the problems of their partial correctness
and termination are also decidable (implicitly shown there
to be in 3-EXPTIME) in the setup when during the calls the
agents exchange all their secrets (so-called push-pull type of
calls) and the underlying topology of the network is a clique.

In this paper we sharpen this analysis and study the com-
putational complexity of these three problems. We show that
for any monotonic type of calls and network topology, the im-
plementability of a protocol is an PNP

‖ -complete problem and
checking its partial correctness and termination is in coNPNP.

Related work. Gossip protocols have been studied for more
than forty years and have been successful in various domains,
e.g., communication networks [Hedetniemi et al., 1988], com-
putation of aggregate information [Kempe et al., 2003], and
data replication [Ladin et al., 1992]. A more recent account is
given in the book [Hromkovic et al., 2005] and in [Kermarrec
and van Steen, 2007]. In these references gossip protocols are
viewed as parallel, probabilistic and/or distributed programs.

Epistemic gossip protocols were studied in a number of re-
cent publications. In [Attamah et al., 2014a] a tool is discussed
that given a high level description of an epistemic protocol
in the setting of [Attamah et al., 2014b] generates the char-
acteristics of the protocol. The calls considered there differ
from the ones considered here, so this approach is not appli-
cable to our setting. In turn, in [van Ditmarsch et al., 2017]
dynamic distributed gossip protocols are studied in which the
calls allow the agents not only to share the secrets but also to
transmit the links. The purpose of the paper is to characterize
such protocols in terms of the class of graphs for which they
terminate. Such protocols then differ from the ones considered
here, which are static. Next, [Herzig and Maffre, 2017] and
[Cooper et al., 2016b] consider gossip protocols that aim at
achieving higher-order shared knowledge. Finally, in [Cooper
et al., 2016a] gossip protocols are expressed as an instance of
multi-agent epistemic planning and subsequently translated
into the classical planning language PDDL. In parallel with

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

765

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301635212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


this work, we proved in [Apt and Wojtczak, 2017b] the decid-
ability of fair termination for gossip protocols, while in [Apt
and Wojtczak, 2017a] established first results concerning their
extension with the common knowledge operator.

Plan. The paper is organized as follows. In the next two
sections we recall the syntax and semantics of the gossip
protocols considered in [Apt et al., 2016]. The set up is more
general since a broader definition of a call is adopted. To
illustrate the considered protocols we discuss in Section 5 a
protocol over an undirected graph, together with its partial
correctness and termination proofs.

Next, in Section 6, we show that the following problem is
NP-complete:

Can a given distribution of sets of secrets among the
agents be the outcome of a sequence of calls?

This problem turns out to be crucial for the computational
complexity analysis of the partial correctness and of termina-
tion that is carried out in Section 7. Finally, in Section 8 we
discuss some open problems.

2 Syntax
2.1 Calls and Call Types
Throughout the paper we assume a fixed finite set A of at least
three agents that is an implicit parameter in all considerations.
We assume that at the beginning each agent holds exactly one
secret and that there exists a bijection between the set of agents
and the set of secrets. We denote by S the set of all secrets.
One could consider other initial secret distributions and the
set of secrets to be larger than the set of agents. This would
not alter our results, but would make the notation harder to
read, so we opted for this simpler set up. Our aim is to analyse
what the agents know after a sequence of calls took place. So
first we introduce different type of calls and then consider an
epistemic language allowing us to refer to agents’ knowledge.

A call type is a pair ./ = (E./, f./), where E./ ⊆ A × A
and f./ : 2A×2A → 2A×2A. Intuitively, f./ is the transformer
of the sets of secrets that are familiar to the caller and callee.
Each call is a triple x ./ y, where agent x is the caller, agent
y is the callee y, and ./ is the type of the call. A call x ./ y is
feasible if (x, y) ∈ E./. Calls are denoted by c, d. Abusing
notation we write x ∈ c to denote that agent x is one of the
two agents involved in the call c.

In other words, (A, E./) is a directed graph and its edges
specify which agent can ./-call another. In turn, f./ specifies
the outcome of such a call given the sets of secrets the caller
and callee are familiar with. In [Apt et al., 2016] the following
call types were studied.

• Push-pull calls, written as x ◦ y or simply xy, where
agents x and y exchange all their secrets. In this case we
define f◦(X,Y ) := (X ∪ Y,X ∪ Y ), where X and Y
are, respectively, the set of secrets the caller and callee
are familiar with before this call takes place.

• Push calls, written as x . y, where only the caller x
passes his secrets to the callee y. In this case we define
f.(X,Y ) := (X,X ∪ Y ).

• Pull calls, written as x / y, where only the caller x
learns the secrets of the callee y. In this case we define
f/(X,Y ) := (X ∪ Y, Y ).

