
Joint NCC & !IS Bull., Comp. Science, 16 (2001), 75-97
© 2001 NCC Publisher

Rule-based versus procedure-based view
of logic programming

Krzysztof R. Apt, Jan-Georg Smaus

Logic programming is a rule-based formalism: a program consists of a set of rules
activated by an initial query. In contrast, imperative programming is explained by means
of a procedure-based view: a program consists of a set of procedure declarations and an
initial statement.

We clarify here to what procedure-based formalism logic programming corresponds.
To this end we introduce a procedure-based view based on a subset of first-order logic
and assign to it an operational semantics. We establish two results. First, we show that a
syntactic transformation that forms part of Clark's completion of a logic program provides
a translation from the rule-based view to the procedure-based view. Second, we show that
the transformations in the spirit of Lloyd-Topor provide a translation from the procedure­
based view to the rule-based view.

Finally, we discuss the consequences of adoption of each view for the design of logic
programming languages.

1. Introduction

Logic programming is a rule-based formalism: a program consists of a collec­
tion of rules that are activated by means of an initial query. This approach to
programming has to do with the automated theorem proving roots of logic
programs. In fact, each rule or query is a Horn clause and the computation
process corresponds to a specialised form of the resolution method.

In imperative programs, for example in Pascal or C, a different view is
taken according to which a program consists of a collection of procedure
declarations together with an initial statement. Each procedure declaration
consists of a procedure name followed by (the specification of the types of)
the formal parameters and the procedure body, which is a statement. In
turn, the statements are defined by structural induction starting with the
atomic statements and using compound statements. We call this approach
a procedure-based formalism.

In this paper, to keep the arguments simple, we restrict our attention to
logic programs without negation, usually called definite programs. We refer
to them simply as "logic programs". Our aim is to clarify to what procedure­
based formalism logic programming corresponds. Since syntactically logic
programs are defined in a subset of first-order logic -the one consisting
of the Horn clauses- it is possible to define syntactically the appropriate

76 Krzysztof R. Apt, Jan-Georg Smaus

procedure-based formalism as a subset of first-order logic, as well. More
specifically, we introduce a procedure-based formalism built from a subset
.Co of first-order logic and show that it is structurally equivalent to the rule­
based formalism of logic programming. Co is obtained by allowing equality,
disjunction, conjunction, and the existential quantifier.

To assign a computational meaning to the formulas in Co, a simple oper­
ational semantics is used. It employs the following correspondence between
the logical and the programming language semantics concepts:

substitution state
composition of substitutions state update

Operationally, the logical constructs correspond to the following constructs
of imperative programming:

equality unify operation
disjunction nondeterministic choice
conjunction sequencing (";")
existential quantifier declaration of a local variable

So instead of substitutions and logical constructs, we could have used
states and a programming language notation, as has been done by de Bakker
[4] in a paper with the telling running title "Logic programming without
logic". However, we chose to define the procedure-based formalism in terms
of logical constructs because it gives us a natural notion of correctness of
the computed result. To be specific, given an original statement (which is
a formula) </>, the computed answer substitution () validates <fa, i.e., <f>O is
a logical consequence of the set of procedure declarations (which is also a
formula). This will be stated and proved in the Soundness Corollary 5.5. A
reverse relation will be established in the Completeness Corollary 5.6.

Another reason why we defined this procedure-based formalism in terms
of logical constructs was our desire to clarify the relation between logic
programming and the declarative subset of the implemented imperative pro­
gramming language Alma-0 of Apt et al. [2]. The precise comparison is made
in Section 6.

Here let us just mention that Alma-0 extends a subset of Modula-2 by
a small number of features inspired by the logic programming paradigm.
These additions encourage declarative programming and lead to a different
programming style than Prolog in its stress on arrays and iteration instead
of on lists and recursion. Such programs are often easier to write and to
verify than corresponding Prolog programs, see, e.g., Apt and Bezem [1].

Structural equivalence between the two formalisms means that the cor­
respondence in each direction can be obtained by means of simple syntactic
transformations. For example, the logic program

Rule-based versus procedure-based view of logic programming 77

num(O) +-- ,
num(s (x)) +-- num(x)

defining the property of being a numeral can be transformed into the pro­
cedure declaration

num(x) +-- (x = 0) V 3y (x = s(y) /\ num(y)). (1)

Such a transformation reveals the constructs implicitly present in logic
programs and testifies to the remarkable conciseness of the rule-based for­
malism. Its general form is known both to researchers on logic programming
theory and to Prolog programmers (who would use fresh variables instead
of existentially quantified variables). It is part of Clark's completion which
was introduced by Clark [5] to study the meaning of logic programming in
presence of negation.

In this paper we provide a formal proof that this transformation from
the rule-based to the procedure-based formalism preserves the operational
semantics. We also present a translation in the other direction, from the
procedure-based view defined w.r.t. Co into the rule-based view, that pre­
serves the operational semantics, as well. It is obtained by transformation
rules in the style of Lloyd and Topor [9] that were studied there only from
the point of view of declarative semantics.

The paper is organised as follows. In the next section we introduce the
fragment Co of first-order logic that we consider here and recall the syn­
tax and the operational semantics (i.e., procedural interpretation) of logic
programs. Then, in Section 3 we introduce the operational semantics of the
formulas of Co. In Sections 4 and 5 we establish the abovementioned results.
Then in Section 6 we discuss related work. In the final section we review the
consequences of adoption of each view and draw some conclusions about the
design of languages that support logic programming.

2. Preliminaries

2.1. Miscellaneous

To simplify the notation, we write a vector of syntactic objects o1, ... , On

(variables, terms, ...) as o. Occasionally we identify such a vector with a
set. The set of variables in a syntactic object o is denoted by Var(o) and
the set of free variables by free (o).

The empty substitution is denoted by €. The restriction of the domain
of a substitution T to a set of variables V is denoted by T fv. The set of
substitutions is denoted by Subs.

