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Abstract. The aim of the Alma project is the design of a strongly typed 
constraint programming language that combines the advantages of logic 
and imperative programming. 
The first stage of the project was the design and implementation of Alma-
0, a small programming language that provides a support for declarative 
programming within the imperative programming framework. It is ob
tained by extending a subset of Modula-2 by a small number of features 
inspired by the logic programming paradigm. 
In this paper we discuss the rationale for the design of Alma-0, the ben
efits of the resulting hybrid programming framework, and the current 
work on adding constraint processing capabilities to the language. In 
particular, we discuss the role of the logical and customary variables, the 
interaction between the constraint store and the program, and the need 
for lists. 

1 Introduction 

1.1 Background on Designing Programming Languages 

The design of programming languages is one of the most hotly debated topics 
in computer science. Such debates are often pretty chaotic because of the lack 
of universally approved criteria for evaluating programming languages. In fact, 
the success or failure of a language proposal often does not say much about 
the language itself but rather about such accompanying factors as: the quality 
and portability of the implementation, the possibility of linking the language 
with the currently reigning programming language standard (for instance, C), 
the existing support within the industry, presence of an attractive development 
environment, the availability on the most popular platforms, etc. 

The presence of these factors often blurs the situation because in evaluating 
a language proposal one often employs, usually implicitly, an argument that the 
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"market" will eventually pick up the best product. Such a reasoning would be 
correct if the market forces in computing were driven by the desire to improve 
the quality of programming. But from an economic point of view such aspects 
as compatibility and universal availability are far more important than quality. 

Having this in mind we would like to put the above factors in a proper per
spective and instead concentrate on the criteria that have been used in academia 
and which appeal directly to one of the primary purposes for which a program
ming language is created, namely, to support an implementation of the algo
rithms. In what follows we concentrate on the subject of "general purpose" 
programming languages, so the ones that are supposed to be used for developing 
software, and for teaching programming. 

Ever since Algol-60 it became clear that such programming languages should 
be "high-level" in that they should have a sufficiently rich repertoire of control 
structures. Ever since C and Pascal it became clear that such programming 
languages should also have a sufficiently rich repertoire of data structures. 

But even these seemingly obvious opinions are not universally accepted as 
can be witnessed by the continuing debate between the followers of imperative 
programming and of declarative programming. In fact, in logic programming 
languages, such as Prolog, a support for just one data type, the lists, is provided 
and the essence of declarative programming as embodied in logic and functional 
programming lies in not using assignment. 

Another two criteria often advanced in the academia are that the program
ming language should have a "simple" semantics and that the programs should 
be "easy" to write, read and verify. What is "simple" and what is "easy" is in 
the eyes of the beholder, but both criteria can be used to compare simplicity of 
various programming constructs and can be used for example to argue against 
the goto statement or pointers. 

In this paper we argue that these last two criteria can be realized by basing 
a programming language on first-order logic. The point is that first-order logic 
is a simple and elegant formalism with a clear semantics. From all introduced 
formalisms (apart from the propositional logic that is too simplistic for program
ming purposes) it is the one that we understand best, both in terms of its syntax 
and its semantics. Consequently, its use should facilitate program development, 
verification and understanding. 

One could argue that logic programming has realized this approach to com
puting as it is based on Horn clauses that are special types of first-order formu
las. However, in logic programming in its original setting computing (implicitly) 
takes place over the domain of terms. This domain is not sufficient for program
ming purposes. Therefore in Prolog, the most widely used logic programming 
language, programs are augmented with some support for arithmetic. This leads 
to a framework in which the logical basis is partly lost due to the possibility 
of errors. For instance, Prolog's assignment statement X is t yields a run-time 
error if t is not a ground arithmetic expression. 

This and other deficiencies of Prolog led to the rise of constraint logic pro
gramming languages that overcome some of Prolog's shortcomings. These pro-
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gramming languages depend in essential way on some features as the presence 
of constraint solvers (for example a package for linear programming) and con
straint propagation. So this extension of logic programming goes beyond first
order logic. 

It is also useful to reflect on other limitations of these two formalisms. Both 
logic programming and constraint logic programming languages rely heavily on 
recursion and the more elementary and easier to understand concept of iteration 
is not available as a primitive. Further, types are absent. They can be added to 
the logic programming paradigm and in fact a number of successful proposals 
have been made, see, e.g., [15]. But to our knowledge no successful proposal 
dealing with addition of types to constraint logic programs is available. 

Another, admittedly debatable, issue is assignment, shunned in logic pro
gramming and constraint logic programming because its use destroys the declara
tive interpretation of a program as a formula. However, we find that assignment 
is a useful construct. Some uses of it, such as recording the initial value of a 
variable or counting the number of bounded iterations, can be replaced by con
ceptually simpler constructs but some other uses of it such as for counting or for 
recording purposes are much less natural when simulated using logic formulas. 

1. 2 Design Decisions 

These considerations have led us to a design of a programming language Alma-0. 
The initial work on the design of this language was reported in [3]; the final 
description of the language, its implementation and semantics is presented in 
[2]. 

In a nutshell, Alma-0 has the following characteristics: 

it is an extension of a subset of Modula-2 that includes assignment, so it is 
a strongly typed imperative language; 
to record the initial value of a variable the equality can be used; 
it supports so-called "don't know" nondeterminism by providing a possibility 
of a creation of choice points and automatic backtracking; 
it provides two forms of bounded iterations. 

The last two features allow us to dispense with many uses of recursion that 
are in our opinion difficult to understand and to reason about. 

As we shall see, the resulting language proposal makes programming in an 
imperative style easier and it facilitates (possibly automated) program verifi
cation. Additionally, for several algorithmic problems the solutions offered by 
Alma-0 is substantially simpler than the one offered by the logic programming 
paradigm. 

The following simple example can help to understand what we mean by 
saying that Alma-0 is based on first-order logic and that some Alma-0 programs 
are simpler than their imperative and logic programming counterparts. 