In this paper we generalize the setting and allow the outcome
of a call to be any polynomially computable function, f , which
is also monotonic, i.e., no agent ever forgets his secrets. For-
mally, if f(X,Y ) = (X ′, Y ′) then X ⊆ X ′ and Y ⊆ Y ′.

An example of a call type captured by this definition is the
one in which during each call each agent reveals only one
secret (e.g., the least one in some ordering on S). Our results
also hold for call types with non-deterministic outcomes as
long as there are polynomially many of them. We opted for
deterministic call types only to keep the definitions simple.

2.2 Epistemic Logic
We consider formulas in a simple epistemic language L de-
fined by the following grammar:

φ ::= Fap | ¬φ | φ ∧ φ | Kaφ,

where p ∈ S and a ∈ A. Each secret is viewed as a distinct
constant. We denote the secret of agent a by A, the secret
of agent b by B and so on and sometimes implicitly switch
between an agent and its secret.

We read Fap as ‘agent a is familiar with the secret p’ and
Kaφ as ‘agent a knows that formula φ is true’. So Fap is an
atomic formula, while Kaφ is a compound formula. In fact,
all atomic formulas of L have the form Fap.

In what follows we shall distinguish the following sublan-
guages of L:

• L0, its propositional part, which consists of the formulas
that do not use the Ka modalities;

• L1, which consists of the formulas without the nested use
of the Ka modalities;

• La
1 , where a ∈ A is a fixed agent, which consists of the

formulas from L1 where the only modality is Ka.

3 Semantics
We now recall from [Apt et al., 2016] semantics of the epis-
temic formulas. To this end we recall first the concept of a
gossip situation.

3.1 Gossip Situations
A gossip situation (in short a situation) is a sequence s =
(Qa)a∈A, where Qa ⊆ S for each agent a. Intuitively, Qa is
the set of secrets agent a is familiar with in situation s. The
initial gossip situation is the one in which each Qa equals
{A} (recall that A is the secret of agent a) and is denoted by
root. This situation reflects the fact that initially each agent is
familiar only with his own secret. We say that an agent a is an
expert in a situation s if he is familiar in s with all the secrets,
i.e., if Qa = S.

We will use the following concise notation for gossip sit-
uations. Sets of secrets will be written down as lists. e.g.,
the set {A,B,C} will be written as ABC. Gossip situations
will be written down as lists of lists of secrets separated by
dots. E.g., if there are three agents, then root = A.B.C and

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

766



the gossip situation ({A,B}, {A,B}, {C}) will be written as
AB.AB.C.

Each feasible call transforms the current gossip situation
by modifying the set of secrets the agents involved in the call
are familiar with. Consider a gossip situation s := (Qd)d∈A.
Then (a ./ b)(s) := (Q′d)d∈A, where (Q′a,Q

′
b) = f./(Qa,Qb),

and Q′c = Qc, for c 6∈ {a, b}. This simply says that the only
effect of a feasible call a ./ b is that the secrets of the involved
agents, a and b, are shared according to f./.

3.2 Call Sequences
In [Apt et al., 2016] computations of the gossip protocols
were studied, so both finite and infinite call sequences were
used. Here we focus on the finite call sequences as we are only
interested in the semantics of epistemic formulas. So to be
brief, unless explicitly stated, a call sequence is assumed to
be finite. A call sequence is valid if each of its calls is feasible.
Checking whether a call sequence is valid can easily be done
in linear time, so from now on we assume that all considered
call sequences are valid.

The empty call sequence is denoted by ε. We use c to denote
a call sequence and C to denote the set of all finite (valid) call
sequences. Given call sequences c and d and a call c we denote
by c.c the outcome of adding c at the end of the sequence c
and by c.d the outcome of appending the sequences c and d.

The result of applying a call sequence to a situation s is de-
fined inductively by putting ε(s) := s and (c.c)(s) := c(c(s)).
Example 1 Let A = {a, b, c}. Consider the call se-
quence (ac, b . c, a / c) involving three different call
types. It generates the following successive gossip situ-
ations starting from root: A.B.C ac−→ AC.B.AC

b.c−→
AC.B.ABC

a/b−→ ABC.B.ABC. Hence (ac, b . c, a /
c)(root) = (ABC.B.ABC). 2

3.3 Gossip Models and Truth
A gossip situation is a set of possible combinations of secret
distributions among the agents. As calls progress in sequence
from the initial gossip situation, agents may be uncertain about
which one of such secrets distributions is the actual one. This
uncertainty is captured by appropriate equivalence relations
on the call sequences.
Definition 1 A gossip model is a tupleM := (C, {∼a}a∈A),
where each ∼a⊆ C× C is the minimal relation satisfying the
following conditions:
• ε ∼a ε,
• Suppose c ∼a d.

(i) If a 6∈ c, then c.c ∼a d and c ∼a d.c.
(ii) If a ∈ c and c.c(root)a = d.c(root)a, then c.c ∼a

d.c.