78 Krzysztof R. Apt, Jan-Georg Smaus

2.2. The Language .Co

We define a subset Co of first-order logic. The relation symbols of Co are the
equality = and the propositional constants true and false, and relation sym­
bols p1, .. . ,pk that we call procedures. Further, we allow in Co disjunction,
conjunction, and the existential quantifier. Given i E [1..k], by a procedure
declaration of Pi we mean a formula Pi(Xi) +--1/Ji, where 1/Ji is a formula in
Co and free ('l/;i) ~ Xi·

A declaration set of pi, ... ,pk, denoted by V, is simply a set of procedure
declarations, one for each Pi· We call an atom Pi(ti) a procedure call. Note
that the procedure declarations are not formulas of Co, though of course they
are formulas of the full first-order language extending Co. Since each Pi can
occur in 1/Ji, a declaration set models a set of mutually recursive procedures.

An example of a procedure declaration is given in (1).
In Section 3 we will assign an operational semantics to formulas of Co in

presence of a declaration set.

2.3. Logic Programs

We assume that logic programs are defined in the language Co. Therefore
logic programs (clause bodies) may contain atoms of the form s = t, as well
as the atoms true and false. In the context of logic programming, we call
those atoms built-ins. We assume without explicit mention that any logic
program that uses built-ins contains the following two clauses: true+-- and
x = x +-- . Moreover, there are no other clauses with a built-in in the head.

In correspondence to the semantics of Co to be defined in Section 3, we
define the operational semantics of logic programs based on SLD-resolution
with the leftmost selection rule, usually called LD-resolution. We consider
pairs of the form (Q ; 0), where Q is a query and 0 is a substitution.
Intuitively, (Q; 0) denotes the query Qin the "state" 0, that is, the variables
of Q should be "interpreted" as in 0. We do not identify (Q ; 0) with QB
for technical reasons that have to do with the usual standardisation apart
condition [8]. It suffices to say that QO can be uniquely obtained from (Q; 0)
but not vice versa.

Fix a logic program P. Consider a pair (B, C; 0) and a clause c = H +-- B
from P. Suppose Var(c) = y and let p := {y/z}, where z is a vector of fresh
variables, and suppose that 'f} is an mgu of Hp and Bf). We then call the
pair (Bp, C ; 01]) an LD-resolvent of (B, C ; 0) and cp and write

(B, C; 0) ~ (Bp, C; O'fJ).

Since we assume that any logic program contains the clauses true +­
and x = x +-- , it turns out that if B is a built-in, we obtain

Rule-based versus procedure-based view of logic programming 79

(true, C ; 0) ~ (C ; 0) (2)

or
(s = t,C; 0) ~ (C; Ory), (3)

where ry is an mgu of sand t.
Note that we make the renaming of variables in the program clause

explicit, in contrast to the usual style of definition where one just says "a
renamed variant of c is used." This leads to a more natural correspondence
with our operational semantics of Co.

Consider now a program Panda query Q. By an LD-derivation of Q
w.r.t. P we mean a maximal sequence of pairs (Qi; Oi) such that (Qo; Oo) =
(Q ; E) and for i ~ 0 we have (Qi ; Oi) ~ (QH1 ; OH1). If

(Q ; €) ~* (0 i T),

where "~*" is the reflexive, transitive closure of "~" (so "~*" is the out­
come of iterating "~" zero or more times), then we say that the query Q
has been proven with the answer T rvar(Q)' and call T rvar(Q) a computed
answer substitution.

The operational semantics, usually called procedural interpretation, of a
logic program P is defined as

CD(P; Q) := {Trvar(Q)I (Q; E) ~* (O; T}}.

3. Operational Semantics for .Co-Formulas

We define an operational semantics for the formulas of Co in presence of a
declaration set 'D. It is defined by a transition relation -+ between config­
urations, where a configuration is a pair (</J ; 0). Intuitively, <Pisa program
executed in the state 0. Here <P is a formula of Co or the empty formula O,
and 0 is a substitution. The empty formula is introduced for notational and
terminological convenience and is not a formula of Co. In what follows we
identify O /\ </> or </> /\ o with </J. This allows us, for example, to say that the
atomic formula p(t) is of the form </;1 /\</;2: simply put </;1 = 0 and </J2 = p(t).

Definition 3.1. Consider Co and a declaration set 'D of its procedures. The
transition relation -+ between configurations is defined by the following rule
and axioms:

l. (true ; 0) -+(0 ; 0),

2. (s = t ; 0) -+(0 ; Ory) if sO and tO unify and ry is an mgu of them,

80 Krzysztof R. Apt, Jan-Georg Smaus

(</>1 ; 0) -+(</>i ; r)
3· {</>1 /\ <h ; 0) -+{</>i /\ </>2 ; r)'

4. (<Pi v </>2; 0)-+{</>1; 0),

5. (</>1 v <h ; 0) -+(</>2 ; fJ),

6. (3x <f>; fJ)-+{<f>{x/y} ; fJ), where the variable y occurs neither in 3x </>

nor in 0,

7. {p(t) ; 0)-+('!/J{x/t} ; fJ), where p(x) +- 'ljJ E 'D.

Axiom 1 states that true corresponds to the customary skip (or empty)
statement. Axiom 2 states that the equality "=" is interpreted as "is unifi­
able with" relation. Rule 3 coincides with the usual rule for the sequential
composition ";" in imperative languages, see, e.g., rule comp!os of Nielson
and Nielson [13, page 33]. Axioms 4 and 5 state that the disjunction is in­
terpreted as a nondeterministic choice. Axiom 6 states that the existential
quantifier is interpreted as a declaration of a local variable. Finally, axiom
7 states that procedure calls are interpreted according to the copy rule, also
sometimes called backchaining.