Consider the procedure that tests whether an array a [ 1 .. n] is ordered. The 
customary way to write it in Modula-2 is: 
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i:= 1; 
ordered := TRUE; 
WHILE i < n AND ordered DO 

ordered:= ordered AND (a[i) <= a[i+1)); 
i := i+1 

END; 

In Alma-0 we can just write: 

ordered := FOR i:= 1 TO n-1 DO a[i] <= a[i+1) END 

This is much simpler and as efficient. In fact, this use of the FOR statement 
corresponds to the bounded universal quantification and the above one line pro
gram equals the problem specification. 

In the logic programming framework there are no arrays. But the related 
problem of finding whether a list Lis ordered is solved by the following program 
which is certainly more involved than the above one line of Alma-0 code: 

ordered([]). 
ordered ( [X] ) . 
ordered([X, Y I Xs]) X =< Y, ordered([YI Xs]). 

1.3 Towards an Imperative Constraint Programming Language 

In Alma-0 each variable is originally uninitialized and needs to be initialized 
before being used. Otherwise a run-time error arises. The use of uninitialized 
variables makes it possible to use a single program for a number of purposes, 
such as computing a solution, completing a partial solution, and testing a can
didate solution. On the other hand, it also provides a limitation on the resulting 
programming style as several first-order formulas, when translated to Alma-0 
syntax, yield programs that terminate in a run-time error. 

With the addition of constraints this complication would be overcome. The 
idea is that the constraints encountered during the program execution are moved 
to the constraint store and evaluated later, when more information is available. 
Then the above restriction that each variable has to be initialized before being 
used can be lifted, at least for the variables that are manipulated by means of 
constraints. Additionally, more programs can be written in a declarative way. In 
fact, as we shall see, an addition of constraints to Alma-0 leads to a very natural 
style of programming in which the constraint generation part of the program is 
often almost identical to the problem specification. 

Constraint programming in a nutshell consists of generating constraints (re
quirements) and solving them by general and domain specific methods. This 
approach to programming was successfully realized in a number of programming 
languages, notably constraint logic programming languages. 

Up to now, the most successful approach to imperative constraint program
ming is the object-oriented approach taken by ILOG Solver (see [16], [9]). In this 
system constraints and variables are treated as objects and are defined within 
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a C++ class library. Thanks to the class encapsulation mechanism and the op
erator overloading capability of C++, the user can see constraints almost as if 
they were a part of the language. A similar approach was independently taken 
in the NeMo+ programming environment of [18]. 

In our approach constraints are integrated into the imperative programming 
paradigm, as "first class citizens" of the language. The interaction between the 
constraint store and the program becomes then more transparent and concep
tually simpler and the resulting constraint programs are in our opinion more 
natural than their counterparts written in the constraint logic programming 
style or in the imperative languages augmented with constraint libraries. 

The reason for this in the case of constraint logic programming is that many 
uses of recursion and lists can be replaced by the more basic concepts of bounded 
iteration and arrays. In the case of the imperative languages with constraint li
braries, due to the absence of non-determinism in the language, failure situations 
(arising due to inconsistent constraints) must be dealt with explicitly by the pro
grammer, whereas in Alma-0 they are managed implicitly by the backtracking 
mechanism. 

When adding constraints to a strongly typed imperative programming lan
guage one needs to resolve a number of issues. First, constraints employ variables 
in the mathematical sense of the word (so unknowns) while the imperative pro
gramming paradigm is based on the computer science concept of a variable, so a 
known, but varying entity. We wish to separate between these two uses of vari
ables because we want to manipulate unknowns only by means of constraints 
imposed on them. This precludes the modelling of unknowns by means of unini
tialized variables since the latter can be modified by means of an assignment. 

Second, one needs to integrate the constraints in such a way that various 
features of the underlying language such as use of local and global declarations 
and of various parameter passing mechanisms retain their coherence. 

Additionally, one has to maintain the strong typing discipline according to 
which each variable has a type associated with it in such a way that throughout 
the program execution only values from its type can be assigned to the variable. 
Finally, one needs to provide an adequate support for search, one of the main 
aspects of constraint programming. 

So the situation is quite different than in the case of the logic programming 
framework. Namely, the logic programming paradigm is based on the notion 
of a variable in the mathematical sense (usually called in this context a logical 
variable). This greatly facilitates the addition of constraints and partly explains 
why the integration of constraints into logic programming such as in the case 
of CHIP (see [19]), Prolog III (see [4]) and CLP(R) (see [11]), to name just 
three examples, has been so smooth and elegant. Further, logic programming 
languages provide support for automatic backtracking. 

However, as already mentioned, in constraint logic programming languages 
types are not available. Moreover, there is a very limited support for scoping 
and only one parameter mechanism is available. 
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Let us return now to Alma-0. The language already provides a support for 
search by means of automatic backtracking. This support is further enhanced 
in our proposal by providing a built-in constraint propagation. In [2] we stated 
that our language proposal should be viewed as "an instance of a generic method 
for extending (essentially) any imperative programming language with facilities 
that encourage declarative programming." That is why we think that the pro
posal here discussed should be viewed not only as a suggestion how to integrate 
constraints into Alma-0, but more generally how to integrate constraints into 
any strongly typed imperative language. In fact, Alma-0 can be viewed as an 
intermediate stage in such an integration. 

The remainder of the paper is organized as follows. In Section 2 we sum
marize the new features of Alma-0 and in Section 3 we illustrate the resulting 
programming style by two examples. Then, in Section 4 we discuss the basics of 
our proposal for adding constraints to Alma-0 and in Section 5 we explain how 
constraints interact with procedures. In turn in Section 6 we discuss language 
extensions for expressing complex constraints and for facilitating search in pres
ence of constraints. Finally, in Section 7 we discuss related work and in Section 8 
we draw some conclusions and discuss the future work. 

2 A Short Overview of Alma-0 

Alma-0 is an extension of a subset of Modula-2 by nine new features inspired by 
the logic programming paradigm. We briefly recall most of them here and refer 
to [2] for a detailed presentation. 