A gossip model with a designated call sequence is called a
pointed gossip model.

For instance, by (i) we have ab, bc ∼a ab, bd. But we do
not have bc, ab ∼a bd, ab since (bc, ab)(root)a = ABC 6=
ABD = (bd, ab)(root)a.

The following two properties of ∼a from [Apt et al., 2016]
will be used in the sequel.

Fact 1 (i) Each ∼a is an equivalence relation.
(ii) For all c,d ∈ C if c ∼a d, then c(root)a = d(root)a.

Finally, we recall the definition of truth.

Definition 2 Let (M, c) be a pointed gossip model with
M := (C, (∼a)a∈A) and c ∈ C. We define the satisfaction
relation |= inductively as follows (clauses for Boolean connec-
tives are as usual and omitted):

(M, c) |= Fap iff p ∈ c(root)a,

(M, c) |= Kaφ iff ∀d s.t. c ∼a d, (M,d) |= φ.

Further

M |= φ iff ∀c (M, c) |= φ.

WhenM |= φ we say that φ is true. 2

So a formula Fap is true whenever secret p belongs to the set of
secrets agent a is familiar with in the situation generated by the
designated call sequence c applied to the initial situation root.
In turn, the knowledge operator is interpreted as is customary
in epistemic logic, using the equivalence relations ∼a.

4 Gossip Protocols
In [Apt et al., 2016], as a follow up on [Attamah et al., 2014b],
distributed epistemic gossip protocols were studied. Their goal
is to reach a gossip situation in which each agent is an expert.
In other words, their goal is to transform a gossip situation
in which the formula

∧
a∈A FaA is true into one in which the

formula
∧

a,b∈A FaB is true. Let us recall their definition.
By a component program, in short a program, for an agent

a we mean a statement of the form ∗[[]mj=1 ψj → cj ], where
m > 0 and each ψj → cj is such that ψj ∈ La

1 and a ∈ cj .
Given a formula ψ ∈ La

1 and a call c, we call the construct
ψ → c a rule and refer in this context to ψ as a guard. The
symbol [] denotes a nondeterministic choice among the rules
of a given agent, while ∗ denotes a repeated execution of the
rules, one at a time, where each time a rule is selected whose
guard is true. Finally, by a distributed epistemic gossip proto-
col, in short a gossip protocol, we mean a parallel composition
of component programs, one for each agent.

Assume a gossip protocol P that is a parallel composition
of the component programs ∗[[]ma

j=1 ψ
a
j → caj ], one for each

agent a ∈ A.
The computation tree of P is defined as the (possibly

infinite) set CP of (possibly infinite) call sequences c =
c0, c1, . . . , cn, . . . such that:

• CP is closed under prefixes,
• for any call sequence (c0, c1, . . . , ci, ci+1) in it: for some
a and j ∈ {1, . . .,ma} we have (M, (c0, . . . , ci)) |= ψa

j
and caj = ci+1.
In this case we say that a transition between
(c0, c1, . . . , ci) and (c0, c1, . . . , ci, ci+1) took place due
to the execution of the rule ψa

j → caj .
By a computation of a gossip protocol we mean a maximal

rooted path in its computation tree. We say that the gossip
protocol P is partially correct if for all finite computations c
of P : (M, c) |=

∧
a,b∈A FaB, i.e., if each agent is an expert

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

767



in the gossip situation c(root). Note that c is a finite compu-
tation iff (M, c) |=

∧
a∈A

∧ma

j=1 ¬ψa
j . We call the formula∧

a∈A
∧ma

j=1 ¬ψa
j the exit condition of the gossip protocol P .

So P is partially correct iff the implication∧
a∈A

ma∧
j=1

¬ψa
j →

∧
a,b∈A

FaB (1)

is true. We say furthermore that P terminates if all its compu-
tations are finite.

All gossip protocols studied in [Apt et al., 2016] use as
guards only formulas from L1, that is in a program for agent
a only guards from La

1 are used.

5 Example Gossip Protocol
To illustrate the power of gossip protocols suppose that the
agents are nodes of an undirected connected graph (V,E) and
that the calls can take place only between agents connected by
an edge. Let Ni denote the set of neighbours of node i.

Consider a gossip protocol with the following program for
agent i:

∗[[]j∈Ni,C∈SFiC ∧ ¬KiFjC → (i, j)].

Informally, agent i calls a neighbour j if i is familiar with some
secret (here C) and he does not know whether j is familiar
with it.

To prove its partial correctness consider the exit condition∧
(i,j)∈E

∧
C∈S(FiC → KiFjC). For all agents i and j and

secrets C, the formula KiFjC → FjC is true, so the exit
condition implies

∧
(i,j)∈E

∧
C∈S(FiC → FjC).

