
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Declarative programming, first-order logic, logic programming

K.R. Apt, M.A. Bezem

Probability, Networks and Algorithms (PNA)

PNA-R9809 October 1998

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301635181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report PNA-R9809
ISSN 1386-3711

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Formulas as Programs

Krzysztof R. Apt

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

and

Dept. of Mathematics, Computer Science, Physics & Astronomy

University of Amsterdam, The Netherlands

http://www.cwi.nl/~apt

Marc Bezem

CWI

and

Dept. of Philosophy, Utrecht University

P.O. Box 80126, 3508 TC Utrecht, The Netherlands

bezem@phil.uu.nl

ABSTRACT

We provide here a computational interpretation of �rst-order logic based on a constructive interpretation of

satis�ability w.r.t. a �xed but arbitrary interpretation. In this approach the formulas themselves are programs.

This contrasts with the so-called formulas as types approach in which the proofs of the formulas are typed

terms that can be taken as programs. This view of computing is inspired by logic programming and constraint

logic programming but di�ers from them in a number of crucial aspects.

Formulas as programs is argued to yield a realistic approach to programming that has been realized in the

implemented programming language Alma-0 Apt, Brunekreef, Partington & Schaerf (1998) that combines the

advantages of imperative and logic programming. The work here reported can also be used to reason about

the correctness of non-recursive Alma-0 programs that do not include destructive assignment.

1991 Mathematics Subject Classi�cation: 68N05, 68N17, 68Q60

1991 Computing Reviews Classi�cation System: F.3.1, F.4.1

Keywords and Phrases: declarative programming, �rst-order logic, logic programming.

Note: This paper will appear in The Logic Programming Paradigm: a 25 Years Perspective, K.R.

Apt, V. Marek, M. Truszczynski and D.S. Warren (eds) Springer-Verlag, Arti�cial Intelligence Series.

Work carried out under project PNA1.2, CIP.

1. Introduction

1.1 Logic Programming and Program Veri�cation

The logic programming paradigm in its original form (see Kowalski (1974)) is based on a computational

interpretation of a subset of �rst-order logic that consists of Horn clauses. The proof theory and

semantics for this subset has been well understood for some time already (see, e.g. Lloyd (1987)).

However, the practice has quickly shown that this subset is too limited for the programming pur-

poses, so it was extended in a number of ways, notably by allowing negation. This led to a long

and still inconclusive quest for extending the appropriate soundness and completeness results to logic

programs that allow negation (see, e.g. Apt & Bol (1994)). To complicate the matters further, Prolog

extends logic programming with negation by several features that are very operational in nature.

2

Constraint logic programming (see, e.g. Ja�ar & Lassez (1987)) overcomes some of Prolog's de-

�ciencies, notably its clumsy handling of arithmetic, by extending the computing process from the

(implicit) domain of terms to arbitrary structures.

Logic programming and constraint logic programming are two instances of declarative programming.

According to declarative programming a program has a dual reading as a formula in a logic with a

simple semantics.

One of the important advantages of declarative programming is that, thanks to the semantic in-

terpretation, programs are easier to understand, modify and verify. In fact, the dual reading of a

declarative program as a formula allows us to reason about its correctness by restricting our atten-

tion to a logical analysis of the corresponding formula. For each logical formalism such an analysis

essentially boils down to the question whether the formula corresponding to the program is in an

appropriate sense equivalent to the speci�cation.1

However, in our opinion, we do not have at our disposal simple and intuitive methods that could

be used to verify in a rigorous way realistic \pure" Prolog programs (i.e. those that are also logic

programs) or constraint logic programs.

We believe that one of the reasons for this state of a�airs is recursion, on which both logic program-

ming and constraint logic programming rely. In fact, recursion is often less natural than iteration,

which is a more basic concept. Further, recursion in combination with negation can naturally lead

to programs that are not easily amenable to a formal analysis. Finally, recursion always introduces a

possibility of divergence which explains why the study of termination is such an important topic in

the case of logic programming (see, e.g., De Schreye & Decorte (1994)).

1.2 First-order Logic as a Computing Mechanism

Obviously, without recursion logic programming and constraint logic programming are hopelessly

inexpressive. However, as we show in this paper, it is still possible to construct a simple and realistic

approach to declarative programming that draws on the ideas of these two formalisms and in which

recursion is absent. This is done by providing a constructive interpretation of satis�ability of �rst-

order formulas w.r.t. to a �xed but arbitrary interpretation. Iteration is realized by means of bounded

quanti�cation that is guaranteed to terminate.

More precisely, assuming a �rst-order language L, we introduce an e�ective, though incomplete,

computation mechanism that approximates the satis�ability test in the following sense. Given an

interpretation I for L and a formula �(�x) of L, assuming no abnormal termination in an error arises,

this mechanism computes a witness �a (that is, a vector of elements of the domain of I such that �(�a)

holds in I) if �(�x) is satis�able in I , and otherwise it reports a failure.

The possibility of abnormal termination in an error is unavoidable because e�ectiveness cannot

be reconciled with the fact that for many �rst-order languages and interpretations, for example the

language of Peano arithmetic and its standard interpretation, the set of true closed formulas is highly

undecidable. As we wish to use this computation mechanism for executing formulas as programs, we

spend here considerable e�ort at investigating the ways of limiting the occurrence of errors.

From the technical point of view our approach, called formulas as programs , is obtained by isolating

a number of concepts and ideas present (often implicitly) in the logic programming and constraint

logic programming framework, and reusing them in a simple and self-contained way. In fact, the

proposed computation mechanism and a rigorous account of its formal properties rely only on the

basics of �rst-order logic. This contrasts with the expositions of logic programming and constraint

logic programming which require introduction of several concepts and auxiliary results (see for the

1This can be made precise in the following way. Let ~x be the free variables of the speci�cation �s, and ~y some

auxiliary variables used in the program �p. Now correctness of the program with respect to the speci�cation can be

expressed by the sentence 8~x ((9~y �p(~x; ~y))! �s(~x)), to be valid under the �xed interpretation. This sentence ensures

that all solutions found by the program indeed satisfy the speci�cation. Note that, under this de�nition, a program

corresponding to a false formula is vacuously \correct", because there are no solutions found. Therefore the stronger

notion of correctness and completeness obtained by requiring also the converse implication above, and loosely phrased

as \equivalence in an appropriate sense", is the more adequate one.

3

latter e.g. Ja�ar, Maher, Marriott & Stuckey (1998)).

1.3 Computing Mechanism

Let us explain now the proposed computation mechanism by means of an example. Consider the

formula

(x = 2 _ x = 3) ^ (y = x+ 1 _ 2 = y) ^ (2 � x = 3 � y) (1.1)

interpreted over the standard structure of natural numbers. Is it satis�able? The answer is \yes":

indeed, it su�ces to assign 3 to x and 2 to y.

In fact, we can compute this valuation systematically by initially assigning 2 to x and �rst trying

the assignment of the value of x+1, so 3, to y. As for this choice of value for y the equality 2�x = 3�y
does not hold, we are led to the second possibility, assignment of 2 to y. With this choice 2 �x = 3 � y
does not hold either. So we need to assign 3 to x and, eventually, 2 to y.

The above informal argument can be extended to a systematic procedure that attempts to �nd a

satisfying valuation for a large class of formulas.

1.4 Plan and Rationale of the Paper

This paper is organized as follows.

In Section 2 we provide a formal account of the proposed computation mechanism. In Section 3

we show that this approach is both correct (sound) and, in the absence of errors, complete. In the

Appendix, Subsection 9.3, 9.4, we investigate ways of limiting the occurrence of errors for the case of

negation and implication.

For programming purposes �rst-order logic has limited expressiveness, so we extend it in Section 4

by a number of features that are useful for programming. This involves sorts (i.e., types), use of

arrays and bounded quanti�ers. The resulting fragment is surprisingly expressive and the underlying

computation mechanism allows us to interpret many formulas as highly non-trivial programs.

As already mentioned above, formulas as programs approach to computing here discussed is inspired

by logic programming and constraint logic programming but di�ers from them in a number of ways.

For example, formula (1.1) cannot be interpreted as a logic programming query or run as a Prolog

query. The reason is that the equality symbol in logic programming and Prolog stands for \is uni�able

with" and the term 2 � x does not unify with 3 � y. In case of Prolog a possible remedy is to replace

in (1.1) speci�c occurrences of the equality symbol by Prolog's arithmetic equality \=:=" or by the

Prolog evaluator operator is. The correct Prolog query that corresponds to formula (1.1) is then

(X = 2 ; X = 3), (Y is X+1 ; 2 = Y), 2*X =:= 3*Y.

