
Science of Computer Programming 3 (1983) 65-100
North-Holland

PROOF RULES AND TRANSFORMATIONS DEALING
WITH FAIRNESS*

K.R. APT
LITP, Universite Paris VII, 75251 Paris, France

E.-R. OLDEROG

65

Institut fur Informatik und Praktische Mathematik, Christian-Albrechts-Universitiit Kiel, 2300
Kiel I, Fed. Rep. Germany, and Oxford University Computing Laboratory, Programming Research
Group, Oxford, OXJ 3QD, United Kingdom

Communicated by A. Pnueli
Received April 1981
Revised April 1983

Abstract. We provide proof rules enabling the treatment of two fairness assumptions in the
context of Dijkstra's do-od-programs. These proof rules are derived by considering a transformed
version of the original program which uses random assignments z :=? and admits only fair
computations. Various, increasingly complicated, examples are discussed. In all cases reasonably
simple proofs can be given. The proof rules use well-founded structures corresponding to infinite
ordinals and deal with the ori~inal programs and not their translated versions.

1. Introduction

One of the troublesome issues concerning nondeterministic and parallel programs
is fairness. Roughly speaking this assumption states that in the course of a computa
tion every possible continuation is scheduled for execution sufficiently often. The
meaning of a continuation depends on the programming language considered. For
example, in the context of Dijkstra's guarded commands a possible continuation
is a branch of the computation starting with a guard evaluating to true. Sufficiently
often can be interpreted in a variety of ways the simplest being eventually.

The interest in fairness stems from the study of parallel programs where one
wishes to express the fact that every component program will eventually finish the
execution of each atomic instruction and start the next one. But since parallel
programs can be translated into nondeterministic programs, also the notion of
fairness has an easy translation. In fact, a number of authors found it convenient
to study the phenomena of fairness (first) in the framework of nondeterministic
programs-a practice we follow here in this paper.

* An extended abstract of a preliminary version of this paper appeared in [1].

0167-6423/83/$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)

66 K.R. Apt, E.-R. Olderog

The problem with the assumption of fairness is that it results in a noncontinuity
of various semantic functions (see [2] for an overview of the literature on this
subject). Consequently, various natural methods fail to work when applied here.

The aim of this paper is to develop a simple proof theoretic approach to the
issue of fairness. This approach was originally suggested in Apt and Plotkin [2].
We restrict our attention here to the simplest framework in which fairness can be
studied, namely Dijkstra's do-ad-programs where the components are deterministic
while-programs. Thus nondeterminism is allowed only at the top level. For these
programs we introduce two fairness assumptions: weak and strong fairness.

The first step towards proof rules dealing with fairness is that for each fairness
assumption we provide a transformation T yielding for a given do-ad-program S
an equivalent version T(S) which uses random assignments of the form z :=?
(set z to an arbitrary nonnegative integer) to simulate exactly the fair computation
of S. These transformations are interesting in their own right, but in this paper we
use them only as a preparation for the second step. In this step the Hoare-style
proof rules of Apt and Plotkin [2], which can cope with random assignments, are
applied to T(S) in order to derive in a systematic way new proof rules for S dealing
with fairness. It should be stressed that these proof rules deal with the original
program S-the transformation T is absorbed, as it were, into the assertions and
the proof rules leaving the program S intact. Our proof rules use well-[ounded
structures corresponding to infinite ordinals to prove total correctness under the
assumptions of weak or strong fairness, respectively.

The use of such infinitistic methods seems to be necessary in view of the results
by Emerson and Clarke [6] who showed that termination under fairness assumption
is not first order definable. This result prompted them to formulate a conjecture
that no useful sound and relatively complete proof system for this property exists.
We hope that our results show that one still can reason about fairness in a simple
and natural way by resorting to infinitistic means. Moreover, the results in [2] imply
soundness and relative completeness of our system for a special type of assertion
language-one which allows the use of the least fixed point operator and ordinals.
Thus our system disproves Emerson and Clarke's conjecture.

This paper is organized as follows. The next section defines the notions of weak
and strong fairness for programs of the form S =do B 1 -"'? S 1 ••• B" -"'?Sn od. If the
guards Bi, ... ,Bn are identical, or more generally B 1++B2++· · ·++Bn is a loop
invariant, weak and strong fairnesss coincide and we simply talk of fairness. In
Section 3 a proof rule dealing with fairness is developed, first for the case of two
identical guards Bi= B 2• To illustrate the proposed proof method we study three,
increasingly more complicated, examples in Section 4. Next, in Section 5, the proof
rule for fairness is extended to cover the case of n identical guards B 1 = · · · = Bn.
Three examples for the extended proof rule are discussed in Section 6. The general
case of n arbitrary guards Bi, ... , Bn is analyzed in Section 7. In this case it is
necessary to distinguish between weak and strong fairness. The differences are
reflected both in the transformations and the derived proof rules. Section 7 contains

Proof rules and transformations for fairness 67

also a detailed correctness proof for the considered program transformations. In
Section 8 three examples concerning strong fairness, related to those in Section 4,
are studied. In the following sections two natural examples where program correct
ness relies on the assumption of fairness are investigated-in Section 9 the problem
of zero searching is treated and in Section 10 the example of asynchronous fixed
point computation. Section 11 investigates which ordinals are needed for the proofs.
We show that at least all ordinals a < w · w w are necessary. (This result was in the
meantime greatly improved in [3].) Finally, in Section 12 we assess our approach
and relate it to several other approaches such as [10] and [11].

2. Definitions

We consider nondeterministic do-ad-programs of the form

S = doB1_,,.S1D .. ·DB"_,,.5"od

with n subprograms S; guarded by Boolean expressions B;, i = 1, ... , n. Throughout
this paper we assume that the subprograms S; are simple deterministic while
programs so that only one level of nondeterminism-and hence only one level of
fairness-is studied. (The discussion of how our approach generalizes to the case
of nested nondeterminism is postponed to Section 12.)

The program S manipulates states, i.e. mappings u: Var ..,,,.9, Var is a fixed set
of variables which covers the program variables of S, but may also include additional
variables if necessary. 9 is the domain of the underlying interpretation J. Variables
v E Var may be restricted to range only over a subset 9v s;; 9. The symbol I= is used
to denote validity or truth of Boolean expressions (and later on also of assertions
and correctness formulas) under J. Thus l=B(u) states that the Boolean expression
B is true in state u. The meaning of a subprogram S; of S is simply a partially
defined mapping Ai (S;) from states to states. To define notions of fairness and total
correctness we introduce the concept of computation sequences. For i E {1, ... , n}

• and states u, u' we write

..

•

i
u ---'> u' if I= B; (u) and Ai (S;)(u) = u'

and
i

u ~ J_ if l=B;(u) and fi(S;J(u) is undefined, i.e. S; diverges from u.

Note that the restriction to one level of nondeterminism in S leads us to view the
execution of S; as a single step in the computation of S.

Computation sequences of S are now those sequences ~ of states which belong
to one of the following categories:

(1)

where i; E {1, ... , n} and l=(1B 1 11 • • • 111B ..)(um). Then~ is said to terminate.

68 K.R. Apt, E.-R. Olderog

(2)

where i; E {l, ... , n}. Then g is said to fail.

(3)

where i;E{l, .. .,n} and g is infinite. Then g is said to diverge. A computation
sequence g of S is called weakly fair if g is either of the form (1) or (2), or of
the form (3), but then satisfies the following condition:

'v'iE{l, ... ,n} ((v jeNi=B;(u;))~(3je~i;=i)).
~ ro

The quantifier 'v' means "for all, but finitely many" and 3 stands for "there
exist infinitely many". Thus the above condition states that if B; is almost always
true then the ith subprograrn S; is infinitely often chosen. (This notion of weak
fairness is called 'justice' in [11].)

A computation sequence g of S is called strongly fair if g is either of the form
(1) or (2) or of the form (3), but then satisfies the following condition:

In words: if B; is infinitely often true then the ith subprogram S; is infinitely
often chosen. (This notion of strong fairness corresponds to the notion of 'fairness'
in [11].)

Note that if B1 = · · · = Bn holds, or more generally B 1 ~s2~ · • • ~ Bn is a loop
invariant, then weak and strong fairness coincide.

In this case we shall simply talk of fairness. (This concept of fairness corresponds
to a special case of the notion of 'impartiality' in [11].)

To distinguish between total correctness of programs S under (1) weak fairness
assumption, (2) strong fairness assumption, (3) fairness assumption, (4) no further
assumption, we introduce four kinds of correctness formulas:

(1) weak-+{P}S{Q},

(2) strong-+ {P} S { Q},

(3) fair-+{P}S{Q},

(4) {P}S{Q},

where P and Q are assertions, i.e. formulas allowing quantifiers. The validity of
these correctness formulas is defined as follows:

(1) i=weak -+{P}S {Q} holds if every weakly fair computation sequence of S
starting in a state <r satisfying l=P(<r) terminates in a state satisfying Q, i.e. is of the
form <r _;,···-;mu' where l=Q(u') holds for the final state u'.

(2) i=strong-+ {P} S {Q}: replace weakly fair by strongly fair in (1).

Proof rules and transformations for fairness 69

(3) f.fair--+ {P} S {Q} holds if both f. weak--+ {P} S {Q} and f.strong -+{P} S {O}. In
the following this notation will be used only if B 1 = · · · = Bn holds in S.

(4) f.{P} S {Q}: delete weakly fair in (1), i.e. the requirement of (1) should hold
for every computation.