Consider now an agent i and the secret J of agent j. Let
j = i1, . . ., ih = i be a path that connects j with i. The
above formula implies that for g ∈ {1, . . ., h − 1} we have∧

C∈S(FigC → Fig+1C). By combining these h− 1 formulas
we get

∧
C∈S(FjC → FiC). But FjJ is true, so we conclude

FiJ . Consequently
∧

i,j∈A FiJ , as desired.
To prove termination it suffices to note that after each call

ij the size of the set {(i, j, C) | ¬KiFjC} decreases.

6 Incomplete Gossiping Problem
In [Apt and Wojtczak, 2016], the following problem was stated
and was shown to be decidable.
Definition 3 (INCOMPLETE GOSSIPING) Can a given gossip
situation s = (Qd)d∈A be the outcome of a call sequence
starting at root?

Despite it apparent simplicity, we show that INCOMPLETE
GOSSIPING problem is NP-hard even if the only type of calls
allowed is push-pull and everyone can call everybody else,
i.e., the graph is a clique. This result is of independent in-
terest as it connects with other computational problems. For
instance, [Liben-Nowell, 2002] shows that computing the dis-
tance between two genomes can be reduced to the problem of
computing the minimum number of calls necessary to reach a
given gossip situation. In [Khuller et al., 2003], the same was
shown for the problem of data migration for storage devices in
the setting where only one secret is exchanged during a call.

We show the stated result by a reduction from the following
TRIANGLE 3-COLORING problem.

Definition 4 (TRIANGLE 3-COLORING) The input is given
as (V, T ) where V = {1, . . . , n} be a set of vertices and T =
{(t1,0, t1,1, t1,2), . . . , (tm,0, tm,1, tm,2)} a set of m triangles,
i.e., triplets of vertices. Let the set of colors be C = {0, 1, 2}.

The problem is defined as follows. Is it possible to color each
vertex in V in such a way that each triangle is colored with
three distinct colors, i.e., find a function c : V → C such that
for each j ∈ T , k, l ∈ C, k 6= l, we have c(tj,k) 6= c(tj,l)?

Note that TRIANGLE 3-COLORING problem is NP-
complete – indeed, we can reduce from the standard NP-
complete problem of GRAPH 3-COLORING by adding a new
fresh vertex to each edge, thus making it a triangle.

Theorem 1 The INCOMPLETE GOSSIPING problem is NP-
hard.

Proof. Let I = (V, T ) be an instance of TRIANGLE 3-
COLORING. We will reduce it to an instance of INCOMPLETE
GOSSIPING (AI , sI), where AI is a set of agents and sI is a
gossip situation. First, we will describe (AI , sI). Then we will
show the intended call sequence cI and give some intuition
about the gadgets that we use. We then show that if I is trian-
gle 3-colorable, then cI(rootAI ) = sI . In the last paragraph,
we prove that our reduction is correct, i.e., if there exists c
such that c(rootAI ) = sI , then I is triangle-3-colorable.
Reduction. Let I = (V, T ) be an instance of TRIANGLE 3-
COLORING. Let the set of agents be AI = {Cc,v | c ∈ C, v ∈
V } ∪ {Ac,v | c ∈ C, v ∈ V } ∪ {Fc | c ∈ C} ∪ {Sv | v ∈
V }∪{Kj,k | j ∈ T, k ∈ C}∪{Lj,k | j ∈ T, k ∈ C}∪{Gv |
v ∈ V } ∪ {Hj,k | j ∈ T, k ∈ C}.

For every c ∈ C, v ∈ V let us define color(c) = {Cc,v |
v ∈ V } ∪ {Fc}, Gadget(v) = {Ac,v | c ∈ C} ∪ {Sv},
Fix = {Fc | c ∈ C} ∪ {Gv | v ∈ V } ∪ {Hj,k | j ∈ T, k ∈
C}, and K(v) = {Kj,k | tj,k = v}. Also let AllColors =
∪c∈Ccolor(c). The intuition behind the definition of these sets
will become clearer once we define cI in the next subsection.

We now define the target gossip situation s as follows (where
c iterates over C and v iterates V ). Each agent Cc,v is famil-
iar with color(c) and Gadget(v). Each agent Ac,v is familiar
with color(c) and Gadget(v). Each agent Fc is familiar with
AllColors and Fix. Each agent Sv is familiar with AllColors,
Fix, Gadget(v), and K(v). Each agent Kj,k is familiar with
AllColors, Fix, Gadget(tj,k), Lj,k, and K(tj,k). Each agent
Lj,k is familiar with AllColors, Gadget(tj,l), Lj,l, and K(tj,l)
for all l ∈ C. Each agent Gv is familiar with AllColors,
Fix, Gadget(v), and K(v). Each agent Hj,k is familiar with
AllColors, Fix, Gadget(t(j, k)), Lj,k, and K(tj,k).
Intended call sequence. We now define the call sequence cI
such that cI(rootAI ) = sI if I is triangle-3-colorable.

