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1. INTRODUCTION 

In 1978 Hoare [11) introduced CSP, a language for distributed programming. 
One of its features, which was subsequently criticized, was the so-called distrib
uted termination convention of repetitive commands (see, e.g., [12)). 

A repetitive command is a construct of the form 

* [b1; a1-+ S; 
D 

where b1, ... , bm are Boolean expressions, and a 1, ... , am are input commands. 
Constructs bi; ai are called guards. (In fact, guards in CSP are of slightly more 
general form; for example, they contain variable declarations. Our result applies 
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to the general case as well.) Such a loop is said to terminate if all its guards fail. 
A guard bi; ai fails if either bi evaluates to false or the process addressed in ai 
has terminated. This convention of exiting a loop was subsequently called the 
distributed termination convention (DTC). Hoare himself expressed in [11] some 
worries about this convention and indicated in an example how the desired effect 
of a loop exit can be achieved using other primitives of the language. 

In this paper we show how, in the case of arbitrary programs, the distributed 
termination convention can be modeled in an extension of the original CSP, in 
which output guards are allowed. The transformation we provide suggests a 
simple implementation of this convention. We argue that this convention should 
be used as a compiler option, as it is a powerful programming tool, relieving the 
programmer of a major concern. 

In the original CSP, output guards were disallowed. Subsequently, this restric
tion has often been criticized (see, e.g., [6]). In various CSP programs given in 
the literature (see, e.g., [8]) this restriction is not used. Also, in a variety of 
semantic definitions and proof systems for the language (see, e.g., [10] and [13]), 
this restriction is disregarded. The cost of implementing "handshaking" turned 
out to be less inefficient than Hoare thought it might be (see [7] for a survey of 
such implementations and further references). In this paper we allow output 
guards, and consequently the proposed transformation deals with repetitive 
commands of a more general form where a 1, ••• , am are I/O commands. 
The proposed transformation shows that the distributed termination convention 
can be defined using other CSP language features provided output guards are 
allowed. 

As a further motivation for an explicit definition of such a transformation, one 
could consider its bearing on other transformations related to CSP. As a concrete 
example, consider a recent work [5], where CSP is modeled using Milner's 
calculus of communicating processes (CCS) [14]. The DTC influenced the com
plexity of this modeling in that an extra process was created only for the purpose 
of centrally handling the termination information; this process could be avoided 
in view of the suggested transformation. 

2. DISCUSSION 

Let us start by recalling Hoare's example. Consider the following program, which 
represents a process computing integer division with remainder and a user 
process. 

[DIV :: •[X?(x, y)-+ 
quot := O; rem:= x; 

•[rem 2: y-+ rem:= rem - y; quot := quot + 1]; 
X!(quot, rem)] 

llX::USER 
I 

The DIV process leaves its main loop as soon as the user program terminates. 
This effect can be achieved by explicit exchange of end signals. The following 
rewritten version of the program is equivalent to the original version. According 
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where the variables continuey and continuez are originally intialized to true. 
These variables are also used to refine the repetitive commands of X in a manner 
analogous to the case of the DIV process. 

If continuey turns to false before the loop is reached, this is due to the 
termination of the process Y. But if Y has terminated, it is useless to send it the 
information about the termination of X and indeed such a sending will not occur 
here; similarly with the process Z. Thus continuey now represents the process 
X's knowledge of the fact that the end signal has been received from Y or sent 
to Y. Thanks to this double role of the continue variables, we have guaranteed 
the termination of the loop in the cases in which the process X has received or 
sent end signals from (or to) both Y and Z. 

Now what about a situation in which no exchange of the end signal takes 
place between X and, say, Y? Such a situation will arise when (the original 
versions of) X and Y have terminated without relying on each other's termination. 
In this case we would also like to force the termination of the loops, added at the 
end of X and Y, respectively. This can be achieved by arranging another exchange 
of end signals between the new versions of X and Y. 

The loop added at the end of Y contains a guard with the communication 
X!end. This communication can now be executed if the loop at the end of X 
contains a guard with Y?end. After this communication both loops should 
terminate (in case of two processes). 

Summarizing the loop added at the end of X should take the following form: 
*[ continuey; Y!end ~ continuey := false 
D continuey; Y?end ~ continuey := false 
D continuez; Z!end ~ continuez := false 
D continuez: Z?end ~ continuez := false]. 

Symmetric loops should be added at the end of Y and Z, respectively. In this 
solution we can drop some of the input guards in the above loops. For example, 
the process Y does not need to contain a guard with X?end, since the final 
communication between X and Y is already assured by the pair X!end and 
Y?end. 

So far we have dealt with repetitive loops in which guards do not contain a 
Boolean part. It turns out, however, that the above solution can be straightfor
wardly generalized for the case of arbitrary repetitive commands. We now present 
this solution and prove its correctness. 

