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ABSTRACT
The classical fast Fourier transform (FFT) allows to compute
in quasi-linear time the product of two polynomials, in the
circular convolution ring R[x]/(xd− 1) — a task that naively
requires quadratic time. Equivalently, it allows to accelerate
matrix-vector products when the matrix is circulant.

In this work, we discover that the ideas of the FFT can be
applied to speed up the orthogonalization process of matrices
with circulant blocks of size d× d. We show that, when d is
composite, it is possible to proceed to the orthogonalization
in an inductive way —up to an appropriate re-indexation of
rows and columns. This leads to a structured Gram-Schmidt
decomposition. In turn, this structured Gram-Schmidt de-
composition accelerates a cornerstone lattice algorithm: the
nearest plane algorithm. The complexity of both algorithms
may be brought down to Θ(d log d).

Our results easily extend to cyclotomic rings, and can be
adapted to Gaussian samplers. This finds applications in
lattice-based cryptography, improving the performances of
trapdoor functions.

Keywords. Fast Fourier transform, Gram-Schmidt or-
thogonalization, nearest plane algorithm, lattice algorithms,
lattice trapdoor functions.

1. INTRODUCTION
When operations involving linear algebra are to be per-

formed over structured matrices, a natural problem is to
accelerate them by exploiting the structure. The most classi-
cal example is the fast Fourier transform [2, 8], which allows
to perform matrix-vector multiplication in quasilinear time
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when the matrix is circulant. This is achieved by exploiting
the isomorphism between the ring of d× d circulant matrices
and the circular convolution ring Rd = R[x]/(xd − 1).

A widely studied and more involved question is matrix
decomposition [20] for structured matrices, in particular
Gram-Schmidt orthgonalization (GSO). In this work, we are
interested in the GSO of circulant matrices, and more gener-
ally of matrices with circulant blocks. Our main motivation
is to accelerate lattice algorithms for lattices that admit a
basis with circulant blocks. This use case allows a helpful
extra degree of freedom: one may permute rows and columns
of the lattice basis since this leaves the generated lattice
unchanged —up to an isometry.

As we will show, a proper re-indexation of these matri-
ces highlights an inductive structure, with a fast Fourier
flavor. This leads to accelerations of the orthogonalization
process —and of the related nearest plane algorithm— down
to quasilinear time and space.

The Nearest Plane Algorithm, Lattices and
Cryptography
The nearest plane algorithm [1] is a central algorithm over
lattices. It allows, after precomputation of the GSO and
using a quadratic number of real operations, to find a rel-
atively close point in a lattice to an arbitrary target. It is
a core subroutine of LLL [13], and can be used for error
correction over analogical noisy channels. It has also found
applications in lattice-based cryptography as a decryption al-
gorithm, and a randomized variant (called discrete Gaussian
sampling) [11, 5] provides secure trapdoor functions based
on lattice problems. This leads to cryptosystems (attribute-
based encryption) with fine-grained access control, as [18, 6]
to name a few.

Given a basis B of a lattice L ⊂ Rd and a target vector c,
the nearest plane algorithm finds a lattice point somewhat
close to c. The result belongs to a fundamental domain
centered in c, whose shape is the cuboid defined by B̃, the
GSO of B (see Figure 1). This algorithm performs Θ(d2) real
operations. The GSO itself is required as a precomputation.

Structured lattices in cryptography.
When it comes to practical lattice-based cryptography, a

quadratic cost in the dimension is rather prohibitive consid-
ering the lattices at hand have dimensions ranging in the
hundreds, or even thousands. For efficiency purposes, many
cryptosystems (such as [10, 15, 16] to name a few) chose to
rely on lattices with some algebraic structure, improving time
and memory requirements to quasilinear in the dimension.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301635066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This is sometimes referred as lattice-based cryptography in
the ring setting. Technically, the chosen rings typically are
cyclotomic rings, but those are closely related to the convo-
lution rings discussed so far. The core of this optimization
is the fast Fourier transform (FFT) [2, 4, 8, 19] allowing
fast multiplication of polynomials. But this improvement
did not apply in the case of the nearest plane algorithm or
its randomized variant [11, 5]: näıve GSO do not take the
algebraic structure into account.

One possible work-around [9, 22] consist of using the round-
off algorithm [1] instead of the nearest-plane algorithm. How-
ever, this simpler algorithm outputs further vectors, both in
the average and worst cases, weakening those cryptosystems.

c c

Round-off Nearest plane

Figure 1: Round-off and nearest plane algorithms,
and their associated fundamental domains.

Our contribution
In this work, we discover new algorithms, obtained by cross-
ing Cooley-Tukey’s [2] fast Fourier transform algorithm to-
gether with the orthogonalization and nearest plane algo-
rithms (not exactly the GSO, but the closely related LDL? de-
composition). Precisely, we show that, up to a re-indexation
of rows and columns, the orthogonalization of matrices com-
posed of d× d-circulant blocks can be done in time Θ(d log d)
when the prime factors of d are bounded. Our algorithm pro-
duces the LDL? decomposition in a special compact format,
requiring Θ(d log d) complex numbers to represent.

From this compact representation, the nearest plane algo-
rithm can also be performed using Θ(d log d) real operations.1

As a demonstration of the simplicity of our algorithms, we
propose an implementation in python for d × d-circulant
matrices, when d is a power of 2.

Computational model and Parallelism.
Our algorithms and their complexity are described for

Random Access Machines with unitary arithmetic operations
on real numbers, i.e. we do not study the issue related to
floating-point approximations and numerical stability.

Regarding parallelism, we note that our Fast-Fourier LDL?

algorithm is almost fully parallelizable: viewed as an arith-
metic circuit on real numbers, it has depth O(log(n)) and
width O(n). This is unfortunately not the case of the Nearest
Plane algorithm nor our Fast-Fourier variant, for which the
n rounding steps are inherently sequential.

Techniques.
At the core of our techniques is the realization that repre-

senting elements of the convolution ringRd = R[x]/(xd−1) as
circulant matrices is not the appropriate choice. To allow an
induction similar to Cooley-Tukey’s FFT, our representation

1If the number n×m of d×d circulant blocks is not constant,
they contribute a factor O(n3) to the runtime of the fast-
Fourier LDL? algorithm, O(n2) to its output size, and O(n2)
to the run-time of the fast-Fourier nearest plane algorithm.

must follow the tower of rings R ⊂ Rd1 ⊂ · · · ⊂ Rdi−1 ⊂ Rd,
for some chain of divisors 1|d1| . . . |di−1|d.

Such a representation is obtained by applying the (mixed-
radix) digit-reversal order to the indexation of the rows and
column of the circulant blocks, as pictured in Figure 2.

We show that this alternative indexation allows to repre-
sent the matrix L of the GSO in a factorized form: a product
of Θ(log d) (sparse) structured matrices, each of which can
be stored in space O(d). An example is given in Figure 3.

Once this hidden structure is unveiled (Theorem 1), the al-
gorithmic implications follow quite naturally: one first easily
derive an algorithm in time O(n log2 n) —matching previous
and more general results [21]— but noting that the splitting
step may be performed directly in the Fourier domain al-
lows us to save another logn factor. For easier algorithmic
manipulations, the factorization of L is represented using a
tree.