1. At the beginning, for each c ∈ C, all agents in color(c)
call each other. After this, for every agent a ∈ AI , color
c ∈ C, and at any point of cI , agent a is either familiar
with all the secrets from color(c), or none of them. We
say that agent a has color c ∈ C iff it is familiar with all
the secrets from color(c).

2. In this step, we use a gadget which simulates coloring of
the vertices with at most one color. For each v ∈ V , the
gadget Gadget(v) consists of agents Ac,v for each c ∈ C,

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

768



and the selection agent Sv. In step 2a, for each v ∈ V ,
we let Sv and all Ac,v for c ∈ C call each other. In step
2b, Ac,v calls Cc,v . In step 2c, Ac,v calls Sv .
Suppose that we request the agents Cc,v and Ac,v to be
familiar with only secrets of Gadget(v) and color(c), and
the agent Sv to be familiar with Gadget(v), but do not
restrict its knowledge of secrets of color(c). It is, however,
impossible for Sv to have more than one color at the end
of this step, because otherwise one of the agents Cc,v or
Ac,v would also have more than one color.

3. In this step, we make sure that each triangle is indeed
colored with all three colors. In step 3a, we let agent Sv

call all agents in K(v), which is the set of all agents Kj,k

such that tj,k = v. In step 3b, each agent Kj,k calls Lj,k.
In step 3c, for each j ∈ T , all agents {Lj,k | k ∈ C} call
each other, i.e., each agent Lj,k will have all three colors.

4. The problem with the construction so far is that our gos-
siping situation at this point gives away the total knowl-
edge of secrets of each agent. Currently, agents Sv and
Kj,k have just one color, which reveals the chosen col-
oring. To fix this, in step 4a, all agents in Fix call each
other, thus all of them will have all colors. In step 4b,
for each v ∈ V , agent Gv calls Sv, and, for each j ∈ T ,
k ∈ C, Hj,k calls Kj,k.

Proof of correctness. Now, we will prove that sI can only be
reached by a call sequence essentially the same as cI .

W.l.o.g., we can assume that the call sequence has to start,
for each color c ∈ C, with all agents in color(c) calling each
other. If c is a call sequence such that c(rootAI ) = sI then
adding these calls at the beginning of c, would not affect its
final gossip situation.

Note that a call between agents X and Y is possible only
if X is familiar with the secret of Y , and Y is familiar with
the secret of X . Furthermore, if agent X calls Y and Z, and
Y is not familiar with secret Z, then we know that X cannot
call Y after he has called Z. Based on this, we can deduce
that only the following calls are possible in a call sequence
c leading to sI . Each agent Cc,v can call color(c), then Ac,v.
Each agent Ac,v can call Gadget(v) \ {Sv}, then Cc,v, then
Sv. Each agent Fc can call color(c), then Fix. Each agent Sv

can call Gadget(v), then K(v), then Gv . Each agent Kj,k can
call Stj,k and Ktj,k , then Lj,k, then Hj,k. Each agent Lj,k can
callKj,k, then Lj,l. Each agentGv can call Fix, then Sv . Each
agent Hj,k can call Fix, then Kj,k.

Note that all these calls actually take place in cI .
Now, consider how Lj,k could have received the colors.

He could have received them from Lj,l for l ∈ C. Now, Lj,l

could have received these colors from Kj,l, but before Kj,k

has called Lj,k or Hj,k. Hence, Kj,l could have received the
colors only from Sv where v = tj,l, but only before Stj,l

called K(v) or Gv. Hence, Sv must have received the color
from Gadget(v). Since no agent in Gadget(v) other than Sv

has more than one color, Sv must have received at most one
color at that time, cv . Hence, Lj,k could have learned only the
colors ctj,l for l ∈ C. Thus, if there exists call sequence c such
that c(rootAI ) = sI then I has to be triangle-3-colorable. 2

7 Computational Complexity
We now use the result of the previous section to determine
the computational complexity of the implementability of the
gossip protocols. We focus on a more general problem of
determining the complexity of semantics for formulas with no
nested modalities. We begin with the simplest case.

Lemma 1 For any formula φ ∈ L0 and a call sequence c
checking whether (M, c) |= φ is in P.

Proof.(sketch) We construct c(root) in polynomial time by a
successive application of the calls in c. We then simply check
(in polynomial time) whether φ holds in c(root). 2

Consider a call sequence c. If for some prefix c1.c of c,
c1(root) = c1.c(root), then we say that c is redundant in
c. We say that a call sequence c is redundant free if no call
c from c is redundant in it. First, let us recall the following
result that follows from Lemmas 1 and 2 in [Apt and Wojtczak,
2016].

Lemma 2 Suppose that c := c1, c, c2 and d := c1, c2, where
c is redundant in c. Then for all formulas φ ∈ L0, (M, c) |= φ
iff (M,d) |= φ. Also, the maximum length of a redundant free
call sequence is |S|2.