Thus under fairness assumptions we need not bother about unfair computation
sequences. We shall soon study examples of programs which behave properly only
under fairness assumptions. But first let us develop Hoare-style proof rules which
by themselves prevent us from attempting to prove something about unfair computa
tion sequences.

3. Fairness: 2 guards

We start with the development of a proof rule for total correctness under
(weak =strong) fairness assumption for programs

S = do B --+ S 1 0 B --+ S 2 od

with only two subprograms guarded by identical Boolean expressions. The first
step in this development is the simulation of fairness using random assignments of
the form z := ? which assign an arbitrary nonnegative integer value to the variable
z. (We remark that random assignments lead to unbounded, but countable non
determinism. Semantics and proof theory for programs allowing this kind of
nondeterminism have been studied in [2].)

To achieve this simulation we transform S into the following program:

TJair (S) = Z 1 := ? ; Z 2 := ? ;

do B A z 1 ~ z 2 --+ S 1; z 1 := ? ; z 2 := z 2 - 1

od.

Here z 1 and z 2 are new variables not occurring in S which range over the integers.
These variables are added to the program S in order to implement a scheduler in
TJair (S) which decides which of the subprograms S 1 and S2 is to be executed next.

This is done as follows: at every moment in a computation of TJair (S) the values
of the variables z 1 and z 2 represent the priorities assigned to the subprograms S 1

and S2. Consequently z 1 and z2 will be called priority variables. We say that S 1 has
a higher priority than S2 if z1<z 2 holds (and vice versa for z 2 <z1). The guards
"B AZ1~z 2" and "B Az 2 <z 1" guarantee that the subprogram with the higher
priority is scheduled for execution. If both subprogram have the same priority, S 1

gets executed. After every execution of a subprogram, say S;, the priority of the
other, not chosen subprogram, say S;, gets increased (by decrementing z; by 1)
whereas the priority of S; is reset to some arbitrary nonnegative value. Gradually

70 K.R. Apt, E.-R. Olderog

increasing the priority of Si excludes the possibility of executing S; forever. This
guarantees fairness. At the very beginning of a computation of T}air (S) both priority
variables get arbitrary nonnegative values. The value of a priority variable zi plus
1 describes also the maximum number of computation steps which may pass before
the subprogram Si is eventually scheduled for execution. Therefore the variables
z i. z 2 may also be called counter variables or (following [3]) delay variables. These,
however are only informal explanations showing that T}air (S) allows only fair
computations. The precise relationship between S and T}air (S) is stated in

Lemma 1. (i) If f. is a fair computation sequence of S then there exists an extension
f of f. including the new variables z 1 and z2 such that (is a computation sequence
of T}air (S).

(ii) Conversely, if (is a computation sequence of T}air (S) then its restriction g to
the variables of Sis a fair computation sequence of S.

F • (: i i d (:I I i I or computation sequences ~ = er1 -->' · · · <J'i -->' · · · an ~ =er 1 __,. • • •

erj __,,.ii··· we say that (is an extension of f. to the variables z1, ... , Zn if the states
erj differ from eri at most in the variables z 1, ... , Zn. And f. is called a restriction of
f to the variables x i, ... , Xm if every state cri is obtained from er; by resetting every
variable z E {x i. ... , Xm} to its value in er;, i.e. by defining

-{erj(z) ifzE{X1,..-,Xm},
CTi(z)- , .

er 1 (z) otherwise.

Lemma 1 states that T}air is a faithful transformation in the sense that for every
program S of the form considered here TJair (S) simulates exactly all fair computa
tions sequences of S.

Proof of Lemma 1. (i) Consider a fair computation sequence
i1 i.

f,=cr1-'>· · ·eri~· · ·

of S with ii E {l, 2}. We explain now how to extend~ to a sequence

I f il ! ii f. =cr1 __,,.··er;__,,.··

by providing new values to the variables z 1 and z 2 • For l E {l, 2} we define

crj(zi) = min {k-jlk ~ j A (ik = l v l=1B(crk))}.

Note that this minimum always exists because f. is fair. By construction in every
state er; (except the final state er~ with l=1B(u~) if f. is finite) exactly one of the
variables z 1 and z 2 has the value 0, namely Z;r The other variable has a positive
value. Thus the scheduler built into the program T}air (S) would indeed choose the
subprogram S;; when started in the state er}. Further on, the values of the variables
z 1 and z 2 in the states er} have been defined in a way which is consistent with the
assignments to these variables in Tjair (S). This shows that (is in fact a valid
computation sequence of Tjair (S).

Proof rules and transformations for fairness 71

(ii) Let ~' be a computation sequence of Tlair (S) and let ~ be its restriction to
the variables of S. It is obvious that ~ is a valid computation sequence of S. But
we have to prove that this computation sequence is fair.

Suppose this is not the case. Then ~ is infinite, i.e. B is always true, but one
subprogram of S, say Sj, is never scheduled for execution from a certain moment
on. By the definition of T1air (S), the value of the variable zi becomes arbitrarily
small and from some moment on smaller than -1. But this is impossible because
it is easy to check that in every state <Tj of g' the following invariant:

IN= z1~-lAz2~-l

A (z 1 = -1 ~ z 2 ~ 0) A (z 2 = -1 ~ z 1 ;::. 0)
holds. 0

Though lemma 1 is interesting in its own right, we shall use here only a corollary
stated in

Proposition 1. Let P and Q be assertions not having z 1 or z 2 as free variables. Then

f:fair~{P}S{Q} if! F={P}T1air(S){Q}.

Thus in order to prove total correctness of S under fairness assumption it suffices
to prove total correctness of T}air(S) in the usual sense. But we do not recommend
the actual transformation of S into Tlair (S) as part of a proof method. This approach
would correspond to Flan and Suzuki's idea to employ certain transformations as
proof rules in a system for total correctness of parallel programs [8], with the
disadvantage of destroying the structure of the original program S.

Instead-in a second step-we use the transformation conceptually in order to
derive a direct proof rule for S dealing with fairness. This derivation applies the
proof methods of Apt and Plotkin [2] to T}air(S) and then reads back the ensuing
rule in terms of the original program S. Thus in order to apply the derived proof
rule one never has to carry out the transformations of S into Tlair(S) explicitly.

Let us present now this step. Let (W, >) be a well-founded structure, i.e.> is a
partial order relation over the set W such that there is no infinite descending chain

in W. And let a, (3, y be variables ranging over W. Then the relevant proof rule
of [2] for do-ad-programs like Tlair (S) is

(*) P~3aR(a)

(3a R(a) f\ 1(B1 V • • • V Bn))~Q

i=l, ... ,n:

{R (a)(\ Bi}S;{3(3 <a R ({3)}

72 K.R. Apt, E.-R. Olderog

Rule(*) formalizes Floyd's principle [9] stating that in order to prove total correct

ness of a loop, one has to find an appropriate loop invariant R containing a variable

a ranging over well-founded structure W which decreases with every loop execu

tion. The extension contained in (*) is that the subprograms Si may be nondeter
ministic and even allow random assigments. As a consequence one cannot prove

total correctness with natural numbers (1'\10 , >) any more, but has to resort to

infinitistic methods in form of general well-founded structures (W, >). This fact is

proved in Apt and Plotkin (2].
We remark that [2] uses ordinals instead of well-founded structures, but both

approaches are equivalent: every well-founded structure (W, >w) can be embedded

into a well-founded structure of the special form (W"' >) where a is an ordinal,
> the natural order for ordinals, and W" = {131 a > ,B} the set of all ordinals ,B
smaller than a (cf. [11]). Nevertheless, it is sometimes easier to work directly with

well-founded structures instead of with their representations as ordinals (see
Section 10).

In addition we need an axiom covering the random assignments z :=? inside
T}air(S). This is

(**) {V'zP} z:=?{P}

Applying now (*) and (**) to T}air (S) yields the following:

(FAIR2) Proof Rule for Fairness: 2 guards:

(1} P-'>V'Z1,z 2 3aR(a,z 1,z 2)

(3) {RIN(a,Zi,Z2)11B11turn=l}

S1

{V' z 1 3 (3 < a R IN (/3, z i, z 2 - 1)}

{'v'z2 3,8 <a R 1N (,B, z 1 -1, z 2J}

(5) fair....,.{P}doB-'>S 10B-'>S2 od{Q}

~h~re z i. z 2 are new variables not occurring in P, S, Q. The notation R (a, z 1, z 2)

indicates the variables a, z1, z2 may occur freely in the assertion R. This is convenient
for denoting substitutions implicitly. For example, R (,B, z i. z 2 -1) stands for R with
,B and z2 -1 substituted for a and z2, respectively.

Proof rules and transformations for fairness 73

The expression turn = 1 abbreviates z 1 ~z 2 and turn = 2 abbreviates z 2<z 1. The
assertion RrN (a, z 1, z2) is defined by

RIN(a,z 1,z2) = R(a,z1,z2)11IN

where IN is the assertion

IN = z 1 ~ - 1 11 z 2 ~ -1

11(z1=-l-->z2~0)11(z 2 =-l-->z 1 ~0)

which is a standard invariant of Tjair due to Lemma 1.
The proof rule FAIR2 is sound in the sense that whenever all premises (1)-(4)

are valid then also the conclusion (5) is valid. It is also relatively complete in the
sense that whenever the conclusion (5) is valid we can find an appropriate well
founded structure (W, >)and an invariant R (a, z 1, z 2) such that the premises (1)-(4)
are valid. It is an advantage of our transformation technique that these results are
immediate consequences of Proposition 1 together with the soundness and relative
completeness of rule (*) as proved in [2]. We remark that according to [2] the
in variant R (a, z 1, z 2) can be expressed in an assertion language allowing a least
fixed-point operator µ, besides variables ranging over W and the usual first order
quantifiers.