0 1 2 3 4 5 6 7
7 0 1 2 3 4 5 6
6 7 0 1 2 3 4 5
5 6 7 0 1 2 3 4
4 5 6 7 0 1 2 3
3 4 5 6 7 0 1 2
2 3 4 5 6 7 0 1
1 2 3 4 5 6 7 0


⇒



0 2 4 6 1 3 5 7
6 0 2 4 7 1 3 5
4 6 0 2 5 7 1 3
2 4 6 0 3 5 7 1

7 1 3 5 0 2 4 6
5 7 1 3 6 0 2 4
3 5 7 1 4 6 0 2
1 3 5 7 2 4 6 0


C(a) C(M8/4(a))

⇒



0 4 2 6 1 5 3 7
4 0 6 2 5 1 7 3

6 2 0 4 7 3 1 5
2 6 4 0 3 7 5 1

7 3 1 5 0 4 2 6
3 7 5 1 4 0 6 2

5 1 7 3 6 2 0 4
1 5 3 7 2 6 4 0


C(M8/2(a)) = M8/1(a)

Figure 2: Re-indexing the transformation matrix of
f ∈ R8 7→ fx (a = 0 + x+ 2x2 + · · ·+ 7x7 ∈ R8) .
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Figure 3: Factorization of L in the LDL? decompo-
sition of M8/1(a), and its tree representation L.



Related Works.
There exist many works related to the orthogonalization of
structured bases. For Toeplitz matrices, Sweet [23] intro-
duced an algorithm faster than the naive orthogonalization
by a linear factor. Gragg [7] has shown that for Krylov bases
– which are bases of the form {b, r(b), ..., rd−1(b)} –, the
Levinson recursion [14, 3] allows, when r is an isometric
operator, to perform orthogonalization in time Θ(d2) instead
of Θ(d3).

There also exists superfast (running time O(n log2 n)) algo-
rithms for the orthogonalization of Toeplitz-like matrices, for
example by Olshevsky and Pan [21], and those are already
based on a structure-preserving induction. In this light, one
may interpret our result as a Fourier-compatible version of
these superfast algorithms.

The question of improving the nearest-plane algorithm for
structured matrices seems less studied. As far as we know,
the state of the art consist of a single result [17], applying the
Levinson recursion [14] to reduce by a linear factor its space
complexity. Alternatively, a work-around of lesser quality
was proposed for the NTRU signature scheme [9, 22].

Outline.
Section 2 introduces the mathematical tools that we will
use through this paper. Section 3 presents our main result,
namely the existence of a compact, factorized representation
for the GSO and LDL? decomposition, and gives a fast
Fourier flavored algorithm for computing it in this form.
This compact LDL? decomposition is further exploited in
Section 4, which presents a nearest plane algorithm that also
has an FFT flavor. Appendix A extends all our results from
convolution rings to cyclotomic rings, by reducing the latters
to the formers. Appendix B demonstrates the practical
feasibility of our algorithms by presenting a rather succinct
python implementations of them in the case where d is a
power of two. The full prototype implementation in python

—for d a power of 2— is also available online.2

2. PRELIMINARIES
For any ring R, R[x] will denote the ring of univariate poly-

nomials over R. Scalars (which includes elements of R) will
usually be noted in plain letters (such as a, b), vectors will be
noted in bold letters (such as a,b) and matrices will be noted
in capital bold letters (such as A,B). Vectors are mostly in
row notation, and as a consequence vector-matrix products
are done in this order unless stated otherwise. (a1, . . . , an) de-
notes the row vector formed of the ai’s, whereas [a1, . . . ,an]
denotes the matrix whose rows are the ai’s. N denotes the
set of non-negative integers, and N∗ the set N\{0}. For
i, j ∈ Z, Ji, jK will denote the set {i, i+ 1, . . . , j − 1, j}.

2.1 The Convolution Ring Rd

Definition 1. For any d ∈ N∗, let Rd denote the ring
R[x]/(xd − 1), also known as circular convolution ring, or
simply convolution ring.

When d is highly composite, elementary operations in Rd
can be performed in time Θ(d log d) using the fast Fourier
transform [2].

2https://github.com/lducas/ffo.py

We equip the ring Rd with a conjugation operation as well
as an inner product, making it an Hermitian inner product
space. The definitions that we give also encompass other
types of rings that will be used in Appendix A.

Definition 2. Let h ∈ R[x] be a monic polynomial with

distinct roots over C, R ∆
= R[x]/(h(x)) and a, b be arbitrary

elements of R.

• We note a? and call (Hermitian) adjoint of a the unique

element of R such that for any root ζ of h, a?(ζ) = a(ζ),
where · is the usual complex conjugation over C.

• The inner product over R is 〈a, b〉 ∆
=
∑
h(ζ)=0 a(ζ) ·b(ζ),

and the associated norm is ‖a‖ ∆
=
√
〈a, a〉.

In the particular case of convolution rings, one can check
that if a(x) =

∑d−1
i=0 aix

i ∈ Rd, then

a?(x) = a(1/x) mod (xd − 1) = a0 +

d−1∑
i=1

aix
d−i.

The (Hermitian) adjoint B? of a matrix B ∈ Rn×m is the
transpose of the coefficient-wise adjoint of B.

While the inner product 〈·, ·〉 (resp. the associated norm
‖ · ‖) is not to be mistaken with the canonical coefficient-wise
dot product 〈·, ·〉2 (resp. the associated norm ‖ · ‖2), they
are closely related. One can easily check that for any f =∑
i∈Zd

fix
i ∈ Rd, the vector (f(ζ)){ζd=1} can be obtained

from the coefficient vector (fi)06i<d by multiplying it by the
Vandermonde matrix Vd = (ζijd )06i,j<d, where ζd denotes
an arbitrary d-th primitive root of unity. The matrix Vd

satisfies VdV
?
d = d · Id and as an immediate consequence:

〈f, g〉 = d · 〈f, g〉2.

Definition 3. Let m > n and B = {b1, . . . ,bn} ∈ Rn×m.
We say that B is full-rank (or is a basis) if for any linear com-
bination

∑
16i6n aibi with ai ∈ R, we have the equivalence

(
∑
i aibi = 0)⇐⇒ (∀i, ai = 0).

We note that since R is generally not an integral domain,
a set formed of a single nonzero vector is not necessarily
full-rank. In the rest of the paper, a basis will either denote
a set of independent vectors {b1, . . .bn} ∈ (Rm)n, or the
full-rank matrix B ∈ Rn×m whose rows are the bi’s.

2.2 The GSO and LDL? Decomposition
In this section, R = R[x]/(h(x)) as in Definition 2. We

first recall a few standard definitions. A matrix L ∈ Rn×n
is unit lower triangular if it is lower triangular and has only
1’s on its diagonal.

We say that a self-adjoint matrix G ∈ Rn×n is full-rank
Gram (or FRG) if there exist m > n and a full-rank matrix
B ∈ Rn×m such that G = BB?. This generalizes the notion
of positive definiteness for symmetric real matrices.

