
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

K.R. Apt, F.S. de Boer, E.-R. Olderog

Proving termination of parallel programs

Computer Science/Department of Software Technology Report CS-R9016 May

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301635091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

~ C\ 1') 10 1
b () r·) ~ . i" \ ~- •, 1

I

Proving Termination of
Parallel Programs

Krzysztof R. Apt
Centre for Mathematics and Computer Science

Kruislaan 413, 1098 SJ Amsterdam
The Netherlands

and
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712-1188

U.S.A.

Frank S. de Boer
Technical University Eindhoven

Department of Mathematics and Computer Science
P.O.Box 513

5600 MB Eindhoven
The Netherlands

Ernst-Rudiger Olderog
Department of Computer Science

University of Oldenburg
2900 Oldenburg

Federal Republic of Germany

In Owicki and Gries [1976] a well known proof method for verifying
parallel programs based on the interference freedom test was intro­
duced. We show that their extension of the method to deal with
termination is incorrect and suggest two ways of repairing it.

Note: This paper appeared in: "Beauty is Our Business, A Birthday
Salute to Edsger W. Dijkstra" (eds. W. Feijen, N. van Gasteren, D.
Gries, J. Misra), Springer-Verlag, New York, pages 0-6, 1990.

Keywords and Phrases: program verification, interference freedom, paral­
lelism, termination.
1985 Mathematics Subject Classification: 68N05, 68Q55, 68Q60.

Report CS-R901 6
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

1 Introduction

The Owicki-Gries method [1976] for verifying partial correctness of parallel pro­
grams calls for finding interference free proof outlines for partial correctness
of component programs. A proof outline for a partial correctness proof of
{p} S { q}, where p and q are assertions and S is a program, is a construct
of the form {p} s· {q}, where s· is the programs annotated with the asser­
tions used in the proof of {p} S { q}. For example, consider the two component
programs

and

S1 = while x > 0 do
y :=0;
if y = 0 then x := x - 1 else y := 0 fi

od

S2 := while x > 0 do
y := 1;
if y = 1 then x := x - 1 else y := 1 fi

od.

Here is a proof outline for {true} S1 {true} (the one for {true} S2 {true}
is similar):

{true}
while x > 0 do

{true}
y:=O;
{true}
if y = 0 then {true}

x := x -1
{true}

else {true}

fi
od
{true}.

y :=0
{true}

Proof outlines for component programs are interference free if the compo­
nent programs do not invalidate the assertions in each others' proof outlines.
In this case, the proof outlines remain valid annotations when the component
programs are executed in parallel. In the above example, showing that S2 does
not invalidate the assertions of the above proof outline for S1 requires proving

2

the following. Let r be any assertion in the proof outline for 5 1 , let R be any
assignment in S2, and let pre(R) be the precondition for R in the proof outline
for S2. Then the following must be proved:

{r /\ pre(R)} R {r}.

Showing interference freedom for the proof outlines for S1 and 52 above is
trivial, since all assertions in the proof outlines equal true. Hence, the proof
outlines for S1 and S2 are interference free.

To extend the method to total correctness, Owicki and Gries proposed two
steps. First, in the usual fashion, associate a bound function with each loop
of each component program. A bound function is an integer expression that
decreases with each loop iteration and remains non-negative. Clearly, the exis­
tence of a bound function ensures that the loop terminates when considered in
isolation.

Second, to ensure termination of the parallel execution of the component
programs, add the following interference freedom requirement: no component
program increases a bound function of a loop of another component program.

Now consider the component programs S1 and S2 above. Using x as the
bound function for both loops, it is clear that the additional interference freedom
requirement is satisfied. And yet, it is also clear that 51 and S2 when executed
in parallel need not terminate, for they may synchronize in such a fashion that
x is never decreased. Hence, the additional interference freedom requirement
proposed by Owicki and Gries is not correct.

2 A Solution

The proof of total correctness of a loop requires showing that the bound function
is decreased with each iteration. Formally, we can use the following proof rule
motivated by Dijkstra [1982] (EWD 573):

WHILE-RULE
{p/\ B} S {p},
{p /\ B /\ t = z} S { t < z},
p /\B- t>O

{p} while B do Sod {p /\--, B}

where t is an integer expression and z is an integer variable that does not appear
in p, t, B or S.

The first premise states that p is a loop invariant, the second that the bound
function t is decreased with each iteration and the third that if another iteration
can be performed then t is positive.

If such a loop apppears in a component process, then interference freedom
should require that the proof of the loop's correctness, using the above rule is not

3

invalidated. The partial correctness proof outline already includes the necessary
assertions concerning the first premise {p /\ B} S {p}. However, it does not
include the assertions concerning the second premise {p /\ B /\ t = z} S { t < z}.
Returning to our example, it is readily seen that it is this part of the proof of
the loop of component S1 that is falsified by execution of component S2. If the
assertions from this second assumption are included in the proof outline, then
the original interference freedom requirement of Owicki and Gries will suffice.

One way to achieve this is by starting from a modification of this proof rule
where the first two premises are replaced with

{p /\ B /\ t = z} S {p /\ t < z}

and by introducing the following formation rule for a proof outline for total
correctness of while-loops.

