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1. INTRODUCTION

In 1978 Hoare [11] introduced CSP, a language for distributed programming.
One of its features, which was subsequently criticized, was the so-called distrib-
uted termination convention of repetitive commands (see, e.g., [12]).

A repetitive command is a construct of the form

* [by; ay — S;
]
0 bm; am — Sul,
where by, . .., b, are Boolean expressions, and «;, . .., o, are input commands.

Constructs b;; o; are called guards. (In fact, guards in CSP are of slightly more
general form; for example, they contain variable declarations. Our result applies
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to the general case as well.) Such a loop is said to terminate if all its guards fail.
A guard b;; o; fails if either b; evaluates to false or the process addressed in o;
has terminated. This convention of exiting a loop was subsequently called the
distributed termination convention (DTC). Hoare himself expressed in [11] some
worries about this convention and indicated in an example how the desired effect
of a loop exit can be achieved using other primitives of the language.

In this paper we show how, in the case of arbitrary programs, the distributed
termination convention can be modeled in an extension of the original CSP, in
which output guards are allowed. The transformation we provide suggests a
simple implementation of this convention. We argue that this convention should
be used as a compiler option, as it is a powerful programming tool, relieving the
programmer of a major concern.

In the original CSP, output guards were disallowed. Subsequently, this restric-
tion has often been criticized (see, e.g., [6]). In various CSP programs given in
the literature (see, e.g., [8]) this restriction is not used. Also, in a variety of
semantic definitions and proof systems for the language (see, e.g., [10] and [13]),
this restriction is disregarded. The cost of implementing “handshaking” turned
out to be less inefficient than Hoare thought it might be (see [7] for a survey of
such implementations and further references). In this paper we allow output
guards, and consequently the proposed transformation deals with repetitive
commands of a more general form where a;, ..., a, are I/O commands.
The proposed transformation shows that the distributed termination convention
can be defined using other CSP language features provided output guards are
allowed.

As a further motivation for an explicit definition of such a transformation, one
could consider its bearing on other transformations related to CSP. As a concrete
example, consider a recent work [5], where CSP is modeled using Milner’s
calculus of communicating processes (CCS) [14]. The DTC influenced the com-
plexity of this modeling in that an extra process was created only for the purpose
of centrally handling the termination information; this process could be avoided
in view of the suggested transformation.

2. DISCUSSION

Let us start by recalling Hoare’s example. Consider the following program, which
represents a process computing integer division with remainder and a user
process.

[DIV :: #[X?(x, y) —
quot := 0; rem = x;
x[rem = y — rem := rem — y; quot := quot + 1J;
X!(quot, rem)]
| X :: USER
]

The DIV process leaves its main loop as soon as the user program tetminat.es.
This effect can be achieved by explicit exchange of end signals. .The follow§ng
rewritten version of the program is equivalent to the original version. According
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where the variables continuey and continue, are originally intialized to true.
These variables are also used to refine the repetitive commands of X in a manner
analogous to the case of the DIV process.

If continuey turns to false before the loop is reached, this is due to the
termination of the process Y. But if Y has terminated, it is useless to send it the
information about the termination of X and indeed such a sending will not occur
here; similarly with the process Z. Thus continuey now represents the process
X’s knowledge of the fact that the end signal has been received from Y or sent
to Y. Thanks to this double role of the continue variables, we have guaranteed
the termination of the loop in the cases in which the process X has received or
sent end signals from (or to) both Y and Z.

Now what about a situation in which no exchange of the end signal takes
place between X and, say, Y? Such a situation will arise when (the original
versions of) X and Y have terminated without relying on each other’s termination.
In this case we would also like to force the termination of the loops, added at the
end of X and Y, respectively. This can be achieved by arranging another exchange
of end signals between the new versions of X and Y.

The loop added at the end of Y contains a guard with the communication
X'end. This communication can now be executed if the loop at the end of X
contains a guard with Y?end. After this communication both loops should
terminate (in case of two processes).

Summarizing the loop added at the end of X should take the following form:

+[ continuey; Y'end — continuey := false
0 continuey; Y?end — continuey := false
0 continuez; Z'lend — continuez := false
O continuez: Z?end — continue; := false].

Symmetric loops should be added at the end of Y and Z, respectively. In this
solution we can drop some of the input guards in the above loops. For example,
the process Y does not need to contain a guard with X?end, since the final
communication between X and Y is already assured by the pair Xlend and
Y?end.

