
0

Proving Termination of Parallel
Programs

Krzysztof R. Apt
Frank S. de Boer
Ernst-Rudiger 0 lderog

Abstract

In Owicki and Gries [2] a well known proof method for verifying parallel
programs based on the interference freedom test was introduced. We show
that their extension of the method to deal with termination is incorrect
and suggest two ways of repairing it.

1 Introduction

The Owicki-Gries method [2] for verifying partial correctness of parallel
programs calls for finding interference free proof outlines for partial cor
rectness of component programs. A proof outline for a partial correctness
proof of {p} S { q }, where p and q are assertions and S is a program, is a
construct of the form {p} S* { q}, where S* is the program S annotated
with the assertions used in the proof of {p} S { q }. For example, consider
the two component programs

and

S 1 = while x > 0 do

y := O;

if y = 0 then x := x - 1 else y := 0 fi

od

82 = while x > 0 do
y := l;

if y = 1 then x := x - 1 else y := 1 fi

od.

K t f R Apt Frank S. de Boer, Ernst-Rudiger Olderog
rzysz o . ,

Here is a proof outline for {true} 81 {true} (the one for {true} 82 {true}

is similar):

{true}
while x > 0 do

{true}
y :=0;

{true}
if y == 0 then {true}

fi
od
{true}.

x :== x -1

{true}
else {true}

y :=0

{true}

Proof outlines for component programs are interference free if the com

ponent programs do not invalidate the assertions in each others' proof

outlines. In this case, the proof outlines remain valid annotations when the

component programs are executed in parallel. In the above example, show

ing that S2 does not invalidate the assertions of the above proof outline for
S1 requires proving the following. Let r be any assertion in the proof outline

for S1, let R be any assignment in 82 , and let pre(R) be the precondition

for R in the proof outline for 82 . Then the following must be proved:

{r /\ pre(R)} R {r }.

Showing interference freedom for the proof outlines for S1 and S2 above
is trivial, since all assertions in the proof outlines equal true. Hence, the
proof outlines for S1 and 82 are interference free.

To extend the method to total correctness, Owicki and Gries proposed
two steps. First, in the usual fashion, associate a bound function with each

loop of each component program. A bound function is an integer expression

that decreases with each loop iteration and remains non-negative. Clearly,

the existence of a bound function ensures that the loop terminates when
considered in isolation.

Second, to ensure termination of the parallel execution of the component
programs, add the following interference freedom requirement: no compo

nent program increases a bound function of a loop of another component
program.

0. Proving Termination of Parallel Programs 2

Now consider the component programs Si and S2 above. Using x as the
bound function for both loops, it is clear that the additional interference
freedom requirement is satisfied. And yet, it is also clear that Si and S2

when executed in parallel need not terminate, for they may synchronize in
such a fashion that x is never decreased. Hence, the additional interference
freedom requirement proposed by Owicki and Gries is not correct.

2 A solution

The proof of total correctness of a loop requires showing that the bound
function is decreased with each iteration. Formally, we can use the following
proof rule motivated by Dijkstra [l] (EWD 573):

WHILE-RULE

{p /\ B} S {p},
{p /\ B /\ t=z}S{t<z},
p/\B-+t>O

{p} while B do Sod {p /\ ·B}

where t is an integer expression and z is an integer variable that does not
appear in p, t, B or S.

The first premise states that p is a loop invariant, the second that the
bound function t is decreased with each iteration, and the third that if
another iteration can be performed then t is positive.

If such a loop apppears in a component process, then interference freedom
should require that the proof of the loop's correctness, using the above rule
is not invalidated. The partial correctness proof outline already includes
the necessary assertions concerning the first premise {p /\ B} S {p }.
However, it does not include the assertions concerning the second premise
{p /\ B /\ t = z} S { t < z}. Returning to our example, it is readily
seen that it is this part of the proof of the loop of component Si that is
falsified by execution of component S2 . If the assertions from this second
assumption are included in the proof outline, then the original interference
freedom requirement of Owicki and Gries will suffice.

One way to achieve this is by starting from a modification of this proof
rule where the first two premises are replaced with

{p /\ B /\ t = z} S {p /\ t < z}

and by introducing the following formation rule for a proof outline for total
correctness of while-loops.

3 Krzysztof R. Apt, Frank S. de Boer, Ernst-Rudiger Olderog

Definition (Proof Outline I: while-loops)

{p 1\ B 11 t = z} S* {p /\ t < z},
p!1B-+t>O

{inv: p} while B do {p /\ B /\ t = z} S* {p /\ t < z} od {p /\ -iB}

where t is an integer expression, z is an integer variable not occurring in
p, t, B or S and {p /I B /\ t = z} S* {p /\ t < z} is a proof outline for
total correctness.
D

The annotation {inv: p} represents the invariant of the loop while B
do S od. Since the bound functions are now absorbed into the assertions,
we can drop the condition for interference freedom of the bound functions
and simply use the original definition of interference freedom for partial
correctness.

,~/ith these changes the Owicki-Gries method for verifying total correct
ness of parallel programs is correct.