Definition (Proof Outline I: while-loops)

{p /\ B /\ t = z} S* {p /\ t < z },
p/\B-+t>O

{inv:p}whileB do{p/\B/\t=z} S* {p/\t<z} od {p/\-iB}

where t is an integer expression, z is an integer variable not occurring in p, t, B
or S and {p /\ B /\ t = z} S* {p /\ t < z} is a proof outline for total correctness.

0

The annotation { inv : p} represents the invariant of the loop while B do
S od. Since the bound functions are now absorbed into the assertions, we can
drop the condition for interference freedom of the bound functions and simply
use the original definition of interference freedom for partial correctness.

With these changes the Owicki-Gries method for verifying total correctness
of parallel programs is correct.

A drawback of the above method is that it forces us to mix the proofs of the
invariance of p and of the decrease oft. The resulting proof outlines therefore
become quite heavy. On the other hand this method provides a close relationship
between program annotation and program execution. Since

{p /\ B} z := t {p /\ B /\ t = z},

we can expand the conclusion of the above formation rule so that every while­
loop starts with an assignment z := t:

{inv: p} while B do {p/\B} z := t {p/\B/\t = z} S* {p/\t < z} od {p/\-.B}.

4

With this expansion, the following pleasing property of proof outlines for
partial correctness holds again:

Claim Let {pi} Si {q;}, i E {l, ... , n}, be interference free expanded proofout­
lines for total correctness and lets: for i E {l, ... , n} be the program resulting
from s; by deleting all assertions but keeping the new assignments of the form
z := t. Consider an execution of the parallel program [Sf II·. ·llS~] starting in
a state satisfying P1 A ... A Pn· Whenever the control in one of the component
programs reaches a point annotated by an assertion, this assertion is true. D

3 Another Solution

Another possibility is to assume that the proof of decrease oft is of a particularly
simple form, namely that for a loop body S

(i) all assignments inside S decrease t or leave it unchanged,

(ii) on each syntactically possible path through S at least one assignment
decreases t.

By a path we mean here a possibly empty finite sequence of assignments.
Sequential composition 11'1 ; 71"2 of paths 11'1 and 11'2 is lifted to sets 111 and 112 of
paths by putting

By e we denote the empty sequence. For any path 11' we have 11'; t = e; 11' = 11'.

Definition Let S be a while-program. We define the path set of S, denoted
by path(S), by induction on the structure of S:

• path(skip) = {t},

• path(u := t) = {u := t},

• path(S1; S2) = path(S1); path(S2),

• path(if B then S1 else S2 fi) = path(S1) U path(S2),

• path(while B do S1 od) = {e}.

D

Thus, each path through S is identified with the sequence of assignments
lying on it. Note that in the last clause we take into account only the case when
the loop is terminated immediately. This is sufficient for establishing condition
(ii) above.

5

We define the notion of a proof outline for total correctness as for partial
correctness, except for the case of while-loops for which we use the following
formation rule.

Definition (Proof Outline Il: while-loops}

(1) {p /\ B} S* {p},
(2) {pre(R) /\ t = z} R {t::::; z} for every

assignment R within S,
(3) for each path 7r E path(S) there exists

an assignment R in 1f such that
{pre(R) /\ t = z} R {t < z},

(4) p /\ B --+ t > 0

{inv: p}{bd: t} while B do {p /\ B} S* {p} od {p /\ -.B}
where t is an integer expression and z is an integer variable not occurring in
p, t, B or S*. Here {p /\ B} S* {p} is a proof outline for total correctness and
pre(R) stands for the assertion preceding R in this proof outline. D

The annotation {bd : t} represents the bound function of the loop while
B do S od. With this new definition of a proof outline for total correctness,
the Owicki-Gries method for verifying total correctness of parallel programs is
correct.

With this definition we can no longer justify the proof outlines for the com­
ponent programs used in Section 1. Indeed, along the path y := O; y := 0 of
the first loop body the proposed bound function x does not decrease.

Observe that when the empty path t: is an element of path(S), we cannot
verify premise (3) of the above rule. Thus it may happen that we can prove total
correctness of a while-program using the while-rule but are unable to record
this proof as a proof outline for total correctness. An example is the program

b :=true;
while b do

if b then b := false else skip fi.
od

whose termination can be easily established. This shows some limitations of the
above approach to recording proofs of total correctness.

However, various parallel programs can be successfully handled in this way.
For example, the bound function given in the proof of termination of program
Findpos in Owicki and Gries [1976] satisfies the more stringent conditions (2)­
(4) given above. This provides a justification for their proof.

Note We discovered, when attempting to prove its soundness, that the original
version of the Owicki-Gries method for proving total correctness is incorrect.

6

0

Acknowledgement Detailed comments of David Gries enabled us to improve
the presentation.

References

[1] E.W. Dijkstra, Selected Writings on Computing, Springer-Verlag, New
York, 1982.

[2] S. Owicki and D. Gries, An axiomatic proof technique for parallel pro­
grams, Acta Informatica 6, 1976, 319-340.

7