We now recall the GSO and LDL? decomposition. The
GSO decomposes any full-rank matrix as the product of a
unit lower triangular matrix and an orthogonal matrix.

Proposition 1. Let B ∈ Rn×m be a full-rank matrix. B
can be uniquely decomposed as

B = L · B̃, (1)

where L is unit lower triangular, and the rows of B̃ are
pairwise orthogonal.



When R is replaced by R or a number field, Proposition 1
is standard. In our case, a proof can be found in Appendix C.

The LDL? decomposition writes any positive definite ma-
trix as a product LDL?, where L ∈ Rn×n is unit lower
triangular with 1’s on the diagonal, and D ∈ Rn×n is diago-
nal. It is related to the GSO as for a basis B, there exists a
unique GSO B = L · B̃ and for an FRG matrix G, there ex-
ists a unique LDL? decomposition G = LDL?. If G = BB?,
then G = L · (B̃B̃?) · L? is a valid LDL? decomposition of
G. As both decompositions are unique, the matrices L in
both cases are actually the same. In a nutshell:

L · B̃ is the GSO of B
⇔ L · (B̃B̃?) · L? is the LDL? decomposition of (BB?).

Algorithm 1 LDL?R(G)

Require: A full-rank Gram matrix G = (Gij) ∈ Rn×n.
Ensure: The decomposition G = LDL? over R, where L

is unit lower triangular and D is diagonal.
1: L,D← 0 n×n

2: for i from 1 to n do
3: Lii ← 1
4: Di ← Gii −

∑
j<i LijL

?
ijDj

5: for j from 1 to i− 1 do

6: Lij ← 1
Dj

(
Gij −

∑
k<j LikL

?
jkDk

)
7: end for
8: end for
9: return ((Lij),Diag(Di))

Algorithm 1 computes the LDL? decomposition. When R
is replaced by R, the decomposition is noted LDL? rather
than LDL? and it is well-known that it terminates without
encountering divisions by 0 . In our case, we prove that it
terminates correctly in Appendix C.

2.3 Babai’s Nearest Plane Algorithm
The nearest plane algorithm allows to find a lattice close

to an arbitrary target in the ambient vector space. Precisely,
it ensures that the difference between the target and the
output lies in the fundamental parallelepiped spanned by the
GSO B̃ of a given lattice basis B, as depicted on Figure 1.

Definition 4. Let B = {b1, . . . ,bn} be a real basis. We
call fundamental parallelepiped generated by B and note P(B)
the set

∑
16j6n

[
− 1

2
, 1

2

]
bj =

[
− 1

2
, 1

2

]n ·B.
Algorithm 2 NPR(t,L)

Require: The decomposition B = L · B̃ of B ∈ Rn×m, a
vector t ∈ Rn

Ensure: A vector z ∈ Zn such that (t− z)B ∈ P(B̃)
1: z← 0
2: for j = n, . . . , 1 do
3: t̄j ← tj +

∑
i>j(ti − zi)Lij

4: zj ← bt̄je
5: end for
6: return z

Proposition 2 (From [1, 13]). Algorithm 2 outputs an

integer vector z (zB ∈ L(B)) such that (t− z)B ∈ P(B̃).

2.4 Coefficient Vectors and Circulant Matri-
ces

Definition 5. We define linear maps c : Rmd → Rdm and
C : Rn×md → Rdn×dm as follows. For any a =

∑
i∈Zd

aix
i ∈

Rd where each ai ∈ R:
1. The coefficient vector of a is c(a) = (a0, . . . , ad−1).
2. The circulant matrix of a is

C(a)
∆
=

 a0 a1 · · · ad−1
ad−1 a0 · · · ad−2

. . .
. . .

. . .
. . .

a1 a2 . . . a0

 =


c(a)
c(xa)

...
c(xd−1a)

 ∈ Rd×d.

3. c and C generalize to vectors and matrices in a coefficient-
wise manner.

Proposition 3. The maps c and C satisfy the following
properties:

1. C is an injective algebra morphism. In particular,
C(a)C(b) = C(ab).

2. c(a)C(b) = c(ab).
3. C(a)? = C(a?).

Proposition 3, item 2 illustrates the following fact: the
maps c and C are complementary. Indeed, if we consider the
ordered R-basis B = {1, x, . . . , xd−1} of Rd, then c is the
map that writes any a ∈ Rd as its unique decomposition
according to B. Similarly, for the same basis, C(a) is the
transformation matrix of the injective map f ∈ Rd 7→ fa.
This is the intrinsic reason that makes Proposition 3, item 2
true.

In Section 2.5, we will define maps V,M which will be
complementary in the same way as c, C are.

2.5 Linearization Operators
In this section, we introduce two partial linearization oper-

ators, a vectorial one denoted by Vd/d′ (or V), and a matricial
one denoted by Md/d′ (or M).

They are very similar to c, C. Indeed, for any d′|d and
a ∈ Rd, Vd/d′(a) will write a as a vector of the Rd′ -module

Rd/d
′

d′ , and Md/d′(a) will be the matrix associated to the
injective map f ∈ Rd 7→ fa. They are in fact generalizations
of the maps from Section 2.4:

1. Rd may not only be seen as a d-dimensional R-vector
space, but also as a d/d′-dimensional Rd′ -module for
any d′|d.

2. When writing Rd as a d-dimensional R-vector space,
we will not use {1, x, . . . , xd−1} as our canonical basis,
but a permutation of this basis

Definition 6. Let d ∈ N∗ be a product of h (not neces-
sarily distinct) primes. Let gpd(d) denote the greatest proper
divisor of d. When clear from context, we also note h the
number of prime divisors of d (counted with multiplicity),

dh
∆
= d and for i ∈ J1, hK, di−1 gpd(di) and ki

∆
= di/di−1, so

that 1 = d0|d1| . . . |dh = d and
∏
j6i kj = di.

The di’s defined in Definition 6 form a tower of proper
divisors of d. For any composite d, there exist multiple
towers of proper divisors: per example , 1|6, 1|2|6 and 1|3|6
for d = 6. In this paper, each time we mention a tower of
proper divisors of d it will refer to the unique one induced
by Definition 6 (e.g. for d = 6, that tower is 1|3|6).



Definition 7. Let d, d′ ∈ N∗ such that d′ is in the tower
of proper divisors of d, and let k = d/d′. We denote by x the
indeterminate of the polynomial ring Rd = R[x]/(xd−1) and

by y = xk the indeterminate of Rd′ = R[y]/(yd
′
− 1). We

define the partial linearization Vd/d′ : Rmd → Rkmd′ recursively
as follows:

1. For d = d′ = 1, Vd/d′ is the identity.
2. For d′ = gpd(d) and a single element a ∈ Rd, let
a =

∑
i∈Zk

xiai(y) where ai ∈ Rd′ for each i. Then

Vd/d′(a)
∆
= (a0, . . . , ak−1).

In other words, Vd/d′(a) ∈ Rkd′ is the row vector whose
coefficients are the (ai)i∈Zk .