We can now use the result from the previous section.

Lemma 3 For any formula φ ∈ L0, checking whetherM |=
φ is CO-NP-complete.

Proof. We consider the complement of this problem. By the
definition of semantics and Lemma 2, M 6|= φ holds iff
for some redundant free call sequence c, (M, c) |= ¬φ. By
Lemma 2 the length of such a call sequence is at most |S|2.
This in conjunction with Lemma 1 implies that the comple-
ment problem is in NP.

To show NP-hardness note that each gossip situation s =
(Qd)d∈A can be encoded as the following conjunction of size
at most |S|2: ζ(s) =

∧
a∈A

(∧
B∈Qa

FaB ∧
∧

B 6∈Qa
¬FaB

)
.

Now, a gossip situation s is a solution to the INCOMPLETE
GOSSIPING problem iff ∃c (M, c) |= ζ(s) iffM 6|= ¬ζ(s).
So the NP-hardness follows from Theorem 1. 2

Lemma 4 For any formula φ ∈ L0 and a call sequence c
checking whether (M, c) |= Kaφ is CO-NP-complete.

Proof. By definition (M, c) |= Kaφ holds iff ∀d s.t. c ∼a

d, (M,d) |= φ. Due to Lemma 2, it suffices to consider
only call sequences d in which all calls except those involving
agent a are redundant. The same argument as in the proof of
Lemma 2 shows that the length of each such a call sequence d
is at most |c|+ |S|2. This implies by Lemma 3 that checking
(M, c) |= Kaφ can be done in CO-NP.

Now we show CO-NP-hardness already for the special case
when c = ε and φ does not refer to agent a. Note that d ∼a ε
iff no call in d involves agent a. Consider the modelM′ with
the set of agents A′ = A\{a}. Notice that ∀d ∼a ε (M,d) |=
φ iff ∀d (M′,d) |= φ iff M′ |= φ. The conclusion now
follows from Lemma 3. 2

We can now establish an appropriate complexity result that
refers to the already mentioned complexity class PNP

‖ .

Theorem 2 For any formula ψ ∈ L1 and a call sequence c
checking whether (M, c) |= ψ is PNP

‖ -complete.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

769



Proof. We first show that the problem is in PNP
‖ , i.e., solvable by

a deterministic polynomial-time Turing machine with parallel
(i.e., non-adaptive) access to an NP oracle. Fix the appropriate
formula ψ and a call sequence c. By assumption ψ is a proposi-
tional formula over the set of basic formulas of the form FaB
or Kaφ, where φ is a propositional formula. We first check
for each subformula Kaφ of ψ whether (M, c) |= Kaφ. By
Lemma 4 each such a check can be done by a single query to
an NP oracle.

Replace now in ψ each basic subformula φ by true if
(M, c) |= φ and by false otherwise. The resulting ground
propositional formula is true iff (M, c) |= ψ. The former
problem is in P, so the latter is in PNP

‖ .
To prove PNP

‖ -hardness we show a reduction from the fol-
lowing decision promise problem.

Definition 5 (ODD-INDEX) Let s̄ = s1, . . . , sk be a sequence
of gossip situations such that for some i ≤ k all s1, . . . , si can
be the outcome of a call sequence (i.e., are positive instances
of INCOMPLETE GOSSIPING) and none of si+1, . . . , sk can.
Decide whether this promised index i is an odd number.

Since the INCOMPLETE GOSSIPING problem is NP-hard, the
PNP
‖ -hardness of the ODD-INDEX problem follows from the

sufficient conditions for PNP
‖ -hardness given in Theorem 5.2 in

[Wagner, 1987] (see also Lemma 7 in [Spakowski and Vogel,
2000]). Now given an ODD-INDEX instance s̄ = s1, . . . , sk
we construct a formula ψ ∈ L1 such that (M, ε) |= ψ iff the
index i for s̄ is odd. First, let us add an additional agent a to A
and set his secrets in s̄ to {A}. For a gossip situations s, let ζ(s)
be defined as in the proof of Lemma 3. Let ψl be the formula∧l

j=1 ¬Ka¬ζ(sj) ∧
∧k

j=l+1Ka¬ζ(sj). Intuitively, ψl is true
iff the index i is equal to l. This is the case because (M, ε) |=
¬Ka¬ζ(s) iff s can be the outcome of a call sequence, and
(M, ε) |= Ka¬ζ(s) iff s cannot be the outcome of a call
sequence. Let ψ = ψ1 ∨ ψ3 ∨ . . . ∨ ψ2dk/2e−1. We claim that
(M, ε) |= ψ iff i is an odd number. This is because ψ tests
whether i is equal to an odd number between 1 and k. 2

This yields the desired conclusion about the implementabil-
ity of the gossip protocols. To analyze their partial correctness
and termination, we will need the following three lemmas.

