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Abstract. The hardness of finding short vectors in ideals of cyclotomic num-
ber fields (Ideal-SVP) serves as the worst-case hypothesis underlying the se-
curity of numerous cryptographic schemes, including key-exchange, public-key
encryption and fully-homomorphic encryption. A series of recent works has
shown that, for large approximation factors, Principal Ideal-SVP is not as
hard as finding short vectors in general lattices. Namely, there exists a quan-
tum polynomial time algorithm for an approximation factor of exp(Õ(

√
n)),

even in the worst-case. Some schemes were broken, but more generally this
exposed an unexpected hardness gap between general lattices and some struc-
tured ones, and called into question the exact security of various assumption
over structured lattices.

In this work, we generalize the previous result to general ideals. We show
an efficient way of finding a close enough principal multiple of any ideal by
exploiting the classical theorem that, in our setting, the class-group is an-
nihilated by the (Galois-module action of) the so-called Stickelberger ideal.
Under some plausible number-theoretical hypothesis, we conclude that worst-
case Ideal-SVP in this same set-up — choice of ring, and approximation factor
exp(Õ(

√
n)) — is also solvable in quantum polynomial time.

Although it is not yet clear whether the security of further cryptosystems
is directly affected, we contribute novel ideas to the cryptanalysis of schemes
based on structured lattices. Moreover, our result shows a deepening of the
gap between general lattices and structured one.

1. Introduction

The problem of finding the shortest vector of a Euclidean lattice (the shortest
vector problem, or SVP) is a central hard problem in complexity theory. Approxi-
mated versions of this problem (approx-SVP) have become the theoretical founda-
tion for many cryptographic constructions thanks to the average-case to worst-case
reductions of Ajtai [Ajt99] — a classical reduction from approx-SVP to the Short
Integer Solution (SIS) problem — and Regev [Reg09] — a quantum reduction from
approx-SVP to Learning with Errors (LWE).

For efficiency reasons, it is tempting to rely on structured lattices, in particular
lattices arising as ideals or modules over certain rings, the earliest example being the
NTRUencrypt1 proposal from Hoffstein et al. [HPS98]. Later on, variations on

Date: September 8, 2016.
1Proposal which is not supported by a worst-case hardness argument, but a variant is [SS11].
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these foundations were also considered, namely the worst-case hardness of approx-
SVP in lattices that are ideals of a certain ring (Ideal-SVP). Under the worst-
case Ideal-SVP assumption were proven the average-case hardness of Ring-SIS and
Ring-LWE, two very versatile problems to build efficient cryptographic schemes
upon [Mic07, SSTX09, LPR13]. The typical choices of rings are the integer rings of
the cyclotomic number fields Q(ωm), of degree n = ϕ(m), where ωm is a primitive
m-th root of unity. This choice further ensures the hardness of the decisional version
of Ring-LWE under the same worst-case Ideal-SVP hardness assumption.

For some time, it was generally assumed that the structured versions of lattice
problems should be just as hard to solve as the unstructured ones: only some
(almost) linear-time advantages were known. This assumption was challenged by
a claim of Campbell et al. [CGS14]: a quantum polynomial-time attack against a
few schemes (Soliloquy, and the fully-homomorphic encryption scheme of [SV10]
and cryptographic multilinear maps [GGH13, LSS14], all using principal ideals).
Parts of this claim were quickly supported by numerical experiments [Sch15]. And
indeed, Biasse and Song [BS16] proved that the Principal Ideal Problem could be
efficiently solved using a quantum computer. In other words, given a principal ideal
one may recover an arbitrary generator in quantum polynomial time. Analyzing
the geometry of cyclotomic units, Cramer et al. [CDPR16] proved that from an
arbitrary generator, one could asymptotically recover a short one.

Whereas some cryptosystems were broken by this quantum attack, the current
limitations this approach to tackle more standard problems as Ring-LWE are three-
fold.