- Boolean expressions can be used as statements and vice versa. This feature 
of Alma-0 is illustrated by the above one line program of Subsection 1.2. 
A boolean expression that is used as a statement and evaluates to FALSE is 
identified with a failure. 
Choice points can be created by the non-deterministic statements ORELSE 
and SOME. The former is a dual of the statement composition and the latter 
is a dual of the FOR statement. Upon failure the control returns to the most 
recent choice point, possibly within a procedure body, and the computation 
resumes with the next branch in the state in which the previous branch was 
entered. 

- The created choice points can be erased or iterated over by means of the 
COMMIT and FORALL statements. COMMIT S END removes the choice points 
created during the first successful execution of S. FORALL S DO T END iter
ates over all choice points created by S. Each time S succeeds, T is executed. 

- The notion of initialized variable is introduced: A variable is uninitialized 
until the first time a value is assigned to it; from that point on, it is initialized. 
The KNOWN relation tests whether a variable of a simple type is initialized. 

- The equality test is generalized to an assignment statement in case one side is 
an uninitialized variable and the other side an expression with known value. 
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In Alma-0 three types of parameter mechanisms are allowed: call by value, 
call by variable and call by mixed form. The first two are those of Pascal 
and Modula-2; the third one is an amalgamation of the first two (see [2)). 
Parameters passed by mixed form can be used both for testing and for com
puting. 

Let us summarize these features of Alma-0 by clarifying which of them are 
based on first-order logic. 

In the logical reading of the programming language constructs the program 
composition S; T is viewed as the conjunction S A T. A dual of ";", the EITHER 

S ORELSE T END statement, corresponds then to the disjunction S V T. 

Further, the FOR i: = s TO t DO S END statement is viewed as the bounded 
universal quantification, Yi E [s .. t J S, and its dual, the SOME i: = s TO t DO S 
END statement is viewed as the bounded existential quantification, :Ji E [s .. t] S. 

In turn, the FORALL S DO T END statement can be viewed as the restricted 
quantification \fx(S-+ T), where x are all the variables of S. 

Because the boolean expressions are identified with the statements, we can 
apply the negation connective, NOT, to the statements. Finally, the equality can 
be interpreted both as a test and as an one-time assignment, depending on 
whether the variable in question is initialized or not. 

3 Programming in Alma-0 

To illustrate the above features of Alma-0 and the resulting programming style 
we now consider two examples. 

3.1 The Frequency Assignment Problem 

The first problem we discuss is a combinatorial problem from telecommunication. 

Problem 1. Frequency Assignment ([7]). Given is a set of n cells, C := {c1, 
c2, ... , en} and a set of m frequencies (or ehannels) F := {f1, h, ... , fm}· An 
assignment is a function which assoeiates with each cell ci a frequeney Xi E 

F. The problem consists in finding an assignment that satisfies the following 
eonstraints. 

Separations: Given h and k we call the value d(f;,, fk) = I h - k I the dis
tance between two channels fh and fk. (The assumption is that consecutive 
frequencies lie one unit apart.) Given is an n x n non-negative integer sym
metric matrix S, called a separation matrix, such that each Sij represents 
the minimum distance between the frequencies assigned to the cells Ci and 
Cj. That is, for all i E [l..n] and j E [l..n] it holds that d(xi, Xj) ;:::: Sij. 

Illegal channels: Given is an n x m boolean matrix F such that if Fij = true, 
then the frequency fj cannot be assigned to the cell i, i. e., Xi i= f j. 
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Separation constraints prevent interference between cells which are located 
geographically close and which broadcast in each other's area of service. Illegal 
channels account for channels reserved for external uses (e.g., for military bases). 

The Alma-0 solution to this problem does not use an assignment and has 
a dual interpretation as a formula. We tested this program on various data. 
We assume here for simplicity that each Ci equals i and each fi equals i, so 
C = {1, ... ,n} and F = {1, ... ,m}. 

MODULE FrequencyAssigrunent; 
CONST N = 30; (• number of cells •) 

M = 27; (* number of frequencies •) 

TYPE SeparationMatrix =ARRAY [1 .. N],[1 .. N] OF INTEGER; 
IllegalFrequencies =ARRAY [1 .. N],[1 .. M] OF BOOLEAN; 
Assigrunent =ARRAY [1 .. N] OF [1 .. M]; (•solution vector•) 

VAR S: SeparationMatrix; 
F: IllegalFrequencies; 
A: Assignment; 
noSol: INTEGER; 

PROCEDURE AssignFrequencies(S: SeparationMatrix; F: IllegalFrequencies; 
VARA: Assignment); 

VAR i, j, k: INTEGER; 
BEGIN 

FOR i := 1 TO N DO 
SOME j := 1 TO M DO (• j is a candidate frequency for cell i *) 

NOT F[i,j]; 
FOR k := 1 TO i-1 DO 

abs(A[k] - j) >= S[k,i] 
END; 
A[i] = j 

END 
END 

END AssignFrequencies; 

BEGIN 
InitializeData(S,F); 
AssignFrequencies(S,F,A); 
PrintSolution(A) 

END FrequencyAssignment. 

The simple code of the procedures Ini tializeData and PrintSolution is 
omitted. The generalized equality A [i) = j serves here as an assignment and 
the SOME statement takes care of automatic backtracking in the search for the 
right frequency j. 

In the second part of the paper we shall discuss an alternative solution to 
this problem using constraints. 
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3.2 Job Shop Scheduling 

The second problem we discuss is a classical scheduling problem, namely the job 
shop scheduling problem. We refer to [5, page 242] for its precise description. 
Roughly speaking, the problem consists of scheduling over time a set of jobs, 
each consisting of a set of consecutive tasks, on a set of processors. 

The input data is represented by an array of jobs, each element of which is 
a record that stores the number of the tasks and the array of tasks. In turn, 
each task is represented by the machine it uses and by its length. The output is 
delivered as an integer matrix that (like a so-called Gantt chart) for each time 
point k and each processor p stores the job number that p is serving at the time 
point k. 