Lemma 5 For any call sequences c ∼a d and arbitrary for-
mula φ: (M, c) |= Kaφ iff (M,d) |= Kaφ.

Proof. It follows directly from the definition of Ka. 2

We call the second call c in a call sequence c1.c.c2.c.c3
epistemically redundant if c1.c(root) = c1.c.c2.c(root). We
now show that removing an epistemically redundant call does
not affect the truth of any formula with no nested modalities.

Lemma 6 If c1.c.c2.c.c3 is a call sequence where the 2nd call
c is epistemically redundant, then for any formula ψ ∈ L1:

(M, c1.c.c2.c.c3) |= ψ iff (M, c1.c.c2.c3) |= ψ.

Proof. The proof proceeds by structural induction and the
only non-trivial case is when ψ = Kaφ. If a 6∈ c
then c1.c.c2.c.c3 ∼a c1.c.c2.c3, because c1.c.c2.c(root) =
c1.c.c2(root). The claim then follows from Lemma 5.

If a ∈ c, it suffices to check that
∀c′1.c.c′2.c.c′3 ∼a c1.c.c2.c.c3

(M, c′1.c.c
′
2.c.c

′
3) |= φ iff (M, c′1.c.c

′
2.c
′
3) |= φ.

First, due to Fact 1, c′1.c.c
′
2.c.c

′
3 ∼a c1.c.c2.c.c3 implies that

c′1.c(root) = c′1.c.c
′
2.c(root). Thus, the second c is redundant

in c′1.c.c
′
2.c.c

′
3 and the claim follows from Lemma 2. 2

Lemma 7 For any formula ψ ∈ L1, checkingM |= ψ is in
coNPNP.
Proof. By definitionM |= ψ holds iff ∀c (M, c) |= ψ. Due to
Lemma 6 it suffices to check this condition for call sequences
c of polynomial length, because there are polynomially many
different calls c and due to Lemma 2 in each c at most |S|2
calls may be non-redundant. At the same time (M, c) |= ψ is
PNP
‖ -complete. This immediately gives a coNPPNP

‖ algorithm for
our problem, because it suffices to check for all polynomially-
long call sequences c whether (M, c) |= ψ holds. However, a
coNPPNP

‖ Turing machine can can be simulated by a coNPNP

Turing machine, because polynomially many PNP
‖ queries can

be replaced by polynomially many queries to an NP oracle.
This concludes the proof that the problem is in coNPNP. 2

Due to Lemma 7 and the characterization of partial correct-
ness as the truth of formula (1) we get the following.
Theorem 3 Checking partial correctness of a gossip protocol
is in coNPNP.

We conclude by addressing the termination problem.
Theorem 4 Checking whether a gossip protocol always ter-
minates is in coNPNP.
Proof.(sketch) Non-termination of a gossip protocol is equiva-
lent to checking whether for one of its guards, ψ, there exists
a call sequence c and a call c such that both (M, c) |= ψ
and (M, c.c) |= ψ hold. Due to Theorem 2 checking either of
them can be done in PNP

‖ . But in fact checking whether they
both hold at the same time is also in PNP

‖ , because we can
execute all their non-adaptive queries to an NP oracle simulta-
neously. This also shows that termination is in PNP

‖ , because
one can simply negate the result of these checks. Now, the
same argument as at the end of the proof of Lemma 7 shows
that the termination problem is in coNPNP. 2

8 Future Work
In this paper, we established the computational complexity
of implementability of a gossip protocol and an upper bound
on checking its partial correctness and termination, which we
conjecture to be coNPNP-complete problems. An interesting
future work would be to study the same problems for gossip
protocols with nested modalities or with a common knowledge
operator. Another interesting issue is to study the synthesis
of a distributed gossip protocol from epistemic specifications
(see, e.g., [van der Meyden and Wilke, 2005]).

Acknowledgements
We thank André Hernich for useful discussions on some as-
pects of this work. This work was initiated at Autobóz’16 and
partly supported by NCN grant 2014/13/B/ST6/01807 and
EPSRC grants EP/M027651/1 and EP/P020909/1.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

770



References
[Apt and Wojtczak, 2016] Krzysztof R. Apt and Dominik

Wojtczak. On decidability of a logic of gossips. In Proc.
of the 15th European Conference on Logics in Artificial
Intelligence (JELIA 2016), volume 10021 of Lecture Notes
in Computer Science, pages 18–33. Springer, 2016.

[Apt and Wojtczak, 2017a] Krzysztof R. Apt and Dominik
Wojtczak. Common Knowledge in a Logic of Gossips. In
Proc. of TARK 2017 (to appear). EPTCS, 2017.

[Apt and Wojtczak, 2017b] Krzysztof R. Apt and Dominik
Wojtczak. Decidability of Fair Termination of Gossip Pro-
tocols. In Proc. of the IWIL Workshop and LPAR Short
Presentations, volume 1, pages 73–85. Kalpa Publications,
2017.