3. A GENERAL SOLUTION 

Consider a parallel command P = [P1 :: 81 11 · · · II Pn :: Sn], where P1, ... , Pn are 
processes with bodies Si. ... , Sn. respectively. Assume that each Pi refers to 
some P/s (j ¥ i) only. In other words, no P; refers to an external process. Let 
end be a communication signal of a new type. 

For each Pi, let ri be the collection of indices of all processes referred to by 
guards in some loop in Pi· In other words,j Er; iff Pi contains some loop L, one 
of whose I/O guards refers to Pi. Note that by the CSP rules for each i, ri can be 
syntactically determined. If j E r;, then we call Pi the neighbor of Pi. Note that 
the neighborship relation does not need to be symmetric: L and ri for i ¥ j do 
not depend on each other. 
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to this version, a loop terminates as soon as all the Boolean parts of its guards 
evaluate to false. 

[DIV :: continue := true; 
*[continue; X?end - continue:= false 

0 continue; X? (x, y) -
quot := O; rem := x; 

•[rem~ y- rem:= rem - y; quot := quot + 1); 
X!(quot, rem)] 

II X :: USER; DIV!end 
l 

Note that the above solution works for a general case of two processes when 
one process P repeatedly leaves its loops due to termination of another process 
Q. Once the process P leaves a loop due to termination of Q, the variable continue 
is set to false. From that stage on, the variable continue remains false. This 
represents the process P's knowledge of the fact that Q has terminated. All future 
communications with Q in a guard of a repetitive command will now fail, as 
desired, since continue is included in the guard. The end signal will be sent from 
Q to P only once. 

A problem arises if more than two parallel processes are considered. Suppose 
that the process X communicates with processes Y and Z. Adding at the end 
ofX 

Y!end; Z!end 

poses a problem since Z can then receive the end signal from X (informing about 
the termination of X) only after Y has received it. An alternative solution 

[ Y!end - skip 0 Z!end - skip] 

does not work either, as now only one process among Y and Z can make use of 
the termination of X. We might also try adding at the end of X 

[Y!end II Z!end]. 

But now the new version of X can terminate only if both Y and Z have made 
use of the termination of (the old version of) X. It is easy to see that if the above 
transformation is applied in a symmetric manner to X, Y, and Z, then original 
properly terminating computations become deadlocked ones. 

Note that an analogous problem already arises in the case of two processes P 
and Q when P and Q terminate without relying on each other's termination. 

A similar drawback results if we add at the end of X a loop 

• [ Y!end - skip D Z!end - skip]. 

An addition of a loop at the end of X seems, however, to be the only possible 
solution. The process X should send an unknown number (0, 1, or 2) of end 
signals, and only a loop can possibly model such behavior. 

First, we would like to force the termination of such a loop in case end signals 
have been sent to both Y and Z. This is easy-we simply refine the above loop 
in the following manner: 

•[ continuey; Y!end - continuey := false 
D continuez; Z!end - continuez := false] 
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We use the "big box" notation D bj - Si as a shorthand notation for bi1 -+ 
jEr; 

Sii D · · · 0 bik -sik• in the case ri = {jj, ... ,jkl· 
We now transform each Pi into another process by applying the following 

steps. 

(1) At the beginning of Pi add the following program section: 

continue(l ... n):boolean,j:integer;j := O; 
*U < n-+ j := j + 1; continue(j) :=true]. 

Rename the variables in order to avoid variable clashes and to keep the processes 
disjoint. 

(2) Given a repetitive command 

*C. a bj; P;j$xj - 7Jl 
1-1 .... ,k 

within a process Pi (where$ stands for! or?), replace it by 

*C. a bj; continue(ij); P;;$Xj - 1j 
J•l, ... ,k 

. D bi; continue(ii); Pi;?end-+ continue(ii) :=false]. 
j•l, ... ,k 

(3) At the end of Pi add the following program section: 

*[ D continue(j); Pi!end-+ continue(j) := false 
j:ieri 

0 continue(j); Pi?end-+ continue(j) :=false]. 
jeri 

Note that the first part of the above repetitive command ensures sending the 
end signal to all processes Pi having P; as a neighbor, whereas the second part 
offers reception of the end signal from any process Pi being a neighbor of Pj. As 
indicattd at the end of the previous section, some of these input guards can be 
deleted. In fact we can replace ri above by ri n lj: i E ri - j < ij. 

Thus if, for example, rx = {Y, ZI, ry = {X}, and rz = { Y}, then the following 
I/O guards appear in the repetitive commands added at the end of the processes 
X, Y, and Z, respectively: 

X: Y!, Y?, Z? 
Y:X!,Z!,X? 
Z:X!, Y? 

and according to the improved version: 

X: Y!, Y?,Z? 
Y:X!,Z! 
Z:X!, Y? 