3. For a vector v ∈ Rmd , Vd/d′(v) ∈ Rkmd′ is the component-
wise applications of Vd/d′ .

4. For d′′|d′|d and any vector v ∈ Rmd ,

Vd/d′′(v)
∆
= Vd′/d′′ ◦ Vd/d′(v) ∈ R(d/d′′)m

d′′ .

When d is clear from context, we simply note Vd/d′ = V/d′ .

Interpretation.
In practice, an element a ∈ Rd is represented by a vector
of d real elements corresponding to the d coefficients of a.
In this context, the operator V simply permutes coefficients.
As highlighted by Figure 4, when d = 2h is a power of two,
Vd/1 permutes the coefficients according to the bit-reversal

order3, which appears in the radix-2 fast Fourier transform
(FFT). More generally, one can show that for an arbitrary d,
Vd/1 permutes the coefficient according to the general mixed-
radix digit reversal order, which appears in the mixed-radix
Cooley-Tukey FFT [2].

0 1 2 3 4 5 6 7 ⇒ 0 2 4 6 1 3 5 7
c(a) c(V/4(a))

⇒ 0 4 2 6 1 5 3 7
c(V/2(a)) = V/1(a)

Figure 4: Partial vectorial linearizations.

We now move to the matrix representation M compatible
with V.

Definition 8. Following the notations of Definition 7,
we define the operator Md/d′ : Rn×md →Rkn×kmd′ as follows:

1. For d = d′ = 1, Md/d′ is the identity.
2. For d′ = gpd(d), k = d/d′ and a single element a =∑

i∈Zk
xiai(y) where each ai ∈ Rd′ , Md/d′(a) is the

following matrix of ∈ Rk×kd′ :

 a0 a1 · · · ak−1
yak−1 a0 · · · ak−2

. . .
. . .

. . .
. . .

ya1 ya2 . . . a0

 =


Vd/d′(a)

Vd/d′(x
ka)

...
Vd/d′(x

(d′−1)ka)

 .
In particular, if d is prime, then Md/1(a) ∈ Rd×d is
exactly the circulant matrix C(a).

3. For a vector v ∈ Rmd or a matrix B ∈ Rn×md , Md/d′(v) ∈
Rk×kmd′ and Md/d′(B) ∈ Rkn×kmd′ are the component-
wise applications of Md/d′ .

3https://oeis.org/A030109

4. For d′′|d′|d and any element a ∈ Rd,

Md/d′′(a)
∆
= Md′/d′′ ◦Md/d′(a) ∈ R(d/d′′)×(d/d′′)

d′′ .

When d is clear from context, we simply note Md/d′ = M/d′ .

Interpretation.
As for the operator V, the steps of applying M are depicted
in Section 1 Figure 2. The linearization Md/d′(a) writes the
transformation matrix of the map f ∈ Rd 7→ fa using the
same basis as the partial linearization Vd/d′ . As a result,
both operators are compatible: ∀a, b ∈ Rd,Vd/d′(ab) =
Vd/d′(a) ·Md/d′(b). More properties follows.

Proposition 4. Let d ∈ N∗, a, b (resp. a,b, resp. A,B)
be arbitrary scalars (resp. vectors, resp. matrices) over Rd,

and d′|d. To be concise, we note V
∆
= Vd/d′ and M

∆
= Md/d′ .

The maps V and M satisfy the following properties:

1. M is an injective algebra morphism, and in particular:

M(A ·B) = M(A) ·M(B).

2. V is an injective linear map.

3. V(ab) = V(a) ·M(b).

4. V is an isometry:

〈V(a),V(b)〉2 = 〈a,b〉2.

5. B is full-rank if and only if M(B) is full-rank.

Since the proofs are rather straightforward to check from
the definitions, we defer them to Appendix D.

Computing V and M in the Fourier Domain.
The operators V and M that we defined can be computed
very efficiently when an element a ∈ Rd is represented by its
coefficients but also when represented in the Fourier domain.
In the first case, it is obvious that they can both be performed
in time Θ(d) as they (symbolically) permute coefficients of a.

If a is represented in FFT form —that is, by the vector
(a(ζid))i∈Zd in Cd— then computing Vd/d′(a) and Md/d′(a) in
FFT form can naively be done in time Θ(d log d) by comput-
ing its inverse FFT, permuting its coefficients, and computing
d/d′ FFT’s over Rd′ . However, it can be done in time Θ(d),
as it is a single step – also known as butterfly – of the origi-
nal fast Fourier transform. This is formalized in Lemma 1,
a reformulation of a simple lemma that is at the heart of
Cooley and Tukey’s FFT.

Lemma 1 ([2], adapted). Let d > 2, d′ = gpd(d) and

k = d/d′. Let V
∆
= Vd/d′ ,M

∆
= Md/d′ . For any a ∈ Rd (resp.

a ∈ V(Rd), resp. A ∈ M(Rd)):

• V(a), V−1(a), M−1(A) can be computed in FFT form
in time Θ(kd).

• M(a) can be computed in FFT form in time Θ(k2d).

Proof. Let a ∈ Rd be uniquely written a =
∑
i∈Zk

xiai(x
k),

where each ai ∈ Rd′ . Cooley and Tukey show in [2] (equa-
tions 7, 8) that we can switch from the FFT of a to the FFT
of all the ai’s (and conversely) in time Θ(kd). As the ai’s are
the coefficients of V(a) and M(a), the result follows.

In Sections 3 and 4, we will use the operators V and M to
speed up the orthogonalization and nearest plane algorithms.
The core idea is that these operators allow to “batch” orthog-
onalization operations, resulting in a Θ(d/ log(d)) speedup.



3. FAST FOURIER LDL DECOMPOSITION
This section presents our main result. We present the

existence of a compact representation in Section 3.1, and
then derive a fast algorithm to compute it in Section 3.2.

3.1 A Compact LDLF Decomposition

Theorem 1. Let d ∈ N and 1 = d0|d1| . . . |dh = d be a
tower of proper divisors of d. Let b ∈ Rmd such that Md/1(b)
is full-rank. There exists a GSO of Md/1(b) as follows:

Md/1(b) =

(
h−1∏
i=0

Mdi/1(Li)

)
· B̃0

where B̃0 ∈ Rd×dm is orthogonal, and each Li ∈ R(d/di)×(d/di)
di

is a block-diagonal matrix with unit lower triangular matrices

of R(di+1/di)×(di+1/di)

di
as its d/di+1 diagonal blocks.4

As an example, the matrix L of the GSO of M8/1(a) for
some a ∈ R8 is depicted in Section 1 Figure 3.