Clearly introducing the abbreviation 'turn' and the additional invariant IN is
needed neither for soundness nor relative completeness of the proof rule FAIR 2•

But these additions are convenient when applying the rule to examples. The standard
invariant IN can simply be assumed while formulating the invariant R (a, z i. z2)

and 'turn' improves the readability of R(a, z 1, z2).

In general, finding an appropriate invariant R (a, z i, z 2) means estimating the
number a of do-ad-loop executions of the program S. This estimation can be
expressed in terms of the program variables in S with additional help of the priority
(or delay) variables z 1 and z2 • Fortunately, in the case of only two guards we can
often represent this number a of loop executions as a (lexicographically ordered)
pair

a = ((3, z)

where f3 counts the number of rounds the program S will still execute before
termination and z counts the number of computation steps in the current round.
By a round we mean here a sequence of computation steps with maximal length
for which always subprogram S 1 or always subprogram S2 is executed. Partitioning
a into f3 and z is very helpful in those cases where the number of rounds f3 can
be estimated independently of their lengths z. To do this we shall use 'turn' as an
additional variable, and not just as an abbreviation for z 1~z 2 resp. z2 < z 1.

This informal discussion is made precise in the following:

(S-FAIR 2) Simplified Proof Rule for Fairness: 2 guards:
(1) P--> 'V turn 3(3 R *({3, turn)

74 K.R. Apt, E.-R. Olderog

(2) 3(3 R *(/3, turn)/\ -iB -? Q

(3) {R *(/3, 1)" B}

S1

{(3y ~/3 R*(y, 1))" 3y </3 R*(y, 2)}

(4) {R(/3,2)AB}

{(3y,;;,BR*(y,2))A3y</3R*(y, 1)}

(5) fair-?{P} do 8-?S1 DB-?S2 od{Q}

where turn is a new variable not occurring in P, S, Q which ranges over the set {l, 2]

Note that in the premise (3) and (4) the value of a is decreased only if a switcl

of control to the other subprogram occurs. This formalizes the intuitive idea tha

a now counts the number of rounds instead of the numbers of loop executions

Let us now prove the soundness of the simplified rule S-FAIR2 by proving th1
following:

Lemma 2. If there is an invariant R *(/3, turn) satisfying the premises of the simplifie,

proof rule S-FAIR 2 then there exists also an invariant R(a, z1, z2) such thr..

R IN (a, z 1 , z 2) satisfies the premises of the original rule FAIR2.

Proof. Let (W, >) be the well-founded structure belonging to R *(/3, turn). The1
R(o:, z 1, z 2) can be constructed from R*(/3, turn) as follows:

R(a,zi,z2) = (B Az1,;;z 2 -?3{3:o: =(/3,z 2)AR*(/3, 1))

" (B A z 2 < z 1-? 3/3: a = (/3, z 1) AR *(/3, 2))

/\ (-iB-? 3,8, turn, z: a= (/3, z) /\ R *(/3, turn))

where pairs (/3, z) are ordered lexicographically:

(f31,Z1)>(/32,z2) if /31>/32V(/31=f32/\Z1>z2).

Note that by the standard invariant IN we know that always z 1 ;,,,, -1 /\ z 2 ;,,,, -

holds. Thus the pairs ((3, z) to be considered in R IN (a, z 1, z 2) are all elements o

W x {z I z;,,,, -1} which is indeed a well-founded structure under lexicographic2
order. It is now easy to check that RrN (a, zi, z 2) satisfies the premises (1)-(4) o

rule FAIR2. We remark that IN is crucial for verifying the premises (3) and (4). [

We remark that we have not been able to prove relative completeness of th

simplified rule S-FAIR 2 , i.e. the converse of Lemma 2. The stumbling block is tha

we have no counter variable z at our disposal. Nevertheless, S-FAIR 2 is a ver

Proof rules and transformations for fairness 75

useful, sound proof rule which is convenient to apply as we shall see in the next
section.

4. Examples for fairness: 2 guards

We now treat a small hierarchy of examples with our proof rules for fairness in
order to demonstrate that the invariants R (a, z i. z 2) and R *(/3, turn) can indeed
be chosen in such a way that they just formalize the intuitive meaning of a and {3,
respectively. All examples presented here deal with termination only, i.e. with
correctness formulas of the form fair-> {true} S {true}. Letters A, B, . .. denote
Boolean variables and letters x, y, ... integer variables.

Example 1.

t=fair-> {true} do A-> skip 0 A-> A:= false od {true}.

This is essentially the program studied in Dijkstra [5, p. 76]. Note that this
termination result does not hold without fairness assumption. Let us first apply the
original rule FAIR2 where we need an invariant R (a, z i, z 2). As we know a is
intended to count the numbers of loop executions. To determine a let us analyze
the possible cases. First, if A is false at the beginning the program terminates
immediately so that a = 0. Otherwise we know that a > 0. Suppose we start with
the second subprogram S2 =A:= false. Then. simply a = 1. The more interesting
case is when we start with the first subprogram S 1 =skip. Now we cannot predict
the exact number a of loop executions any more because S 1 may be executed an
arbitrary number of times. But remember that we assume fairness. This guarantees
that S 1 will be executed only finitely many times before S 2 must be activated. In
the formalism developed in the previous section the maximal number of times we
may neglect S 2 in favour of S 1 is given by z 2 +1 where z 2 is the priority resp.
counter variable associated with S 2 • The "+ 1" is necessary here because S 1 may
be executed once even if z 2 = 0 holds (as we know from the standard invariant IN
introduced in Lemma 1). We can summarize this discussion in the following
invariant:

R(a, Zi, z2) - (--iA~a = 0)

11 (A 11 turn = 1-> a = 2 + z2)

11 (A 11 turn = 2 -> a = 1)

where the underlying well-founded structure is (No, >).
As it turns out R(a, zi, z 2) indeed satisfies the premises (1)-(4) of the proof rule

FAIR 2 . The soundness of FAIR 2 implies the validity of the above correctness
formula, i.e. the desired termination result. Note how convenient it is to formalize
the informal case analysis with the help o[the 'turn' notation. Also we realize how
the additional counter variable z2 reflects the assumption of fairness. With z2 we

76 K.R. Apt, E.-R. Olderog

are able to find an entity a which gets decreased with every loop execution, but
without z2 this is impossible (which accords with the fact that without fairness
assumption the program is not guaranteed to terminate).

Let us now look at the simplified rule S-FAIR2 where we need an invariant
R *({3, turn) with (3 counting the number of rounds only. This time our program
analysis is even simpler than the one we had before. If A is false /3 = 0 holds. If
A is true and we select subprogram S 1 there will be two rounds: (3 = 2. Otherwise,
if we start with S2 only one round is possible: (3 = 1. This leads to

R*(/3,turn) = (--iA~/3 =0)

A (A A turn= 1~/3=2)

A (A A.turn = 2 ~ f3 = 1)

where the underlying well-founded structure is simply ({0, 1, 2}, >). It is easy to
check that R *(/3, turn) satisfies the premises of proof rule S-FAIR 2. Again, the
soundness of S-FAIR2 implies the desired termination result. Note that it is the
fairness assumption which provides a meaningful interpretation of R *(/3, turn):
only because we know that in the case of "A A turn = 1" the first round will be
finite we need not bother about how long this round will actually be. This kind of
reasoning resembles rather closely a temporal analysis of the program in the sense
of Temporal Logic [13] where one thinks of events (here the end of the first round)
which will happen eventually without bothering about when exactly.

Example 2.

I= fair-+ {true} do x > 0 ~A :=true

0 x > 0 ~if A -+ x := x - 1 ; A := false

0--iA ~skip fi

od {true}.

Encouraged by the previous example we choose to apply the rule S-FAIR 2

immediately. Thus we have to estimate the number (3 of rounds again. Observe
that now /3 is not uniformly bounded as in the previous example where ((3 ~ 2),
but we can give a bound for (3 depending on the value of the variable x in the
initial state: {3,.; 2x. Thus we choose (N0 , >) as a well-founded structure. The
following invariant analyzes the possible cases precisely:

R*(/3, turn) = (x ~ 0~{3 = 0)

A (x > 0 A turn = 1 ~ f3 = 2x)

A (x > 0 A turn = 2 A A -+ {3 = 2x - 1)

A (x > 0 A turn= 2 A --,A-+ f3 = 2x + 1).

Proof rules and transformations for fairness 77

And indeed this invariant suffices to prove the above termination result via proof
rule S-FAIR2. Recall that every invariant R *((3, turn) for S-FAIR 2 can be turned
into an invariant R (a, zi. z 2) by the construction of Lemma 2.

Example 3.

F fair-+ {true} do x > 0-+ A :=true;

if B -+ x := x + 1

D 1B -+skip fi

D x >0-+ B :=false;

if A -+ x := x = 1; A := false

D 1A-+skip fi

od {true}.

Again we wish to estimate the number of rounds in order to apply rule S-FAIR 2•

But this time we have augmented the program of Example 2 by CJ in such a
way that even if we know the initial state er we cannot predict the number of rounds
in case that "x > 0 /\ B" holds in er and the first subprogram is selected. However,
as soon as the first round has ended we know the number of the remaining rounds:
it is determined exactly as in the previous example. This observation suggests that
we now choose as well-founded structure (No u {w }, >) where w > n holds for every
n E N0 , i.e. w corresponds to the first limit ordinal. Intuitively w represents the
concept of an unknown number which will become precise as soon as w gets
decreased to some a < w which must be in N0 • For an initial value of x satisfying
x > 0 the maximal number (3 of rounds can now be estimated as

((3 = w) /\ (2x -1,,;; (3,,;;:; 2x + 1).

