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1 Introduction 

The Owicki-Gries method [1976] for verifying partial correctness of parallel pro­
grams calls for finding interference free proof outlines for partial correctness 
of component programs. A proof outline for a partial correctness proof of 
{p} S { q}, where p and q are assertions and S is a program, is a construct 
of the form {p} s· {q}, where s· is the programs annotated with the asser­
tions used in the proof of {p} S { q}. For example, consider the two component 
programs 

and 

S1 = while x > 0 do 
y :=0; 
if y = 0 then x := x - 1 else y := 0 fi 

od 

S2 := while x > 0 do 
y := 1; 
if y = 1 then x := x - 1 else y := 1 fi 

od. 

Here is a proof outline for {true} S1 {true} (the one for {true} S2 {true} 
is similar): 

{true} 
while x > 0 do 

{true} 
y:=O; 
{true} 
if y = 0 then {true} 

x := x -1 
{true} 

else {true} 

fi 
od 
{true}. 

y :=0 
{true} 

Proof outlines for component programs are interference free if the compo­
nent programs do not invalidate the assertions in each others' proof outlines. 
In this case, the proof outlines remain valid annotations when the component 
programs are executed in parallel. In the above example, showing that S2 does 
not invalidate the assertions of the above proof outline for S1 requires proving 
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the following. Let r be any assertion in the proof outline for 5 1 , let R be any 
assignment in S2, and let pre( R) be the precondition for R in the proof outline 
for S2. Then the following must be proved: 

{r /\ pre(R)} R {r}. 

Showing interference freedom for the proof outlines for S1 and 52 above is 
trivial, since all assertions in the proof outlines equal true. Hence, the proof 
outlines for S1 and S2 are interference free. 

To extend the method to total correctness, Owicki and Gries proposed two 
steps. First, in the usual fashion, associate a bound function with each loop 
of each component program. A bound function is an integer expression that 
decreases with each loop iteration and remains non-negative. Clearly, the exis­
tence of a bound function ensures that the loop terminates when considered in 
isolation. 

Second, to ensure termination of the parallel execution of the component 
programs, add the following interference freedom requirement: no component 
program increases a bound function of a loop of another component program. 

Now consider the component programs S1 and S2 above. Using x as the 
bound function for both loops, it is clear that the additional interference freedom 
requirement is satisfied. And yet, it is also clear that 51 and S2 when executed 
in parallel need not terminate, for they may synchronize in such a fashion that 
x is never decreased. Hence, the additional interference freedom requirement 
proposed by Owicki and Gries is not correct. 

2 A Solution 

The proof of total correctness of a loop requires showing that the bound function 
is decreased with each iteration. Formally, we can use the following proof rule 
motivated by Dijkstra [1982] (EWD 573): 

WHILE-RULE 
{p/\ B} S {p}, 
{p /\ B /\ t = z} S { t < z}, 
p /\B- t>O 

{p} while B do Sod {p /\--, B} 

where t is an integer expression and z is an integer variable that does not appear 
in p, t, B or S. 

The first premise states that p is a loop invariant, the second that the bound 
function t is decreased with each iteration and the third that if another iteration 
can be performed then t is positive. 

If such a loop apppears in a component process, then interference freedom 
should require that the proof of the loop's correctness, using the above rule is not 
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invalidated. The partial correctness proof outline already includes the necessary 
assertions concerning the first premise {p /\ B} S {p}. However, it does not 
include the assertions concerning the second premise {p /\ B /\ t = z} S { t < z}. 
Returning to our example, it is readily seen that it is this part of the proof of 
the loop of component S1 that is falsified by execution of component S2. If the 
assertions from this second assumption are included in the proof outline, then 
the original interference freedom requirement of Owicki and Gries will suffice. 

One way to achieve this is by starting from a modification of this proof rule 
where the first two premises are replaced with 

{p /\ B /\ t = z} S {p /\ t < z} 

and by introducing the following formation rule for a proof outline for total 
correctness of while-loops. 

Definition (Proof Outline I: while-loops) 

{p /\ B /\ t = z} S* {p /\ t < z }, 
p/\B-+t>O 

{inv:p}whileB do{p/\B/\t=z} S* {p/\t<z} od {p/\-iB} 

where t is an integer expression, z is an integer variable not occurring in p, t, B 
or S and {p /\ B /\ t = z} S* {p /\ t < z} is a proof outline for total correctness. 