The constraint that each processor can perform only one job at a time is 
enforced by using generalized equality on the elements of the output matrix. 
More precisely, whenever job i requires processor j for a given time window 
[di, d2], the program attempts for some k to initialize the elements of the matrix 
(j, k + di), (j, k + di + 1), ... , (j, k + d2 ) to the value i. If this initialization 
succeeds, the program continues with the next task. Otherwise some element in 
this segment is already initialized, i.e., in this segment processor j is already 
used by another job. In this case the execution fails and through backtracking 
the next value for k is chosen. 

The constraint that the tasks of the same job must be executed in the pro
vided order and cannot overlap in time is enforced by the use of the variable 
min_start_time which, for each job, initially equals I and then is set to the end 
time of the last considered task of the job. To perform this update we exploit 
the fact that when the SOME statement is exited its index variable k equals the 
smallest value in the considered range for which the computation does not fail 
(as explained in [2]). 

We provide here the procedure that performs the scheduling. For the sake of 
brevity the rest of the program is omitted. 

TYPE 
Task Type 

Job Type 

= RECORD 
machine 
length 

END; 
= RECORD 

INTEGER; 
INTEGER; 

tasks INTEGER; 
task ARRAY. [1 .. MAX_TASKS] OF TaskType 

END; 
JobVectorType =ARRAY [1 .. MAX_JOBS] OF JobType; 
GanttType =ARRAY [1 .. MAX_MACHINES],[1 .. MAX_DEADLINE] OF INTEGER; 

PROCEDURE JobShopScheduling(VAR job: JobVectorType; deadline:INTEGER; 
jobs :INTEGER; VAR gantt: GanttType); 

VAR 
i, j' k, h 
min_start_time 

INTEGER; 
INTEGER; 
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BEGIN 

DO 

FOR i := 1 TO jobs DO 
min_start_time := 1; 
FOR j := 1 TO job[i] .tasks DO 

SOME k := min_start_time TO deadline - job[i] .task[j) .length + 1 

(* job i engages the processor needed for task j from time k to 

k + (length of task j) - 1. 
If the processor is already engaged, the program backtracks. 

FOR h := k TO k + job[i].task[j] .length - 1 DO 

gantt[job[i] .task[j].processor,h] = i; 
END 

END; 
min_start_time := k + job[i] .task[j] .length; 

END; 
END 

(* set the minimum start time for the next task 

to the end of the current task *) 

END JobShopScheduling; 

In this program the "don't know" nondeterminism provided by the use of 

the SOME statement is combined with the use of assignment. 

Furthermore, as already mentioned, for each value of i and j the equality 

gantt[job[i] .task[j] .processor,h] = i acts both as an assignment and as 

a test. 
The array gantt should be uninitialized when the procedure is called. At 

the end of the execution the variable gantt contains the first feasible schedule 

it finds. 
Preinitialized values can be used to enforce some preassignments of jobs to 

processors, or to impose a constraint that a processor is not available during 

some periods of time. For example, if processor 2 is not available at time 5, we 

just use the assignment gantt[2,5] := 0 (where 0 is a dummy value) before 

invoking the procedure JobShopSchedule. 
As an example, suppose we have 3 jobs, 3 processors (p1 , p 2 , and p3), the 

deadline is 20, and the jobs are composed as follows: 

task 1 task 2 task 3 task 4 

job tasks proc !en proc !en proc: Jen proc len 

1 4 Pi 5 p2 5 PJ 5 P2 3 

2 3 P2 6 Pi 6 p3 1 

3 4 p3 6 P2 4 Pi 4 P2 1 

The first solution (out of the existing 48) for the array gantt that the pro

gram finds is the following one, where the symbol ' - ' means that the value is 

uninitialized, i.e., the processor is idle in the corresponding time point. 

11111-222222-

222222111113333 

333333 1111 

3 3 
1 

1 2 

3 3 
1 1 
2 2 

3 

2 
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For some applications, it is necessary to make the schedule as short as pos
sible. To this aim, we can use the following program fragment. 

COMMIT 
SOME deadline := 1 TO max_deadline DO 

JobShopScheduling(JobVector,deadline,jobs,Gantt) 
END 

END 

It computes the shortest schedule by guessing, in ascending order, the first 
deadline that can be met by a feasible assignment. The use of the COMMIT state
ment ensures that once a solution is found, the alternatives, with larger deadline 
values, are discarded. 

4 Introducing Constraints 

In what follows we discuss a proposal for adding constraints to Alma-0. 
This Section is organized as follows. In Subsection 4.1 we discuss the addi

tion of constrained types and unknowns to the language and in Subsections 4.2 
and 4.3 we define the constraint store and illustrate its interaction with the 
program execution. 

To illustrate how the proposed addition of constraints to Alma-0 provides a 
better support for declarative programming we illustrate in Subsection 4.4 their 
use by means of three example programs. 

To simplify our considerations we ignore in this section the presence of pro
cedures. In particular, we assume for a while that all declarations are at one 
level. 

4.1 Adding Constrained Types, Unknowns and Constraints 

VVe start by adding a new kind of variables of simple types, called unknowns. 
This is done by using the qualifier CONSTRAINED in declarations of simple types, 

that is INTEGER, BOOLEAN, REAL, enumeration and subrange types. 

Definition 1. 

A type qualified with the keyword CONSTRAINED is called a constrained type. 
- A variable whose type is a constrained type is called an unknown. 

We shall see in Section 5 that this way of defining unknowns simplifies the 
treatment of parameter passing in presence of unknowns. From now on we dis
tinguish between variables and unknowns. In the discussion below we assume 
the following declarations. 

CONST N = 8; 

'TYPE Board = ARRAY [1 .. N] OF CONSTRAINED [1 .. N]; 
Colour= (blue, green, red, yellow); 
Info = RECORD 
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co: Colour; 
No: CONSTRAINED INTEGER; 

END; 
VAR i, j: INTEGER; 

a: ARRAY [1 .. N] of INTEGER; 
C: CONSTRAINED [1 .. N]; 
X, Y: Board; 
Z: Info; 

So a, i and j are variables while C is an unknown. In turn, X and Y are arrays 

of unknowns and Z is a record the first component of which is a variable and the 

second an unknown. 

Because of the syntax of Alma-0, boolean expressions can appear both in the 

position of a statement and inside a condition. 