The operational semantics collects the results of all transition sequences:

Definition 3.2. The operational semantics of a first-order formula </> is a
mapping OP (. ; .) defined by

OP('D; </>) := {rffree(<t>)I {</>; E)-+*(D; r), r E Subs},

where-+* is the transitive reflexive closure of-+.

Note that since OP(.; .) only records the outcomes of "successful" com­
putations, we disregard the possibility of failures. A failure arises when a
configuration of the form (false /\ </> ; fJ) or of the form (s = t /\ </> ; 0),
where s() and t() do not unify, is reached. Such configurations have no suc­
cessor.

4. Embedding Result

In this section, we show how a logic program can be transformed into an
operationally equivalent Co-formula. The transformation is part of Clark's
completion [5].

Definition 4.1. Let P be a logic program. We fix a sequence x1, ... , Xn of
variables that are fresh w.r.t. P, where n is the highest arity of any pred­
icate occurring in P. The declaration set IF(P) is obtained by performing
successively the following steps:

Rule-based versus procedure-based view of logic programming 81

Step 1: Transform each clause p(t) +--Bi, ... , Bk of P, where p(t) is not a
built-in, into p(x) +-- x = t /\Bi /\ ... /\Bk, where x = x1, ... , Xn'' n'
being the arity of p.

Step 2: Transform each formula p(x) +-- F obtained from a clause c in the
previous step into p(x) +-- 3yF, where y = Var(c).

Step 3: Let p(x) +-- 0 1, ..• , p(x) +-- Gk be all formulas obtained in the pre­
vious step with a predicate p on the left-hand side. Replace them by
one formula p(x) +-- 0 1 V ... v Gk· In the special case that k > 0 and
all Gi are empty, replace 0 1 V ... V Gk by true (since it is a non-empty
disjunction of empty conjunctions). In the special case that k = 0,
replace G1 V ... V Gk by false (since it is the empty disjunction).

Clark's completion of a logic program P is defined by replacing in IF(P)
each reversed implication +-- by the equivalence ++ (the result is usually
denoted by IFF(P)), and by adding so-called Clark's Equality Theory GET.
Since GET plays no role in our considerations, we omit its treatment.

Note that free(p(x) +-- G) = x for each p(x) +-- G E JF(P). Thus each
element of IF(P) is indeed a procedure declaration as defined in Subsection
2.2.

For technical reasons that become apparent in the proof of Lemma 4.4,
it is convenient to be able to distinguish equalities introduced in IF(P)
from any equalities that may have already been present in clause bodies of
the original program. For this purpose, we assume from now on that each
clause has the form H +--true/\ Bi/\ ... /\ Bk, with the clause true+-- as
only exception. The only purpose of the atom true is to mark the separation
between the introduced equalities and the ones already present in the original
program. This assumption is no loss of generality as it is easy to see that
the operational semantics J::D of a logic program is not affected by such
additions of the atom true.

The following lemma states that an LD-derivation step can be faithfully
simulated as a sequence of transitions.

Lemma 4.2. Let P be a logic program and A a one-atom query. If (A ; fJ) "-""
((B1, ... , Bk){y/z} ; fJ'fJ) is an LD-derivation step using the clause c = H +-
Bi, ... , Bk of P, then (A; fJ)~*((B1 /\ ..• /\Bk){y/z}; fJ'f]) w.r.t. the dec-
laration set IF(P).

Proof. To deal with the case when A is a built-in it suffices to compare (2)
to axiom 1 and (3) to axiom 2. Suppose now that A is not a built-in.

Recall that y = Var(c) and z is a vector of fresh variables, and that

'f/ is an mgu of H {y /z} and AfJ. (4)

82 Krzysztof R. Apt, Jan-Georg Smaus

Suppose A= p(s) and H = p(t), and the procedure declaration of pin
IF(P) is p(x) +-- (G1 V ... V G1). By definition of IF(P), for some i E [l..l],

To simplify the notation, we assume without loss of generality that i = 1.
By axiom 7, we have

Let y' be the vector of variables that is identical to y except that any
variables in Var(s) are renamed using fresh variables. By the definition of
the application of a substitution, noting that x n y = 0, we have

(3y. x = tf\B1f\ .. . f\Bk){x/s} := 3y'. s = (t{y/y'})A(B1/\ ... f\Bk){y/y'}

and hence (5) is in fact identical to

(A; 8)-+ (((3y'. s = (t{y/y'}) f\ (B1 f\ ... f\Bk){y/y'})V
(G2V ... VG1){x/s}); 8).

We now first consider transition sequences for

((3y'. s = (t{y/y'}) f\ (B1 /\ ... f\ Bk){y/y'}); 8).

(6)

By repeated application of axiom 6 we have, noting that y' was defined so
that Var(s) n y' = 0,

((3y'. s = (t{y/y'}) f\ (B1 /\ ... /\Bk){y/y'}); 0) -+*
(s = (t{y /y'}{y' /z}) /\ (B1 f\ ... /\ Bk){Y /y'}{y' /z} ; 0) = (7)
(s = (t{y/z}) f\ (B1 f\ . .. /\ Bk){y/z}; 0).

Here we mean the very same z that occurs in the statement of this lemma.
Note that the variables in z are fresh w.r.t. this transition sequence.

We have
p(t){y/z}O = p(t){y/z} (8)

by the freshness of z and the fact that Var(p(t)) ~ y (since y = Var(c)).
Continuing the transition sequence (7), because of (4,8) we get by re­

peated application of axiom 2

(s = (t{y/z})f\(B1/\ ... /\Bk){y/z}; 0) -+* ((B1/\ ... f\Bk){y/z}; OT/)- (9)

Using axiom 4, we conclude from (6), (7), (9) that

(A; 0) -+* {(B1 A ... A Bk){y/z}; 9J7}.

0

The next lemma states that certain sequenCE)S of transitions (Def. 3.1)
can be faithfully simulated by an LD-derivation step. Before we formulate
it, we first give a name to non-empty transition sequences (denoted by-;+)
that correspond to exactly one derivation step. This definition relies on the
fa.et that it is assumed that clause bodies start with true.