(Recall that \;" stands in Prolog for disjunction and \," for conjunction.) This is clearly much less

readable than (1.1) as three di�erent kinds of equality-like relations are used here.

A more detailed comparison with (constraint) logic programming and Prolog requires knowledge

of the details of our approach and is postponed to Section 5. In principle, the formulas as programs

approach is a variant of constraint logic programming in which both recursion and constraint handling

procedures are absent, but the full �rst-order syntax is used. We also compare in Section 5 our formulas

as programs approach with the formulas as types approach, also called the Curry-Howard-De Bruijn

interpretation.

The formulas as programs approach to programming has been realized in the programming language

Alma-0 Apt et al. (1998) that extends imperative programming by features that support declarative

programming. This shows that this approach, in contrast to logic programming and constraint logic

programming, can easily be combined with imperative programming. So the introduced restrictions,

such as lack of a constraint store, can be bene�cial in practice. In Section 6 we summarize the main

features of Alma-0.

The work reported here can be used to provide logical underpinnings for a fragment of Alma-0

that does not include destructive assignment or recursive procedures, and to reason about programs

written in this fragment. We substantiate the latter claim by presenting in Section 7 the correctness

4

proof of a purely declarative Alma-0 solution to the well-known non-trivial combinatorial problem of

partitioning a rectangle into a given set of squares.

In conclusion, we provided here a realistic framework for declarative programming based on �rst-

order logic and the traditional Tarskian semantics, which can be combined in a straightforward way

with imperative programming.

2. Computation Mechanism

Consider an arbitrary �rst-order language with equality and an interpretation for it. We assume in

particular a domain of discourse, and a �xed signature with a corresponding interpretation of its

elements in the domain.

De�nition 2.1 [valuation, assignment] A valuation is a �nite mapping from variables to domain

elements. Valuations will be denoted as single-valued sets of pairs x=d, where x is a variable and d

a domain element. We use �; �0; �; : : : for arbitrary valuations and call �0 an extension of � when

� � �
0, that is, every assignment to a variable by � also occurs in �

0. Further, " denotes the empty

valuation.

Let � be a valuation. A term t is �-closed if all variables of t get a value in �. In that case t�

denotes the evaluation of t under � in the domain. More generally, for any expression E the result of

the replacement of each �-closed term t by t� is denoted by E�.

An �-assignment is an equation s = t one side of which, say s, is a variable that is not �-closed and

the other side, t, is an �-closed term. 2

In our setting, the only way to assign values to variables will be by evaluating an �-assignment as

above. Given such an �-assignment, say x = t, we evaluate it by assigning to x the value t�.

De�nition 2.2 [formulas] In order to accommodate the de�nition of the operational semantics, the

set of fomulas has an inductive de�nition which may look a bit peculiar. First, universal quanti�cation

is absent since we have no operational interpretation for it. Second, every formula is taken to be a

conjunction, with every conjunct (if any) either an atomic formula (in short: an atom), or a disjunction,

conjunction or implication of formulas, a negation of a formula or an existentially quanti�ed formula.

The latter two unary constructors are assumed to bind stronger then the previous binary ones. The

atoms include equations of the form s = t, with s and t terms.

For maximal clarity we give here an inductive de�nition of the set of formulas. In the operational

semantics all conjunctions are taken to be right associative.

1. The empty conjunction 2 is a formula.

2. If is a formula and A is an atom, then A ^ is a formula.

3. If ; �1; �2 are formulas, then (�1 _ �2) ^ is a formula.

4. If ; �
1
; �

2
are formulas, then (�

1
^ �

2
) ^ is a formula.

5. If ; �1; �2 are formulas, then (�1! �2) ^ is a formula.

6. If �; are formulas, then :� ^ is a formula.

7. If �; are formulas, then 9x � ^ is a formula. 2

De�nition 2.3 [operational semantics] The operational semantics of a formula will be de�ned in

terms of a tree [[�]]� depending on the formula � and the (initial) valuation �. The root of [[�]]� is

labelled with the pair �; �. All internal nodes of the tree [[�]]� are labelled with pairs consisting of a

formula and a valuation. The leaves of the tree [[�]]� are labelled with either

� error (representing the occurrence of an error in this branch of the computation), or

5

� fail (representing logical failure of the computation), or

� a valuation (representing logical success of the computation and yielding values for the free

variables of the formula that make the formula true). 2

It will be shown that valuations labelling success leaves are always extensions of the initial valuation.

For a �xed formula, the operational semantics can be viewed as a function relating the initial valuation

to the valuations labelling success leaves.

We can now de�ne the computation tree [[�]]�. The reader may consult �rst Figure 1 to see such a

tree for formula (1.1) and the empty valuation ".

2 � x = 3 � y; fx=2; y=3g

y = x+ 1 ^ 2 � x = 3 � y; fx=2g

fx=3; y=2gfailfailfail

2 � x = 3 � y; fx=3; y=2g

y = x+ 1 ^ 2 � x = 3 � y; fx=3g
2 = y ^ 2 � x = 3 � y; fx=3g

(y = x+ 1 _ 2 = y) ^ 2 � x = 3 � y; fx=3g

x = 3 ^ (y = x+ 1 _ 2 = y) ^ 2 � x = 3 � y; "

2 = y ^ 2 � x = 3 � y; fx=2g

2 � x = 3 � y; fx=3; y=4g

(x = 2 _ x = 3) ^ (y = x+ 1 _ 2 = y) ^ 2 � x = 3 � y; "

x = 2 ^ (y = x+ 1 _ 2 = y) ^ 2 � x = 3 � y; "

(y = x+ 1 _ 2 = y) ^ 2 � x = 3 � y; fx=2g

2 � x = 3 � y; fx=2; y=2g

Figure 1: The computation tree for formula (1) and valuation ".

De�nition 2.4 [computation tree] The (computation) tree [[�]]� is de�ned by lexicographic induction

on the pairs consisting of the size of the formula �, and of the size of the formula �1 for which � is

of the form �1 ^ , following the structure given by De�nition 2.2.

6

1. For the empty conjunction we de�ne [[2]]� to be the tree with the root that has a success leaf �

as its son:

2; �

�

2. If is a formula and A is an atom, then we distinguish four cases depending on the form of A.

In all four cases [[A ^]]� is a tree with a root of degree one.

� Atom A is �-closed and true. Then the root of [[A ^]]� has [[]]� as its subtree:

A ^ ; �

[[]]�

� Atom A is �-closed and false. Then the root of [[A ^]]� has the failure leaf fail as its son:

A ^ ; �

fail

� Atom A is not �-closed, but is not an �-assignment. Then the root of [[A ^]]� has the

error leaf as its son:

error

A ^ ; �

� Atom A is an �-assignment s = t. Then either s or t is a variable which is not �-closed,

say s � x with x not �-closed and t �-closed. Then the root of [[A ^]]� has [[]]�0 as its

subtree, where �0 extends � with the pair x=t�:

[[]]�0

A ^ ; �

The symmetrical case is analogous.

3. If ; �1; �2 are formulas, then we put [[(�1 _ �2) ^]]� to be the tree with a root of degree two

and with left and right subtrees [[�1 ^]]� and [[�2 ^]]�, respectively:

7

(�1 _ �2) ^ ; �

[[�1 ^]]�[[�1 ^]]�

Observe that �1^ and �2^ are smaller formulas than (�1_�2)^ in the adopted lexicographic

ordering.

4. If ; �1; �2 are formulas, then we put [[(�1 ^ �2) ^]]� to be the tree with a root of degree one

and the tree [[�1 ^ (�2 ^)]]� as its subtree:

[[�1 ^ (�2 ^)]]�

(�1 ^ �2) ^ ; �

This substantiates the association of conjunctions to the right as mentioned in De�nition 2.2.

Note that, again, the de�nition refers to lexicographically smaller formulas.

5. If ; �1; �2 are formulas, then we put [[(�1 ! �2) ^]]� to be a tree with a root of degree one.

We distinguish three cases.

� Formula �1 is �-closed and [[�1]]� contains only failure leaves. Then the root of

[[(�1 ! �2) ^]]� has [[]]� as its subtree:

[[]]�

(�1 ! �2) ^ ; �

� Formula �1 is �-closed and [[�1]]� contains at least one success leaf. Then the root of

[[(�1 ! �2) ^]]� has [[�2 ^]]� as its subtree:

(�1 ! �2) ^ ; �

[[�2 ^]]�

� In all other cases the root of [[(�1 ! �2) ^]]� has the error leaf error as its son:

error

(�1 ! �2) ^ ; �

8

The above de�nition relies on the logical equivalence of �
1
! �

2
and :�

1
_ �

1
, but avoids

unnecessary branching in the computation tree that would be introduced by the disjunction. In

the Appendix, Subsection 9.3, we explain how in the �rst case the condition that �1 is �-closed

can be relaxed.