With this intuition the following invariant is understandable:

R*((3, turn) = (x,,;; 0~(3 = 0)

/\ (x > 0 /\ turn = 1 /\ B -+ (3 = w)

/\ (x > 0 A turn = 2 /\A -+ (3 = 2x - 1)

A (x > 0 A turn = 2 A --,A -+ (3 = 2x + 1).

The part c::::=i is new as compared with the invariant of the previous example.
Again R*({3, turn) satisfies the premises of proof rule S-FAIR2 and thus proves
the desired termination result.

78 K.R. Apt, E.-R. Olderog

This is the first example which we cannot prove without resorting to infinite
ordinals in the well-founded structures even if we count the number of rounds
only. (Clearly by counting every single loop execution we would have encountered
infinite ordinals already in the previous example. This is so because lexicographically
ordered pairs a =({3, z) needed in the translation of R*({3, turn) into R(a, z1, z2)
can be written equivalently as

a=(J)·{3+z

with> being the usual order between ordinals.) The question arises which ordinals
are needed in general to prove total correctness under fairness assumptions. We
shall investigate this problem later in Section 11.

5. Fairness: n guards

In this section we extend our approach of dealing with fairness to programs of
the form

S =do B ~ S 1 0 · · · 0 B ~Sn od

with n subprograms S 1, ... , Sm but still guarded by the same Boolean expression
B. Again we proceed in two steps, first looking for a transformation which simulates
the fair computations of S and then using this transformation to derive a proof
rule for total correctness under fairness assumption. The transformation is a system
atic extension of Tjair (S) from Section 3:

T/a;,(S) = for all i E {1, ... , n} do Z; :=? od;

do

0 B /\ turn = i ~ S; ; z; := ? ;

for allj E {1, ... , n}\{i} do zi := zi- l od

od

where i ranges over {1, ... , n}. The z 1 , ... , Zn are new variables not occurring in
S which range over the integers. And the expression "turn = i" is an abbreviation
defined by

turn= i = i = min{j \zi = min{zdk~1 ,n}

which holds if i is the smallest index such that z; has the minimal value among the
z i, ... , Zn· As in the case of two guards the variables z i, ... , Zn are priority variables
used to realize a scheduler in T'Jair (S) which allows only fair computations. At
every moment in the computation of T'fa;,(S) the subprogram with the smallest
index and the maximal priority, say S;, is executed. After this execution the priorities
of all other subprograms Si, j ¥- i, get incremented (i.e. zi decremented) by 1 whereas
the priority of S; gets resets to an arbitrary nonnegative value.

Proof rules and transformations for fairness 79

Recall that in the transformed program TJair(S) of Section 3 the variables z 1

and z 2 were always ~-1. For TJair(S) we can show analogously that zi. ... , Zn;;;.:

-n + 1 is always true. In fact, this is a special case of the more general invariant

n-1

INV= /\ card{klzk~i}=:%n-i
i=l

which holds in every state of a computation sequence of TJair(S). (By card M we
denote the cardinality of a set M.)

The fact that TJa;,(S) faithfully simulates all the fair computations can be proved
in a Lemma analogous to Lemma 1 in Section 3. We shall not do this here because
it will be a special case of the more general Lemma 3 in Section 7. But we state

Proposition 2. Let P and Q be assertions not having z i. ..• , z .. as free variables. Then

Ffair-+{P}S{Q} if! F{P}T{a;,(S){Q}.

which will also follow from Lemma 3.
As in Section 3 this proposition is the starting point for the second step where

we apply the proof rule(*) and axiom(**) to T{a;,(S). This leads to the following:

(FAIR) Proof Rule for Fairness: n guards:

(1) P-+Vz1, ... ,z .. 3aR(a,zi, ... ,z ..)

(2) 3a R 1Nv (a, Zi. ... , z ..) /\ 1B-+ Q

(3.i) i = 1, ... , n:

{RINV (a, Zi, ... ' z ..) /\B /\turn= i}

S;

{Vz; 3(3 <a RINV ((3, Z1 -1, ... , Z;-1- l, Z;, Z;+1 -1, ... , Zn -1)}

(4) fair-+ {P} do B-+ Si 0 · · ·DB -+S .. od {Q}

where z 1, ..• , z .. are new variables not occurring in P, S, Q. The notation
R (a, zi. . .. , z ..) is used analogously to R (a, Zi. z2) of Section 3.

RINV (a, zi, ... , Zn) stands for

R 1Nv (a, zi, ... , z ..) = R(a, z 1, ••. , z ..) /\INV.

Soundness and relative completeness of the rule FAIR follows automatically
from Proposition 2 and the corresponding results for the proof rule (*) as explained
in Section 3. We remark that in the case "n = 1 ", i.e. for S =do B-+ S 1 od, the
transformed program Tfair (S) is equivalent to S and the proof rule FAIR becomes
equivalent to the original proof rule for while-programs.

80 K.R. Apt, E.-R. Olderog

In the case of two guards we were able to derive a simplified sound rule S-FAIR.,_
from FAIR 2 which relied only on the notion of a round and was rather easier t()
apply as shown in Section 4. But in the case of n ;;;,; 3 guards this simplificatioti,
technique does not work successfully any more. Let us explain why. Clearly w~
could try to generalize the proof rule S-FAIR 2 • This would lead to a rule S-FAIJt..
with a premise

(3.i) {R*(/3,i)/\B}

S;

{(3y ~ {3R *(y, i)) /\ Vj E {l, ... , n }\{i} 3y < /3 R *((3, j)}.

The trouble is that even in the simplest cases such an invariant R *(/3, turn)
satisfying (3.i) may not exist. Here is an example: we would like to prove

F fair~ {true} do A~ skip 0 A~ skip DA ~A:= false od {true},

a straightforward extension of Example 1 in Section 4. But we cannot do this with
the proposed proof rule S-FAIR because there is no bound for the number f3 of
rounds if we start with turn E {l, 2} unless the priority z 3 of the third subprograill
S 3 =A:= false is known. Thus we cannot achieve much without priority variables
as soon as n ;;;,; 3 guards are considered, and therefore must use the original proof
rule FAIR.

6. Examples for fairness: n guards

Let us now examine several applications of the generalized proof rule FAIR.
We start with the example we could not treat with the proposed simplified rule
S-FAIR.

Example 4.

F fair~ {true} do A~ skip D · · · D A~ skip 0 A~ A:= false od {true}.

Using the priority variable Zn associated with the nth subprogram Sn = A :=false
it is quite easy to estimate the maximal number a of loop executions. Due to the
standard invariant INV we know that for a given value Zn the term Zn + n - 1
expresses the maximal number of times the subprogram S; may be neglected before
it will surely be scheduled for execution. Thus if we start with one of the programs
Si,. .. , Sn-1 the number a is given by a = Zn + n. This is made precise in the
following invariant:

R (a, z i, ... , Zn) = A~ a= n + z,.

which satisfies the premises of rule FAIR. For n = 2 this invariant reduces to a
simplified version of the invariant R (a, z i. z2) we used in Example 1.

Proof rules and transformations for fairness 81

Example 5. In the previous example a particular subprogram was responsible for
terminating the do-ad-program, namely the subprogram Sn. We consider now the
more general case

I= fair-+ {true} do A 1 A· · • A An-+ S 1

0 A1 /\•••A An -+S2

od {true}.

with Boolean variables A 1, ••• , An where the subprograms S 1, .•. , Sn are parti
tioned into two subsets {Sk I k EK} and {S1 I l EL} with L ;C 0, K n L = 0 and Ku L =

{l, ... , n} such that the following holds: whenever one subprogram Si with l EL
is executed, the whole do-ad-program terminates. More specifically, we take

sk = skip for k EK and Si = Ai:= false for l EL.

The termination result is proved with the invariant

R(a, Zi, ... , Zn) = (Ai/\···/\ An)-+a = n +min{zi I! EL}

where the minimum of the priority variables zi is taken because any subprogram
Si with l EL will terminate the do-ad-program. A more involved form of this
example will reappear later on in Section 10.

Example 6. Finally we study a dual example where all subprograms S; need to be
executed in order to terminate the whole do-ad-program. The claim is:

I= fair-+ {true} do A 1 v · · · v An~ A 1 :=false (S1)

0 A 1 v .. ·vAn-+A2:=false (S2)

0 A1 V • • • V An ~An :=false (Sn)

od {true}.

where the Boolean variable A; reports that the ith subprogram S; has already been
executed.

The prove this claim we have to estimate the maximal number a of runs through
the do-ad-loop needed to execute every subprogram at least once.

So let us assume that we are currently executing the ith subprogram S;, i.e. that
turn = i holds. Then a depends on how many times we still may neglect the other
subprograms S;, j :;C i. This can be measured in terms of the priority variables z;.

j ;C i. Taking the standard invariant INV for these variables into account we arrive

82 K.R. Apt, E.-R. Olderog

at a first estimation of a in case of "turn= i":

a= n +max{z; I 1 ,,;;;(..:; n Aj-:f-i}.