(i) First, it is restricted to principal ideals, while Ring-SIS and Ring-LWE rely
on worst-case hardness of SVP over general ideals.

(ii) Second, the approximation factor in the worst-case is asymptotically too
large to affect any actual Ring-LWE based schemes even for advanced
cryptosystems such as the state of the art fully homomorphic encryption
schemes [BV11, DM15].

(iii) Third, Ring-LWE is known to be at least as hard as Ideal-SVP but not
known to be equivalent.

But it does show an asymptotic gap between the search of mildly short vectors in
general lattices and in certain structured lattices (see Figure 1), and calls for a more
thorough study of the hardness assumption over structured lattices. In particular,
those three obstacles above require our urgent attention. This work addresses the
first of them.

1.1. Contribution. This work provides strong evidence that the general case of
Ideal-SVP is not harder than the principal case for large — yet non-trivial —
approximation factors. As a consequence, the approximation factors reachable in
quantum polynomial time appear to be significantly better in arbitrary ideals of
cyclotomic fields of prime-power conductor than known for general lattices.

The strategy consists in reducing the problem over general ideals to that over
principal ideals, for cyclotomic fields of prime-power conductor m. We show that
under some heuristic assumptions on the structure of the class group, it is possible
to solve the close principal multiple (CPM) problem in quantum polynomial time
for an interesting approximation factor. More precisely, the CPM problem consists
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eÕ(na)a = 0 a = 1/2 a = 1

poly(n) eΘ̃(
√

n) eΘ̃(n)

Time
eΘ̃(nt)

t = 0

t = 1/2

t = 1

poly(n)

eΘ̃(
√

n)

eΘ̃(n)

LLL
[LLL82]

BKZ
[Sch87, GN08]

In the general case, the best known algo-
rithms (BKZ [Sch87] and Slide [GN08]) run
in time exp(Θ̃(nt)) for an approximation
factor exp(Θ̃(na)), where t+ a = 1.

Worst-case SVP on principal ideal lattices
over Q(ωm)

E
nc

ry
pt

,
Si

gn
,

..
.

F
H

E
[B

V
11

]

A.f.
eΘ̃(na)a = 0 a = 1/2 a = 1

poly(n) eΘ̃(
√

n) eΘ̃(n)

Time
eΘ̃(nt)

t = 0

t = 1/2

t = 1

poly(n)

eΘ̃(
√

n)

eΘ̃(n)

Short Gen. Recov.
[CGS14, CDPR16, BS16]

BKZ

For principal ideals of cyclotomic rings (of
prime-power conductor), the aforemen-
tioned results give a quantum polynomial
runtime (i.e., t = 0) for any a ≥ 1/2.

Figure 1. Best known (quantum) Time–Approximation factor
tradeoffs to solve approx-SVP in arbitrary lattices (on the left)
and in principal ideal lattices (on the right), in the worst case.
Approximation factors used in cryptography are typically between
polynomial poly(n) and quasi-polynomial exp(polylog(n)).

in finding a principal ideal c ⊂ a for an arbitrary ideal a, such that the algebraic
norm of c is not much larger than the norm of a, say up to a factor exp(Õ(n1+c)).

Our main tool to solve CPM is the Stickelberger ideal, an object providing
explicit class relations between an ideal and its Galois conjugates. An important
fact is that this ideal has many short elements and that these can be explicitly
constructed (see for example [Sch10]). This leads to a quantum polynomial time
algorithm to solve CPM for a factor exp(Õ(n1+c)), where the constant c depends on
the structure of the class group. It remains to apply the short generator recovery
to c to find a short vector of a, approximating the shortest vector by a factor
exp(Õ(nmax(1/2,c))).

We follow the notations of Figure 1. If the exponent c can be made strictly less
than 1, this gives a non-trivial result compared to pure lattice algorithms [Sch87,
GN08]: we get t = 0 for any a ≥ max(1/2, c), and in particular a+ t < 1. If c can
be made less or equal to 1/2, then the asymptotic trade-offs for Ideal-SVP are as
good as the trade-offs for Principal-Ideal-SVP.