Definition 4.3. We call a transition sequence (A; 9)-+ + {B1 /\ ... /\Bk; tn,}
good w.r.t. a declamtion set V if A, B 1, ..• , B1.: are all atoms, B1 =true and
for each proper prefix (A ; 0)-+ + (4> ; 87) of it, 4> ~true/\

Note in particular the boundary case when k = 1, in which B2 /\ ... /\Bk
is the empty formula.

Lemma 4.4. Consider a logic program P and an atom A. If

is a. good transition sequence w.r.t. IF(P), then there exists a clause c =
H +- B 1, ... ,Bk in P wherey = Var(c) and (Bi, ... , B1,:){y/z} = B~, ... ,B~,
and

is an LD-derivation step using c.

Proof. To deal with the case when A is a built-in again it suffices to com­
pare axiom 1 to (2) and axiom 2 to (3). Suppose now that A is not a built-in.

By Def. 3.1, in particular axiom 7, there is exactly one possible transition
for {A ; 8), namely

(A; 6}-+ ((G1 V ... v G,){x/t} ; 8), (10)

where A= p(t) and p(x) +- (G1 V ... V G1) is the procedure declara.tion1 of
pin IF(P). Thus by the hypothesis in the statement of the lemma

((G1 v ... v G1){x/t} ; 8} -+* {B~ f\ ... /\ B~; 8·q). (11)

By possibly multiple applications of axioms 4 or 5, the existence of (11}
implies that for some i E [l..l],

1 It is easy to see that the procedure declaration cannot be p(x) ~ false, since that
would contradict the existence of a derivation {A ; 8} -+ + ((Ui A ... A B~) ; 9rJ).

84 Krzysztof R. Apt, Jan-Georg Smaus

(12)

Suppose Gi = 3w. x =sf\ B1 /\ ... f\ Bm. Since IF(P) is defined in such a
way that Var(B1 , •.. , Bm, s) n x = 0, we have

Gi{x/t} = 3w'. t = (s{w/w'}) /\ (B1 f\ ... /\ Bm){w/w'}, (13)

where w' is identical tow except that any variables also in t are renamed
using fresh variables (this is the usual definition of application of a substitu­
tion). By repeated application of rule 3 and axiom 6, noting that Var(t) n
Var(w') = 0, we have

(3w'. t = (s{w/w'}) /\(Bi/\ ... /\ Bm){w/w'}; ()) -+*
((t = (s{w/w'}{w'/z}) /\ (B1 /\ ... /\Bm){w/w'}{w'/z}; ()) = {14)
((t = (s{w/z}) /\ (B1 f\ ... /\ Bm){w/z}; 0).

Here we mean the very z that occurs in the statement of this lemma. Note
that the variables in z are fresh w.r.t. any transition sequence mentioned so
far in this proof.

Moreover, by the form of the transition axioms and rules, every maximal
transition sequence for (3w'. t = (s{w/w'}) f\ (B1 /\ ... /\ Bm){w/w'}; 0)
has (14) as a prefix, and so in particular the transition sequence {12). Thus

(t = (s{ w /z}) /\ {B1 /\ ... /\ Bm){ w /z} ; 0) -+ * ((Bi/\ ... /\ B~) ; (JrJ}. {15)

But by rule 3, (15) has the prefix

(t = (s{w /z}) /\ (B1 f\ .. . /\Bm){w/z} ; ()} -+* ((B1 /\ ... /\Bm){w/z} ; (Jr/)
(16)

for some r(This implies by (10), (11), (12) that

(A; 8) -+* ((B1 /\ ... /\ Bm){w/z}; (JrJ')

is a prefix of
(A; 0)-+* ((Bi/\ ... /\Bk); OrJ).

Hence, by the assumed goodness of the second transition sequence it follows
that m = k, (B1 /\ ... /\ Bk){w/z} = Bi /\ ... /\BA:, and 8rJ = OrJ'. By
axiom 2, (16) implies that rJ is an mgu oft() and s{w/z}(J. Moreover, by
definition of IF(P), Var(s) ~ w, and so by the freshness condition on z,
we have s{w/z}(J = s{w/z}. But by the definition of IF(P), we have that
p(s) +-Bi, ... , Bk is a clause in P whose variables are w, and so by the
definition of LD-resolution (1"/ is an mgu of s{ w / z} and t(J)

(A;())~ ((B1, ... ,Bk){w/z}; (JrJ}.

0

Rule-based versus procedure-based view of logic programming 85

We now prove the following result on embedding of the operational se­
mantics of logic programming into our operational semantics of £ 0 . It is a
proof-theoretic counterpart of the fact that P and IF(P) are semantically
equivalent, i.e., they have the same models (when equality is interpreted as
identity).

Theorem 4.5 (Embedding). Consider a logic program P and a query
Ai, ... , An. Then

CV(P; Ai, ... ' An) = OP(IF(P); Ai /\ ... A An)-

Proof. Since Ai, ... , An contains no quantifiers, we have free(A1, ... , An) =
Var(Ai, ... , An), and therefore it is sufficient to show that

{A1, ... , An ; B} 'VI-* {D ; r} iff (A1 J\ ••. A An ; B} -+* {D ; r}.

But this equivalence follows directly from Def. 3.1 and the definition of LD­
derivations by repeated application of Lemmas 4.2 and 4.4. D

The above theorem states the equivalence of two semantics that were
both defined in terms of all solutions to a query, respectively an initial for­
mula. But clearly Lemmata 4.2 and 4.4 establish a more specific correspon­
dence between each individual LD-derivation and some transition sequence,
and vice versa.