In what sense does the above transformation model the distributed termination 
convention? Denote the transformed version of P by P'. Assume that computa
tions of P can make use of the DTC, whereas those of P' cannot. 

When we say that a computation does not make use of the distributed 
termination convention, we simply mean that it does not rely on the fact that 
some of the processes have terminated. In the terminology of [8] this corresponds 
to the notion of endotermination and endoprocess. Therefore we call such 
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computations endocomputations. We have the following theorem: 

THEOREM 1. Every properly terminating computation of P can be extended to 
a properly terminating computation of P'. 

PROOF. Consider first an endocomputation of P. In such a computation all 
loops terminate owing to an eventual failure of all the Boolean components of 
the guards. 

Consider now an extension of this computation obtained by executing first the 
parts added to P1, ... , Pn in step (1). Clearly, in this way we obtain a partial 
computation of P'. This computation reaches the parts added to P1, ••. , Pn in 
Step (3) by the assumption of proper termination. We can now extend this 
partial computation by exchanging, one by one, the end signals between all pairs 
of processes that are neighbors. Given two processes P; and Pi (i ?'= j) such that 
i E ri or j E ri, the end signal will be exchanged between them exactly once. 
After having exchanged all end signals, all processes terminate. We thus obtain 
a properly terminating computation of P'. 

Consider now a properly terminating computation of P, which makes use of 
theDTC. 

Suppose that the convention is used for the first time when the loop 

*l. 0 bi; P;;$xi ~ Ti] 
J=l, ... ,k 

within some P; is exited owing to the falsity of bi for j ft A and the termination 
of P;; for j EA, for some nonempty set A C ll, ... , k). Here again$ stands for! 
or?. 

Now take the previously considered initial extension of the computation of P. 
At the moment of the above loop exit insert in it, for allj EA, a communication 
of the end signal between P; and P; followed by setting the corresponding 
continue variables of P; and P; to fal~e. Now the corresponding loop of P; can 
be exited, since for each} E {l, ~ .. ,kl either bi or continue(ii) evaluates to false. 

Similar additions deal with other loop exits due to the DTC. In cases in which 
the process Pi has already made use of the termination of some P;i' the variable 
continue(ij) is already set to false, and no additional exchange of the end signal 
between Pi and P;. takes place. 

In such a way ;,f.e obtain a computation of P' that reaches the parts added in 
Step (3). We can now extend this computation to a terminating one by exchanging 
end signals between all pairs of neighbor processes that have not yet done so. 

This concludes the proof. 0 

We also have a converse theorem. 

THEOREM 2. Every properly terminating computation of P' can be restricted 
to a properly terminating computation of P. 

PROOF. We can apply an inverse procedure to the one considered in the proof 
of Theorem 1. 0 

Analogous theorems hold for infinite computations of P and P'. Note, however, 
that the theorems do not hold for failing or deadlocked computations. (Recall 
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that a computation is failing if it reaches an alternative command with all guards 
failing.) Every deadlocked computation of P can be extended to a deadlocked 
computation of P'. The converse is not necessarily true. As an example consider 
the program 

P = [P1 :: [P2?x - skip]; •[P2?x- skip] II P2 :: skip]. 

Then P' is of the form 

P' = [P1 :: initialization part; [P2?x - skip]; ... 
II P2 :: initialization part; skip; termination part]. 

According to the semantics of CSP, the only computation of Pisa failing one 
(the first guard P2?x of P 1 fails as soon as P2 terminates), and all computations 
of P' are deadlocked ones. 

Thus an extension of a failing computation of P can become a deadlocked 
computation of P'. Conversely, a restriction of a deadlocked computation of P' 
can become a failing computation of P. On the other hand, a restriction of a 
failing computation of P' becomes a failing computation of P. 

We can obtain a one-to-one correspondence between failing and respectively 
deadlocked computations of P and P' if, in addition, we transform all I/O 
commands and alternative commands of P appropriately. 

First, we replace any I/O command a within P by [a~ skip]. Next, we replace 
any alternative command 

(_ D b1; P;j$x1 - TJ 
J=l, ..• ,k 

by the following program 

more := true; 
•[more-
[ 0 bi; continue(iJ); P;.~xi - 1}; more:= false 
j::,,,l •... ,k 7 

. 0 bi; continue(iJ); P;;?end - continue(ij) :=false]. 
1-1 •... ,k 

Finally, in Step 3 of the previous transformation we should now use a new 
neighborhood relationship, which was before confined to loop-connectedness: 
j E ri iff Pi contains any guard (not necessarily in a loop) referring to P1. 

The proof that the above transformation has the desired properties is similar 
to the proof of Theorem 1 and is left to the reader. Clearly the above transfor
mation of the alternative commands does not affect correctness of the previous 
transformation modeling the distributed termination convention. 