6. If �; are formulas, then to de�ne [[:� ^]]� we distinguish three cases with respect to �. In

all of them [[:� ^]]� is a tree with a root of degree one.

� Formula � is �-closed and [[�]]� contains only failure leaves. Then the root of [[:� ^]]�
has [[]]� as its subtree:

:� ^ ; �

[[]]�

� Formula � is �-closed and [[�]]� contains at least one success leaf. Then the root of [[:� ^]]�
has the failure leaf fail as its son:

:� ^ ; �

fail

� In all other cases the root of [[:� ^]]� has the error leaf error as its son:

:� ^ ; �

error

There are basically two classes of formulas � in this contingency: those that are not �-

closed and those for which [[�]]� contains no success leaf and at least one error leaf. In

Subsection 9.3 we give some examples of formulas in the �rst class and show how in some

special cases their negation can still be evaluated in a sound way.

7. The case of 9x �^ requires the usual care with bound variables to avoid name clashes. Let � be

a valuation. First, we require that the variable x does not occur in the domain of �. Second, we

require that the variable x does not occur in . Both requirements are summarized by phrasing

that x is fresh with respect to � and . They can be met by appropriately renaming the bound

variable x.

With x fresh as above we de�ne [[9x � ^]]� to be the tree with a root of degree one and [[� ^]]�
as its subtree:

9

[[� ^]]�

(9x�) ^ ; �

Thus the operational semantics of 9x � ^ is, apart from the root of degree one, identical to

that of �^ . This should not come as a surprise, as 9x �^ is logically equivalent to 9x (�^)

when x does not occur in .

Observe that success leaves of [[� ^]]�, and hence of [[9x � ^]]�, may or may not contain an

assignment for x. For example, 9x x = 3 ^ yields an assignment for x, but 9x 3 = 3 ^ does

not. In any case the assignment for x is not relevant for the formula as a whole, as the bound

variable x is assumed to be fresh. In an alternative approach, the possible assignment for x

could be deleted. 2

To apply the above computation mechanism to arbitrary �rst-order formulas we �rst replace all

occurrences of a universal quanti�er 8 by :9: and rename the bound variables so that no variable

appears in a formula both bound and free.

Further, to minimize the possibility of generating errors it is useful to delete occurrences of double

negations, that is to replace every subformula of the form :: by .

3. Soundness and Completeness

The computation mechanism de�ned in the previous section attempts to �nd a valuation that makes

the original formula true if this formula is satis�able, and otherwise it reports a failure. The lexico-

graphic ordering used in De�nition 2.3 guarantees that for any formula the computation tree is �nite.

In this section we prove correctness and completeness of this mechanism.

We start with an easy lemma which is helpful to keep track of valuations, followed by a de�nition.

Lemma 3.1 For every formula � and valuation �, [[�]]� contains only valuations extending � with

pairs x=d, where x occurs free in � or appears existentially quanti�ed in �. Moreover, if � is �-closed

then [[�]]� contains only valuations extending � with variables that appear existentially quanti�ed in �.

Proof. By induction on the lexicographic ordering of formulas as given in De�nition 2.4. 2

De�nition 3.2 [status of computation tree] A computation tree is

� successful if it contains a success leaf,

� failed if it contains only failure leaves,

� determined if it is either successful or failed, that is, it either contains a success leaf or contains

only failure leaves. 2

Note that according to this de�nition a successful tree can contain the error leaves. This means that

the error leaves di�er from Prolog's run-time errors. In fact, in a top-down implementation of the

proposed computation mechanism the depth-�rst search traversal of a computation tree should not

abort but rather backtrack upon encounter of such a leaf and continue, if possible, in a search for a

successful leaf.

10

We can now state the desired correctness result.

Theorem 3.3 (Soundness) Let � be a formula and � a valuation.

(i) If [[�]]� contains a success leaf labelled with �
0, then �

0 extends � and 8(��
0

) is true. (In

particular 9(��) is true in this case.)

(ii) If [[�]]� is failed, then 9(��) is false.

Proof. See Appendix, Subsection 9.1. 2

The computation mechanism de�ned in Section 3 is obviously incomplete due to the possibility of

errors. The following results states that, in the absence of errors, this mechanism is complete.

Theorem 3.4 (Restricted Completeness) Let � be a formula and � a valuation such that [[�]]�
is determined.

(i) Suppose that 9(��) is true. Then the tree [[�]]� is successful.

(ii) Suppose that 9(��) is false. Then the tree [[�]]� is failed.

Proof. See Appendix, Subsection 9.2. 2

Admittedly, this result is very weak in the sense that any computation mechanism that satis�es the

above soundness theorem also satis�es the restricted completeness theorem.

It is useful to point out that the computation mechanism of Section 2 used in the above theorems

is by no means a simple counterpart of the provability relation of the �rst-order logic.

For the sake of further discussion let us say that two formulas � and are equivalent if

� the computation tree [[�]]" is successful i� the computation tree [[]]" is successful and in that

case both computation trees have the same set of successful leaves,

� [[�]]" is failed i� [[]]" is failed.

Then � ^ is not equivalent to ^ � (consider x = 0^ x < 1 and x < 1^ x = 0) and :(� ^) is

not equivalent to :� _ : (consider :(x = 0^ x = 1) and :(x = 0)_:(x = 1). In contrast, � _ is

equivalent to _ �.

We can summarize this treatment of the connectives by saying that we use a sequential conjunction

and a parallel disjunction. The above notion of equivalence deviates from the usual one, for example

de Morgan's Law is not valid.

A complete axiomatization of the equivalence relation induced by the computation mechanism of

Section 2 is an interesting research topic.

4. Extensions

The language de�ned up to now is clearly too limited as a formalism for programming. Therefore

we discuss a number of extensions of it that are convenient for programming purposes. These are:

non-recursive procedures, sorts (i.e., types), arrays and bounded quanti�cation.

4.1 Non-recursive Procedures

We consider here non-recursive procedures. These can easily be introduced in our framework using

the well-known extension by de�nition mechanism (see, e.g., Shoen�eld (1967)[pages 57-58]).

More speci�cally, consider a �rst-order formula with the free variables x1; : : : ; xn. Let p be a new

n-ary relation symbol. Consider now the formula

p(x1; : : : ; xn)$

11

that we call the de�nition of p.

Suppose that, by iterating the above procedure, we have a collection P of de�nitions of relation

symbols. We assume furthermore that the �xed but arbitrary interpretation has been extended with

interpretations of the new relation symbols in such a way that all de�nitions in P become true. There

is only one such extension for every initial interpretation.

Let � be a formula in the extended �rst-order language, that is, with atoms p(t1; : : : ; tn) from P

included. We extend the computation mechanism [[�]]� of Section 2, by adding at the beginning of

Clause 2 in De�nition 2.4 the following item for handling atoms p(t1; : : : ; tn) from P .

� Atom A is of the form p(t1; : : : ; tn), where p is a de�ned relation symbol with the de�nition

p(x1; : : : ; xn)$ p:

Then the root of [[A ^]]� has [[pfx1=t1; : : : ; xn=tng ^]]
�

as its subtree:

A ^ ; �

[[pfx1=t1; : : : ; xn=tng ^]]�

Here pfx1=t1; : : : ; xn=tng stands for the result of substituting in p the free occurrences of the

variables x1; : : : ; xn by t1; : : : ; tn, respectively.

The proof of the termination of this extension of the computation mechanism introduced in Section 2

relies on a re�nement of the lexicographic ordering used in De�nition 2.4, taking into account the new

atoms.

The above way of handling de�ned relation symbols obviously corresponds to the usual treatment

of procedure calls in programming languages.

The soundness and completeness results can easily be extended to the case of declared relation

symbols. In this version truth and falsity refer to the extended interpretation.

So far for non-recursive procedures.

4.2 Sorts

In this subsection we introduce sorts (i.e., types). The extension of one-sorted to many-sorted �rst-

order logic is standard. It requires a re�nement of the notion of signature: arities are no longer just

numbers, but have to specify the sorts of the arguments of the function and predicate symbols, as well

as the sorts of the function values. Terms and atoms are well-formed if the sorts of the arguments

comply with the signature. In quantifying a variable, its sort should be made explicit (or should at

least be clear from the context).