When logic programs are viewed as Prolog programs, the derivations are
enumerated by trying the clauses in order of their textual appearance in the
program. This corresponds to a depth-first left-to-right traversal of the LD­
tree. It is straightforward to define the corresponding enumeration order for
transition sequences, i.e., paths of a disjunction are tried from left to right.
Using this more specific correspondence one can then show that in both
formalisms, the solutions are enumerated in the same order. That is, both
formalisms closely correspond when implemented by means of the depth­
first left-to-right search. This has implications for (existential) termination,
to give an example.

5. Reduction Result

In this section, we show how an .Co-formula can be transformed into an
operationally equivalent logic program. The transformation is in the style of
Lloyd and Topor [9].

Consider a declaration of a procedure p. It has one of the following two
forms:

86 Krzysztoj R. Apt, Jan-Georg Smaus

p(x) ~false

or
(17)

where n > 1, each Yi is a possibly empty vector of variables such that
Yi n x = 0, and each </Ji is a conjunction (possibly consisting of just one
conjunct).

We now define two transformation rules that preserve the semantics.
Here 'I/; and t.p can be empty:

Disjunction Replace each 3yi<f)i of the form 3yi('I/; /\ (x1 V x2) /\ cp) by
3yi('I/; /\ X1 /\ t.p) V 3yi('I/; /\ X2 /\ cp).

Quantification Replace each 3yief>i of the form 3yi('I/; /\ 3xx /\ t.p) by
3yi3z('I/; /\ x{x/z} /\ cp), where z is a variable that does not occur in
<Pi and z ll' x.

Lemma 5.1. The disjunction and quantification rules preserve the opera­
tional semantics OP(;) of a declaration set.

Proof. Let V be a declaration set and 'Dd (respectively 'Dq) be obtained
from V by applying the disjunction (respectively quantification) rule. By
Def. 3.1 it suffices to establish the following two claims.

1. A computation w.r.t. 'Dis of the form

(<Po; E) --+* (p(t) /\ <P; e} --+* ('I/; /\ (x1 v x2) /\ cp /\ <P; rJ} --+* (D; T),

if and only if a computation w.r.t. 'Dd is of the form

(</Jo ; E) --+* (p(t) /\<fa; ())--+*('I/;/\ Xl /\ t.p /\<fa; "7) --+* (D; T),

or of the form

(</Jo ; E) --+* (p(t) /\<fa; ()) --+* ('I/;/\ X2 /\ t.p /\ </>; fJ) --+* (D ; 7).

2. A computation w.r.t. 1J is of the form

(</Jo ; E) --+* (p(t) /\ <P; ()} --+* ('I/;/\ 3xx /\ <.p /\ <P; fJ) --+* (D ; 7)

if and only if a computation w.r.t. Vq is of the form

(ef>o; E) --+* (p(t) /\ </>; (}) --+* (3z('lj; /\ x{xjz} /\ t.p) /\if>; fJ) --+* (0; 7),

where z is a variable that does not occur in the configuration
('I/; /\ 3xx /\ <.p /\ <P ; q}.

Rvk-bcse.d vers'llS procedure-bcse.d view of logic progrnmming 87

Now, claim 1 is a direct consequence of the fact that only axioms 4 and 5
deal with disjunction. In turn, claim 2 is a direct con.<iequence of the fact
that the only axiom that deals with the existential quantification is axiom 6.

0

By repeated use of these two transformation rules we can transform each
procedure declaration (17) into the form

p(x) t- 3z1,P1 V ... V 3zmtPm, (18)

where m ~ 1, Zi is a possibly empty vector of variables such that Zinx = 0,
and ea.eh tPi is a conjunction of atoms.

Since each transformation rule preserves the set of free variables of the
right-hand side of a procedure declaration, we have

i.e., (18) is a procedure declaration, too.

Definition 5.2. Let V be a declaration set. We define the logic program
P(V) as follows. For ea.eh procedure declaration of the form (18) obtained
by transforming V, P(V) contains the clauses

p(x) t- tP1, ... , p(x) t- t/Jm, (19)

where we identified ea.eh conjunction of atoms with their sequence. In addi­
tion, P(V) contains the clauses that define the built-ins (see Subsec. 2.3).

In the proof of the main result of this section we shall also use the
following transformation rule, to be applied to a procedure declaration of
the form (18).

Substitution Replace each formula of the form 3zit/Ji by

3z3zi(x = z I\ t/Ji{x/z}),

where z is a sequence of fresh variables of the same length as x.

Of course, the substitution rule could be used for an arbitrary formula
t/Ji and not just a. conjunction of a.toms, but we shall not need such a. general
formulation. The following lemma. states correctness of the rule.

Lemma 5.3. The substitution rule preserves the operational semantics
OP(;) of a declaration set.

88 Krzysztof R. Apt, Jan-Georg Smaus

Proof. Let 1) be a declaration set and 'Ds be obtained from 'D by applying
the substitution rule.

It suffices to note that by the equality axiom 2 and the transition axiom 6
for 3 a computation w.r.t. 'D is of the form

if and only if a computation w.r.t. 'D8 is of the form

(<Po; t) ---+* (3z3zi(x = z /\ ,,Pi{x/z}) /\ <P; 'fJ) ---+* (D; T).

D

The following result clarifies the relation between 'D and P('D).

Theorem 5.4 (Reduction). Let 'D be a declaration set and Ai, ... , An a
query. Then

.C'D(P(V); Ai, ... , An) = O'P('D; Ai/\ ... /\ An).

Proof. Thanks to Lemma 5.1 it suffices to prove the claim under the as­
sumption that each procedure declaration in V is of the form {18). We
compare such a declaration set 'D with IF(P(V)).