This equation clearly holds at the start of a computation of the do-ad-program
but is not kept invariant in the course of such a computation. The problem is tha
as soon as the jth subprogram S; has been executed the corresponding priorit:
variable z; gets reset arbitrarily whereas the maximum number of times the do-od
loop is left to be executed decreases by at least 1. But this deficiency can be fixe1
easily by using the Boolean expressions A; which indicate whether S; has alread:
been executed. For "turn= i" we set

R; = a = n + max {if A; then z; else -n + 1 fi I 1,,;;; j,,;;; n /\ j -:f- i}

where -n + 1 is the smallest value z; can assume. Finally, we define

" R(a,zi, ... ,z") = /\ ((A 1 v···vA,.)/\turn=i~R;).
i=l

It turns out that R (a, z i, .•. , Zn) indeed satisfies the premises of the proof rul
FAIR.

7. Weak and strong fairness: n guards

We now develop proof rules dealing with fairness for programs of the general forr

S = doB1 ~s1D· ··DB" ~s" od

with n subprograms guarded by artribrary Boolean expressions. Thus we have t
distinguish between weak and strong fairness. Let us start with the weak fairne.
assumption. First we look for a transformation of S which realizes exactly all weak
fair computations of S. As in the transformation T'fair of Section 5 we associate
(new) priority variable z; with every subprogram S;. But now these variables wi
be manipulated individually depending on whether the corresponding guard B;
true or false. Also when determining which of the subprograms Si. ... , Sn is tot
executed next we have to make sure that only those priority variables z; a1
considered for which the guard B; is true. These remarks lead to the followir
transformation

(+)

T:eadS) = foralliE{l, ... ,n}doz;:=?od;

do

od

forallj E {l, ... , n}\{i} do

z; :=if B; then z; -1 else? fi

od

Proof rules and transformations for fairness 83

where i runs from 1 ton. Here "turn = i" is an abbreviation defined by

turn=i = i=min{jlzi=min{zklBdk=L..,n}

which holds if i is the smallest index for which z; has the minimal value among all
those zi for which Bi is true. And "if Bi then zi - 1 else? fi" is a conditional expression
the value of which is either zi -1 or an arbitrary nonnegative integer depending
on whether Bi is true or false. So we reset the priority variable zi as soon as Bi is
false. This formalizes exactly the weak fairness assumption which tells us that a
subprogram Si is guaranteed to be executed only if the guard Bi is from some
moment on continuously true. Note that for B 1 = · · · = Bn the program r:eak (S)
reduces to T[a;,(S) of Section 5 (except for the last assignment of random values
to z 1, ••• , Zn when the loop is about to terminate).

Note that the scheduler built into S is deterministic in the sense that at each
moment only one guard in the transformed do-od-program can be chosen. We
could equally well consider nondeterministic schedulers. One possible choice (con
sidered in [12]) is to replace turn =i by a predicate turn(i)=Vj(Br~zi3z;). All
subsequent results then hold, as well.

The following lemma proves the correctness of T~·eak (and hence also of T[air)
by showing that the transformation is faithful in the sense of Section 3.

Lemma 3. (i) If g is a weakly fair computation sequence of S then there exists an
extension f of g including the new variables z 1, .•• , z" such that f,' is a computation
sequence of r:eak (S J.

(ii) Conversely, if f,' is a computation sequence of r:eak (S J then its restriction g
to the variables of Sis a weakly fair computation sequence of S.

Proof. (i) Consider a weakly fair computation sequence

of S with ii E {l, ... , n }. Analogously to Lemma 1 we show how to extend g to a
sequence

by assigning new values to the variables z i, ... , Zn. This time we define for l E

{l, ... , n}

if 3 k ~ l : jk = !,
otherwise.

We claim that O"j (z1) E N0 holds for all j and !. To see this we have to show that
in both cases the minimum of a non-empty subset of N0 is taken. By the definition
this is true for the case "3k 3 j: ik = l". So let us assume "V k ~ j: ik :F l'', i.e. from
(J"i on the lth subprogram S1 is never scheduled for execution again. Since g is

84 K.R. Apt, E.-R. Olderog

00

weakly fair, this can only be the case if 3k ~ j: f=1B1(0-d holds. This implies ol
course 3k;;;,: j: f=·1B 1l<Tk) which guarantees already that also in this case the minimurr

is taken over a nonempty set.
Note that in every state crj exactly one variable z1 has the value 0-namely zij

So the scheduler built into the program T:eak (5) will indeed choose the subprograrr
5;i in the state aj. Also it is easy to check that the values of the variables z 1, •.• , z,
in the states cr ;. are defined in a way which agrees with the corresponding assignment:
in T:eak (5). Thus g' is indeed a computation sequence of r:eak (5).

(ii) Conversely, let f be a computation sequence of r:eak (5) and g be it:
restriction to the variables of 5. Clearly g is a computation sequence of S, but w1
have to show that it is weakly fair.

Suppose this is not the case. Then g is infinite and one subprogram of 5, say S
is from a certain state a-i on, never scheduled for execution though FB;(o-k) hold
for all k ;;;,: j. By the definition of r:eak (S) the value of the variable Z; gets smalle
than -n + 1 in some state a~ with k;;;,: j. But this is impossible because the assertio1

n n

INV=/\ card{klzk:;:;;-i}:s:n-iA /\ [z;<O~B;]

holds in every state crj of f. We prove this by induction on j ~ 1. In <T\ a
z i, ... , Zn;:;. 0 so that INV is vacuously true. Assume now that INV holds in o-j
We show that INV is also true in o-j:

(1) Suppose there is some i E { 1, ... , n} such that there are at least n - i +
indices k for which zk::;:;: -i holds in O'j. Let K be the set of all these indices. B
the construction of r:eak (S), i;:;. 2 and the inequality zk ::;:;: -i + 1 must have he!,
for all k EK in the state O' j . 1. By the induction hypothesis card K ::;:;: n - i + 1 hold~
so that indeed cardK=n-i+l. Again by the induction hypothesis Bk((J'j_i) i
true for all k EK. Hence there is also some k EK with ii-l = k, by the definitio
of r:eadS). But this implies that Zk ~a holds in(]';. This contradicts the definitio
of K. Consequently /\7= 1 card{k lzk :;:;;-f}:;:;;n -i holds in a-;.

(2) /\;'= 1 [z;<0 ~ B;] is obviously true in a-j by the construction of r:eak (5).
This finishes the induction. D
As an immediate consequence of Lemma 3 we derive

Proposition 3. Let P and Q be assertions without z 1, ... , Zn as free variables. The

f=weak~{P}S{Q} if! f={P}T:'.,eadS){Q}.

Thus an application of the rule (*) and axiom (**) of Section 3 yields the followir
sound and relatively complete:

(WEAK) Proof Rule for Weak Fairness: n guards
(1) P~'Vz1, ... ,Zn3aR(a,z1, ... ,zn)

2) 3 RINV (a (a,z1, ... ,z,,)v1(B 1 v .. ·AB,,)~Q

Proof rules and transformations for fairness

(3.i) i=l, ... ,n:

{RINV (a, z 1, ••• , Zn) AB; A turn= i}

S;

{Vi1, ... , in Vz; 3{3 <a

R INV (/3, [if Bi then zi - 1 else ii fi/ zi]iE{l, ... ,n}\{i})}

(4) weak~{P}doB1~S 1 D···DBn~Snod{Q}

85

where z 1, ... , Zn are new variables not occurring in P, S, Q. The meaning of
''turn=i" and RrNv(a,z 1, ... ,z,,) is defined as in Section 5. Note that in the
postassertion of premise (3.i) the substitutions are given explicitly in order to
shorten the notation. Substituting the conditional expression '"if Bi then zi -1
else ? fi" for zi into R means that in case when B; holds the assertion R should
hold for zi -1 whereas in case when 1B; holds then it should hold for all zi ~ 0.

Let us now study the strong fairness assumption. The corresponding trans
formation is:

T:'rrong (S) - for all i E {l, ... , n} do z; :=? od;

do

0 B;Aturn=i~S;;z;:=?

for all j E {1, ... , n }\{i} do

if Bi then z; := zi -1 fi

od

od

where i runs from 1 to n and "turn = i" is defined as above. The only difference
between r:eak (S) and T~crong (S) is that the assignments z i :=if Bi then z; - 1 else ? fi
in line (+ J of r:eak (S) have been replaced by

if B; then z; := zi - 1 fi,

i.e. a priority variable zi of a subprogram S; which is not executed can never be
reset. This realizes the strong fairness assumption by which Si is guaranteed to be
executed when the guard B; is infinitely often true. Again we can state

Proposition 4. Let P and Q be assertions without z 1, •.. , z,, as free variables. Then

F=strong~{P}S{Q} if! f= {P}T;'1rong(S){Q}.

This proposition relies on a lemma analogous to Lemma 3. There are two things
we have to alter in the proof of Lemma 3 so that it works for strong fairness instead

86 K.R. Apt, E.-R. O/derog

of weak fairness. First is the definition of the new values er; (zi) of the variables
z 1, l = 1, ... , n in the extended computation sequence f,' of g considered in part
(i). This definition now reads

where k0 = min{k :2' j /\ ik = /}. Again it is not difficult to see that these values are
well-defined if~ is strongly fair and consistent with the transformation T;crong·

Secondly, in part (ii) of the proof of Lemma 3 we have rather to consider the
following assertion

" INV=/\ card{klzk~-i}~n-i
i=l

n-1 n

/\ /\ (card{klzk~-l}=n-i-'> V (zk~-iABk)).
i= 1 k =I

The proof of (1) remains virtually unchanged. The proof of (2) runs now as
follows. We refer here to the notation and proof of (1) given in the proof of
Lemma 3.