Interpretations for many-sorted �rst-order languages are obtained by assigning to each sort a non-

empty domain and by assigning to each function symbol and each predicate symbol respectively an

appropriate function and relation on these sorts.

Sorts can be used to model various basic data types occurring in programming practice: integers,

booleans, characters, but also compound data types such as arrays.

4.3 Arrays

Arrays can be modelled as vectors or matrices, using projection functions that are given a standard

interpretation. Given a sort for the indices (typically, a segment of integers or a product of segments)

and a sort for the elements of the array, we add a sort for arrays of the corresponding type to the

12

signature. We also add to the language array variables , or arrays for short, to be interpreted as arrays

in the standard interpretation.

We use the letters a; b; c to denote arrays and to distinguish arrays from objects of other sorts. We

write a[t1; : : : ; tn] to denote the projection of the array a on the index [t1; : : : ; tn], akin to the use

of subscripted variables in programming languages. The standard interpretation of each projection

function maps a given array and a given index to the correct element. Thus subscripted variables are

simply terms. These terms are handled by means of an extension of the computation mechanism of

Section 2.

A typical example of the use of such a term is the formula a[0; 0] = 1, which should be matched

with the formula x = 1 in the sense that the evaluation of each equality can result in an assignment

of the value 1 to a variable, either a[0; 0] or x. So we view a[0; 0] as a variable and not as a compound

term.

To this end we extend a number of notions introduced in the previous section.

De�nition 4.1 An array valuation is a �nite mapping whose elements are of the form a[d1; : : : ; dn]=d,

where a is an n-ary array symbol and d1; : : : ; dn; d are domain elements. An extended valuation is a

�nite mapping that is a union of a valuation and an array valuation. 2

The idea is that an element a[d1; : : : ; dn]=d of an array valuation assigns the value d to the (inter-

pretation of) array a applied to the arguments d1; : : : ; dn. Then, if the terms t1; : : : ; tn evaluate to the

domain elements d1; : : : ; dn respectively, the term a[t1; : : : ; tn] evaluates to d. This simple inductive

clause yields an extension of the notion of evaluation t
�, where � is an extended valuation, to terms

t in the presence of arrays. The notions of an �-closed term and an �-assignment are now somewhat

more complicated to de�ne.

De�nition 4.2 Consider an extended valuation �.

� A variable x is �-closed if for some d the pair x=d is an element of �.

� A term f(t1; : : : ; tn), with f a function symbol, is �-closed if each term ti is �-closed.

� A term a[t1; : : : ; tn] is �-closed if each term ti is �-closed and evaluates to a domain element di
such that for some d the pair a[d1; : : : ; dn]=d is an element of �.

An equation s = t is an �-assignment if either

� one side of it, say s, is a variable that is not �-closed and the other, t, is an �-closed term, or

� one side of it, say s, is of the form a[t1; : : : ; tn], where each ti is �-closed but a[t1; : : : ; tn] is not

�-closed, and the other, t, is an �-closed term. 2

The idea is that an array a can be assigned a value at a selected position by evaluating an �-

assignment a[t
1
; : : : ; tn] = t. Assuming the terms t

1
; : : : ; tn; t are �-closed and evaluate respectively

to d
1
; : : : ; dn; d, the evaluation of a[t

1
; : : : ; tn] = t results in assigning the value d to the array a at the

position d
1
; : : : ; dn.

With this extension of the notions of valuation and �-assignment we can now apply the computation

mechanism of Section 2 to �rst-order formulas with arrays. The corresponding extensions of the

soundness and completeness theorems of Section 3 remain valid.

4.4 Bounded quanti�cation

In this subsection we show how to extend the language with a form of bounded quanti�cation that

essentially amounts to the generalized conjunction and disjunction. We treat bounded quanti�cation

with respect to the integer numbers, but the approach can easily be generalized to data types with

the same discrete and ordered structure as the integers.

13

De�nition 4.3 [bounded quanti�cation] Let � be a valuation and let �(x) be a formula with x not

occurring in the domain of �. Furthermore, let s; t be terms of integer type. We assume the set of

formulas to be extended in such a way that also 9x 2 [s::t] �(x) and 8x 2 [s::t] �(x) are formulas. The

computation trees of these formulas have a root of degree one and depend on s and t in the following

way.

� If s or t is not �-closed, then the roots of both [[9x 2 [s::t] �(x)]]� and [[8x 2 [s::t] �(x)]]� have

the error leaf error as its son.

� If s and t are �-closed and s
�
> t

�, then the root of [[9x 2 [s::t] �(x)]]� has the failure leaf fail

as its son and the root of [[8x 2 [s::t] �(x)]]� has a success leaf � as its son.

� If s and t are �-closed and s� � t
�, then

- the root of [[9x 2 [s::t] �(x)]]� has [[�(x) _ 9y 2 [s+1::t] �(y)]]�[fx=s�g as its subtree,

- the root of [[8x 2 [s::t] �(x)]]� has [[�(x) ^ 8y 2 [s+1::t] �(y)]]�[fx=s�g as its subtree.

In both cases y should be a fresh variable with respect to �; �(x) in order to avoid name clashes.

The soundness and completeness results can easily be extended to include bounded quanti�cation. 2

5. Relation to Other Approaches

The work here discussed is related in many interesting ways to a number of seminal papers on logic,

logic programming and constraint logic programming.

5.1 De�nition of Truth compared to Formulas as Programs

First, it is instructive to compare our approach to the inductive de�nition of truth given in Tarski

(1933). This de�nition can be interpreted as an algorithm that, given a �rst-order language L, takes

as input an interpretation I of L and a formula � of L, and yields as output the answer to the question

whether the universal closure of � is true in I . This algorithm is not e�ective because of the way

quanti�ers are dealt with. This is unavoidable since truth is undecidable for many languages and

interpretations, for instance Peano arithmetic and its standard model.

In the formulas as programs approach the initial problem is modi�ed in that one asks for a con-

structive answer to the question whether a formula is satis�able in an interpretation. The algorithm

proposed here is e�ective at the cost of occasionally terminating abnormally in an error.

5.2 Relation to Logic Programming

Some forty years later, in his seminal paper Kowalski (1974) proposed to use �rst-order logic as

a computation formalism. This led to logic programming. However, in spite of the paper's title,

only a subset of �rst-order logic is used in his proposal, namely the one consisting of Horn clauses.

This restriction was essential since what is now called SLD-resolution was used as the computation

mechanism.

In the discussion we �rst concentrate on the syntax matters and then focus on the computation

mechanism.

The restriction of logic programs and goals to Horn clauses was gradually lifted in Clark (1978),

by allowing negative literals in the goals and in clause bodies, in Lloyd & Topor (1984), by allowing

arbitrary �rst-order formulas as goals and clause bodies, and in Lobo, Minker & Rajasekar (1992) by

allowing disjunctions in the clause heads. In each case the computation mechanism of SLD-resolution

was suitably extended, either by introducing the negation as failure rule, or by means of transformation

rules, or by generalizing so-called linear resolution.

From the syntactic point of view our approach is related to that of Lloyd & Topor (1984). Appro-

priate transformation rules are used there to get rid of quanti�ers, disjunctions and the applications

of negation to non-atomic formulas. So these features of �rst-order logic are interpreted in an indirect

14

way. It is useful to point out that the approach of Lloyd & Topor (1984) was implemented in the

programming language G�odel of Hill & Lloyd (1994).

Further, it should be noted that bounded quanti�ers and arrays were also studied in logic program-

ming. In particular, they are used in the speci�cation language Spill of Klu�zniak & Mi lkowska (1997)

that allows us to write executable, typed, speci�cations in the logic programming style. Other related

references are Voronkov (1992), Barklund & Bevemyr (1993) and Apt (1996).

So from the syntactic point of view our approach does not seem to di�er from logic programming in

an essential way. The di�erence becomes more apparent when we analyze in more detail the underlying

computation mechanism.

To this end it is useful to recall that in logic programming the computing process takes place

implicitly over the free algebra of all terms and the values are assigned to variables by means of

uni�cation. The �rst aspect can be modelled in the formulas as programs approach by choosing a

term interpretation, so an interpretation the domain D of which consists of all terms and such that

each n-ary function symbol f is mapped to a function fD that assigns to elements (so terms) t1; : : : ; tn
of D the term f(t1; : : : ; tn). With this choice our use of �-assignment boils down to an instance of

matching which in turn is a special case of uni�cation.

Uni�cation in logic programming can be more clearly related to equality by means of the so-called

homogenization process the purpose of which is to remove non-variable terms from the clauses heads.