In IF(P(V)) the logic program {19} is represented by the procedure
declaration

p(z) f-- 3w1(z = x /\ 'lf;1) V ... V 3wm(z = x /\ 'lf;m),

where for i E [l..m], Wi = free('lj;i) U x and z n wi = 0. But (18) is a
procedure declaration, so free('lj;i) ~ x Uzi, i.e., wi ~ x U Zi. By possibly
adding additional quantifiers we can thus assume that (19) is represented in
IF(P(V)) by the procedure declaration

p(z) f-- 3x3zi(z = x /\ 'lf;1) V ... V 3x3zm(z = x /\ 'lf;m),

or, by reversing the roles of x and z,

p(x) f-- 3z3zi (x = z /\ 'lf;1 {x/z}) V ... V 3z3zm(x = z /\ 'lf;m{x/z}).

By Lemma 5.3 we now get

O'P(IF(P(V}); Ai /\ ... /\An) = O'P(V; Ai /\ ... /\An),

which by the Embedding Theorem 4.5 yields the claim. D

This yields the following conclusions.

Corollary 5.5 (Soundness). Consider a declaration set Vanda formula
et> of Co. Suppose that r E OP(V; </>). Then V p t/ff.

Proof. First we prove the claim when <P is atomic. By the Reduction The­
orem 5.4 we have r E .CV(P(V); <J>), so by the soundness of LO-resolution
(see, e.g., [8]) P(V) F ifrr.

But ea.eh transformation rule considered in this section maintains seman­
tic equivalence and so does the final transformation of a procedure decla­
ration of the form (18) into the logic program (19). So P(V) and Va.re
semantically equiv-dlent and consequently V p <Pr.

Suppose now that </> is not atomic. Let

1>' :=Vu {p41 (x) ~ </>},

where x is the sequence of free variables of <P and p41 a new relation symbol
with the appropriate arity.

Since r E OP(V; </>}we get r E O'P(V'; p41 (x)). By the fact that the
claim is already established for atomic formulas, we have 1>' p p.;(x)r. Ta.lee
now an arbitrary model I for V. Interpret in it the relation symbol P.; as the
set {d I Ip tf>{x/d}}. This extends I to the model I' of 1>', since in I' the
equivalence Pf/>(x) +-+ c/> holds. Thus I' F p41(x)r, i.e., I p t/ff. So 'D F <fn".

0

Corollary 5.6 (Completeness). Consider a declaration set Vanda for­
mula 4> of Co. Suppose that V p </>(). Then a r E O'P('D; </>)exists such that
ifrr is more general than #}.

Proof.
Again we first prove the claim when </> is atomic. Since, a.s already noted,

P(V) and V are semantically equivalent, we have P(V) F #}. By the com­
pleteness of LO-resolution (see, e.g., [8]) a r E .CV(P(V); cp) exists such that
ifrr is more general than</>(). By the Reduction Theorem 5.4, r E O'P('D; </>).

Suppose now that <P is not atomic. Let, a.s in the proof of the Soundness
Corollary 5.5,

1>' :=VU {pip(x) ~ </>},

where x is the sequence of free variables of tj> and pq, a new relation symbol
with the appropriate arity.

Then 1>' p Pf/>(x)O. By the fact that the claim is already established for
atomic formulas, we get that a T E O'P(V'; P.;(x)) exists such that pqi(x)r
is more general than P<t>(x)8. The latter is equivalent to the statement that
r is more general than 9, which implies that ifrr is more genera.I than <f>O.

Moreover, by Def. 3.1, in particular axiom 7, there is exactly one possible
transition for {p<'/l(x) ; €), namely

90 Krzysztof R. Apt, Jan-Georg Smaus

(p</>(x) ; E) -7 (cp i E).

So TE OP(V'; P<t>(x)) implies TE OP(V; cp). 0

6. Related Work

The literature on logic programming abounds in studies of various exten­
sions of the basic framework considering more powerful fragments of first­
order logic. We mention some works, without claim of completeness. Clark
[5] studied an extension to general programs, where negative literals are al­
lowed in clause bodies and queries. Lloyd and Topor [9] studied programs
where each clause body is an arbitrary first-order formula with negation
and universal quantifiers allowed. Miller et al. [12] studied an extension to
hereditary Harrop formulas, where universal quantification and (embedded)
implications are allowed. In a series of works, Minker and his co-authors (see
e.g. Lobo, Minker and Rajasekar [10]) considered an extension to disjunctive
logic programs, where disjunctions are allowed in the clause heads. Gelfond
and Lifschitz [6] introduced an extension where two types of negations were
allowed, classical negation and negation-as-failure.

In each of these works an appropriate computation mechanism was pro­
posed to deal with the corresponding syntax extensions. In [9], in contrast to
our work, the operational semantics of programs was obtained by reducing
them first to general programs by means of transformations in the style of
Section 5.

Let us clarify now the relation of our work with the Alma-0 language
mentioned in the introduction and its semantics. In [1] we proposed an
operational semantics for first-order formulas defined as an extension of £ 0

allowing negation, and we proved it to be correct with respect to the truth
definition. The formulas were interpreted over an arbitrary algebra, which
implies that equations had to be solved effectively in a way which is correct
for any algebra. This was achieved by limiting the considerations to (1) the
case of an assignment of a ground term (which thus corresponds to a value
from the domain of the algebra) to an uninstantiated variable, (2) the case
of an equality test between two ground terms. To ensure that the semantics
was total it was stipulated that any other equation yields an error state.
This semantics was introduced to study the declarative fragment of Alma-0.

As a follow-up on this work in Apt [3] we introduced a denotational
semantics for first-order logic in which additionally arbitrary, i.e. not neces­
sarily ground, terms could be assigned to an uninstantiated variable.

Recall now the following definition.

91

Definitiou 6.1. The lferlnund llt•r for a terms is
defined as

• its domain is the set HU 1, of all terms of
tlu• Herlmmd •'"""'".-~'"

• if f is <ill n-a.ry function symbol in 4J, then its interpretation is the
.u, .• ..,,,. .. ,.., from (HU to lHh which maps sequence ti, ... ,

terms to the term 0

\Ve can now clarify that the operational semantics of Section :3 is a spe­
cial ca...;;e "computing in first-order mrer some algebra". Indeed, the
following well-known lemma show1' that in our east• computations implicitly
take over the

Lemma 6.2. Let x be the variables in the formulas = t. Then

Her ~ 3x. s = t if and only ifs and t unify.