A drawback of the above method is that it forces us to mix the proofs
of the invariance of p and of the decrease of t. The resulting proof outlines
therefore become quite heavy. On the other hand this method provides
a close relationship between program annotation and program execution.
Since

{p /\ B} z := t {p /\ B /\ t = z },

we can expand the conclusion of the above formation rule so that every
while-loop starts with an assignment z := t:

{inv: p}
while B do

{p /\ B} z := t {p /\ B /\ t = z} S* {p /\ t < z}
od

{p /\ ·B}.

\Vith this expansion, the following pleasing property of proof outlines for
partial correctness holds again:

Claim Let {p;} Si {qi}, i E {1, ... ,n}, be interference-free expanded
proof outlines .for total c~rrectness and let s: for i E {l, ... , n} be the
pr~gram resultmg from S; by deleting all assertions but keeping the new
assignments of the form z :== t. Consider an execution of the parallel pro
gram [S; II·. ·llS~] starting in a state satisfying p1 /\ ... /\ Pn· Whenever
the control ~n one .of the component programs reaches a point annotated
by an assert10n, this assertion is true.

0. Proving Termination of Parallel Programs 4

3 Another solution

Another possibility is to assume that the proof of decrease of t is of a
particularly simple form, namely that for a loop body S

(i) all assignments inside 8 decrease t or leave it unchanged,

(ii) on each syntactically possible path through 8 at least one assignment
decreases t.

By a path we mean here a possibly empty finite sequence of assignments.
Sequential composition 71"1 ; 71"2 of paths 71"1 and 71"2 is lifted to sets II1 and
II2 of paths by putting

II1; II2 = {7r1i 71"2 I 71"1 E II1 and 71"2 E II2}.

By c we denote the empty sequence. For any path 71" we have 7T; c = c; 71" =
71".

Definition Let 8 be a while-program. We define the path set of 8,
denoted by path(8), by induction on the structure of 8:

• path(skip) = {c},

• path(u := t) = {u := t},

• path(81; S2) = path(81); path(82),

• path(if B then 81 else 82 fi) = path(81) U path(S2),

• path(while B do S1 od) = {c}.

D

Thus, each path through Sis identified with the sequence of assignments
lying on it. Note that in the last clause we take into account only the case
when the loop is terminated immediately. This is sufficient for establishing
condition (ii) above.

We define the notion of a proof outline for total correctness as for par
tial correctness, except for the case of while-loops for which we use the
following formation rule.

Definition (Proof Outline II: while-loops)

(1) {p /\ B} S* {p},
(2) {pre(R) /\ t = z} R {t::; z} for every

assignment R within S,
(3) for each path 1T E path(S) there exists

an assignment R in 71" such that
{pre(R) /\ t = z} R {t < z},

(4) p/\B->t>O

{inv: p}{bd: t} while B do {p /\ B} S* {p} od {p /\ -iB}

5 Krzysztof R. Apt, Frank S. de Boer, Ernst-Rudiger Olderog

where t is an integer expression and z is an integer variable not occurring
in p, t, B or S*. Here {p /\ B} S* {p} is a proof outline for total correctness
and pre(R) stands for the assertion preceding R in this proof outline.
D

The annotation {bd : t} represents the bound function of the loop while
B do S od. With this new definition of a proof outline for total correctness,
the Owicki-Gries method for verifying total correctness of parallel programs
is correct.

With this definition we can no longer justify the proof outlines for the
component programs used in Section l. Indeed, along the path y := O; y :=
0 of the first loop body the proposed bound function x does not decrease.

Observe that when the empty path€ is an element of path(S), we cannot
verify premise (3) of the above rule. Thus it may happen that we can prove
total correctness of a while-program using the while-rule but are unable
to record this proof as a proof outline for total correctness. An example is
the program

b :=true;
while b do

if b then b := false else skip fi
od

whose termination can be easily established. This shows some limitations
of the above approach to recording proofs of total correctness.

However, various parallel programs can be successfully handled in this
way. For example, the bound function given in the proof of termination
of program Findpos in Owicki and Gries [2] satisfies the more stringent
conditions (2)-(4) given above. This provides a justification for their proof.

Note We discovered, when attempting to prove its soundness, that the
original version of the Owicki-Gries method for proving total correctness is
incorrect.
D

Acknowledgements: Detailed comments from David Gries enabled us to
improve the presentation.

REFERENCES

[1] E.W. Dijkstra. Selected Writings on Computing. Springer-Verlag, New
York, 1982.

0. Proving Termination of Parallel Programs 6

[2] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs. Acta Informatica, 6:319-340, 1976.

Krzysztof R. Apt,
Centre for Mathematics and Computer Science,
Kruislaan 413,
1098 SJ Amsterdam,
The Netherlands,
and
Department of Computer Sciences,
The University of Texas at Austin,
Taylor Hall 2.124,
Austin, Texas 78712-1188,
U.S.A.

Frank S. de Boer,
Department of Mathematics and Computing Science,
Eindhoven University of Technology,
P.O. Box 513,
5600 MB Eindhoven,
The Netherlands.

Ernst-Rudiger Olderog,
Department of Computer Science,
University of Oldenburg,
2900 Oldenburg,
Federal Republic of Germany.