For instance,

append(x1, ys, z1) <- x1 = [x | xs], z1 = [x | zs], append(xs, ys, zs)

is a homogenized form of the more compact clause

append([x | xs], ys, [x | zs]) <- append(xs, ys, zs).

To interpret the equality in the right way the single clause

x = x <-

should then be added. This enforces the \is uni�able with" interpretation of equality. So the homog-

enization process reveals that logic programming relies on a more general interpretation of equality

than the formulas as programs approach. It allows one to avoid generation of errors for all equality

atoms.

In conclusion, from the computational point of view, the logic programming approach is at the

same time a restriction of the formulas as programs approach to the term interpretations and a

generalization of this approach in which all equality atoms can be safely evaluated.

5.3 Relation to Pure Prolog

By pure Prolog we mean here a subset of Prolog formed by the programs and goals that are Horn

clauses.

Programming in Prolog and in its pure subset relies heavily on lists and recursion. As a result

termination is one of the crucial issues. This led to an extensive study of methods that allow us to

prove termination of logic and Prolog programs (see De Schreye & Decorte (1994) for a survey of

various approaches).

In contrast, our approach to programming is based on arrays and iteration that is realized by means

of bounded quanti�cation. These constructs are guaranteed to terminate. In fact, it is striking how

far one can go in programming in this style without using recursion. If the reader is not convinced by

the example given of Section 7 below, he/she is invited to consult other examples in Voronkov (1992)

and Apt et al. (1998).

In the formulas as programs approach the absence of recursion makes it possible to analyze queries

without explicit presence of procedures, by systematically replacing procedures by their bodies. This

allows us to represent each program as a single query and then rely on the well-understood Tarskian

semantics of �rst-order logic.

In the standard logic programming setting very few interesting programs can be represented in this

way. In fact, as soon as recursion is used, a query has to be studied in the context of a program that

de�nes the recursive procedures. As soon as negation is also present, a plethora of di�erent semantics

15

arises | see e.g. Apt & Bol (1994). Finally, in the presence of recursion it is di�cult to account for

Prolog's selection rule in purely semantic terms.

5.4 Relation to Pure Prolog with Arithmetic

By pure Prolog with arithmetic we mean here an extension of pure Prolog by features that support

arithmetic, so Prolog's arithmetic relations such as \=:=" and the Prolog evaluator operator is.

These features allow us to compute in the presence of arithmetic but in a clumsy way as witnessed

by the example of formula (1.1) of Subsection 1.3 and its elaborated representation in Prolog in

Subsection 1.4.

Additionally, a possibility of abnormal termination in an error arises. Indeed, both arithmetic

relations and the is operator introduce a possibility of run-time errors, a phenomenon absent in pure

Prolog. For instance, the query X is Y yields an error and so does X =:= Y.

In contrast, in the formulas as programs approach arithmetic can be simply modelled by adding

the sorts of integers and of reals. The �-assignment then deals correctly with arithmetic expressions

because it relies on automatic evaluation of terms. This yields a simpler and more uniform approach

to arithmetic in which no new special relation symbols are needed.

5.5 Relation to Constraint Logic Programming

The abovementioned de�ciencies of pure Prolog with arithmetic have been overcome in constraint

logic programming, an approach to computing that generalizes logic programming. In what follows

we concentrate on a speci�c approach, the generic scheme CLP(X) of Ja�ar & Lassez (1987) that

generalizes pure Prolog by allowing constraints. In this scheme atoms are divided into those de�ned

by means of clauses and those interpreted in a direct way. The latter ones are called constraints.

In CLP(X), as in our case, the computation is carried out over an arbitrary interpretation. At each

step (instead of the uni�cation test of logic programming and its application if it succeeds) satis�ability

of the so far encountered constraints is tested. A computation is successful if the last query consists

of constraints only.

There are two di�erences between the formulas as programs approach and the CLP(X) scheme.

The �rst one has to do with the fact that in our approach full �rst-order logic is allowed, while in the

latter | as in logic programming and pure Prolog | Horn clauses are used.

The second one concerns the way values are assigned. In our case the only way to assign values

to variables is by means of an �-assignment, while in the CLP(X) scheme satis�ability of constraints

guides the computation and output is identi�ed with a set of constraints (that still have to be solved

or normalized).

The CLP(X) approach to computing has been realized in a number of constraint logic programming

languages, notably in the CLP(R) system of Ja�ar, Michayov, Stuckey & Yap (1992) that is an instance

of the CLP(X) scheme with a two-sorted structure that consists of reals and terms. In this system

formula (1.1) of Subsection 1.3 can be directly run as a query.

Once negation is added to the CLP(X) scheme (it is in fact present in CLP(R)), the extension of

the CLP(X) syntax to full �rst-order logic could be achieved by using the approach Lloyd & Topor

(1984) or by extending the computation mechanism along the lines of Section 2.

So, ignoring the use of the �rst-order logic syntax in the formulas as programs approach and the

absence of (recursive) procedures that could be added to it, the main di�erence between this approach

and the CLP(X) scheme has to do with the fact that in the former only very limited constraints are

admitted, namely ground atoms and �-assignments. In fact, these are the only constraints that can

be resolved directly.

So from this point of view the formulas as programs approach is less general than constraint logic

programming, as embodied in the CLP(X) scheme. However, this more limited approach does not

rely on the satis�ability procedure for constraints (i.e., selected atomic formulas), or any of its approx-

imations used in speci�c implementations. In fact, the formulas as programs approach attempts to

clarify how far constraint logic programming approach can be used without any reliance on external

16

procedures that deal with constraint solving or satis�ability.

5.6 Formulas as Programs versus Formulas as Types

In the so-called formulas as types approach, also called the Curry-Howard-De Bruijn interpretation

(see e.g. Troelstra & van Dalen (1988)) (constructive) proofs of a formula are terms whose type is the

formula in question. The type corresponding to a formula can thus be viewed as the (possibly empty)

set of all proofs of the formula. Here `proof' refers to an operational notion of proof, in which

� a proof of � _ is either left(p) with p a proof of �, or right(p) with p a proof of ;

� a proof of � ^ is a pair hp; qi consisting of a proof p of � and and a proof q of ;

� a proof of an implication �! is a function that maps proofs of � to proofs of ;

� a proof of 8x �(x) is a function that maps domain elements d to proofs of �(d);

� a proof of 9x �(x) is of the form ex (d; p) with domain element d a witness for the existential

statement, and p a proof of �(d).

Such proofs can be taken as programs. For example, a constructive proof of 8x 9y �(x; y) is

a function that maps d to an expression of the form ex(ed; pd) with pd a proof of �(d; ed). After

extraction of the witness ed the proof yields a program computing ed from d.

The main di�erence between formulas as types and formulas as programs is that in the latter ap-

proach not the proofs of the formulas, but the formulas themselves have an operational interpretation.

To illustrate this di�erence, consider the computation tree of formula (1.1) in Figure 1 with its proof:

ex(3; ex (2; hright(p3=3); hright(p2=2); p2�3=3�2ii))

Here pA is a proof of A, for each true closed atom A.

Observe that in the above proof the witnesses 3 and 2 for x and y, respectively, have to be given

beforehand, whereas in our approach they are computed. In the formulas as programs approach the

proofs are constructed in the successful branches of the computation tree and the computation is

guided by the search for such a proof. Apart from di�erences in syntax, the reader will recognize the

above proof in the successful branch of Figure 1.

Given the undecidability of the �rst-order logic, there is a price to be paid for formulas programs.

It consists of the possibility of abnormal termination in an error.

6. Alma-0

We hope to have convinced the reader that the formulas as programs approach, though closely related

to logic programming, di�ers from it in a number of crucial aspects.

This approach to programming has been realized in the implemented programming language Alma-0

(Apt et al. 1998). A similar approach to programming has been taken in the 2LP language of McAloon

& Tretko� (1995). 2LP (which stands for \logic programming and linear programming") uses C syntax

and has been designed for constraint programming in the area of optimization.

Alma-0 is an extension of a subset of Modula-2 that includes nine new features inspired by the logic

programming paradigm. We briey recall those that are used in the sequel and refer to Apt et al.

(1998) for a detailed presentation.

� Boolean expressions can be used as statements and vice versa. A boolean expression that is

used as a statement and evaluates to FALSE is identi�ed with a failure.

� Choice points can be created by the non-deterministic statements ORELSE and SOME. The former

is a dual of the statement composition and the latter is a dual of the FOR statement. Upon

failure the control returns to the most recent choice point, possibly within a procedure body,

and the computation resumes with the next branch in the state in which the previous branch

was entered.

17

� The notion of initialized variable is introduced and the equality test is generalized to an assign-

ment statement in case one side is an uninitialized variable and the other side an expression

with known value.