Proof. If d is prime, the theorem is trivial as it is exactly
the GSO. We suppose that d is composite and that the
theorem is true for any Ri with i < d. By Proposition 4,

item 5, the matrix Bh−1
∆
= Md/dh−1

(b) is full-rank too.
Using the classical GSO, we can therefore decompose it
as Bh−1 = Lh−1B̃, where Lh−1 ∈ Rkh×khdh−1

, B̃ ∈ Rkh×mkhdh−1

and kh
∆
= d/ gpd(d). Lh−1 is unit lower triangular and

B̃ is orthogonal. Noting B̃ = [b1, . . . ,bkh ], all the bj ’s
are pairwise orthogonal and each M/1(bj) is full-rank. By
inductive hypothesis, they can be decomposed as follows:

∀j ∈ J1, khK,Mdh−1/1(bj) =

(
h−2∏
i=0

Mdi/1(Li,j)

)
· B̃j , (2)

where each B̃j ∈ Rdh−1×mdh−1 is full-rank orthogonal and for

i < h−1, each Li,j ∈ R
(dh−1/di)×(dh−1/di)

di
is a block-diagonal

matrix with unit lower triangular matrices ofR(di+1/di)×(di+1/di)

di

as its dh−1/di+1 diagonal blocks. To be concise, we now note

M
∆
= Mdh−1/1 and V

∆
= Vdh−1/1. We have:

Md/1(b) = M(Lh−1) ·M(B̃h−1)
= M(Lh−1) ·M[b1, . . . ,bkh ]
= M(Lh−1) · [M(b1), . . . ,M(bkh)]

= M(Lh−1) ·Diag

(
h−2∏
i=0

Mdi/1(Li,j)

)
· B̃0

= M(Lh−1) ·
(
h−2∏
i=0

Mdi/1(Li)

)
· B̃0

=

(
h−1∏
i=0

Mdi/1(Li)

)
· B̃0,

where B̃0 = [B̃1, . . . , B̃kh ]. The first equality simply uses
the fact that M is a ring homomorphism (Proposition 4,
item 1). The second and third ones are immediate from the
definitions. The fourth one uses the inductive hypothesis

(equation 2) on each bj and take B̃0
∆
= [B̃1, . . . , B̃kh ]. In the

fifth equality, we take Li
∆
= Diag(Li,1, . . . ,Li,kh) and just

need to check that B̃0 and L are as stated by the theorem:

4Indexed products are to be read
∏k
i=0 αi = αkαk−1 · · ·α0.

• Since each Li,j is block diagonal with dh−1/di+1 unit
lower triangular diagonal blocks, Li is block diagonal
with kh(dh−1/di+1) = d/di+1 unit lower triangular
diagonal blocks.

• We also need to show that B̃0 is orthogonal. Each
submatrix B̃j of B̃0 is the orthogonalization of M(bj)
by induction hypothesis. Therefore, for two distinct
rows u,v of B̃0:

– If they belong to the same submatrix B̃j , they are
orthogonal by induction hypothesis.

– Suppose they belong to different submatrices: u ∈
B̃j ,v ∈ B̃` and j 6= `. Then u (resp. v) is a
linear combination of rows of M(bj) (resp. M(b`)):
v = aj ·M(bj) and v = a` ·M(bj) for some aj ,a`
in Rdh−1 . Noting aj = V−1(aj) and a` = V−1(a`):

〈u,v〉2 = 〈V(aj)M(bj),V(a`)M(b`)〉2
= 〈V(ajbj),V(a`b`)〉2
= 〈ajbj , a`b`〉2 = 0

Where the second equality comes from Proposi-
tion 4, item 3, the third one from the fact that V
is a scaled isometry (Proposition 4, item 4) and
the fourth one from bj ,b` being orthogonal.

Therefore B̃0 is orthogonal.

The theorem we stated gives the GSO of Md/1(b) for
a vector b ∈ Rmd , but can be easily generalized from a
vector b to a matrix B, and also yields a compact LDL?

decomposition.

Corollary 1. Let d ∈ N and 1 = d0|d1| . . . |dh = d be a
tower of proper divisors of d. Let B ∈ Rn×md be a full-rank
matrix. There exist h+ 1 matrices (Li)06i6h such that:

• Lh ∈ Rn×nd is unit lower triangular.

• For each i < h, Li ∈ Rn(d/di)×n(d/di)
di

is a block-

diagonal matrix whose n(d/di+1) diagonal blocks are

unit lower triangular matrices of R(di+1/di)×(di+1/di)

di
.

Furthermore, if we note L =
(∏h

i=0 Mdi/1(Li)
)

and

B̃0
∆
= L−1 ·Md/1(B), then:

1. The GSO of Md/1(B) is Md/1(B) = L · B̃0.

2. The LDL? decomposition of Md/1(BB?) is

Md/1(B) = L · (B̃0B̃
t
0) · Lt.

Proof. We have B = LhB
′, where Lh is given by ei-

ther the GSO or LDL? decomposition algorithm. B′ =
{b′1, . . . ,b′n} is orthogonal. Applying Theorem 1 to each
row vector b′j of B′ yields n decompositions (Li,j)06i<h

and n orthogonal matrices B̃j , each spanning the same

space as Bj
∆
= Md/1(b′j). Taking Li

∆
= Diag(Li,j) and

B̃0
∆
= [B̃1, . . . , B̃n] yields the GSO.

The LDL? decomposition is then given “for free” by its
equivalence with the GSO, and indeed, one can check that
since B̃0 is orthogonal, B̃0B̃

t
0 is diagonal.

Theorem 1 and Corollary 1 state that for any full-rank
matrix B ∈ Rn×md , the L matrix in the GSO (resp. LDL?

decomposition) of Md/1(B) (resp. Md/1(BB?)) can be repre-
sented in a factorized form, where each of the factors Li is a
sparse, block-diagonal matrix.



3.2 A Fast Algorithm for the Compact LDLF

Decomposition
Theorem 1 and Corollary 1 are constructive: more pre-

cisely, their proofs give a fast algorithm for computing a
compact factorized form of L quickly. Algorithm 3 computes
a compact LDL? decomposition in the form of the tree L,
which nodes are labeled by structured matrices of various
sizes. We note that this decomposition depends of the tower
of proper divisors chosen. Algorithm 3 uses the unique one
induced by Definition 6.

Algorithm 3 ffLDL?Rd(G)

Require: A full-rank Gram matrix G ∈ Rn×nd

Ensure: The compact LDL? decomposition of G in FFT form

1: (L,D)← LDL?Rd(G)
2: if d = 1 then
3: return (L,D)
4: end if
5: d′ ← gpd(d)
6: for i = 1, . . . , n do
7: Li ← ffLDL?Rd′ (Md/d′(Dii))
8: end for
9: return (L, (Li)16i6n)

Algorithm 3 computes a “fast Fourier LDL?”, instead of
the “fast Fourier GSO” hinted at in the proof of Corollary 1.
The reason why we favor this approach is because it allows
a complexity gain. This gain can already be observed in the
classic versions of the aforementioned algorithms. Indeed,
consider the L in the GSO of B ∈ R2×m

d , which is exactly the
L in the LDL? decomposition of BB? ∈ R2×2

d . Computing
it with the LDL? algorithm is then Θ(m) times faster than
with the Gram-Schmidt process. The same phenomenon
happens with their recursive variants.