So far we have dealt with repetitive loops in which guards do not contain a
Boolean part. It turns out, however, that the above solution can be straightfor-
wardly generalized for the case of arbitrary repetitive commands. We now present
this solution and prove its correctness.

3. A GENERAL SOLUTION

Consider a parallel command P =[P, S; || --- | P, S,], where Py, ..., P, are
processes with bodies Si, ..., S,., respectively. Assume that each P; refers to
some P/s (j # i) only. In other words, no P; refers to an external process. Let
end be a communication signal of a new type.

For each P;, let T; be the collection of indices of all processes referred to by
guards in some loop in P;. In other words, j € I; iff P; contains some loop L, one
of whose I/0 guards refers to P;. Note that by the CSP rules for each i, I'; can be
syntactically determined. If j € T, then we call P; the neighbor of P;. Note that
the neighborship relation does not need to be symmetric: I'; and T; for i # j do
not depend on each other.
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to this version, a loop terminates as soon as all the Boolean parts of its guards
evaluate to false.
[DIV :: continue := true;
+[continue; X?end — continue := false
0 continue; X? (x,y) —
quot := 0; rem = x;

+[rem = y — rem := rem — y; quot := quot + 1];

X!(quot, rem)]
| X :: USER; DIV!end
]

Note that the above solution works for a general case of two processes when
one process P repeatedly leaves its loops due to termination of another process
Q. Once the process P leaves a loop due to termination of @, the variable continue
is set to false. From that stage on, the variable continue remains false. This
represents the process P’s knowledge of the fact that @ has terminated. All future
communications with @ in a guard of a repetitive command will now fail, as
desired, since continue is included in the guard. The end signal will be sent from
Q to P only once.

A problem arises if more than two parallel processes are considered. Suppose
that the process X communicates with processes Y and Z. Adding at the end
of X

Y'end; Z'end

poses a problem since Z can then receive the end signal from X (informing about
the termination of X) only after Y has received it. An alternative solution

[Y'end — skip 0 Z!end — skip]

does not work either, as now only one process among Y and Z can make use of
the termination of X. We might also try adding at the end of X

[Ylend | Zlend].

But now the new version of X can terminate only if both Y and Z have made
use of the termination of (the old version of) X. It is easy to see that if the above
transformation is applied in a symmetric manner to X, Y, and Z, then original
properly terminating computations become deadlocked ones.

Note that an analogous problem already arises in the case of two processes P
and @ when P and @ terminate without relying on each other’s termination.

A similar drawback results if we add at the end of X a loop

*[Y'end — skip 0 Zlend — skip).

An addition of a loop at the end of X seems, however, to be the only possible
solution. The process X should send an unknown number (0, 1, or 2) of end
signals, and only a loop can possibly model such behavior.

First, we would like to force the termination of such a loop in case end signals

have been sent to both Y and Z. This is easy—we simply refine the above loop
in the following manner:

*[ continuey; Y'end — continuey := false
0 continuez; Zlend — continue; := false]
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We use the “big box” notation 0 b; — S; as a shorthand notation for b;, —
JET;
S;,0..-0b;,— S, inthe case I'i = {Ji, . .. s Jr -
We now transform each P; into another process by applying the following
steps.

(1) At the beginning of P; add the following program section:

continue(l. .. n):boolean, j :inpeger; Jji=0;
*[j <n—j:=j+ 1; continue(j) := true].

Rename the variables in order to avoid variable clashes and to keep the processes
disjoint.
(2) Given a repetitive command

,,,,,

within a process P; (where $ stands for ! or ?), replace it by
[ O \ bj; continue(j); Pi$x; — T}
J=1,..

O by; continue(i;); P;?end — continue(;;) := false].
J=1..,k

(3) At the end of P; add the following program section:

+[ 0 continue(j); P;'lend — continue(j) := false

JUET;
jEEer continue(j); P;?7end — continue(j) := false].

Note that the first part of the above repetitive command ensures sending the
end signal to all processes P; having P; as a neighbor, whereas the second part
offers reception of the end signal from any process P; being a neighbor of P;. As
indicated at the end of the previous section, some of these input guards can be
deleted. In fact we can replace I'; above by I'; N {j:i ET; — j < i}.

Thus if, for example, T'x = {Y, Z}, 'y = {X}, and I'z; = {Y}, then the following
I/0 guards appear in the repetitive commands added at the end of the processes
X, Y, and Z, respectively:

X:Y,Y?2?
Y: X!, 2!, X?
Z: X\, Y?

and according to the improved version:
XY, Y? 2?