� A new parameter passing mechanism, call by mixed form, denoted by the keyword MIX, is

introduced for variables of simple type. It works as follows: If the actual parameter is a variable,

then it is passed by variable. If the actual parameter is an expression that is not a variable, its

value is computed and assigned to a new variable v (generated by the compiler): it is v that is

then passed by variable. So in this case the call by mixed form boils down to call by value.

Using this parameter mechanism we can pass both expressions with known values and uninitial-

ized variables as actual parameters. This makes it possible to use a single procedure both for

testing and computing.

For e�ciency reasons the Alma-0 implementation does not realize faithfully the computation mech-

anism of Section 2 as far as the errors are concerned. First, an evaluation of an atom that is not

�-closed and is not an �-assignment yields a run-time error. On the other hand, in the other two

cases when the evaluation ends with the error leaf, in the statements NOT S and IF S THEN T END,

the computation process of Alma-0 simply proceeds.

The rationale for this decision is that the use of insu�ciently instantiated atoms in Alma-0 pro-

grams is to be discouraged whereas the catching of other two cases for errors would be computationally

prohibitive. In this respect the implementation of Alma-0 follows the same compromise as the imple-

mentations of Prolog.

We now associate with each �rst-order formula � an Alma-0 statement T (�). This is done by

induction on the structure of the formula �. The translation process is given in Table 1.

Formula Alma-0 construct

A (atom) A

�1 _ �2 EITHER T (�1) ORELSE T (�2) END

�1 ^ �2 T (�1); T (�2)

�! IF T (�) THEN T () END

:� NOT T (�)

9x�(x; �y) p(�y), where the procedure p is de�ned by

PROCEDURE p(MIX �y : �T);

VAR x : T;

BEGIN

T (�(x; �y))

END;

where T is the type (sort) of the variable x and
�T is the sequence of types of the variables in �y.

9x 2 [s::t]� SOME x := s TO t DO T (�) END

8x 2 [s::t]� FOR x := s TO t DO T (�) END

Table 1: Translation of formulas into Alma-0 statements.

This translation allows us to use in the sequel Alma-0 syntax to present speci�c formulas.

7. Example: Partitioning a Rectangle into Squares

To illustrate the Alma-0 programming style and the use of formulas as programs approach for program

veri�cation, we consider now the following variant of a problem from Honsberger (1970, pages 46-60).

18

Squares in the rectangle. Partition an integer sized nx � ny rectangle into given squares S
1
; : : : ; Sm

of integer sizes s1; : : : ; sm.

We develop a solution that, in contrast to the one given in Apt et al. (1998), is purely declara-

tive. To solve this problem we use a backtracking algorithm that �lls in all the cells of the rectangle

one by one, starting with the left upper cell and proceeding downward in the leftmost column, then

the next column, and so on. The algorithm checks for each cell whether it is already covered by some

square used to cover a previous cell. Given the order in which the cells are visited, it su�ces to inspect

the left neighbour cell and the upper neighbour cell (if these neighbours exist). This is done by the

test

((1 < i) AND (i < RightEdge[i� 1; j])) OR ((1 < j) AND (j < LowerEdge[i; j� 1])): (7.1)

Here [i,j] is the index of the cell under consideration, and RightEdge[i-1,j] is the right edge of

the square covering the left neighbour ([i-1,j], provided i > 1), and LowerEdge[i, j-1] is the

lower edge of the square covering the upper neighbour ([i,j-1], provided j > 1). The cell under

consideration is already covered if and only if the test succeeds. If it is not covered, then the algorithm

looks for a square not yet used, which is placed with its top-left corner at [i,j] provided the square

�ts within the rectangle. The algorithm backtracks when none of the available squares can cover the

cell under consideration without sticking out of the rectangle. See Figure 2.

1 nx 1 nx

1 4 _____
��

4 ____ 4 ____

��
��
��
��
��
��
�� 4 _____

��
4 _____ 4 ____

��
��
��
��
��
��
�� 1

4

��
� 4 4 4

��
� 4 4

4

��
� 4 4 4

��
��

4 4

2 ____

��
� _________

��
� 5 _____

��
� � __________

��
�

3 _____
��

3 ____

��
��
��
�� 7

��
_____ 7 _____

��
��
��
��

ny 3

��
� 3 7

��
� 7 ny

ny+1 ___________ ____________ ny+1

Figure 2: Example of values of RightEdge (left diagram) and LowerEdge (right diagram), respectively.

Entry � is indexed by [2,4]. It is not covered already since neither 2 < RightEdge[1; 4] = 2 nor

4 < LowerEdge[2; 3] = 4.

In test (7.1) we used the AND and OR connectives instead of the \;" and ORELSE constructs for the

following reason. In case all variables occurring in a test are instantiated, some optimizations are in

order. For example, it is not necessary to backtrack within the test, disjunctions do not have to create

choice points, and so on. The use of AND and OR enables the compiler to apply these optimizations.

Backtracking is implemented by a SOME statement that checks for each square whether it can be

put to cover a given cell. The solution is returned via two arrays posX and posY such that for square

Sk (of size Sizes[k]) posX[k], posY[k] are the coordinates of its top-left corner.

The two equations posX[k] = i and posY[k] = j are used both to construct the solution and to

prevent using an already placed square again at a di�erent place.

19

The declaration of the variables posX and posY as MIX parameters allows us to use the program

both to check a given solution or to complete a partial solution.

TYPE SquaresVector = ARRAY [1..M] OF INTEGER;

PROCEDURE Squares(Sizes:SquaresVector, MIX posX, posY:SquaresVector);

VAR RightEdge,LowerEdge: ARRAY [1..NX],[1..NY] OF INTEGER;

i,i1, j,j1, k: INTEGER;

BEGIN

FOR i := 1 TO NX DO

FOR j := 1 TO NY DO

IF NOT

(((1 < i) AND (i < RightEdge[i-1,j])) OR

((1 < j) AND (j < LowerEdge[i, j-1]))) (* cell [i,j] already covered? *)

THEN

SOME k := 1 TO M DO

PosX[k] = i;

PosY[k] = j; (* square k already used? *)

Sizes[k] + i <= NX + 1;

Sizes[k] + j <= NY + 1; (* square k fits? *)

FOR i1 := 1 TO Sizes[k] DO

FOR j1 := 1 TO Sizes[k] DO

RightEdge[i+i1-1,j+j1-1] = i+Sizes[k];

LowerEdge[i+i1-1,j+j1-1] = j+Sizes[k]

END (* complete administration *)

END

END

END

END

END

END Squares;

This program is declarative and consequently has a dual reading as the formula

8i 2 [1::nx] 8j 2 [1::ny]

:(1 < i < RightEdge[i�1; j] _ 1 < j < LowerEdge[i; j�1])!9k 2 [1::m] �(i; j; k);

where �(i; j; k) is the formula

PosX[k] = i ^ PosY[k] = j ^ Sizes[k]+i � nx+1 ^ Sizes[k]+j � ny+1 ^ (i; j; k)

and (i; j; k) is the formula

8i0 2 [1::Sizes(k)] 8j0 2 [1::Sizes(k)]

RightEdge[i+i0�1; j+j0�1] = i+Sizes[k] ^ LowerEdge[i+i0�1; j+j0�1] = j+Sizes[k]

This dual reading of the program entails over the standard interpretation the formula

8i 2 [1::nx] 8j 2 [1::ny] 9k 2 [1::m]

PosX[k] � i < PosX[k]+Sizes[k] � nx+1 ^ PosY[k] � j < PosY[k]+Sizes[k] � ny+1 (7.2)

expressing that every cell is covered by a square. The entailment is not trivial, but can be made

completely rigorous. The proof uses arithmetic, in particular induction on lexicographically ordered

pairs (i; j). This entailment actually means that the program satis�es its speci�cation, that is, if the

20

computation is successful, then a partition is found (and can be read o� from PosX[k] and PosY[k]).

The latter fact relies on the Soundness Theorem 3.3.

Conversely, assuming that the surfaces of the squares sum up exactly to the surface of the rect-

angle, the speci�cation (7.2) entails the formula corresponding to the program, with suitable values

for RightEdge; LowerEdge. Furthermore, the absence of errors can be established by lexicographic

induction. This ensures that the computation tree is always determined. By the Completeness Theo-

rem 3.4, one always gets an answer. If this answer is negative, that is, if the computation tree is failed,

then by the Soundness Theorem 3.3 the formula corresponding to the program cannot be satis�ed,

and hence (7.2) cannot be satis�ed.