0 

The annotation { inv : p} represents the invariant of the loop while B do 
S od. Since the bound functions are now absorbed into the assertions, we can 
drop the condition for interference freedom of the bound functions and simply 
use the original definition of interference freedom for partial correctness. 

With these changes the Owicki-Gries method for verifying total correctness 
of parallel programs is correct. 

A drawback of the above method is that it forces us to mix the proofs of the 
invariance of p and of the decrease oft. The resulting proof outlines therefore 
become quite heavy. On the other hand this method provides a close relationship 
between program annotation and program execution. Since 

{p /\ B} z := t {p /\ B /\ t = z}, 

we can expand the conclusion of the above formation rule so that every while­
loop starts with an assignment z := t: 

{inv: p} while B do {p/\B} z := t {p/\B/\t = z} S* {p/\t < z} od {p/\-.B}. 
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With this expansion, the following pleasing property of proof outlines for 
partial correctness holds again: 

Claim Let {pi} Si {q;}, i E {l, ... , n}, be interference free expanded proofout­
lines for total correctness and lets: for i E {l, ... , n} be the program resulting 
from s; by deleting all assertions but keeping the new assignments of the form 
z := t. Consider an execution of the parallel program [Sf II·. ·llS~] starting in 
a state satisfying P1 A ... A Pn· Whenever the control in one of the component 
programs reaches a point annotated by an assertion, this assertion is true. D 

3 Another Solution 

Another possibility is to assume that the proof of decrease oft is of a particularly 
simple form, namely that for a loop body S 

(i) all assignments inside S decrease t or leave it unchanged, 

(ii) on each syntactically possible path through S at least one assignment 
decreases t. 

By a path we mean here a possibly empty finite sequence of assignments. 
Sequential composition 11'1 ; 71"2 of paths 11'1 and 11'2 is lifted to sets 111 and 112 of 
paths by putting 

By e we denote the empty sequence. For any path 11' we have 11'; t = e; 11' = 11'. 

Definition Let S be a while-program. We define the path set of S, denoted 
by path(S), by induction on the structure of S: 

• path(skip) = {t}, 

• path(u := t) = {u := t}, 

• path(S1; S2) = path(S1); path(S2), 

• path( if B then S1 else S2 fi) = path(S1) U path(S2), 

• path(while B do S1 od) = {e}. 

D 

Thus, each path through S is identified with the sequence of assignments 
lying on it. Note that in the last clause we take into account only the case when 
the loop is terminated immediately. This is sufficient for establishing condition 
(ii) above. 
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We define the notion of a proof outline for total correctness as for partial 
correctness, except for the case of while-loops for which we use the following 
formation rule. 

Definition (Proof Outline Il: while-loops} 

(1) {p /\ B} S* {p}, 
(2) {pre(R) /\ t = z} R {t::::; z} for every 

assignment R within S, 
(3) for each path 7r E path(S) there exists 

an assignment R in 1f such that 
{pre(R) /\ t = z} R {t < z}, 

( 4) p /\ B --+ t > 0 

{inv: p}{bd: t} while B do {p /\ B} S* {p} od {p /\ -.B} 
where t is an integer expression and z is an integer variable not occurring in 
p, t, B or S*. Here {p /\ B} S* {p} is a proof outline for total correctness and 
pre(R) stands for the assertion preceding R in this proof outline. D 

The annotation {bd : t} represents the bound function of the loop while 
B do S od. With this new definition of a proof outline for total correctness, 
the Owicki-Gries method for verifying total correctness of parallel programs is 
correct. 

With this definition we can no longer justify the proof outlines for the com­
ponent programs used in Section 1. Indeed, along the path y := O; y := 0 of 
the first loop body the proposed bound function x does not decrease. 

Observe that when the empty path t: is an element of path(S), we cannot 
verify premise (3) of the above rule. Thus it may happen that we can prove total 
correctness of a while-program using the while-rule but are unable to record 
this proof as a proof outline for total correctness. An example is the program 

b :=true; 
while b do 

if b then b := false else skip fi. 
od 

whose termination can be easily established. This shows some limitations of the 
above approach to recording proofs of total correctness. 

However, various parallel programs can be successfully handled in this way. 
For example, the bound function given in the proof of termination of program 
Findpos in Owicki and Gries [1976] satisfies the more stringent conditions (2)­
( 4) given above. This provides a justification for their proof. 

Note We discovered, when attempting to prove its soundness, that the original 
version of the Owicki-Gries method for proving total correctness is incorrect. 
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