Consider some i E {1, ... , n - l}such that card K = n - i holds for K = {k I Zk ~ -i}
in erj. We have to show then that Bk is true in er; for some k EK. As in (1) we
conclude that zk ~ -i + 1 holds for all k EK in a;_ 1. It is impossible that zk ~ -i
holds already for all k EK in aj_ 1 . Because then by the induction hypothesis Bk
would be true for some k EK in aj- 1• Thus by the construction of T;1, 0 ng (S) there
would also be some k EK with ii 1 = k and zk :2' 0 in er; which contradicts the
definition of K. So there exists some k EK with zk = -i + 1 in er]+ But then the
value of Zk decreased so Bk is indeed true for this k in erj by definition of T;1, 0 ,,g (S).

Proposition 4 gives rise to the following sound and relatively complete:

(STRONG) Proof Rule for Strong Fairness: n guards:

(1) P-'>'Vzi, . .. ,z,. 3aR(a,zi, ... ,z,,)

(2) 3a R 1Nv (a:, z 1, ... , z,.) /\ 1(B1v···vB,,)-'>0

(3.i) i=l, ... ,n:

{RINV (a, z 1, •.• , Zn) /\Bi f\ turn= i}

Si

{Vzi 3/3 <a R INV (/3, [if Bi then zi -1 else zi fitE\1, ... nl\{il)}

(4) strong~{P}doB1-'>S1D· · ·DB,.~s,, od{O}

with the same conventions as for proof rule WEAK.

Proof rules and transformations for fairness 87

Considering the framework of do-ad-programs S with different two guards
Bi, B 2 we can try to find simplified proof rules relying on the intuition of a round
as we did earlier in Section 3 for the case of two identical guards. We show such
a simplified version for the case of strong fairness.

(S-STRONG2) Simplified Proof Rule for Strong Fairness: 2 guards:

(1) P ~\I turn 3{3 R *({3, turn)

(2) 3(3 R*({3, turn) A 1(B1 v B2)~ Q

(3) {R*(f3, l)AB1}

S 1 ; do B 1 A 18 2 ~ S 1 od

{3y ~{3 R*(y, 1) A 3y <{3 R*(y, 2)}

(4) {R*({3,2)AB2}

{3y~{3R*(y,2)A3y<{3R*(y, lJ}

strong~ {P} do B 1~S10B2 ~ S2 od { Q}

where turn is a new variable not occurring in P, Bi, Si, B 2 , S 2 , Q which ranges
over the set {I, 2}.

Note that in this rule we have added loops do B; /\ 1B 3 _; ~ S; od behind S; (i = 1, 2).
These loops are intended to absorb all the cases where we know in advance what
the strongly fair scheduler would recommend us to do, namely to continue the
execution of S;. We remark that the addition of these loops is not necessary but it
leads to a proof rule which is easier to apply as we shall see in the next section.

The soundness of S-STRONG 2 can be proved analogously to that of S-FAIR 2 ,

i.e. by factorizing the original a used in STRONG into a pair a = ({3, z) where {3
gets decreased only if there is no possibility to decrease z. That the factor f3 can
indeed be interpreted as counting the number of rounds depends critically on the
additional loop do B 1 /\1B 2 ~S 1 od. Without this loop we would be forced to
decrease {3 in the postassertion of premise (3) even when B 1 /\1B 2 holds and
therefore no new round begins. And analogously for do B 2 /\18 1 ~s2 od.

8. Examples for strong fairness

In this section we apply the simplified proof rule S-STRONG2 for strong
fairness to prove the correctness of programs which terminate under strong but
not under weak fairness assumptions. These programs are closely related to those
studied in Section 4.

88 K.R. Apt, E.-R. Olderog

Example 7.
P strong_,. {true} do A_,. B := -iB

D B _,. A := false; B := false

od{true}.

This is a refined version of Example 1. Again the number /3 of rounds is uniformly
bounded and independent of the initial state. We choose as well-founded structure
({0, 1, 2}, >)and as invariant

R*(/3, turn) = (IA/\ -iB ~f3 = 0)

/\ (A /\ turn = 1 _,. f3 = 2)

/\ (B /\turn= 2 _,. /3 = 1).

It turns out that R *(/3, turn) satisfies the premises of the rule S-STRONG 2 • Note
that the do-ad-loops to be considered in the premises (3) and (4) are simply

do A A 1B _,. B := -iB od

and

do B /\ -iA _,.A := false; B :=false od

which terminate after at most one iteration.
What happens now if we assume only weak fairness? Then an infinite computation

sequence

is still possible because there is no state ai such that the guard B is continuously
true from CTi on and hence weak fairness does not force us to eventually choose
the second subprogram. Consequently the program may diverge under weak fair
ness assumption.

Example 8.

P strong_,. {true} do x > 0 /\!Cl_,. A:= true;] D :=ID]

D x > 0 /\ ~ _,. if A _,. x := x - 1 ; A := false

D 1A _,.skip fi.
' [C7=-;cJ

od {true}.

This is a refined version of Example 2, only the [I parts have been added.

Proof rules and transformations for fairness 89

Thus our observations about the number of rounds remain valid. This can also be

seen from the corresponding invariant

R*(/3, turn) = (x ~ 0 v (1C A 1D) +-'"(3 = 0)

/\ (x > 0 A C /\ turn = 1 4 f3 = 2x)

/\ (x > 0 /\ D /\ turn = 2 A A 4 (3 = 2x - 1)

/\ (x > 0 /\ D /\turn = 2 /\ 1A 4 (3 = 2x + 1)

where the underlying well-founded structure is (N0 , >). It differs from the invariant

of Example 2 only by the C=:J part. Again the termination result does not hold
under weak fairness assumption.

Example 9.

F=strong4{true}dox>O AC ~A:=true;

if B 4X := x + 1

0 18 4 skip fi;

D:=1D

D x > 0 A D 4 B := false;

if A 4 x := x - 1 ; A := false

DIA4skip

C:=1C

fi. ,

od {true}.

Also this termination result does not hold under weak fairness assumption. Here

the same refinement technique as in the previous example has been applied to

Example 3. This leads us to the following invariant:

R*({3,turn) = (x~O v(ICAID)+-'"(3=0

A (x > 0 A C A turn = 1 /\ B 4 (3 = w)

A (x > 0 /\ C A turn = 1 A 1B 4 (3 = 2x)

/\ (x > 0 /\ D A turn = 2 A A 4 (3 = 2x - 1)

A (x > 0 /\ D A turn = 2 A 1A 4 (3 = 2x + 1)

where we use the well-founded structure (N0 u {w }, >) known from Example 3.

Note that in the above examples we may switch turns only after every even

number of computation steps. One might think that more elaborated "switching'

90 K.R. Apt, E.-R. Olderog

techniques lead to more complicated invariants R *({3, turn). Fortunately this is not
the case. For example, if we replace in the above program the conjunct "AC" in
the first guard by"" y = O" and the assignment "C := 1C" by "y := (y + 1 mod 5) ",
the only thing we have to alter in R*(/3, turn) is to change "C" into "y =0". Our
proof rule S-STRONG2 is robust against such changes in the switching technique
thanks to the extra do-od-loops in their premises (3) and (4). These loops absorb
the complexity of the new switching technique.

9. Zero searching

So far our examples were somewhat artificial and served only as means to identify 1

certain classes of fair computation sequences. Also all the examples dealt with the
issue of termination only. We now prove total correctness of a program which is
interesting for its own sake. The claim is that

Ffair~{x=y=w/\3uB(u)}S{B(w)}

holds where

S = do 18 (x) " 18 (y) ~ x := x + 1 ; w := x

D 18 (x) " --,B (y) ~ y := y - 1 ; w := y

od.

Here F means validity in the standard interpretation of integers. B is a Boolean
expression with a free variable u, but without occurrences of the variables x, y, w.
A useful choice would be

B(u) = f(u) = 0

where f is a function from integers into integers. Then the program S searches for
a zero of f. It does so by employing two subprograms, one is searching for this
zero by continuously incrementing its test values (x :=x + 1) and the other one by
decrementing them (y := y - 1). The idea is that S finds the desired zero by activating
these subprograms in a nondeterministic, but fair order. The formal correctness
proof of Swill be divided into three steps.

Step 1. We first show that S works correctly under the assumption that initially
"B(u) "x,,;;; u" holds for some 'zero' u:

Ffair~{x = y = w AB(u) AX,,;;; u} S {B(w)}.

We intend to apply the simplified proof rule S-FAIR 2 of Section 3. Note that the
maximal number {3 of rounds of S depends on the difference u - x between u and
x. It is {3 = 2(u -x) if turn = 2 holds and f3 = 2(u = x)-1 if turn = 1 holds. Thus we

Proof rules and transformations for fairness 91

take (Nu, >) as well-founded structure. The precise formulation of the invariant is

Rf({3,turn) = B(u)Ax~u

"(B(x) v B(y J~ B(w))

"(tB(x) f\ LB(y) f\turn = 1~{3=2(u -x)-1)

f\ (---iB(x) f\ LB(y) "turn= 2~ {3 = 2(u -x)).

We show that Rf ({3, turn) satisfies the premises (1)-(4) of the proof rule S-FAIR 2 •

It is easy to see that RT(f3, turn) satisfies the premises (1) and (2) with P=
(x = y = w f\ B (u) f\ x ~ u) and 0 = B (w). Slightly more care is needed to verify
premise (3). Define P1 and 0 1 as follows:

Pi = (B(u) f\ ---iB(x)f\ 1B(y) 11x <u 11{3 ;a.2(u -x)-1 ;a.})

01 = B(u)11x~u11{3>2(u-x)

11 (B(x) v B(y J ~ B(w)).

Then l={P1} x := x + 1; w := x {01} holds. An application of the rule of consequence
yields the premise (3). A similar argument verifies premise (4).