8. Current and Future Work

The work here presented can be pursued in a number of directions. We listed here the ones that seem

to us most natural.

Recursive procedures The extension of the treatment of non-recursive procedures in Subsection 4.1

to the case of recursive procedures is far from obvious. It requires an extension of the computation

mechanism to one with possible non-terminating behaviour. This could be done along the lines of

Apt & Doets (1994) where the SLDNF-resolution of logic programs with negation is presented in a

top down, non-circular way.

Also, on the semantic level several choices arise, much like in the case of logic programming, and

the corresponding soundness and completeness results that provide a match between the computation

mechanism and semantics need to be reconsidered from scratch.

Constraints As already said in Subsection 5.5, the formulas as programs approach can be seen as

a special case of constraint logic programming, though with a full �rst-order syntax. It is natural

to extend our approach by allowing constraints, so arbitrary atoms that have no de�nition in the

sense of Subsection 4.1. The addition of constraints will require on the computation mechanism level

use of a constraint store and special built-in procedures that approximate the satis�ability test for

conjunctions of constraints.

Automated Veri�cation The correctness proof presented in Section 7 was carried out manually. It

boils down to a proof of validity of an implication between two formulas, This proof is based on

an lexicographic ordering os it should be possible to mechanize this proof. This would lead a fully

mechanized correctness proof of the Alma-0 program considered there.

Relation to Dynamic Predicate Logic In Groenendijk & Stokhof (1991) an alternative \input-output"

semantics of �rst-order logic is provided. In this semantics both the connectives and the quanti�ers

obtain a di�erent, dynamic, interpretation that better suits their use for natural language analysis.

This semantic is highly nondeterministic due to its treatment of existential quanti�ers and it does not

take into account a possibility of errors.

It is natural to investigate the precise connection between this semantics and our formulas as

programs approach. A colleague of us, Jan van Eijck, has recently undertook this study. Also, it

would be useful to clarify to what extent our approach can be of use for linguistic analysis, both as a

computation mechanism and as a means for capturing errors in discourse analysis.

Absence of abnormal termination Another natural line of research deals with the improvements of

the computation mechanism in the sense of limiting the occurrence of errors while retaining soundness.

In Appendix, Subsections 9.3 and 9.4 we consider two such possibilities but several other options arise.

Also, it is useful to provide su�cient syntactic criteria that for a formula guarantee absence of abnormal

termination. This work is naturally related to a research on veri�cation of Alma-0 programs.

21

Acknowledgements

We would like to thank Jan van Eijck and David Scott Warren for a number of helpful suggestions.

References

Apt, K. R. (1996), `Arrays, bounded quanti�cation and iteration in logic and constraint logic pro-

gramming', Science of Computer Programming 26(1-3), 133{148.

Apt, K. R. & Bol, R. (1994), `Logic programming and negation: a survey', Journal of Logic Program-

ming 19-20, 9{71.

Apt, K. R. & Doets, H. C. (1994), `A new de�nition of SLDNF-resolution', Journal of Logic Program-

ming 18(2), 177{190.

Apt, K. R., Brunekreef, J., Partington, V. & Schaerf, A. (1998), `Alma-0: An imperative

language that supports declarative programming', ACM Toplas. In press. Available via

http://www.cwi.nl/~apt.

Barklund, J. & Bevemyr, J. (1993), Prolog with arrays and bounded quanti�cations, in A. Voronkov,

ed., `Logic Programming and Automated Reasoning|Proc. 4th Intl. Conf.', LNCS 698, Springer-

Verlag, Berlin, pp. 28{39.

Clark, K. L. (1978), Negation as failure, in H. Gallaire & J. Minker, eds, `Logic and Databases',

Plenum Press, New York, pp. 293{322.

De Schreye, D. & Decorte, S. (1994), `Termination of logic programs: the never-ending story', Journal

of Logic Programming 19-20, 199{260.

Groenendijk, J. & Stokhof, M. (1991), `Dynamic predicate logic', Linguistics and philosophy 14(2), 39{

101.

Hill, P. M. & Lloyd, J. W. (1994), The G�odel Programming Language, The MIT Press.

Honsberger, R. (1970), Ingenuity in Mathematics, Random House, Inc., New York.

Ja�ar, J. & Lassez, J.-L. (1987), Constraint Logic Programming, in `POPL'87: Proceedings 14th

ACM Symposium on Principles of Programming Languages', ACM, pp. 111{119.

Ja�ar, J., Maher, M., Marriott, K. & Stuckey, P. (1998), `The semantics of constraint logic programs',

Journal of Logic Programming 37(1-3), 1{46.

Ja�ar, J., Michayov, S., Stuckey, P. & Yap, R. (1992), `The CLP(R) language and system', ACM

Transactions on Programming Languages and Systems 14(3), 339{395.

Klu�zniak, F. & Mi lkowska, M. (1997), `Spill: A logic language for writing testable requirements

speci�cations', Science of Computer Programming 28(2 & 3), 193{223.

Kowalski, R. (1974), Predicate logic as a programming language, in `Proceedings IFIP'74', North-

Holland, pp. 569{574.

Lloyd, J. W. (1987), Foundations of Logic Programming, second edn, Springer-Verlag, Berlin.

Lloyd, J. W. & Topor, R. W. (1984), `Making Prolog more expressive', Journal of Logic Programming

1, 225{240.

Lobo, J., Minker, J. & Rajasekar, A. (1992), Foundations of Disjunctive Logic Programming, The

MIT Press.

McAloon, K. & Tretko�, C. (1995), 2LP: Linear programming and logic programming, in P. Van

Hentenryck & V. Saraswat, eds, `Principles and Practice of Constraint Programming', MIT Press,

pp. 101{116.

Shoen�eld, J. R. (1967), Mathematical Logic, Addison-Wesley, Reading, Massachusetts.

Tarski, A. (1933), Poj�ecie prawdy w j�ezykach nauk dedukcyjnych, Towarzystwo Naukowe Warszawskie,

22

Warszawa. In Polish. English version appeared in A. Tarski, Logic, semantics, metamathematics:

papers from 1923 to 1938, Oxford, Clarendon, 1956.

Troelstra, A. S. & van Dalen, D. (1988), Constructivism in Mathematics, Studies in Logic and the

Foundations of Mathematics, North-Holland Publ. Co., Amsterdam. Two vols.

Voronkov, A. (1992), Logic programming with bounded quanti�ers, in A. Voronkov, ed., `Logic Pro-

gramming and Automated Reasoning|Proc. 2nd Russian Conference on Logic Programming',

LNCS 592, Springer-Verlag, Berlin, pp. 486{514.

9. Appendix

9.1 Proof of the Soundness Theorem 3.3

The proof proceeds by induction on the lexicographic ordering on formulas which is de�ned in De�-

nition 2.4. We carefully go through all inductive cases.

1. The case of the empty conjunction is trivial.

2. The �rst three of the four cases concerning atom A are obvious. It remains to deal with the

last case, where atom A is an �-assignment s = t. Then either s or t is a variable which is not

�-closed, say s � x with x not �-closed and t �-closed. The symmetrical case is analogous. The

tree [[x = t ^]]� is, apart from the root of degree one, identical to [[]]�[fx=t�g.

If [[]]�[fx=t�g contains a success leaf labelled by �, then by the induction hypothesis 8(�) is

true. Since t is �-closed and � extends � [fx=t�g, we have (x = t)� � (x� = t
�) � (t� = t

�).

The last formula is true, so also 8((x = t ^)�) is true.

If [[]]�[fx=t�g is failed, then by the induction hypothesis 9(�[fx=t
�g) is false. Note again that

t is �-closed and let x; x1; : : : ; xn be all the free variables of that are not in the domain of

�. (If n = 0 or if x does not occur in , then the argument is even simpler.) Then we have

9((x = t ^)�) � 9x; x1; : : : ; xn (x = t
� ^ �(x; x1; : : : ; xn)), which is logically equivalent to

9x1; : : : ; xn
�(t�; x1; : : : ; xn)) � 9(�[fx=t

�g). It follows that 9((x = t ^)�) is also false.

3. The case of (�1 _ �2) ^ uses the distributive law and the induction hypothesis applied to the

the lexicographically smaller formulas �1 ^ and �2 ^ .

4. The case of (�1 ^ �2) ^ uses the associativity of conjunction and the induction hypothesis

applied to the the lexicographically smaller formulas �1 and �2 ^ .

5. The case of (�1 ! �2) ^ uses the logical equivalence of �1! �2 and :�1 _ �2. If formula �1
is �-closed and [[�]]� is failed, then the argument is similar to the corresponding case of :� ^
in the next case. The other case can be dealt with by applying the induction hypothesis to

�1 ^ (�2 ^).