Y: X!, Z!
Z: X, Y?

In what sense does the above transformation model the distributed termination
convention? Denote the transformed version of P by P’. Assume that computa-
tions of P can make use of the DTC, whereas those of P’ cannot.

When we say that a computation does not make use of the distributed
termination convention, we simply mean that it does not rely on the fact that
some of the processes have terminated. In the terminology of [8] this corresponds
to the notion of endotermination and endoprocess. Therefore we call such
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computations endocomputations. We have the following theorem:

THEOREM 1. Every properly terminating computation of P can be extended to
a properly terminating computation of P’.

ProoF. Consider first an endocomputation of P. In such a computation all
loops terminate owing to an eventual failure of all the Boolean components of
the guards.

Consider now an extension of this computation obtained by executing first the
parts added to Py, ..., P, in step (1). Clearly, in this way we obtain a partial
computation of P’. This computation reaches the parts added to Pi, ..., P, in
Step (3) by the assumption of proper termination. We can now extend this
partial computation by exchanging, one by one, the end signals between all pairs
of processes that are neighbors. Given two processes P; and P; (i # j) such that
i € T or j € T, the end signal will be exchanged between them exactly once.
After having exchanged all end signals, all processes terminate. We thus obtain
a properly terminating computation of P’.

Consider now a properly terminating computation of P, which makes use of
the DTC.

Suppose that the convention is used for the first time when the loop

[ O b; Py — T)]
Jj=l....,k

within some P; is exited owing to the falsity of b; for j & A and the termination
of P, for j € A, for some nonempty set A C {1, ..., k}. Here again $ stands for !
or ?.

Now take the previously considered initial extension of the computation of P.
At the moment of the above loop exit insert in it, for all j € A, a communication
of the end signal between P; and Pi]. followed by setting the corresponding
continue variables of P; and P; to false. Now the corresponding loop of P; can
be exited, since for each j € {1,. .., k} either b; or continue(i;) evaluates to false.

Similar additions deal with other loop exits due to the DTC. In cases in which
the process P; has already made use of the termination of some P;, the variable
continue(j;) is already set to false, and no additional exchange of the end signal
between P; and P;, takes place. )

In such a way we obtain a computation of P’ that reaches the parts added in
Step (3). We can now extend this computation to a terminating one by exchanging
end signals between all pairs of neighbor processes that have not yet done so.

This concludes the proof. O

We also have a converse theorem.

THEOREM 2. Euvery properly terminating computation of P’ can be restricted
to a properly terminating computation of P.

PROOF. We can apply an inverse procedure to the one considered in the proof
of Theorem 1. O

Analogous theorems hold for infinite computations of PandP’'. N(?te, however,
that the theorems do not hold for failing or deadlocked computations. (Recall
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that a computation is failing if it reaches an alternative command with all guards
failing.) Every deadlocked computation of P can be extended to a deadlocked
computation of P’. The converse is not necessarily true. As an example consider
the program

P =[P, :: [P,7x — skip]; *[Py?x — skip] || P, :: skip].
Then P’ is of the form

P’ = [P, = initialization part; [P,?x — skip]; ...
| P, :: initialization part; skip; termination part].

According to the semantics of CSP, the only computation of P is a failing one
(the first guard P,?x of P; fails as soon as P, terminates), and all computations
of P’ are deadlocked ones.

Thus an extension of a failing computation of P can become a deadlocked
computation of P’. Conversely, a restriction of a deadlocked computation of P’
can become a failing computation of P. On the other hand, a restriction of a
failing computation of P’ becomes a failing computation of P.

We can obtain a one-to-one correspondence between failing and respectively
deadlocked computations of P and P’ if, in addition, we transform all 1/0
commands and alternative commands of P appropriately.

First, we replace any I/0 command & within P by [a — skip]. Next, we replace
any alternative command
[' 0 . bj; P,~j$x,~ End TJ]

J=l...,

by the following program

more = true;
*[more —

_ 1El \ bj; continue(;); P;?end — continue(i;) := false].
=1,

Finally, in Step 3 of the previous transformation we should now use a new
neighborhood relationship, which was before confined to loop-connectedness:
J € T; iff P; contains any guard (not necessarily in a loop) referring to P;.

The proof that the above transformation has the desired properties is similar
to the proof of Theorem 1 and is left to the reader. Clearly the above transfor-
mation of the alternative commands does not affect correctness of the previous
transformation modeling the distributed termination convention.