Concluding formally on which value of c can be achieved is not straightforward,
as it relies on the structure of the class group Cl−K as a Z[G]-module (see Section 2.2).
Based on computations of the class group structure of Schoof [Sch98] and a heuristic
argument, we strongly believe it is plausible that c = 1/2 is reachable at least for
a dense family of conductors m, if not all.

1.2. Impact, open questions and recommendations. To the best of our knowl-
edge, this new result does not immediately lead to an attack on any proposed
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scheme, since most of them are based on Ring-LWE and that obstacles (ii) and (iii)
remain. This leaves two crucial open cryptanalytic questions.

• The first question is whether the approximation factors in those attacks
can be improved, potentially increasing the running time. One could for
example consider many CPM solutions rather than just one, and hope that
one of them leads to a much shorter vector.

• The second is whether an oracle for Ideal-SVP (an approx-SVP oracle for
modules of rank 1) can be helpful to solve Ring-LWE, which can be for-
mulated as an “unusually-Short Vector Problem” over a module of rank 3.
The natural approach of generalizing LLL over other rings than Z [Nap96]
fails since only a few cyclotomic rings of small degree are Euclidean [LJ75].

Despite those two serious obstacles to attack Ring-LWE based schemes by the al-
gebraic approach developed in [CGS14, BS16, CDPR16] and in this paper, it seems
a reasonable precaution to start considering weaker structured lattice assumptions,
such as Module-LWE [LS15] (i.e., an “unusually-Short Vector Problem” in a mod-
ule of larger rank over a smaller ring), which provides an intermediate problem
between ring-LWE and general LWE.

It is also tempting to consider other rings, as done in [BCLvV16]. Yet, this pro-
posal surprisingly relies on the seemingly stronger NTRU assumption (“unusually-
Short Vector Problem” over modules of rank 2). In the current state of affairs [KF16],
there seems to be an asymptotic hardness gap between NTRU and Ring-LWE,
whatever the ring2, and down to quite small polynomial approximation factors.
Should the concrete security claims of [BCLvV16] not be directly affected, the
same reasonable precaution principle should favor weaker assumptions, involving
modules of a larger rank.

2. Overview

2.1. Notations and reminders. Throughout this paper, ωm is a primitive m-th
root of unity, and K = Q(ωm) is the m-th cyclotomic number field, for m a power
of a prime. It is a number field of degree n = ϕ(m) = Θ(m), G denotes its Galois
group over Q, while τ ∈ G denotes the complex conjugation. We recall that the
discriminant ∆K of K asymptotically satisfies log |∆K | = O(n logn).

2.1.1. Ideals as lattices. The field K is endowed with a canonical Hermitian vec-
tor space structure via its Minkowsky embedding. Explicitly, its inner product is
defined via the trace map Tr : K → Q by 〈a, b〉 = Tr(aτ(b)), and the associated
Euclidean norm is denoted ‖ · ‖ : a 7→ 〈a, b〉 = Tr(aτ(a)) .

The ring of integers of K is denoted OK = Z[ωm], and any ideal h of OK can be
viewed as a Euclidean lattice via the above inner-product. The algebraic norm of
an ideal h is written Nh. The volume of h as a lattice relates to its algebraic norm:
Vol(h) =

√
|∆K |Nh. The length λ1(h) of the shortest vector of h is essentially

determined by its algebraic norm:
1

poly(n)N(h)1/n ≤ λ1(h) ≤ poly(n)N(h)1/n.

2This actually seems to hold even without any commutative ring structure, i.e., when compar-
ing “matrix-NTRU” to regular LWE.
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The right inequality is an application of Minkowsky’s second theorem, while the
left one follows from the fact that the ideal vOK generated by the shortest vector
v of h is a multiple (a sub-ideal) of h, and that Vol(vOK) ≤ ‖v‖n.