6. For :� ^ we distinguish three cases with respect to �.

� Formula � is �-closed and [[�]]� is failed. Then, by the induction hypothesis, 9(��) is false,

so 8(:��) is true. Since [[:� ^]]� is, apart from the root of degree one, identical to [[]]�,

we apply the induction hypothesis to . If [[]]� is failed, then 9(�) is false, and hence

9((:� ^)�) is false. If [[]]� contains a success leaf � then � extends � and 8(�) is

true. Note that 8(:��) implies 8(:�), for any extending �, even if � is not �-closed. It

follows that 8((:� ^)�) is true. Observe that we did not use the fact that � is �-closed.

So the proof remains valid under the �rst relaxation described in Subsection 9.3.

� Formula � is �-closed and [[�]]� contains at least one success leaf, labelled by an extension

� of �. The tree [[:� ^]]� consists of a root and a failure leaf in this case, so we have

to show that 9((:� ^)�) is false. By the induction hypothesis, 8(��) is true, and hence

23

8(��) is true, as � is an extension of � and � is �-closed. This implication also holds if

� is not �-closed, provided that � does not contain any pair x=d where x is free in �
�.

Consequently, 9(:��) is false and hence also 9((:� ^)�) is false. Observe that the proof

remains valid under the second relaxation described in Subsection 9.3.

� In all other cases there is nothing to prove as [[:� ^]]� has then only error leaves.

7. For the case 9x � ^ , assume that x is fresh with respect to and some valuation �. It is

convenient to make the possible occurrence of x in � explicit by writing �(x) for �. Recall that

apart form the root of degree one [[9x �(x) ^]]� is identical to [[�(x) ^]]�.

Assume [[�(x) ^]]� contains a success leaf labelled by �. By applying the induction hypothesis

to the lexicographically smaller formula �(x)^ we get that 8((�(x)^)�) is true. It follows that

8((9x �(x)^)�) is true. Some minor technicalities have been left to the reader here: the case in

which x does not occur in the domain of � has to be settled by applying (8x �(x)) ! (9x �(x))

and not by inferring 9x �(x) from �(x�).

Assume [[�(x) ^]]� is failed. Then, again by the induction hypothesis, 9((�(x) ^)�) is false.

Since x does occur neither in �, nor in , it follows that 9((9x �(x) ^)�) is false. 2

9.2 Proof of the Restricted Completeness Theorem 3.4

(i) Suppose by contradiction that [[�]]� is not successful. Since this tree is determined, it is failed. By

the Soundness Theorem 3.3 9(��) is false which is a contradiction.

(ii) Suppose by contradiction that [[�]]� is not failed. Since this tree is determined, it is successful.

By the Soundness Theorem 3.3 for some � that extends � we have that 8(��) is true. This is a

contradiction since the falsity of 9(��) is equivalent to the truth 8(:��) that implies the truth of

8(:��). 2

9.3 More liberal negation

In this subsection we show how in De�nition 2.4 the restriction \� is �-closed" in the case of the tree

[[:� ^]]� can be relaxed without losing soundness. There are basically two such relaxations.

First, observe by means of example that :(0 = 1 ^ x = y) is true, independent of the values of x

and y. This observation can be generalized as follows. If [[�]]� is failed, then [[:� ^]]� can be de�ned

as the tree with a root of degree one and [[]]� as its subtree, even if � is not �-closed. In the proof

of the Soundness Theorem we already accommodated for this relaxation, see Subsection 9.1.

Second, observe that the dual phenomenon also exists: :(0 = 0_x = y) is false, independent of the

values of x and y. More generally, if [[�]]� contains a success leaf � not containing any pair x=d with

x free in ��, then [[:� ^]]� can be de�ned as the tree with a root of degree one and a failure leaf as

its son, even if � is not �-closed.

9.4 More liberal implication

The �rst and the second relaxation above can be both applied to the computation tree [[(�1 ! �2) ^]]�,

the �rst to the case in which the tree [[�1]]� is failed, and the second to the case in which the tree

[[�1]]� contains a success leaf not containing any pair x=d with x free in �
�
1

.

There are several other ways to liberalize implication. The aim is to be more complete, that is, to

yield more determined computation trees (without losing soundness, of course).

As a �rst example, consider the computation tree [[(0 = 1! x = 0) ^ x < 1]]":

24

error

x < 1; "

(0 = 1! x = 0) ^ x < 1; "

This computation tree is not determined. In contrast, using the equivalence of �1! �2 and

:�1 _ �2, we get the computation tree [[(:(0 = 1) _ x = 0) ^ x < 1]]" is determined, as it contains

a success leaf fx=0g:

:(0 = 1) ^ x < 1; "

x < 1; "

error

x = 0 ^ x < 1; "

x < 1; fx=0g

fx=0g

(:(0 = 1) _ x = 0) ^ x < 1; "

The above example shows that :�1 _ �2 can be \more complete" than �1! �2, although in some

cases the disjunction involves unnecessary branching in the computation tree. As an example of the

latter phenomenon, compare the computation trees for (0 = 1! 0 = 0)^ and (:(0 = 1)_0 = 0)^ :

[[]]�

0 = 0 ^ ; �

(0 = 1! 0 = 0) ^ ; �

[[]]�

[[]]�

(:(0 = 1) _ 0 = 0) ^ ; �

:(0 = 1) ^ ; �

As a second example, consider the computation tree [[(x = 0! x < 1]]", which is not determined

since x = 0 is not "-closed:

x = 0! x < 1; "

error

25

One would like to have this tree succeed with fx=0g. (The fact that fx=1g is also a solution is

beyond the scope of our method, since [[:(x = 0)]]" is not determined.) For this the equivalence of

�1! �2 and :�1 _ �2 does not help, as the computation tree [[:(x = 0) _ x < 1]]" is not determined

either:

:(x = 0); " x < 1; "

error error

:(x = 0) _ x < 1; "

Note that the left subtree ends with error since [[x = 0]] succeeds with fx=0g. Liberal negation does

not help us any further here.

In order to have [[(x = 0! x < 1]]" succeed it is necessary to transfer the valuation of the success

leaf of the antecedent, i.e. fx=0g, to the consequent. Thus we are tempted to consider :�1 _ (�1 ^�2)
as a more useful logical equivalent of �1! �2 than :�1 _ �2. The conjunction �1 ^�2 has the desired

e�ect on the transfer of valuations. Indeed the following computation tree is successful:

:(x = 0); "

error

x = 0 ^ x < 1; "

x < 1; fx=0g

fx=0g

:(x = 0) _ (x = 0 ^ x < 1); "

In combination with liberal negation the computation tree [[((x = 0 ^ x = 1)! 0 = 1) ^]]" has

now the following form:

(:(x = 0) ^ x = 1) ^ ; " x = 0 ^ x = 1 ^ 0 = 1 ^ ; "

x = 1 ^ 0 = 1 ^ ; fx=0g

fail

[[]]"

(:(x = 0 ^ x = 1) _ (x = 0 ^ x = 1 ^ 0 = 1)) ^ ; "

26

Note that, if [[]]" is failed, the \guard" x = 0 ^ x = 1 prevents [[]]" to be computed twice, even if

we replace 0 = 1 by 0 = 0. On the other hand, this guard also prevents successful computations, such

as in [[((x = 0 ^ x = 1)! x = 0) ^ x < 1]]", where the solution fx=0g is missed when :�1 _ (�1 ^ �2)
is used instead of :�1 _ �2 for �1! �2.

The above example shows that :�1 _ (�1 ^�2) is not always \more complete" than :�1 _ �2. Thus

we are led to consider :�1 _ �2 _ (�1 ^ �2) as a third logical equivalent of �1! �2, in an attempt to

collect all the successes of :�1 _ �2 and :�1 _ (�1 ^ �2). Indeed this works for the successes, but not

for the failures, as the following delicate example shows.

Consider [[�1! �2]]" with 0 = 0 _ x < 1 for �1 and 0 = 1 for �2. Then both [[:�1]]" and [[�2]]" are

failed, but [[�1 ^ �2]]" has an error leaf due to the disjunct x < 1. This means that [[:�1 _ �2]]" is

failed, whereas neither [[:�1 _ (�1 ^ �2)]]" nor [[:�1 _ �2 _ (�1 ^ �2)]]" is determined.

From the above we can draw the following conclusions:

� Liberal negation is always an improvement for implication;

� For �nding successes, use �1! �2 � :�1 _ �2 _ (�1 ^ �2);

� For failures, use �1! �2 � :�1 _ �2.