Note that the transformed alternative commands can lead to failure only owing
to the falsity of all the Boolean parts of its guards. We can thus say that the
above transformation of alternative commands models the CSP convention of a
failure of alternative commands using a simpler convention, according to which
an alternative command fails only when all the Boolean parts of its guards
evaluate to false.

Finally, we would like to make the following observation. When some trans-
formed process sends the end signal to another process, it has not yet actually
terminated. It still has to terminate its termination part introduced by the
transformation. Thus another process may exit a loop “somewhat earlier” than
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prescribed by the original semantics, requiring that all processes referred to by
loop I/0 guards have actually terminated. However, the DTC convention was
chosen [Hoare, private communication] with the following question in mind:
“When should an I/O guard be considered to be false?” Any acceptable decision
should imply that once a guard P;?x (or P;!x) in P; is false, it should be guaranteed
that P; will never again attempt communication with P;. Hoare felt that the only
plausible assurance is the absolute termination of Pjs. Our transformation
provides a different interpretation to the falsity of an 1/0 guard. The addressed
process still has to execute a finite computation, guaranteed not to attempt
communication with a process to which the end signal has been sent. Indeed,
the continue variables take care of this. This modification has no observable
semantic difference from the original interpretation.

So far we have dealt only with programs disallowing nested parallelism. It is,
however, straightforward to see that the above transformation also works in the
case of arbitrary programs. Nested parallelism introduces scoping problems,
which have now to be examined more closely. Consider for example a program P
of the form

P=[P,:: [Py S; || P So] || P S]

According to the scoping rules, the process Py, can refer to P, but not vice
versa—P, can only refer to P;. But this simply means that the neighborhood
relationship between P;; and P, is not symmetric (in cases when P;; refers to
P,). No other complications arise here, and the proof of correctness of the above
transformations is the same as before.

4. CONCLUSIONS

The modeling of the distributed termination convention presented above is both
simple and efficient. No new communication channels are introduced. The
number of additional communications is bounded by the number K = Y%, I';/2
and, in the case of properly terminating computations, equals this number. In
the terminology of [8] we transformed each exoprocess into an equivalent
endoprocess.

The transformation we have presented suggests how to implement the DTC.
Moreover Theorems 1 and 2 prove the correctness of such an implementation.
We can compare the situation with the use of recursion in procedural program-
ming languages. Transformations that remove recursion using a stack suggest
how recursion should be implemented. In both cases preprocessing of the original
program by applying the corresponding transformation leads to inefficient im-
plementation. Transformations should rather be used as a guideline for imple-
menting the above features at a lower level.

In several programs the DTC is not needed to cause loop termination, and the
usual convention of leaving a loop when all the Boolean parts of its guards
evaluate to false already suffices. In such cases implementation of the DTC
causes an unnecessary overhead.

This deficiency can be avoided by using the DTC as a compiler option similar
to, for instance, the option packed in Pascal.

Only repetitive commands preceded by the keyword distributed would then
be implemented by taking into account the DTC. (To keep in spirit with the
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CSP compact notation, we might use “...” instead of the keyword distributed,
thus writing . . . S for repetitive commands S, which should be implemented with
the distributed termination convention.) The other repetitive commands would
be implemented by taking into account the above simpler convention.

The transformation from the previous section provides sufficient information
on how to implement such an option. First, only repetitive commands preceded
by the keyword distributed should be transformed, as indicated in Step (2) of
the transformation. Second, the repetitive commands considered in Step (3)
should refer only to the processes that in their program text contain the keyword
distributed. They should be added at the end of the program text of the processes
that are referred to in the guards of distributed repetitive commands.

Of course it would be then programmer’s responsibility to decide properly
which repetitive commands should be preceded by the keyword distributed.

The first of the proposed transformations can also be used to derive and justify
a proof rule for repetitive commands dealing with the DTC, much in the same
way as was done in [4] for the case of proof rules dealing with fairness. The
transformation translates CSP programs into CSP programs that do not rely on
the DTC. Since for the latter type of programs we have already a sound and
relatively complete proof system (see [3] and [1]), by “absorbing” the transfor-
mation into the assertions we obtain a sound and relatively complete proof
system for CSP programs in the case when the DTC is adopted. The correspond-
ing proof rule for repetitive commands becomes after some simplifications essen-
tially the rule provided in Section 4 of [3]. Exact details of this procedure are a
bit tedious but completely straightforward.

Note. This paper originated from two reports [2] and [9] on the subject written
by the authors independently.
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