2.1.2. Class group. The class group ClK = IK/PK of K is the quotient of the
(abelian) multiplicative group of fractional ideals IK by the subgroup of principal
ideals. We denote [h] the class of an ideal h inside ClK . The trivial class [OK ] is
the class of principal ideals. Given two ideals h and f, we write h ∼ f if they have
the same class. The class group is written multiplicatively.

The class number hK = |ClK | is the order of the class group. Loosely speaking,
the class group measures the lack of principality of the ring OK . In particular, the
class group is trivial (hK = 1) if and only if OK is a principal ideal domain. This
happens only for finitely many conductors m ≥ 1 and, more precisely, we know
that log hK = Θ(n logm) [Was12, Thm 4.20].

2.2. Overview. It has been shown [CGS14, BS16, CDPR16] (under reasonable
heuristics) that given an arbitrary principal ideal a ⊂ OK , one can recover in
quantum polynomial time an element g ∈ OK of a (which happens to be a generator,
i.e., a = gOK) such that ‖g‖ ≤ (Na)1/n · exp(Õ(n1/2)). We wish to reduce the
general case to the principal one.

2.2.1. The close principal multiple problem (CPM). To do so, a folklore approach
is to search for a reasonably close multiple c = ab of a that is principal; in other
words, one searches for a small integral ideal b such that b ∼ a−1. If such an ideal
b with norm less than exp(Õ(n1+c)) for some constant c > 0 is found, this implies,
by the aforementioned results, that one can find a generator g of c such that

‖g‖ ≤ (Nc)1/n · exp
(
Õ
(
n1/2

))
≤ (Na)1/n · (Nb)1/n · exp

(
Õ
(
n1/2

))
≤ (Na)1/n · exp

(
Õ
(
nmax(1/2,c)

))
.

Because g ∈ c ⊂ a, one has found a short vector of a, larger than the shortest vector
of a by a sub-exponential approximation factor exp(Õ(nmax(1/2,c))).

2.2.2. CPM as a close vector problem. Even before trying to solve this problem, one
may wonder if such a close principal multiple should exist in general. A positive
answer follows from the results of [JMV09, JW15]: setting a prime factor base
B = {p, Np ≤ n4+o(1)}, for any class C ∈ ClK , there exists a non-negative small
solution e ∈ ZB

≥0 to the class equation [
∏

pep ] = C, of `1-norm ‖e‖1 ≤ O(n1+o(1)).
This proves the existence of a solution b =

∏
pep to the CPM problem as small as

exp(Õ(n1+c)) for c = o(1).
The previous argument is based on the analysis of the expander properties of

certain Caley graphs on the class group. To achieve an algorithmic solution rather
than an existential one, we instead write the class group using lattices. If the factor
base B generates the whole class group, then one may rewrite ClK ' ZB/Λ where
Λ is the lattice of class relations: Λ = {e ∈ ZB, [

∏
pep ] = [OK ]}. In fact, it will be

enough to consider any full-rank sublattice Γ ⊂ Λ of class relations.
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The CPM problem can now be rephrased as a close vector problem: given a class
C = [a]−1 ∈ ClK , one first computes a representative of that class3 α ∈ ZB in base
B, and then searches for a close lattice vector β ∈ Γ. This provides a solution4

b =
∏

pβp−αp , of norm at most B‖β−α‖1 , where B is a bound such that Np ≤ B
for every p ∈ B. It is therefore sufficient to find an appropriate factor base together
with a good basis of the lattice of relations Γ to attack this problem.

2.2.3. The Stickelberger ideal: class relations for free. For this discussion, let us
assume for now that the class group can be generated by a single small ideal and
its conjugates: B = {pσ = σ(p), σ ∈ G} and Np = poly(n).

