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Abstract 

In Owicki and Gries [2] a well known proof method for verifying parallel 
programs based on the interference freedom test was introduced. We show 
that their extension of the method to deal with termination is incorrect 
and suggest two ways of repairing it. 

1 Introduction 

The Owicki-Gries method [2] for verifying partial correctness of parallel 
programs calls for finding interference free proof outlines for partial cor
rectness of component programs. A proof outline for a partial correctness 
proof of {p} S { q }, where p and q are assertions and S is a program, is a 
construct of the form {p} S* { q}, where S* is the program S annotated 
with the assertions used in the proof of {p} S { q }. For example, consider 
the two component programs 

and 

S 1 = while x > 0 do 

y := O; 

if y = 0 then x := x - 1 else y := 0 fi 

od 

82 = while x > 0 do 
y := l; 

if y = 1 then x := x - 1 else y := 1 fi 

od. 
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Here is a proof outline for {true} 81 {true} (the one for {true} 82 {true} 

is similar): 

{true} 
while x > 0 do 

{true} 
y :=0; 

{true} 
if y == 0 then {true} 

fi 
od 
{true}. 

x :== x -1 

{true} 
else {true} 

y :=0 

{true} 

Proof outlines for component programs are interference free if the com

ponent programs do not invalidate the assertions in each others' proof 

outlines. In this case, the proof outlines remain valid annotations when the 

component programs are executed in parallel. In the above example, show

ing that S2 does not invalidate the assertions of the above proof outline for 
S1 requires proving the following. Let r be any assertion in the proof outline 

for S1, let R be any assignment in 82 , and let pre(R) be the precondition 

for R in the proof outline for 82 . Then the following must be proved: 

{r /\ pre(R)} R {r }. 

Showing interference freedom for the proof outlines for S1 and S2 above 
is trivial, since all assertions in the proof outlines equal true. Hence, the 
proof outlines for S1 and 82 are interference free. 

To extend the method to total correctness, Owicki and Gries proposed 
two steps. First, in the usual fashion, associate a bound function with each 

loop of each component program. A bound function is an integer expression 

that decreases with each loop iteration and remains non-negative. Clearly, 

the existence of a bound function ensures that the loop terminates when 
considered in isolation. 

Second, to ensure termination of the parallel execution of the component 
programs, add the following interference freedom requirement: no compo

nent program increases a bound function of a loop of another component 
program. 
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Now consider the component programs Si and S2 above. Using x as the 
bound function for both loops, it is clear that the additional interference 
freedom requirement is satisfied. And yet, it is also clear that Si and S2 

when executed in parallel need not terminate, for they may synchronize in 
such a fashion that x is never decreased. Hence, the additional interference 
freedom requirement proposed by Owicki and Gries is not correct. 

2 A solution 

The proof of total correctness of a loop requires showing that the bound 
function is decreased with each iteration. Formally, we can use the following 
proof rule motivated by Dijkstra [l] (EWD 573): 

WHILE-RULE 

{p /\ B} S {p}, 
{p /\ B /\ t=z}S{t<z}, 
p/\B-+t>O 

{p} while B do Sod {p /\ ·B} 

where t is an integer expression and z is an integer variable that does not 
appear in p, t, B or S. 

The first premise states that p is a loop invariant, the second that the 
bound function t is decreased with each iteration, and the third that if 
another iteration can be performed then t is positive. 

If such a loop apppears in a component process, then interference freedom 
should require that the proof of the loop's correctness, using the above rule 
is not invalidated. The partial correctness proof outline already includes 
the necessary assertions concerning the first premise {p /\ B} S {p }. 
However, it does not include the assertions concerning the second premise 
{p /\ B /\ t = z} S { t < z}. Returning to our example, it is readily 
seen that it is this part of the proof of the loop of component Si that is 
falsified by execution of component S2 . If the assertions from this second 
assumption are included in the proof outline, then the original interference 
freedom requirement of Owicki and Gries will suffice. 

One way to achieve this is by starting from a modification of this proof 
rule where the first two premises are replaced with 

{p /\ B /\ t = z} S {p /\ t < z} 

and by introducing the following formation rule for a proof outline for total 
correctness of while-loops. 
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Definition (Proof Outline I: while-loops) 

{p 1\ B 11 t = z} S* {p /\ t < z}, 
p!1B-+t>O 

{inv: p} while B do {p /\ B /\ t = z} S* {p /\ t < z} od {p /\ -iB} 

where t is an integer expression, z is an integer variable not occurring in 
p, t, B or S and {p /I B /\ t = z} S* {p /\ t < z} is a proof outline for 
total correctness. 
D 

The annotation {inv: p} represents the invariant of the loop while B 
do S od. Since the bound functions are now absorbed into the assertions, 
we can drop the condition for interference freedom of the bound functions 
and simply use the original definition of interference freedom for partial 
correctness. 