Lemma 2. Let d ∈ N and 1 = d0|d1| . . . |dh = d be the
tower of proper divisors of d given by the successive gpd’s,

and for i ∈ J1, hK, let ki
∆
= di/di−1. Let G ∈ Rn×nd be a full-

rank Gram matrix. Then Algorithm 3 computes the LDL?

decomposition tree of G in FFT form in time

Θ(n2d log d) + Θ(n3d) + Θ(nd)
∑

16i6h

k2
i .

In particular, if all the ki are bounded by a small constant
k, then the complexity of Algorithm 3 is upper bounded by
Θ(n3d+ n2d log d).

The proof of Lemma 2 is left in Appendix E. We note that
Algorithm 3 is parallelizable to up to d processes: step 1
relies on operations on polynomials which are parallelizable
and all the iterations of step 7 are independent.

4. FAST FOURIER NEAREST PLANE
In this section, we show how to exploit further the compact

form of the LDL? decomposition to have a fast Fourier variant
of the nearest plane algorithm. It outputs vectors of the
same quality (ie as close to the target vector) as its classical

iterative counterpart Algorithm 2, but runs Θ̃(d) times faster.

Definition 9. Let Zd denote the ring Z[x]/(xd − 1) of
elements of Rd with integer coefficients.

Algorithm 4 ffNPRd(t,L)

Require: t ∈ Rnd , a precomputed tree L, (implicitly) a
matrix B ∈ Rn×md such that L is the compact LDL?

decomposition tree of BB?.
Ensure: z ∈ Znd such that V((z− t)B) ∈ P(B̃0), where B̃0

is the orthogonalization of M(B).
1: if d = 1 then
2: (L,D)← L
3: return NPR(L, t)
4: end if
5: (L, (Li)16j6n)← L
6: d′ ← gpd(d)
7: for j = n, . . . , 1 do
8: tj ← tj +

∑
i>j(ti − zi)Lij

9: zj ← V−1
d/d′

[
ffNPRd′ (Vd/d′(tj),Lj)

]
10: end for
11: return z = (zi, . . . , zn)

Lemma 3. Let B = {b1, . . . ,bn} ∈ Rn×md and B̃ =

{b̃1, . . . , b̃n} be its Gram-Schmidt orthogonalization in Rd.
The vectors z and t = (t1, . . . , tn) in Algorithm 4 satisfy

(z− t) ·B = (z− t) · B̃.

Proof. We recall that for each i ∈ J1, nK, b̃i = bi −∑
j<i Lijb̃j . We have:

(z− t) · B̃ =
∑

16j6n(zj − tj)b̃j

=
∑

16j6n

[
(zj − tj) +

∑
i>j Lij(zi − ti)

]
b̃j

=
∑

16i6j6n(zi − ti)Lijb̃j
=

∑
16i6n(zi − ti)bi

= (z− t) ·B.
(3)

The first and last equalities are trivial, the second one replaces
the tj ’s by their definitions, the third one just simplifies
the sum and the fourth one is another way of saying that
L · B̃ = B.

Theorem 2. Let M
∆
= Md/1 and V

∆
= Vd/1. Algorithm 4

outputs z ∈ Zn such that V((z− t)B) ∈ P(B̃0), where B̃0 is
the orthogonalization of M(B) over R.

Proof. The result is trivially true if d = 1. We prove
it in the general case. By definition, each subtree Lj is the

LDL? decomposition tree of Md/ gpd(d)(b̃j). By induction

hypothesis, we therefore know that V((zj − tj)b̃j) ∈ P(B̃j),

where B̃j is the orthogonalization of Bj
∆
= M(b̃j). From

Lemma 3, we have

(z− t)B =
∑

j=1,...,n

(zj − tj) · b̃j ,

so V((z− t)B) ∈ P([B̃1, . . . , B̃n]). Now, from the proof of

Corollary 1, we know that B̃0 = [B̃1, . . . , B̃n] is actually the
orthogonalization of M(B), which concludes the proof.



Coordinates of t to round
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1 1
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2 2
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R
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R

8

R

R

9 9

R

R

10 10

R

11
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12 12

NR NR

13 13

R

14

An ongoing execution of Algorithm 4 for a single t ∈ R8.

1. Arrows are labeled in their order of execution. Down-
ward (↓ ↓) (resp. upward (↑ ↑)) arrows correspond
to computing Vd/d′(tj) (resp. V−1

d/d′(. . . )) at step 9.

Transverse (y) arrows correspond to step 8.

2. Cells labeled with R (as in Rounded) correspond to
already completed subcalls of Algorithm 4, as opposed
to those labeled with NR (as in Not Rounded).

Figure 5: High-level execution of the fast Fourier
nearest plane algorithm

Unlike the fast Fourier transform, Algorithm 4 is not fully
parallelizable, due to step 8 (y arrows in Figure 5). However,
its complexity in d is Θ(d log d): informally, this is because
each arrow ↓, ↑ or y has a linear complexity in the size of
the cells it connects. A more precise statement follows.

Lemma 4. Let d ∈ N and 1 = d0|d1| . . . |dh = d be be the
tower of proper divisors of d given by the successive gpds,

and for i ∈ J1, hK, let ki
∆
= di/di−1. Let B ∈ Rn×md and L be

its LDL? decomposition tree. The complexity of Algorithm 4
is given by:

Θ(nd log d) + Θ(n2d) + Θ(nd)
∑

16i6h

k2
i .

In particular, if all the ki are bounded by a constant, then
the complexity of Algorithm 4 is Θ(n2d+ nd log d).

The proof of Lemma 4 is deferred to Appendix F.
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APPENDIX
A. EXTENDING THE RESULTS TO CYCLO-

TOMIC RINGS
In this section we argue that our results hold in the cy-

clotomic case as well. It turns out that all the previous
arguments can be made more general. The required ingredi-
ents are the following:

1. A tower of unitary rings endowed with inner products
onto R.

2. For any rings S,T of the tower, injective maps M′ :
S → T k×k and V′ : S → T k, with S of rank d over R,
and T of rank d/k over R.

3. M′ is a ring morphism.

4. V′ is a scaled linear isometry.

5. V′(ab) = M′(a)V′(b).

6. Computing V′, V′−1, M′ and M′−1 takes time Θ(dk).

It remains to prove the existence of such maps for towers
of cyclotomic rings. We give explicit constructions in this
section, using both our maps from the previous sections and
a generic embedding from cyclotomic rings Fd to convolution
rings Rd.

A.1 Cyclotomic Rings
We give brief reminders about cyclotomic polynomials and

rings. For d ∈ N∗, ζd denotes an arbitrary primitive d-th

root of unity in C, for example ζd = e
2iπ
d . Ωd = {ζkd |k ∈ Z×d }

denotes the set of primitive d-th roots of unity. Let

φd(x) =
∏
ζ∈Ωd

(x− ζ) =
∏
k∈Z×

d

(x− ζkd ).

This polynomial in Z[x] is called the d-th cyclotomic polyno-
mial. In addition, we define the polynomial ψd as follows:

ψd(x) =
∏

ζd=1,ζ /∈Ωd

(x− ζ) =
∏

k∈Zd\Z
×
d

(x− ζkd ).