Note that the transformed alternative commands can lead to failure only owing 
to the falsity of all the Boolean parts of its guards. We can thus say that the 
above transformation of alternative commands models the CSP convention of a 
failure of alternative commands using a simpler convention, according to which 
an alternative command fails only when all the Boolean parts of its guards 
evaluate to false. 

Finally, we would like to make the following observation. When some trans
formed process sends the end signal to another process, it has not yet actually 
terminated. It still has to terminate its termination part introduced by the 
transformation. Thus another process may exit a loop "somewhat earlier" than 
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prescribed by the original semantics, requiring that all processes referred to by 
loop I/O guards have actually terminated. However, the DTC convention was 
chosen [Hoare, private communication] with the following question in mind: 
"When should an 1/0 guard be considered to be false?" Any acceptable decision 
should imply that once a guard Pj? x (or Pi !x) in P; is false, it should be guaranteed 
that Pj will never again attempt communication with P;. Hoare felt that the only 
plausible assurance is the absolute termination of P/s. Our transformation 
provides a different interpretation to the falsity of an I/O guard. The addressed 
process still has to execute a finite computation, guaranteed not to attempt 
communication with a process to which the end signal has been sent. Indeed, 
the continue variables take care of this. This modification has no observable 
semantic difference from the original interpretation. 

So far we have dealt only with programs disallowing nested parallelism. It is, 
however, straightforward to see that the above transformation also works in the 
case of arbitrary programs. Nested parallelism introduces scoping problems, 
which have now to be examined more closely. Consider for example a program P 
of the form 

P e [P1 :: [P11 :: 81 11 P12 :: 82] II P2 :: S] 

According to the scoping rules, the process P 11 can refer to P2 but not vice 
versa-P2 can only refer to P1. But this simply means that the neighborhood 
relationship between P 11 and P2 is not symmetric (in cases when P 11 refers to 
P2). No other complications arise here, and the proof of correctness of the above 
transformations is the same as before. 

4. CONCLUSIONS 

The modeling of the distributed termination convention presented above is both 
simple and efficient. No new communication channels are introduced. The 
number of additional communications is bounded by the number K = :2:7=1 r;/2 
and, in the case of properly terminating computations, equals this number. In 
the terminology of [8] we transformed each exoprocess into an equivalent 
endoprocess. 

The transformation we have presented suggests how to implement the DTC. 
Moreover Theorems 1 and 2 prove the correctness of such an implementation. 
We can compare the situation with the use of recursion in procedural program
ming languages. Transformations that remove recursion using a stack suggest 
how recursion should be implemented. In both cases preprocessing of the original 
program by applying the corresponding transformation leads to inefficient im
plementation. Transformations should rather be used as a guideline for imple
menting the above features at a lower level. 

In several programs the DTC is not needed to cause loop termination, and the 
usual convention of leaving a loop when all the Boolean parts of its guards 
evaluate to false already suffices. In such cases implementation of the DTC 
causes an unnecessary overhead. 

This deficiency can be avoided by using the DTC as a compiler option similar 
to, for instance, the option packed in Pascal. 

Only repetitive commands preceded by the keyword distributed would then 
be implemented by taking into account the DTC. (To keep in spirit with the 
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CSP compact notation, we might use" ... " instead of the keyword distributed, 
thus writing ... S for repetitive commands S, which should be implemented with 
the distributed termination convention.) The other repetitive commands would 
be implemented by taking into account the above simpler convention. 

The transformation from the previous section provides sufficient information 
on how to implement such an option. First, only repetitive commands preceded 
by the keyword distributed should be transformed, as indicated in Step (2) of 
the transformation. Second, the repetitive commands considered in Step (3) 
should refer only to the processes that in their program text contain the keyword 
distributed. They should be added at the end of the program text of the processes 
that are referred to in the guards of distributed repetitive commands. 

Of course it would be then programmer's responsibility to decide properly 
which repetitive commands should be preceded by the keyword distributed. 

The first of the proposed transformations can also be used to derive and justify 
a proof rule for repetitive commands dealing with the DTC, much in the same 
way as was done in [4] for the case of proof rules dealing with fairness. The 
transformation translates CSP programs into CSP programs that do not rely on 
the DTC. Since for the latter type of programs we have already a sound and 
relatively complete proof system (see [3] and [1]), by "absorbing" the transfor
mation into the assertions we obtain a sound and relatively complete proof 
system for CSP programs in the case when the DTC is adopted. The correspond
ing proof rule for repetitive commands becomes after some simplifications essen
tially the rule provided in Section 4 of [3]. Exact details of this procedure are a 
bit tedious but completely straightforward. 

Note. This paper originated from two reports [2] and [9] on the subject written 
by the authors independently. 
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