Proof. In the Herbrand algebra, a finite variable assignment coincides with
a substitution. By the standard interpretation of the exist,ential quantifier,
Iler I= :Jx .• ~ = t if and only if there exists a substitution a...<IBignment) ()
such that Her (s = By the definition of Ht~r, Iler I= (s = t)O if and
only if sfJ and are identical So Her" I= 3x. s = t if and only ifs and t
~~ 0

The difference is that in case of Herhra.nd algebras a stronger, dft.'Ctive and
error-free. semantics of equations can be provided.

Results related to ours have recently been established by Seres [14]. She
translated the formulas of Co into Haskell programs in a compositional way
and established algebraic laws concerning this translation. Subsequently she
proved that the successful outcmnes of the LD-resolution can be simulated by
means of these algebraic laws. in the sense that given the IFF version of the
considered logic program, a query can be transformed using the algebraic
laws to the equational representation of the computed substitution. This
provides an alternative, indirect, proof of the ~. inclusion of the Embedding
Theorem 4.5 of Section 4.

As mentioned in the introduction, the procedure-based view of logic pro­
gramming was also used in de Bakker [4], the purpose of which was to com­
pare several operational semantics for logic programs. The adopted syntax
used the fragment of £0 without the existential quantier, but an extension
with the cut operator was considered.

92 Krzysztof R. Apt, Jan-Georg Smaus

7. Some Reflections on the Rule-based and
Procedure-based Views

While our results show, as expected, that the rule-based and the procedure­
based view of logic programming are equivalent, in practice adopting one or
the other view can have far-reaching consequences from the point of view
of programming languages design. We review here these consequences to
draw some conclusions about the design of languages that support logic
programming.

7.1. Rule-based View

Consider first the rule-based view. Our discussion of it provides an a poste­
riori justification of the choices made in Prolog. As is well known, programs
written in this format are very concise, among other reasons because the
control is implicit.

The crucial characteristic concerning control in logic programming is the
fact that in general, there are m.utliple rules with the same relation symbol
in the head. For one thing, this can be used, in combination with automatic
backtracking, to implement non-determinism. However, non-determinism is
not always intended, and then, patterns in combination with different input
arguments in the clause heads are often used to select the right clause. In
some cases, the textual ordering of the rules (for the same relation symbol)
is also crucial, as will become clear below.

While the features mentioned in the previous paragraph are sometimes
sufficient to implement adequate control, often more powerful primitives
are needed. Adding these primitives while maintaining the rule-based view
(according to which each clause body must be a sequence of atoms) leads to
several contrivances and problems, which we want to clarify in this section.
The alternative is to adopt a different view altogether, as will be discussed
in Subsection 7.3.

Consider first the customary if B then S else T fi construct. If B is
a simple test whether a term is of a certain form, this construct can be
simulated by means of patterns and multiple rules with the same relation
symbol in the head. But if B is a complex query, we need to resort to a
different solution.

As is well-known, modelling by means of two rules

p(x) ·- B, S.

p(x) not B, T.

Rule-based versus pror..edure-based view of logic programming 93

where x is the sequence of all the variables that appear in B, S and T, in­
troduces an inefficiency in the form of a reevaluation of B or its negation. 2

This naturally leads to the introduction of the cut operator with the revised
modelling:

p(x) :- B, ! , S.
p(x) :- T.

The cut can be also used in combination with patterns to simulate the
case statement in Prolog. But its introduction obviously compromises the
declarative character of the language: the rules cannot anymore be consid­
ered separately.

An alternative is to adopt a built-in if B then S else T fi construct,
written in Prolog as B -> S;T. Here "-+ /2"' is a built-in relation symbol
declared as an infix operator. So B -> S;T is an atom. But since B,S and T
are supposed to be arbitrary queries we need to adjust the original frame­
work. Namely, each rule has a format H +--Bi, ... , Bn, where H and all B;,
are atoms. Since B -> S ;T is an atom, we need to abandon the distinction
between function and relation symbols, so that B, S and T can also be terms.
Further, to allow B , S and T to be arbitrary queries we also need to view the
comma "," as a binary relation symbol, so that each query is both an atom
and a term.

This identification of function and relation symbols is one of the striking
features of Prolog. It is called ambivalent syntax. It allows us to maintain
the view that each clause body is a sequence of atoms, but in a way, this is
very contrived, since ambivalent syntax is so powerful that the restriction
"clause body is a sequence of atoms"' becomes almost meaningless.

Ambivalent syntax can be accounted for in logical terms (see, e.g.,
Martens and De Schreye [11]), but in absence of typing it leads to a number
of problems (see, e.g., Hill and Lloyd [7, pages 12-13]).

Identifying function and relation symbols has as a consequence identi­
fying terms and atoms, and thus it is natural to introduce meta-variables,
which are variables that appear in the position of an atom. After all, if
-+ /2 is a relation symbol, why shouldn't some of its arguments be vari­
ables? Meta-variables provide support for meta-programming and allow the
programmer to introduce new programming constructs. As an example take
the well-known definition of negation:

not(X) :- X, !, false.
not(_).

Meta-variables give rise to the possibility of run-time errors, of two kinds:

2We assume here, for simplicity, that not B can be rewritten to a query without the
not symbol, just like not I > Y can be rewritten to I =< Y.

94 Krzysztof R. Apt, Jan-Georg Smaus

• if a query contains an atom X and X is uninstantiated at call time, an
instantiation error will take place;

• if a query contains an atom X and X is instantiated to a term which
cannot be interpreted as an atom, for example 42, a type error will
take place.

The occurrence of each kind of error is in general an undecidable problem.
To conceal the use of the meta-variables one could employ the built-in

relation call/1 but this amounts to sweeping the problem under the carpet,
since call/1 is defined internally by

call(X) :- X.