Step 2. Next we replace the assumption .. B (u) 11 x ~ u" by "B (u) 11 u ..;; y ":

I= fair~ {x = y = w 11B(u)11 u ~ y} S {B (w)}.

Since this claim is symmetric to that of Step 1, we can easily derive the corresponding
invariant R ! ({3, turn) from RT ({3, turn):

R ~ ({3, turn) = B (u) 11 u ~ y

11 (B (x) v B (y) ~ B (w))

11 (1B (x) /\ 1B(y) f\turn = 1~{3=2(y - u))

11(1B(x)/\1B(y) f\turn = 2~ f3 = 2(y-u)-1).

Step 3. We combine the results of Steps 1 and 2 into

I= fair ~{x = y = w /\ B(u) 11 (x ~u vu~ y)} S {B(w)}.

Notice that the preassertion can be replaced by the equivalent assertion "x = y = w 11

B (u)". Finally, we can prefix B (u) in this assertion by the existential quantifier 3u

because u occurs neither in S nor in the post-assertion B (w). This yields the desired
result:

l=fair~{x = y = w /\ 3uB(u)}S {B(w)}.

These last steps correspond to applications of some general rules for reasoning
about correctness formulas, namely the disjunction rule, the rule of consequence,
and the 3-rule. These rules are sound regardless of whether fairness is assumed or
not.

92 K.R. Apt, E.-R. Olderog

10. Asynchronous fixed point computation

In this section we study a natural example for fairness with n ""'2 guards suggestec
by P. Cousot. Let (2, <:::;)be a complete lattice which fulfils the finite chain property
i.e. every strictly increasing chain

in 2 is finite. Thus (2, c) is a well-founded structure. Then the product (2", <:::;:
with n ""'2 is also a complete lattice with the finite chain property. We conside1
now a monotonic w.r.t. <:::; operator

F:2" ~2".

By Knaster-Tarski's theorem F has a least fixed point µPE 2". We wish to compute
µ.F asynchronously by employing n subprograms S; each of which is allowed on!)
to apply the ith component function

of F defined by F;(x i, ... , x") = y; whereF(xi, ... , Xn) = (y1, ... , Ynl· These subpro
grams are activated nondeterministically by the following program:

where i=(x 1, ... ,x") and B=-i(i=F(i)). In general S of course will no
compute µ.F but the claim is that it will do so under the assumption of fairness:

(CJ F fair~ {i = l.} S {i = µ..F}

where l. is the least element in~'£" and F refers to the validity in 5£. (This correctnesi
result is a special case of a more general theorem proved in Cousot [4].) We woulc
like to prove (C) with the help of the proof rule FAIR. To this end we proceed ir
two steps.

Step 1. We start with an informal analysis of program S. Consider a computatior
sequence

ii i, g = 0"1 --> .. · CTj ·~ • • •

of Sand define ui(i) = (cri(xi), ... , ui(x,,)) for j""' 1 and

F;[i] = (x i, ... , X;-1, F;(i), X;+i, ... , Xn)

for l ,s; i ,s; n. Since 0"1(f) = 1 holds and the component functions F; are monotonic
the assertion

(*) l.s;ic:::;F;[i]s;µ.F

is true for every i E {l, ... , n} in every state O"i of g. Thus i = µ.F will hold as soo
as S has terminated with i =F(i). But why does S terminate? Note that by(*

Proof rules and transformations for fairness 93

the program S produces an increasing chain

of values in the variables i. That there exists some state cri with i = F (i) relies
on two facts:

(1) By the finite chain property of 2 resp. :En the values cri(i)E2" cannot be
increased infinitely often.

(2) And by the fairness assumption the values cri(i) cannot be constant arbitrarily
long without increasing.

(1) is clear, but (2) needs a proof. Consider some non-terminal state cri in ~ (i.e.
satisfying B=--i(i=F(i))) for which either cri=(J' 1 (start) or cri_ 1(i)cO'i(i)
(increase just happened) holds. Then we can find two index sets K and L-both
depending on 0'1-which partition the subprograms S 1, •.• , Sn of S into subsets
{Sk [k EK} and {S1[l EL} such that the Sk stabilize the values of i, i.e. i =Fk[i]
holds for k EK in a;, whereas the S 1 increase the values of i, i.e. v c F1[i]

1 holds for l EL in <Ji. (Note that L :/- 0 holds because O'; is non-terminal.)
Thus as long as subprograms Sk with k EK are executed, the do-od-program S

generates states 0';+ 1 , O'j+ 2 , • •• , satisfying

But as soon as a subprogram S1 with l EL is executed in some state O'm with
j ~ m, we get the desired next increase

after O';. That such an increase will indeed happen depends on the assumption of
fairness. The formal proof of this fact is rather close to that of Example 5, except
for the following changes:
- Instead of proving termination like in Example 5 we are now proving the increase
of the values of i.
- This increase will be accomplished by executing one subprogram S1 =x1 :=F1(xi)
with l EL instead of just setting a Boolean variable A, to false as in Example 5.
- The index sets K and L vary now with the states O'i> i.e. to verify program S we
rely on different instances of the argument given in Example 5.

Step 2. With this informal discussion in mind we are now prepared for the formal
correctness proof of S with proof rule FAIR. As well-founded structure we choose
(:En x N0 , >) where > is the lexicographic order defined by

Since:£" has the finite chain property,> is clearly well-founded. The components
i and n of pairs (i, n)E2n xN0 correspond to the facts (1) resp. (2) about

94 K.R. Apt, E.-R. Olderog

termination of S explained above. The right invariant is now

n

R(a,z1, .. .,zn) = /\ (.ls;;;is;;;FJi]s;;;µ.F)
i=l

where the expression in the second component of a is a suitably adjusted version
of that from Example 5. Note that the Boolean guard B being true guarantees that 1

there exists some l E {l, ... , n} with i c F1[i]. So we need not bother how to
define the minimum over empty sets here.

Clearly R (a, zi. ... , Zn) satisfies the premises (1) and (2) of the proof rule FAIR.
To check the premise (3.i) consider the execution of S; under the precondition

R 1Nv (a, Zi, ... , Zn) 11B II turn= i,

in particular with

a= (i, n +min{z1 I1.:; /,,;; n 11i cF1[i]}).

Let us denote by i' the values of i after the execution of Si. To establish the
postcondition, we have to show that for every zi;;:. 0

3(3 <a RINV ((3, Z1 -1, ... , Zi-1- l, Zi, Z;+1 -1, ... , Zn -1)

holds. There are two cases to be considered.
(i) i c i' = F;[i]: Then a gets decreased to f3 by its first component.

(ii) i = i' = F;[i]: Since B held before the execution of S;, there exist indices
l E {1, .. ., n} with i c F1[i]. In fact, l ¥- i holds for all such indices due to
i =F;[i].

Thus the following definition of f3 is independent of z;:

f3 = (i, n +min{z1- l I 1.:;/ ,,;;n 11i cF1[i]}).

Clearly {3<a, and due to i=i', the invariant R 1Nv({3,z 1-l, ... ,z;-1-l,
z;, Z;+ 1 -1, ... , Zn -1) holds after the execution of S; for every Z;;;:. 0.

Thus in both cases a gets decreased.
Finally, we observe that for this example it was very convenient to have arbitrary

well-founded structures at our disposal. If we were restricted to their standard
representation as ordinals we would have to run into difficulties when dealing with !
the not further analyzed structure of !e".

11. All ordinals a< w ·w"' are necessary

I
In this section we investigate the question raised in Section 4, namely which

ordinals a are necessary for proving total correctness of programs

s = do BI-'> s 1 D ... D Bn -'>Sn od

Proof rules and transformations for fairness 95

under fairness assumptions. More precisely we ask what is the smallest ordinal a
such that the well-founded structure (W, >w) needed in the correctness proof of S
can be embedded into (W,,, >). (Cf. Section 3 for the notation.) We show that at
least all ordinals

a<w.w"'

are needed. To this end we explicitly construct for every n EN a program Sw" of
the form

Sw" = do B ~s1D· ··DB ~s,, od

such that the ordinal {3 = w" is needed to count the number of rounds which may
occur in fair computations of Sw"· Thus at least all ordinals {3 < w"' are needed to
count the number of rounds in programs S. This implies the claim about a by
Lemma 2. (We remark that our result has been improved considerably in [3] with
help of general recursion theoretic methods. In [3] it is shown that exactly all
recursive ordinals a are necessary to deal with programs S under fairness assump
tions. Nevertheless it seems worthwhile to explain the simple structure of the
programs Sw"·)

The idea behind the construction of these Sw" is simple. It can be illustrated
by certain programs Tw" which use random assignments-which are of course
disallowed within the components S; of S-and n nested loops. These programs
Tw" are constructed in such a way that the ordinal associated with the total number
of executions of all nested loops is w ". We define

Tw 2 - X1 := ?;

od

Once x 1 is fixed, the outer loop is executed x 1 times. Within each such execution
we arbitrarily choose x2 and execute the inner loop x 2 times. Thus the ordinal
representing the total number of executions of both loops is w 2 • It is obvious how
to obtain Tw\ ... , Tw" for n EN.

Now we translate this idea into the framework of fair, nondeterministic programs
S such that w" becomes the ordinal representing the number of rounds instead of
the number of loop executions. We do this by inductively defining programs Sw",
n EN:

96 K.R. Apt, E.-R. Olderog

For n = 1 we have

S w = do X 1 > 0 ii 1 ~ q ~ 3 -> jf q = l -> X I := X I + 1

0 q = 2->skip

\ o q = 3 -> q := 2 I
fi

0 x 1 > 0 /\ 1 ~ q ~ 3 -> if q = 1 -> q := 3

od

0 q = 2-> x 1 := x 1 - 1; q := 3

I o q = 3 -- skip I

fi

where x 1 and q are integer variables.