Definition 2. A constraint is a boolean expression that involves some unknowns. 

We postulate that the unknowns can appear only within constraints or within 

the right hand side of an assignment. 

The values of unknowns are determined only by means of constraints that 

are placed on them. In particular, by the just introduced syntactic restriction, 

one cannot use assignment to assign a value to an unknown. So in presence 

of the above declarations the statements X [1] : = 0 and C : = 1 are illegal. In 

contrast, the constraints X[i] = 0 and C = 1 are legal. Further, the assignments 

i : = X [1] + X [2] and i : = Y [X [2]] are also legal statements. 

Initially each unknown has an undetermined value that belongs to the domain 

associated with the type. By placing constraints on an unknown its domain can 

shrink. The unknown continues to have an undetermined value until the domain 

gets reduced to a singleton. 

If the program control reaches an occurrence of an unknown outside of a 

constraint, so within the right hand side of an assignment, this unknown is 

evaluated. If its value is at this moment undetermined, this evaluation yields a 

run-time error. If the value is determined (that is, the domain is a singleton), 

then it is substituted for the occurrence of the unknown. So the occurrences of 

an unknown outside of a constraint are treated as usual variables. 

Note that during the program execution the domain of an unknown mono

tonically decreases with respect to the subset ordering. This is in stark contrast 

with the case of variables. Initially, the value of a variable of a simple type is 

not known but after the first assignment to it its value is determined though can 

non-monotonically change to any other value from its type. 

Intuitively, a program is viewed as an "engine" that generates constraints. 

These constraints are gradually solved by means of the constraint solving process 

that we shall explain now. 
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4.2 Adding the Constraint Store 

We now introduce the central notion of a constraint store. This is done in a 
similar way as in the constraint logic programming systems, though we need to 
take into account here the presence of variables and constants. 

Definition 3. We call a constraint C evaluated if each constant that occurs in 
it is replaced by its value and each variable (not unknown) that occurs in it is 
replaced by its current value. If some variable that occurs in C is uninitialized, 
we say that the evaluation of C yields an error. Otherwise we call the resulting 
boolean expression the evaluated form of C. 

So no variables occur in the evaluated form of a constraint. For technical 
reasons we also consider a false constraint, denoted by 1-, that can be generated 
only by a constraint solver to indicate contradiction. 

Definition 4. A constraint store, in short a store, is a set of evaluated forms 
of constraints. We say that an unknown is present in the store if it occurs in a 
constraint that belongs to the store. 

We call a store failed if 1- is present in it or if the domain of one of the un
knowns present in it is empty. By a solution to the store we mean an assignment 
of values from the current domains to all unknowns present in it. 

Further, we say that a constraint is solved if its evaluated form is satisfied 
by all combinations of values from the current domains of its unknowns. 

For example, in the program fragment 

i := 1; 
j ;; 2; 

x [i] <"' j; 
Y[X[i+2)] <> Y[N]; 

we have two constraints, X [i] <= j and Y [X [i +2]] <> Y [N]. Here X [1] <= 2 
is the evaluated form of the first one, while Y [X [3]] <> Y [8] is the evaluated 
form of the second one. If we deleted the assignment i : = 1 the evaluations of 
both constraints would yield an error. 

The notion of a failed store is a computationally tractable approximation of 
that of an inconsistent store, i.e., a store that has no solutions. Indeed, a failed 
store is inconsistent but an inconsistent store does not have to be failed: just 
consider X [1] = X [2] , X [1] < X [2]. 

4.3 Interaction Between the Program and the Constraint Store 

The program interacts with the store in the following two ways: 

- By adding to it the evaluated forms of the encountered constraints. If the 
evaluation of such a constraint yields an error, a run-time error arises. 
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By generating possible values for unknowns that are present in the store by 

means of some built-in primitives to be introduced in Subsection 6.2. 

The store is equipped with a number of procedures called constraint solvers. 

Their form depends on the applications. One or more of them can become ac

tivated upon addition of (an evaluated form of) a constraint to the store. An 

activation of constraint solvers, in the sequel called constraint solving, can re

duce the domains of the unknowns, determine the values of some unknowns by 

reducing the corresponding domains to singletons, delete some constraints that 

are solved, or discover that the store is failed, either by generating the false 

constraint .l or by reducing the domain of an unknown to the empty set. 

We assume that constraint solving is a further unspecified process that de

pending of application may be some form of constraint propagation or a decision 

procedure. We require that the result of constraint solving maintains equivalence, 

which means that the set of all solutions to the store does not change by applying 

to it constraint solvers. 
The store interacts with the program as follows. 

Definition 5. Upon addition of a constraint to the store, constraint solving 

takes place. 

If as a result of the constraint solving the store remains non-failed, the control 

returns to the program and the execution proceeds in the usual way. 

Otherwise the store becomes failed and a failure arises. This means that 

the control returns to the last choice point created in the program. Upon 

backtracking all the constraints added after· the last choice point are retracted 

and the values of the variables and the domains of the unknowns are restored 

to their values at the moment that the last choice point was created. 

This means that we extend the notion of failure, originally introduced in 

Section 2, to deal with the presence of the store. 

Note that constraints are interpreted in the same way independently of the 

fact whether they appear as a statement or inside a condition. For example, the 

following program fragment 

IF X[1] > 0 THEN S ELSE T END 

is executed as follows: The constraint X [1] > 0 is added to the store. If the 

store does not fail S is executed, otherwise T is executed. So we do not check 

whether X [1] > 0 is entailed by the store and execute S or T accordingly, as 

one might intuitively expect. This means that constraints are always interpreted 

as so-called tell operations in the store, and never as so-called ask operations, 

which check for entailment (see Section 8 for a discussion on this point). 

4.4 Examples 

To illustrate use of the introduced concepts we now consider three ex<1mples. We 

begin with the following classical problem. 
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Problem 2. Eight Queens. Place 8 queens on the chess board so that they do not 
attack each other. 

We present here a solution that uses constraints. We only write the part 
of the program that generates constraints. The code that actually solves the 
generated constraints would make use of the built-in INDOMAIN as explained in 
Subsection 6.2. 