So one design decision almost leads to another. The rule-based format ex­
plains the remarkable conciseness of Prolog, its flexible style of programming
(in which several options can be chosen to model the control mechanism),
and its support for meta-programming. For the sake of the subsequent dis­
cussion let us mention that this realization of meta-programming relies on
so-called non-ground representation in which an object level variable is (im­
plicitly) represented by a meta-level variable.

But these features come with a heavy price tag in the form of the cut
operator, ambivalent syntax, meta-variables, lack of types and difficulty of
type inference. They all look as inevitable consequences of the adoption of
the rule-based view. The rule-based format thus forms a straitjacket that
explains several striking aspects of Prolog.

7.2. Procedure-based View

In contrast, the procedure-based view is more verbose and often less read­
able. However, it is much more familiar to those who mastered first such
programming languages as Pascal or C. Moreover, this format is much eas­
ier to extend and modify. Indeed, it is straightforward to add new syntactic
constructs while maintaining the benefits of type checking. The reason is
that the statements are already defined by structural induction. Moreover,
different forms of parameter mechanisms can be easily introduced by just
appropriately annotating the occurrences of the formal parameters in the
procedure head.

The procedure-based view was adopted in Alma-0. This view made it
relatively straightforward to integrate various features of logic programming
into the imperative programming paradigm. For example, to account for
the double use of queries, for computing and for testing, a new parameter
mechanism was added to the language and it amalgamated easily with the
customary Pascal and Modula-2 call-by-value and call-by-variable parameter

Rule-based versus procedure-based view of logic programming 95

mechanisms. Alma-0 supports type checking. However, as a side effect, meta­
programming is no longer supported and no new user-defined programming
constructs can be added.

7 .3. A Hybrid View

Now, both views can be combined in a third view that we call a hybrid view.

The idea is to generalize the format of the rules and not to insist that
in a rule H +-- B1, ... , Bn all B1, ... , Bn are atoms. This is what is done in
the theory of logic programming, for example by allowing Bi's to be literals
when studying Prolog programs that use negation. In principle Bi's can
be arbitrary formulas {representing programming constructs) in a specific
first-order or higher-order language, as long as one can provide to such an
extension a computational interpretation.

This view has been adopted in the the programming languages Mercury
of Somogyi, Henderson and Conway (15] and Godel of Hill and Lloyd [7].
In Mercury the rules are of the form H +-- B where the body B is a "'valid
goal". Valid goals are defined by structural induction and are specific first­
order formulas. In particular B -> S;T {which can be also written as if
B then S else T) is a valid goal if B, S and T are valid goals. There are
no meta-variables, hence a variable cannot be a goal and thus B is not
a variable. The queries X = true, (X -> true ; q (b)) and X -> true ;
q (b) mentioned above are both syntactically illegal and rejected at compile­
time.

This view allows for type checking and type inference. Further, the use
of modes allows one to formalize the notion of an input argument (i.e.,
parameter). However, also in this approach, meta-programming is no longer
supported and no new user-defined programming constructs can be added.

A similar approach is adopted in Godel. The Godel programs are typed
but modes are absent. In contrast to Mercury meta-programming is sup­
ported but in a radically different way than in Prolog. It is realized by
means of the system module Programs together with the so-called ground
representation in which all object level expressions, including variables, are
represented as ground terms at the meta-level. Since there are no meta­
variables in Godel, a goal if B then S else T, where B is a variable, will
be rejected, just as mentioned for Mercury above.

In conclusion, the decision which view to adopt can have far-reaching
consequences for the design of the logic programming languages. The most
typical languages, exemplified by Mercury and Godel, rely on the h ybrid
view that reconciles the rule-based and the procedure-based view.

96 Krzysztof R. Apt, Jan-Georg Smaus

Acknowledgements

We thank Kees Vermeulen and the referees of an early version of this paper
for helpful comments.

References

[l] K. R. Apt and M. A. Bezem. Formulas as programs. In K.R. Apt, V.W.
Marek, M. Truszczynski, and D.S. Warren, editors, The Logic Program­
ming Paradigm: A 25 Year Perspective, pages 75-107, 1999. Available via
http://arXiv.org/archive/cs/.

[2] K. R. Apt, J. Brunekreef, V. Partington, and A. Schaer£. Alma-0: An im­
perative language that supports declarative programming. ACM TOPLAS,
20(5):1014-1066, 1998.

[3] K. R. Apt. A denotational semantics for first-order logic. In J. Lloyd, ed­
itor, Proc. of Computational Logic 2000 (CL2000), Lecture Notes in Arti­
ficial Intelligence 1861, pages 53--69. Springer-Verlag, 2000. Available via
http://arXiv.org/archive/cs/.

[4] J. W. de Bakker. Comparative semantics for flow of control in logic program­
ming without logic. Information and Computation, 94(2):123-179, 1991.

[5] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
and Databases, pages 293-322. Plenum Press, New York, 1978.

[6] M. Gabbrielli and G. Levi. A solved form algorithm for ask and tell Herbrand
constraints. In S. Abramsky and T. Maibaum, editors, Proc. TAPSOFT'91,
Volume 1 (CAAP'91), Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1991.

[7] P. M. Hill and J. W. Lloyd. The Godel Programming Language. The MIT
Press, 1994.

[8] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
second edition, 1987.

[9] J. W. Lloyd and R. W. Topor. Making Prolog more expressive. Journal of
Logic Programming, 1:225-240, 1984.

(10] J. Lobo, J. Minker, and A. Rajaseka.r. Foundations of Disjunctive Logic Pro­
gramming. The MIT Press, 1992.

(11] B. Martens and D. De Schreye. Why untyped non-ground meta-programming
is not (much of) a problem. Journal of Logic Programming, 22(1):47-99, 1995.

(12] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic, 51:125-
157, 1991.