It is immediate that for any d, the degree of φd is ϕ(d),

where ϕ(d)
∆
= |Z×d | is Euler’s totient function. One can also

check that φd(x) ·ψd(x) = xd−1. To conclude, let Fd denote
the cyclotomic ring R[x]/(φd(x)).

For additional documentation about cyclotomic polynomi-
als, rings and fields, the readers can refer to e.g. [12], Chapter
IV.

A.2 Embedding the Ring Fd in the Ring Rd
We now explicit an embedding of Fd into Rd.

Definition 10. Let ed be the unique element in Rd such
that ed = 1 mod φd and ed = 0 mod ψd. We define the
embedding ιd from Fd into Rd as follows:

ιd : Fd → Rd
f 7→ f · ed.

When clear from context, we simply note ι = ιd.

Equivalently, ι(f) is the only element in Rd satisfying:

ι(f)(ζ) =

{
f(ζ) if φd(ζ) = 0
0 if ψd(ζ) = 0

(4)

Proposition 5. Let d ∈ N∗ and ι = ιd. The embedding
ι:

1. is an injective ring morphism.

2. is an isometry : for any f, g ∈ Fd, 〈ι(f), ι(g)〉 = 〈f, g〉.

Proof. Item 1 follows from the fact that ed is idempotent
e2
d = ed. Indeed this implies that ed(a+ bc) = eda+ edbc =
eda+ e2

dbc = eda+ (edb)(edc). In addition, for any element
g ∈ ι(Fd), g mod φd is the unique antecedent of g with
respect to ι, so ι is bijective and ι−1(g) = g mod φd, which
proves the point 1. Item 2 follows from equation (4).

Lemma 5. Let d > 2, d′|d, k = d/d′ and a ∈ Rd. Then

(a ∈ ι(Fd))⇔ Vd/d′(a) ∈ ι(Fd′)k

Proof. We prove the lemma for d′ = gpd(d), extension
to the general case is straightforward. a can be uniquely
written as a =

∑
06i<k x

iai(x
k) where each ai ∈ Rd′ . Let ζd

be an arbitrary d-th primitive root of unity. We recall that

Ωd = {ζjd|j ∈ Z×d } and note Ud
∆
= {ζ ∈ C|ζd = 1} = {ζjd|j ∈

Zd}. One can check that

(ζ ∈ Ud\Ωd)⇔ (ζk ∈ Ud′\Ωd′), (5)

which is immediate by writing ζ = ζjd, with j ∈ Zd\Z×d . We

recall that evaluating a on each ζjd ∈ Ud yields the linear
system

a(ζjd) =
∑

06i<k

ζijd ai(ζ
kj
d ) =

∑
06i<k

ζijd ai(ζ
j
d′). (6)

As a step of the FFT (see Lemma 1), the system 6 is
invertible. In addition, one can check in equation 5 that if
ζ ∈ Ud\Ωd, then a(ζ) depends only of the ai(ζ

′) for ζ′ ∈
Ud′\Ωd′ . Similarly, if ζ ∈ Ωd, then a(ζ) depends only of the
ai(ζ

′) for ζ′ ∈ Ωd′ . So the linear system can be separated in

two independent systems. Noting a(E)
∆
= {a(e)|e ∈ E}:

[
a(Ωd) a(Ud\Ωd)

]
=[

(ai(Ωd′))06i<k (ai(Ud′\Ωd′))06i<k
] [ M1 0

0 M2

]
.

(7)

Since the whole system is invertible, both matrices M1 and
M2 are invertible too. We can conclude that a(Ud′\Ωd′) =

0d−ϕ(d) iff all the ai(Ud′\Ωd′)’s are zero too. This is equiva-
lent to saying that a ∈ ι(Fd) iff ∀i, ai ∈ ι(Fd′), which proves
the lemma.

A.3 Conclusion for Cyclotomic Rings
We now check that the 6 conditions enounced at the be-

ginning of Section A are verified. For d′|d, Fd′ and Fd′
are unitary rings endowed with the dot product defined in
Definition 2, which gives the condition 1. The embeddings
ιd trivialize the construction of maps M′ and V′ from Fd to
Fd′ :

V′ = ι−1
d′ ◦ Vd/d′ ◦ ιd M′ = ι−1

d′ ◦Md/d′ ◦ ιd.

This gives the condition 2. Lemma 5 allows to argue that
the image of Vd/d′ ◦ιd is in the definition domain of ι−1

d′ : V′ is
well defined, and similarly for M′. Conditions 3 and 5 follow
from the fact that ιd, ιd′ are ring morphisms and that similar



properties hold for Md/d′ and Vd/d′ . Condition 4 is true
because ιd, Vd/d′ and ιd′ are isometries. Finally, condition 6
holds in the FFT representation, from Lemma 1 and from the
fact that ι in the Fourier domain simply consist of inserting
some zeros at appropriate positions.

B. IMPLEMENTATION IN PYTHON
In this section, we give the core of the Python imple-

mentation of our algorithms when d is a power of 2. The
full implementation, including correctness tests, is available
online and placed in the public domain:

https://github.com/lducas/ffo.py.

Conventions.
In python.numpy, the arithmetic operations +, -, ? and

/ applied on arrays denote coefficient-wise operations. The
functions fft and its inverse ifft are built in. The symbol j
denotes the imaginary unit. The primitive zeros(d) creates
the d-dimensional zero vector.

# Simplified extract of ffo.py
from numpy import *

# Linearize operation V, i/o in fft format
def ffsplit(F):

d = len(F)
winv = exp(2j*pi / d)
Winv = array([winv**i for i in range(d/2)])
F1 = .5* (F[:d/2] + F[d/2:])
F2 = .5* (F[:d/2] - F[d/2:]) * Winv
return (F1,F2)

# Inverse linearize V^-1, i/o in fft format
def ffmerge(F1,F2):

d = 2*len(F1)
F = 0.j*zeros(d) # Force F to complex float
w = exp(-2j*pi / d)
W = array([w**i for i in range(d/2)])
F[:d/2] = F1 + W * F2
F[d/2:] = F1 - W * F2
return F

# ffLDL alg., i/o in fft format
# Outputs an L-Tree (sec 3.2)
def ffLDL(G):

d = len(G)
if d==1:

return (G,[])
(G1,G2) = ffsplit(G)
L = G2 / G1
D1 = G1
D2 = G1 - L * G1 * conjugate(L)
return (L, [ffLDL(D1),ffLDL(D2)] )

# ffLQ, i/o in fft format
# outputs an L-Tree (sec 3.2)
def ffLQ(f):

F = fft(f)
G = F*conjugate(F)
T = ffLDL(G)
return T

# ffNearestPlane, i/o in base B, fft format (sec. 4)
def ffBabai_aux(T,t):

if len(t)==1:
return array([round(t.real)])

(t1,t2) = ffsplit(t)
(L,[T1,T2]) = T
z2 = ffBabai_aux(T2,t2)
tb1 = t1 + (t2-z2) * conjugate(L)
z1 = ffBabai_aux(T1,tb1)
return ffmerge(z1,z2)

# ffNearestPlane, i/o in canonical base, coef. format
def ffBabai(f,T,c):

F = fft(f)
t = fft(c) / F
z = ffBabai_aux(T,t)
return ifft(z * F)

C. PROOF OF PROPOSITION 1
Proof. For any x,y ∈ Rm, let 〈x,y〉R

∆
= x ·y?. One can

check that 〈·, ·〉R is a Hermitian inner product. In particular,

(〈x,x〉R = 0)⇔ (〈x,x〉 = 0)⇔ (x = 0).