CONST N = 8; 
TYPE Board= ARRAY [1 .. N] OF CONSTRAINED [1 .. N]; 
VAR i, j : [ 1. . N] ; 

X: Board; 

BEGIN 
FOR i := 1 TO N-1 DO 

FOR j := i+1 TD N DO 
x [i] <> x [j] ; 

X[i] <> X[j]+j-i; 

X[i] <> X[j]+i-j 

END 
END 

END; 

Each generated constraint is thus of the form X [i] <> X [j] or X [i] <> 
X [j] + k for some values i, j E [1 .. N] such that i < j and k being either the 
value of j-i or of i-j. 

Note that the above program text coincides with the problem formulation. 
Next, consider the following problem that deals with the equations arising 

when studying the flow of heat. 

Problem 8. Laplace Equations. Given is a two dimensional grid with given values 
for all the exterior points. The value of each interior points equals the average 
of the values of its four neighbours. Compute the value of all interior points. 

The solution using constraints again truly coincides with the problem spec
ification. It is conceptually much simpler than the solution based on constraint 
logic programming and given in [10]. 

TYPE Board= ARRAY [1 .. M], [1 .. N] OF CONSTRAINED REAL; 
VAR i: [1. .M]; 

j: [1. . N] ; 

X: Board; 

BEGIN 
FOR i := 2 TO M-1 DO 

FOR j := 2 TO N-1 DO 
X[i,j] = (X[i+1,j] + X[i-1,j] + X[i,j+1] + X[i,j-1])/4 

END 
END 

END; 
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We assume here that the constraint solver that deals with linear equations 
over reals is sufficiently powerful to solve the generated equations. 

Finally, we present a solution to the Frequency Assignment problem (Prob
lem 1) that uses constraints. Again, we only write the part of the program that 
generates constraints. We assume here that the variables S and F are properly 
initialized. 

TYPE SeparationMatrix =ARRAY [1 .. N],[1 .. N] OF INTEGER; 
IllegalFrequencies =ARRAY [1 .. N],[1 .. M] OF BOOLEAN; 
Assignment= ARRAY [1 .. N) OF CONSTRAINED [1 .. M]; 

VAR S: SeparationMatrix; 
F: IllegalFrequencies; 
X: Assignment; 
i, j: INTEGER; 

BEGIN 
FOR i := 1 TO N DO 

FOR j := 1 TO M DO 
IF F[i,j] THEN X[i] <> j END 

END 
END; 
FOR i := 1 TO N DO 

FOR j := 1 TO i-1 DO 
EITHER X[i] - X[j] >= S[i,j] 
ORELSE X[j] - X[i] >= S[i,j] 
END 

END 
END 

END; 

The use of the ORELSE statement creates here choice points to which the 
control can return if in the part of the program that deals with constraints 
solving a failed store is produced. 

Alternatively, one could use here a disjunction and replace the ORELSE state
ment by 

(X[i] - X[j] >= S[j,i]) OR (X[j] - X[i] >= S[j,i]). 

In this case no choice points are created but the problem of solving (disjunctive) 
constraints is now "relegated" to the store. 

The latter solution is preferred if the constraint solver in use is able to perform 
some form of preprocessing on disjunctive constraints, such as the constructive 
disjunction of [8]. On the other hand, the former solution allows the programmer 
to retain control upon the choice generated by the system. For example, she/he 
can associate different actions to the two branches of the ORELSE statement. 

It. is important to realize that the integration of constraints to Alma-0 as 
outlined in this section is possible only because the unknowns are initially unini
tialized. 
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5 Constraints and Procedures 

So far we explained how the program interacts with the store in absence of 
procedures. In Alma-0 one level (i.e., not nested) procedures are allowed. In 
presence of procedures we need to explain a number of issues. 

First, to keep matters simple, we disallow local unknowns. This means that 
the constrained types can be only introduced at the outer level. However, un
knowns can be used within the procedure bodies provided the restrictions intro
duced in Definition 2 are respected. 

Next, we need to explain how unknowns can be passed as parameters. Formal 
parameters of constrained types are considered as unknowns. This means that in 
the procedure body such formal parameters can occur only within the constraints 
or within the right hand side of an assignment. 

We discuss first call by variable. An unknown (or a compound variable con
taining an unknown) passed as an actual variable parameter is handled in the 
same way as the customary variables, by means of the usual reference mecha
nism. 

For example consider the following problem. 

Problem 4. Given is an array which assigns to each pixel on an M x N board a 
colour. A region is a maximal set of adjacent pixels that have the same colour. 
Determine the number of regions. 

To solve it we represent each pixel as a record, one field of which holds the 
colour of the pixel and the other is an unknown integer. Then we assign to 
each pixel a number in such a way that pixels in the same region get the same 
number. These assignments are performed by means of constraint solving. For 
instance, in the case of Figure l the constraint solving takes care that the value 
l is assigned to all but two pixels once it is assigned to the leftmost uppermost 
pixel. 

Fig. 1. Constraint Solving and Pixels 

To achieve this effect in the program below we assume that the constraint 
solving process is able to reduce the domain of y to {a} given the constraint 
x = y and the fact that the domain of x equals {a}. The program uses both 
constraints and an assignment. In addition, the program uses the built-in KNOWN 
that, when used on unknowns, checks whether the domain of the argument is a 
singleton. 
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TYPE Colour= (blue, green, red, yellow); 
Info = RECORD 

co: Colour; 
No: CONSTRAINED INTEGER; 

END; 
Board= ARRAY (1 .. M],[1 .. N] OF Info; 

PROCEDURE Region(VAR X: Board; VAR number: INTEGER); 
VAR i, j, k: INTEGER; 

BEGIN 
FOR i := 1 TD M DO 

FOR j := 1 TO N DO 
IF i <MAND X[i,j].co = X[i+1,j] .co 
THEN X[i,j] .No = X[i+1,j] .No 
END; 
IF j < N AND X[i,j].co = X[i,j+1] .co 
THEN X[i,j] .No = X[i,j+1] .No 
END 

END 
END; 
k := 0; 

FOR i := 1 TO M DO 
FOR j := 1 TO N DO 

IF NOT KNOWN(X[i,j] .No) 
THEN k := k+l; X[i,j] .No = k 
END 

END 
END; 
number = k 

END Region; 

Note that for any i in [1. . M] and j in [1 .. N], the record component 

X [i, j] . No is of a constrained type. Here the first double FOR statement gen

erates the constraints while the second double FOR statement solves them by 

assigning to the pixels that belong to the same region the same number. 