[Apt et al., 2016] Krzysztof R. Apt, Davide Grossi, and
Wiebe van der Hoek. Epistemic protocols for distributed
gossiping. In Proc. of the 15th Conference on Theoreti-
cal Aspects of Rationality and Knowledge (TARK 2015),
volume 215 of EPTCS, pages 51–66, 2016.

[Attamah et al., 2014a] Maduka Attamah, Hans van Dit-
marsch, Davide Grossi, and Wiebe van der Hoek. A frame-
work for epistemic gossip protocols. In Proc of the 12th
European Conference on Multi-Agent Systems (EUMAS
2014), pages 193–209, 2014.

[Attamah et al., 2014b] Maduka Attamah, Hans van Dit-
marsch, Davide Grossi, and Wiebe van der Hoek. Knowl-
edge and gossip. In Proceedings of ECAI’14. IOS Press,
2014.

[Cooper et al., 2016a] Martin C. Cooper, Andreas Herzig,
Faustine Maffre, Frédéric Maris, and Pierre Régnier. A
simple account of multiagent epistemic planning. In Proc.
of ECAI 2016, pages 193–201. IOS Press, 2016.

[Cooper et al., 2016b] Martin C. Cooper, Andreas Herzig,
Faustine Maffre, Frédéric Maris, and Pierre Régnier. Sim-
ple Epistemic Planning: Generalised Gossiping. In Proc. of
ECAI 2016, pages 1563–1564. IOS Press, 2016.

[Fagin et al., 1997] Ronald Fagin, Joseph Y. Halpern, Yoram
Moses, and Moshe Y. Vardi. Knowledge-based programs.
Distributed Computing, 10(4):199–225, 1997.

[Hedetniemi et al., 1988] Sandra Mitchell Hedetniemi,
Stephen T. Hedetniemi, and Arthur L. Liestman. A survey
of gossiping and broadcasting in communication networks.
Networks, 18(4):319–349, 1988.

[Herzig and Maffre, 2017] Andreas Herzig and Faustine Maf-
fre. How to share knowledge by gossiping. AI Communi-
cations, 30(1):1–17, 2017.

[Hromkovic et al., 2005] Juraj Hromkovic, Ralf Klasing, An-
drzej Pelc, Peter Ruzicka, and Walter Unger. Dissemination
of Information in Communication Networks - Broadcasting,
Gossiping, Leader Election, and Fault-Tolerance. Texts in
Theoretical Computer Science. An EATCS Series. Springer,
2005.

[Kempe et al., 2003] David Kempe, Alin Dobra, and Jo-
hannes Gehrke. Gossip-based computation of aggregate

information. In Foundations of Computer Science, 2003.
Proceedings. 44th Annual IEEE Symposium on, pages 482–
491. IEEE, 2003.

[Kermarrec and van Steen, 2007] Anne-Marie Kermarrec
and Maarten van Steen. Gossiping in distributed systems.
Operating Systems Review, 41(5):2–7, 2007.

[Khuller et al., 2003] Samir Khuller, Yoo-Ah Kim, and Yung-
Chun Justin Wan. Algorithms for data migration with
cloning. In Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 27–36. ACM, 2003.

[Ladin et al., 1992] Rivka Ladin, Barbara Liskov, Liuba
Shrira, and Sanjay Ghemawat. Providing high availability
using lazy replication. ACM Transactions on Computer
Systems (TOCS), 10(4):360–391, 1992.

[Liben-Nowell, 2002] David Liben-Nowell. Gossip is syn-
teny: Incomplete gossip and the syntenic distance between
genomes. Journal of Algorithms, 43(2):264–283, 2002.

[Spakowski and Vogel, 2000] Holger Spakowski and Jörg Vo-
gel. Θp

2-completeness: A classical approach for new results.
In International Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 348–
360. Springer, 2000.

[Tijdeman, 1971] Robert Tijdeman. On a telephone problem.
Nieuw Archief voor Wiskunde, 3(XIX):188–192, 1971.

[van der Meyden and Wilke, 2005] Ron van der Meyden and
Thomas Wilke. Synthesis of distributed systems from
knowledge-based specifications. In Proceedings 16th Inter-
national Conference CONCUR 2005, volume 3653 of Lec-
ture Notes in Computer Science, pages 562–576. Springer,
2005.

[van Ditmarsch et al., 2017] Hans van Ditmarsch, Jan van
Eijck, Pere Pardo, Rahim Ramezanian, and François
Schwarzentruber. Epistemic protocols for dynamic gos-
sip. Journal of Applied Logic, 20:1–31, 2017.

[Wagner, 1987] Klaus W. Wagner. More complicated ques-
tions about maxima and minima, and some closures of NP.
Theoretical Computer Science, 51(1-2):53–80, 1987.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

771