,~/ith these changes the Owicki-Gries method for verifying total correct
ness of parallel programs is correct. 

A drawback of the above method is that it forces us to mix the proofs 
of the invariance of p and of the decrease of t. The resulting proof outlines 
therefore become quite heavy. On the other hand this method provides 
a close relationship between program annotation and program execution. 
Since 

{p /\ B} z := t {p /\ B /\ t = z }, 

we can expand the conclusion of the above formation rule so that every 
while-loop starts with an assignment z := t: 

{inv: p} 
while B do 

{p /\ B} z := t {p /\ B /\ t = z} S* {p /\ t < z} 
od 

{p /\ ·B}. 

\Vith this expansion, the following pleasing property of proof outlines for 
partial correctness holds again: 

Claim Let {p;} Si {qi}, i E {1, ... ,n}, be interference-free expanded 
proof outlines .for total c~rrectness and let s: for i E {l, ... , n} be the 
pr~gram resultmg from S; by deleting all assertions but keeping the new 
assignments of the form z :== t. Consider an execution of the parallel pro
gram [S; II·. ·llS~] starting in a state satisfying p1 /\ ... /\ Pn· Whenever 
the control ~n one .of the component programs reaches a point annotated 
by an assert10n, this assertion is true. 
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3 Another solution 

Another possibility is to assume that the proof of decrease of t is of a 
particularly simple form, namely that for a loop body S 

(i) all assignments inside 8 decrease t or leave it unchanged, 

(ii) on each syntactically possible path through 8 at least one assignment 
decreases t. 

By a path we mean here a possibly empty finite sequence of assignments. 
Sequential composition 71"1 ; 71"2 of paths 71"1 and 71"2 is lifted to sets II1 and 
II2 of paths by putting 

II1; II2 = {7r1i 71"2 I 71"1 E II1 and 71"2 E II2}. 

By c we denote the empty sequence. For any path 71" we have 7T; c = c; 71" = 
71". 

Definition Let 8 be a while-program. We define the path set of 8, 
denoted by path(8), by induction on the structure of 8: 

• path(skip) = {c}, 

• path(u := t) = {u := t}, 

• path(81; S2) = path(81); path(82), 

• path(if B then 81 else 82 fi) = path(81) U path(S2 ), 

• path(while B do S1 od) = {c}. 

D 

Thus, each path through Sis identified with the sequence of assignments 
lying on it. Note that in the last clause we take into account only the case 
when the loop is terminated immediately. This is sufficient for establishing 
condition (ii) above. 

We define the notion of a proof outline for total correctness as for par
tial correctness, except for the case of while-loops for which we use the 
following formation rule. 

Definition (Proof Outline II: while-loops) 

(1) {p /\ B} S* {p}, 
(2) {pre(R) /\ t = z} R {t::; z} for every 

assignment R within S, 
(3) for each path 1T E path(S) there exists 

an assignment R in 71" such that 
{pre(R) /\ t = z} R {t < z}, 

(4) p/\B->t>O 

{inv: p}{bd: t} while B do {p /\ B} S* {p} od {p /\ -iB} 
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where t is an integer expression and z is an integer variable not occurring 
in p, t, B or S*. Here {p /\ B} S* {p} is a proof outline for total correctness 
and pre(R) stands for the assertion preceding R in this proof outline. 
D 

The annotation {bd : t} represents the bound function of the loop while 
B do S od. With this new definition of a proof outline for total correctness, 
the Owicki-Gries method for verifying total correctness of parallel programs 
is correct. 

With this definition we can no longer justify the proof outlines for the 
component programs used in Section l. Indeed, along the path y := O; y := 
0 of the first loop body the proposed bound function x does not decrease. 

Observe that when the empty path€ is an element of path(S), we cannot 
verify premise (3) of the above rule. Thus it may happen that we can prove 
total correctness of a while-program using the while-rule but are unable 
to record this proof as a proof outline for total correctness. An example is 
the program 

b :=true; 
while b do 

if b then b := false else skip fi 
od 

whose termination can be easily established. This shows some limitations 
of the above approach to recording proofs of total correctness. 

However, various parallel programs can be successfully handled in this 
way. For example, the bound function given in the proof of termination 
of program Findpos in Owicki and Gries [2] satisfies the more stringent 
conditions (2)-( 4) given above. This provides a justification for their proof. 

Note We discovered, when attempting to prove its soundness, that the 
original version of the Owicki-Gries method for proving total correctness is 
incorrect. 
D 
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