Due to the call by variable mechanism, the actual parameter correspond

ing the formal one, X, is modified by the procedure. In particular, the second 

component, No, of each array element is instantiated after the procedure call. 

Next, we explain the call by value mechanism in presence of unknowns. An 

unknown passed as an actual value parameter is treated as a customary variable: 

it is evaluated and its value is assigned to a local variable associated with the 

formal parameter. If the value of this unknown is at this moment undetermined, 

this evaluation yields a run-time error. This evaluation process also applies if a 

field or an element of a compound actual value parameter is an unknown. 
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6 Language Extensions 

In this section we discuss some built-in procedures of the proposed language 
that make it easier for the user to program with constraints. In particular, in 
Subsection 6.1 we discuss built-ins for stating constraints, and in Subsection 6.2 
we present built-ins for assigning values to unknowns. 

6.1 Built-ins for Expressing Constraints 

The practice of constraint programming requires inclusion in the programming 
language of a certain number of language built-ins that facilitate constraint 
formulation. 

For example, if we wish to state that the unknowns of the array X must have 
pairwise different values, we write 

ALL_DIFFERENT(X); 

This call results in a constraint which is equivalent to the set of all the 
corresponding constraints of the form X [i] <> X [j], for i E [1.. N-1] and j 
E [i+1.. N]. 1 

Similarly, if we wish to state that at most k among the unknowns belonging 
to the array X can have the value v, we write 

AT_MOST(k,X,v); 

This sort of built-ins on arrays are present in other imperative constraint 
languages. We do not list all of them here, but we envision their presence in the 
language. 

Such built-ins on arrays are the counterparts in imperative languages of the 
corresponding built-ins on lists provided by constraint logic programming sys
tems such as CHIP. These languages also support symbolic manipulation of 
terms which makes it easy to generate arithmetic constraints. The traditional 
imperative programming languages lack this power and exclusive reliance on 
arrays can lead to artificial and inefficient solutions. 

For example, suppose we are given an n x n matrix A of integer unknowns 
and we wish to state the constraint that the sum of the elements of the main 
diagonal must be equal to a given value b. A customary solution would involve 
resorting to an auxiliary array of unknowns in the following way: 

VARA: ARRAY [1 .. N], [1 .. N] OF CONSTRAINED INTEGER; 
V: ARRAY [1 .. N] OF CONSTRAINED INTEGER; 
b: INTEGER; 

V[1] = A[1,1]; 

1 In some systems, such a constraint is kept in its original form in order to exploit 
constraint propagation techniques that deal specifically with constraints of this kind, 
see [17]. 
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FOR i := 2 to N DO 
V (i] = A (i, i] + V (i-1) ; 

END; 
V(N] = b; 

This solution, which one would write for example in ILOG Solver, has the 
obvious drawback of creating N new unknowns for stating one single constraint. 

Therefore we propose the use of lists of unknowns (as done for example in the 
ICON programming language of [6] for the case of variables), identified by the 
keyword LIST, upon which constraints of various forms can be stated by means 
of built-ins. The above program fragment would then be replaced by 

VARA: ARRAY [1 .. N], [1 .. N] OF CONSTRAINED INTEGER; 
L: LIST OF CONSTRAINED INTEGER; 
b: INTEGER; 

Empty(L); 
FOR i := 1 to N DO 

Insert(L, A[i,i]) 
END; 
Sum(L, 1 =1 ,b); 

where Sum is a built-in with the expected meaning of constraining the sum of 
the unknowns in L to be equal to b. Once the constraint Sum(L, '=', b) has been 
added to the store, the variable L can be used again for a different purpose. Note 
that in this solution no additional unknowns are created. In order to obtain a 
similar behaviour in ILOG Solver one needs either to add a similar built-in to it 
or to make explicit use of pointers to objects representing unknowns. 

Consider now again the Frequency Assignment problem. We discuss here the 
formulation of an additional constraint for this problem which requires the use 
of lists. Suppose that we wish to state that in a particular region (i.e., a set of 
cells) a given frequency is used no more than a given number of times. 

This type of constraint is useful in real cases. In fact, in some situations even 
though the pairwise interference among cells is below a given threshold and no 
separation is required, the simultaneous use of a given frequency in many cells 
can create a interference phenomenon, called cumulative interference. 

The following procedure states the constraints for preventing cumulative in
terference in region R (where the type Region is an array of booleans representing 
a subset of the set of cells). Here max is the maximum number of cells in the 
region that can use the same frequency. 

PROCEDURE RegionConstraint(R: Region; max: INTEGER; VAR X: Assignment); 
VAR i, k: INTEGER; 

L: LIST OF CONSTRAINED [1 .. M]; 

BEGIN 
FOR k := 1 TO M DO 

Empty(L); 
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FOR i := 1 TO N DO 
IF R[i] THEN Insert(L,X[i]) END 

END; 
AT_MOST(max,L,k) 

END 
END RegionConstraint; 

6.2 Built-ins for Assigning Values 

In order to search for a solution of a set of constraints, values must be assigned to 
unknowns. We define the built-in procedure INDOMAIN which gets an unknown of 
a finite type (so BOOLEAN, enumeration or a subrange type) as a parameter, and 
assigns to it one among the elements of its domain. The procedure also creates 
a choice point and all other elements of the domain are successively assigned to 
the unknown upon backtracking. 

The choice of the value to assign to the unknown is taken by the system 
depending on the current state of the store, based on predefined value selection 
strategies. We do not discuss the issue of which are the best value selection 
strategies. We only assume that all consistent values are eventually generated, 
and that the choice point is erased after the last value has been generated. 