The effect of the random assignments x 1 :=? is achieved here by repeate

execution of the first component in case when q = 1. Switching to the secon

component results in a change of q to 3. From that moment on x 1 is gradual!

decreased by one-once for two rounds.

Obviously, Sw is closely related to the program of Example 3. Thus it is easy t

understand that f3 = w is needed to count the number of rounds.

Let n > 1 and Sw" 1 be known. In Sw" 1 the integer variables Xi, ... , Xn and

occur. The guards of both subcomponents in Sw" 1 are "x 1 > 0 /\ · · · /\ Xn-l ~ 0 /\ 1

q ~ 2(n -1) + 1 ".Accordingly, both subcomponents are if-ft-clauses of the form

if q = 1-> · · · 0 · · · 0 q == 2(n - 1) + 1-> · · · fi.

With this structure of Sw" 1 in mind, the following definition of Sw" makes sens

Sw" is obtained from Sw" · i by replacing

(1) both guards

by

(2) the part [Oq = 2(n -1) + 1->q := 2(1' -1) [by

0 q = 2(n -1) + 1-> q := 2n + 1

0 q = 2n /\ Xn > 0-> Xn := Xn - 1; q := 2n + 1

0 q = 2n ii Xn = 0-> q := 2(n -1)

0 q == 2n + 1 ->skip

Proof rules and transformations for fairness

(3) thepart Dq=2(n-1)+1...,skipby

0 q = 2(n -1) + 1 _, Xn := X,. + 1

0 q = 2n 'Skip

0 q = 2n + 1 _, q := 2n

where Xn is a new integer variable.
As an example let us consider Sw2·

Sw 2 = dox 1 >0Ax 2 ~0;d=:sq=:s5_,

if q = 1 -.,> X I := X 1 + 1

od

0 q = 2_,skip

D q = 3 _,q := 5

D q = 4 A X2 > 0 _, x 2 := x 2 -1; q := 5

D q = 4 " x 2 = o _, q := 2

r--------,
: D q = 5 _,skip :
I I L ________ J

fi

if q = 1 _, q := 3

D q = 2_,x1 := x 1 - 1; q := 3

D q = 3 _, x 2 := x 2 + 1

0 q = 4_, skip

r---------,
I I
I 0 q = 5 -.,> q := 4 I
I I
L----------1

fi

97

To see that ordinal /3 = w 2 is indeed to represent the number of rounds, let us

choose component 1 of Sw2 in a state where q = 1 holds. Thus in the first round

the value of x 1 is determined. Subsequently x 1 is gradually decreased by 1 in

component 2 at q = 2. Each time x 1 is decreased, the variable x 2 is set to some

arbitrary value at q = 3. This value x 2 is then gradually decreased by 1 in component

1 at q = 4 and after each decrease control is eventually switched to component 2

(and then back again). Summarizing, arbitrarily often (x 1 times) we have a switching

98 K.R. Apt, E.-R. Olderog

phase with arbitrarily many switches (h times each phase). This yields indeed

(3 = w 2 as resulting ordinal.

12. Conclusions

We presented here a simple proof theoretic approach to fairness. This approach

is operational in nature because an explicit program transformation is at the source

of each rule. However, this transformation is reflected in the assertions and not in
the program considered. Thus the original program is studied and not its translated

version.
Transformations realizing fairness first appeared in [1]. These transformations

were unnecessarily complex. Nevertheless the idea inspired other work like [12],

[6] and [3]. Present simplifications reflect our better understanding of the role of

the transformations.
We hope that this approach sheds some new light on the use of program

transformations in the context of proof systems for program correctness. Such

transformations are usually (and rightly!) criticized because of the resulting syntactic
explosion of the programs considered (see for example the discussion following

[7]). But in our case however, no syntactic explosion arises as a different type of

transformation is used: whereas in [7] and [8] the structure of the program is
destroyed by dividing the components of parallel programs into single individual

actions, our transformations add only parts for scheduling purposes.
In principle our approach can be extended to deal with programs allowing nested

nondeterminism where fairness is required at all levels-not only the top one. Then
our transformations would simply be applied in a nested fashion, but provided all

initializations z :=? would be moved to the beginning of the transformed program.

The reason that we cannot do here without these initializations is because in our
approach the priority variables z can become negative, and we need the invariant

INV to ensure that they cannot become too negative. But INV would not hold
any longer if we could start with arbitrary integer values of z initially. This is exactly
the point where our approach differs from that in [3].

There the priority variables are always non-negative. Thus there is no need for

initialization and no need for the invariant INV either. However, the transforma
tions used to derive and justify the proof rules in [3] are not faithful in the sense

of Section 3 any more because they allow additional failures caused by if-fi constructs

where all guards are false. It is interesting to note that these failures can be absorbed
nicely in the proof rules of [3]. On the other hand, it turns out that the invariants

used in the formal proof are quite robust against such changes of the underlying

transformations. This was also our experience when we simplified the transforma

tions used in the earlier version [1]: the proofs remained valid almost unchanged.
This observation is ra.ther reassuring. It shows that when applying our proof rules

we are really analyzing the structure of the problem considered and we are not
fighting with some obscure proof rules.

Proof rules and transformations for fairness 99

Another approach to the problem of proving total correctness under the assump
tion of fairness was (independently) developed in [11] and [10]. The idea of this
approach is to relax the usual requirement for providing total correctness [9],
namely that every action (i.e. execution of a component S; of the do-ad-loop) causes
a decrease of a well-founded quantity a. Instead actions are divided into helpful
ones which always decrease a and the other ones-called indifferent or steady
which do not increase a. By fairness and some additional requirements of the
method a helpful action must eventually be chosen which causes to decrease and
thus excludes infinite computations. This method was applied in [11] to concurrent
programs represented in an abstract framework, and in [10] to the class of program
considered in our paper.

Even though this method and ours are based on a different intuition they should
prove equivalent. This follows of course from the fact that both methods are sound
and complete. But there should also exist a direct translation of invariant for one
method into an invariant for the other method. We did not check the details but
such a translation should take into account the intuition that priority variables
count the number of times an action will be enabled but not yet chosen.

A unification of these methods is already attempted in [3] where the underlying
ideas are formalized in both frameworks-that of delay variables and that of helpful
and steady actions.

In our future work we intend to extend the approach presented here to various
concurrent languages.

Acknowleldgment

We are indebted to Amir Pnueli for his very helpful and detailed referee reports.
Research on this paper started in October 1980 in Rotterdam and was subsequently
continued by letter and during meetings in Kiel, Bad Honnef, Peniscola, Akko,
Garmisch-Partenkirchen, Amsterdam, Paris and Oxford. We thank all those who

• provided support for these meetings.

1 References

[!] K.R. Apt and E.-R. Olderog, Proof rules dealing with fairness (extended abstract), Proc. Logics
of Programs, Lecture Notes in Computer Science 131 (Springer, Berlin, 1982) 1-8.

[2] K.R. Apt and G.D. Plotkin, Countable nondeterminism and random assignment, Technical Report,
University of Edinburgh, 1982 (extended abstract appeared in: Proc. ICALP 81, Lecture Notes
in Computer Science 115 (Springer, Berlin, 1981) 479-494).

[3] K.R. Apt, A. Pnueli and J. Stavi, Fair termination revisited-with delay, Proc. 2nd Conference on
Software Technology and Theoretical Computer Science, Bangalore, India (1982) 146-170.

[4] P. Cousot, Asynchronous iterative methods for solving a fixed point system of monotone equations
in a complete lattice, Rapport de Recherche No 88, L.A.7, Universite Scientifique et Medicate
de Grenoble (1977).

[5] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, 1976).

JOO K.R. Apt, E.-R. Olderog

l6J E.A. Emerson and E.M. Clarke, Characterizing correctness properties of parallel programs using

fixpoints, Proc. ICALP 80, Lecture Notes in Computer Science 85 (Springer, Berlin, 1980) 169-181.
[6] M.J. Fischer and M.S. Paterson, Storage requirements for fair scheduling, Note (1982).
[7] L. Flon and N. Suzuki, Nondeterminism and the correctness of parallel programs, Proc. IFIP TC-2

Working Conference in Formal Description of Programming Concepts (North-Holland, Amsterdam,

1978) 589-608.
[8] L. Flon and N. Suzuki, The total correctness of parallel programs, SIAM J. Comput. 10 (2) (1981)

227-246.
[9] R.W. Floyd, Assigning meaning to programs, Proc. Symposium in Applied Mathematics, Vol. 19,

Mathematical Aspects of Computer Science (American Mathematical Society, Providence, RI, 1967)
19-32.

[10] 0. Griimberg, N. Francez, J.A. Makowsky and W.P. de Roever, A proof rule for fair termination

of guarded commands, Proc. International Symposium on Algorithmic Languages (North-Holland,
Amsterdam, 1981} 339-416.

[11] D. Lehmann, A. Pnueli and J. Stavi, Impartiality, justice and fairness: the ethics of concurrent
termination, Proc. ICALP 81, Lecture Notes in Computer Science 115 (Springer, Berlin, 1981)
264-277.

[12] D. Park, A predicate transformer for weak fair iteration, Proc. IBM Symposium on Mathematica/

Foundation of Computer Science, Hakone (1981).
[13] A. Pnueli, The temporal semantics of concurrent programs, Theoret. Comput. Sci. 13 (1981) 45-60.