The decomposition B = L · B̃ can be computed using the
Gram-Schmidt process (Algorithm 5).

Algorithm 5 GramSchmidtR(B)

1: for i = 1, . . . , n do
2: b̃i ← bi
3: for j = 1, . . . , i− 1 do

4: Li,j =
〈bi,b̃j〉R
〈b̃j ,b̃j〉R

5: b̃i ← b̃i − Li,jb̃j
6: end for
7: end for
8: return (B̃ = {b̃1, . . . , b̃n},L = (Lij)16i,j6n)

If we replace R with R or a number field, it is well-known
that Algorithm 5 terminates whenever B is full-rank, and
outputs (B̃,L) satisfying equation 1. However, it is less
obvious in our case, since R is no longer a field and the
division by 〈b̃j , b̃j〉R in step 4 might be problematic.

To show that the output of Algorithm 5 satisfies equation 1
when R = R[x]/(h(x)), it suffices to show that for any

j ∈ J1, nK, 〈b̃j , b̃j〉R is invertible. Suppose that it is not the
case, then there exists j ∈ J1, nK, and a ∈ R\{0} such that

a〈b̃j , b̃j〉R = 0. By linearity, 〈ab̃j , ab̃j〉R = 0 and therefore

ab̃j = 0. Since b̃j = bj −
∑
i<j Li,jb̃j , this means that

there exists a nonzero linear combination
∑
i6j aibi equal

to zero. Therefore B is not full-rank, which contradicts the
hypothesis of Proposition 1.

Unicity of the decomposition follows from the unicity of
the orthogonal projection of a vector onto a R-module.

Our arguments seamlessly transfer to the termination of
Algorithm 1, as the elements Dj in Algorithm 1 are exactly

the elements 〈b̃j , b̃j〉R in Algorithm 5.

D. PROOF OF PROPOSITION 4
Proof. We show the properties separately:



1. We first prove this statement for d′ = gpd(d) and for
elements a, b ∈ Rd. All the requirements for show-
ing that M is a homomorphism are trivial, except for
the fact that it is multiplicative. First, one can check
from Definition 8 that M(ab) = M(a) · M(b). Let
A = (aij) ∈ Rn×pd and B = (bij) ∈ Rp×md . Since

AB
∆
= (
∑

16k6p aikbkj)16i6n,16j6m, we have

M(AB) = M

((∑
16k6p aikbkj

)
i,j

)
=

(∑
16k6p M(aik)M(bkj)

)
i,j

= M(A)M(B)

.

Multiplicity then seamlessly transfers to any d′′|d:

Md/d′′(A ·B) = Md′/d′′ ◦Md/d′(A ·B)
= Md′/d′′(Md/d′(A) ·Md/d′(B))
= Md′/d′′ ◦Md/d′(A) ·Md′/d′′ ◦Md/d′(B)
= Md/d′′(A) ·Md′/d′′(B).

To show injectivity, it suffices to see that if d′ = gpd(d),
then (Md/d′(a) = 0) ⇔ (a = 0). From the definition,
this property seamlessly transfers to any d′|d and any
matrix A.

2. This item is immediate from the definition.

3. It suffices to notice that for any a, V(a) is the first line
of M(a). As M is a multiplicative homomorphism, the
result follows.

4. It suffices to prove it for elements a, b ∈ Rd (instead
of vectors) and for d′ = gpd(d), the generalization to
vectors and to arbitrary values of d′ is then immediate.
Let a =

∑
i x

iai(x
gpd(d)), b =

∑
i x

ibi(x
gpd(d)), where

∀i, ai =
∑
j∈Zgpd(d)

ai,jx
j and bi =

∑
j∈Zgpd(d)

bi,jx
j .

Then

〈a, b〉2
∆
=
∑
i,j

〈ai,j , bi,j〉2 =
∑
i

〈ai, bi〉2
∆
= 〈V(a),V(b)〉2.

5. We have:

B full-rank⇔ ∀a,aB = 0 iff a = 0

⇔ ∀a,V(aB) = 0 iff V(a) = 0

⇔ ∀a′,V(a′)M(B) = 0 iff V(a′) = 0

⇔ ∀a′,a′M(B) = 0 iff a′ = 0

⇔ M(B) full-rank

The first and last equivalences are simply the definition,
the second and fourth uses the fact that V is a vector
space isomorphism and the third one uses Proposition 4,
item 3.

E. PROOF OF LEMMA 2
Proof. Let C(k, d) denote the complexity of Algorithm 3

over a matrix G ∈ Rk×kd . We have the following recursion
formula:

C(n, d) = Θ(n2d log d) + Θ(n3d) + Θ(dk2
h) + nC(kh, dh−1),

(8)
where the first term corresponds to computing the FFT of
the n2 coefficients of G, and the second term to performing

(L,D) ← LDLtRd(G) in FFT form. For each i ∈ J1, nK, we
know from Lemma 1 that Md/ gpd(d)(Dii) can be computed

in time Θ(dk2
h), hence the third term. The last one is for the

n recursive calls to itself. We then have

C(kh, dh−1) =
∑

16i6h

d
di

Θ(di−1k
3
i ) + d

d1
C(k1, d0)

= Θ(d)
∑

16i6h
k2
i ,

(9)

where the first equality is shown by induction using equa-
tion 8, except the first term Θ(n2d log d) which is no longer
relevant since we are already in the Fourier domain. Com-
bining equations 8 and 9, we conclude that the complexity
of the whole algorithm is

C(n, d) = Θ(n2d log d) + Θ(n3d) + nC(kh, dh−1)
= Θ(n2d log d) + Θ(n3d) + Θ(nd)

∑
16i6h

k2
i .

F. PROOF OF LEMMA 4
Proof. Let C(k, d) denote the complexity of Algorithm 4

over input t ∈ Rkd. We have this recursion formula:

C(n, d) = Θ(nd log d) + Θ(n2d) + Θ(ndk2
h) + nC(kh, dh−1),

where the first term corresponds to computing the FFT of the
n coefficients of t, the second term to performing computing
the tj ’s (step 8) in FFT form, the third one to the n calls
to V−1

d/ gpd(d),Md/ gpd(d) (see Lemma 1) and the fourth one to

the n recursive calls to itself. We have

C(kh, dh−1) =
∑

16i6h

d
di

Θ(di−1k
3
i ) + d

d1
C(k1, d0)

= Θ(d)
∑

16i6h
k2
i ,

(10)

where the equalities are obtained using the same reasoning
as in the proof of Lemma 2. Similarly, we can then conclude
that:

C(n, d) = Θ(nd log d) + Θ(n2d) + Θ(nd)
∑

16i6h
k2
i .