The procedure INDOMAIN can be also used on arrays and on lists. For example, 
the call INDOMAIN (A), where A is a matrix of integer unknowns, generates (upon 
backtracking) all possible assignments for all elements of A. 

The order of instantiation of the elements of A is taken care of by the store, 
which applies built-in strategies to optimize the retrieval of the first instantiation 
of the unknowns. As in the case of value selection, we do not discuss here the 
issue of the variable ordering. 

7 Related Work 

We concentrate here on the related work involving addition of constraints to 
imperative languages. For an overview of related work pertaining to the Alma-0 
language we refer the reader to [2]. 

As already mentioned in the introduction, the most successful imperative 
constraint language is the C++ library ILOG Solver [9]. The main difference 
between our proposal and ILOG Solver is that the latter is based on the conven
tional imperative language C++ and consequently it does not support automatic 
backtracking. Therefore the interaction with the store cannot be based on fail
ures issued by the store constraint solvers while evaluating the statements. In 
ILOG Solver such an interaction is always explicit, whereas in our proposal we 
aim at making it transparent to the user. 

We are aware of two other language proposals in which constraints are in
tegrated into an imperative language - the commercial language CHARME of 
[14] and 2LP of [13]. In each language some of the issues here discussed have 
been addressed, but not all of them. 
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More specifically, in CHARME unknowns (called logical variables) and linear 
constraints on them are allowed. The language supports use of Prolog-like terms, 
arrays and sequences of logical variables and a number of features (like demons 
and the element primitive, an equivalent of INDOMAIN) adopted from the CHIP 
language. Also, it provides a nondeterministic or statement and iterations over 
finite domains, arrays and sequences of logical variables. 

The C like syntax creates an impression that CHARME supports impera
tive programming. However, from the paper it is not clear whether it is actually 
the case. If it is, then it is not clear how the logical variables, constraints and 
nondeterministic statements interact with the usual features of the underlying 
imperative language. In particular, the use of logical variables outside of con
straints, the impact of backtracking on the assignment statements and the status 
of choice points created within procedure bodies is not explained (probably due 
to space limitations). CHARME does provide bidirectional connection with C. 

2LP was designed for linear programming applications. In 2LP unknowns 
(called continuous variables) are global. They vary over the real interval [O, +oo) 
and can be either simple ones or arrays. The only way these variables can be 
modified is by imposing linear constraints on them. Constraints can also appear 
in conditions. This leads to a conditional way of adding them to the store. 

Whenever a constraint is added to the store, its feasibility w .r. t. the old 
constraints is tested by means of an internal simplex-based algorithm. This al
gorithm maintains the current feasible region, which is a polyhedron, together 
with a witness point which is a distinguished vertex. 

The continuous variables can appear outside of the constraints as arguments 
of any procedure whose signature has a continuous variable, and as arguments to 
some predeclared functions like wp that returns the value of a witness point. In 
the latter case when a continuous variable is passed as a parameter, the witness 
point value is used. 

2LP provides the nondeterministic statements analogous to the ORELSE and 
SOME statements of Alma-0 and a limited form for the FORALL statement. Auto
matic backtracking over assignment and combination of continuous and custom
ary variables in compound variables is not supported. 

8 Conclusions and Future Work 

In this paper we discussed the programming language Alma-0 that integrates the 
imperative and logic programming paradigm and illustrated the resulting pro
gramming style by a number of examples. Alma-0 is based on first-order logic in 
the sense that it provides a computational interpretation for the standard connec
tives, so negation, disjunction and conjunction, and for various forms of quan
tification. In fact, many first-order formulas and their extensions by bounded 
quantifiers, sorts (i.e., types), and arrays, can be interpreted and executed as 
Alma-0 programs. The precise logical nature of this computational interpreta
tion of first-order logic was worked out in [l]. 
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Then we discussed a proposal how to integrate constraint programming fea
tures into the language. In this regard we believe that the use of an underlying 
language based on first-order logic, such as Alma-0, rather than a conventional 
imperative language, makes the integration of constraints more natural and con
ceptually simpler. 

We analyzed here a number of issues related to the proposed integration, such 
as the use of constrained types and the unknowns, interaction between the pro
gram and the constraint store, and the parameter passing mechanisms. Finally, 
we presented some examples that illustrate the resulting style of programming. 

In our future work we plan to extend the work carried out in [2] to the 
language proposal here outlined. More specifically, we envisage to 

- extend the executable, operational semantics based on the ASF +SDF Meta
Environment of [12]; 

- extend both the Alma-0 compiler and its underlying abstract machine AAA; 
implement a set of constraint solvers or provide an interface between the 
language and existing constraint solvers. 

The first item can be dealt with by adding to the executable semantics of 
Alma-0 given in [2] a few rules that formalize the interaction between the program 
and the store stipulated in Subsection 4.3. These rules are parameterized by the 
constraint solvers attached to the store. 

Regarding the last item, we plan to develop a simple solver for constraints 
over finite domains to be used for prototyping and testing purposes. We also 
plan to exploit more powerful external solvers already available for subsequent 
releases of the system. 

As already mentioned in Section 4.3, we do not allow so-called ask operations 
in the store. This is a deliberate design decision which allows us to keep the 
language design simple and the underlying execution model easy to implement. 

Nevertheless, in future versions of the language, we plan to investigate the 
possibility of equipping the store with an entailment procedure. This procedure 
should check whether an evaluated form of a constraint is logically implied (or 
entailed) by the store. Upon encounter of an ask constraint, the entailment 
procedure would check whether the evaluated form is entailed by the store. If it 
is the case, the constraint evaluates to TRUE. Otherwise the constraint evaluates 
to FALSE. We would require that the entailment procedure returns correct results 
but would not assume that it is complete. 

We did not deal here with some of the issues related to the design of the 
language. Specifically, we omitted discussion of 

a full set of built-ins, in particular the ones appropriate for constraint opti
mization, 
primitives for selecting variable and value selection strategies, 
the language support for the dynamic creation of unknowns. 

These can be taken care of in a systematic way and lead to a complete and 
rigorous definition of an imperative constraint programming language. 
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