Stickelberger’s theorem will provide explicit class relations between any ideal h
and its conjugates. More precisely, consider the group ring Z[G], which naturally
acts on OK-ideals as follows:

hs =
∏
σ∈G

hsσ·σ =
∏
σ∈G

σ(h)sσ where s =
∑
σ∈G

sσ · σ ∈ Z[G].

Stickelberger gave an explicit construction of a Z[G]-ideal S ⊂ Z[G] that annihilates
the class group: hs ∼ OK (i.e., hs is principal) for any ideal h ⊂ OK and any element
s ∈ S. Forgetting the multiplicative structure of Z[G] directly gives a lattice of
class relations µ(S) ⊂ ZB by the canonical morphism of Z-modules µ : Z[G]→ ZB,
sending σ to the canonical vector 1pσ .

A technical issue is that the Stickelberger ideal is not of full rank in Z[G] as a
Z-module, so needs to be extended in order to serve as the lattice of relations Γ.
This can be resolved by working only with the minus part Cl−K of the class group,
i.e., the relative class group of K over the maximal real subfield K+, which is
annihilated by the augmented Stickelberger ideal S′ = S + (1 + τ)Z[G].

2.2.4. The geometry of the Stickelberger ideal. An important fact is that this ideal
has many short elements and that these can be explicitly constructed — this remark
is certainly not new, at least for prime conductors [Sch10]. Under our simplifying
assumption that B = {pσ, σ ∈ G} generates ClK , and the additional assumption
that the plus part of the class group ClK+ is trivial, this approach will allow to
solve the close multiple problem within a norm bound

exp
(
Õ
(
n3/2

))
.

2.2.5. Sufficient conditions. In the result sketched above, we made two simplifying
assumptions. First we assumed that the plus part ClK+ of the class group was
trivial. In fact, we can rather easily handle a non-trivial plus-part as long as
h+
K = |ClK+ | = poly(n), using rapid-mixing properties of some Cayley graphs on

ClK+ . And since h+
K is the class number of a totally real number field, it is actually

expected to be small: this assumption is already present in [CGS14, CDPR16],
and is supported by numerical evidences ([Was12, p. 420, Table 4], computed by
Schoof [Sch89]), and by reasoning around the Cohen-Lenstra heuristic [BPR04].

The second assumption that we know of a factor basis of the form B = {pσ =
σ(p), σ ∈ G} for a single ideal p of small norm Np = poly(n) can also be relaxed.

3Computing such a representative is a class group discrete logarithm problem, and is not
so straightforward. But it was recently proved that such problems can be solved in quantum
polynomial time [BS16], see Proposition 3.1.

4One notes that this solution is not integral as desired, yet getting rid of negative exponents
will be easy, at least in the relative class group Cl−K .
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We may allow a few primes and their conjugates in the factor basis. Assuming one
knows a set B = {pσi , σ ∈ G, i = 1, . . . , d}, (with Npi ≤ poly(n)) that generates
Cl−K , our approach leads to solving the close principal multiple problem within a
norm bound

exp
(
Õ
(
d(m) · n3/2

))
.

This leads to solving approximate Ideal-SVP with a better approximation factor
than pure lattice reduction for any class of conductors m ∈ Z such that one can
build a factor basis of size d(m) = Õ(na) for an a < 1/2.

Therefore, the crux of the matter is about how small of a factor basis B can be
built5. The structure of the class group Cl−K remains quite elusive, but it appears
that it admits a very small minimum number of generators as a Z[G]-module.
Schoof [Sch98] computed that for all prime conductors m ≤ 509, Cl−K is Z[G]-cyclic
(i.e., it is generated by a single element as a Z[G]-module). This property is more
than enough to argue that one can efficiently find a small generating set and reach
c = 1/2, when heuristically considering that classes of small random ideals behave
similarly to uniformly random classes. Even if the minimal number of generators
is not always 1 but still small, say O(nε) for some ε > 0, this argument allows to
reach c = 1/2 + ε.

3. Quantum algorithms for class groups

Searching for a principal multiple of the ideal a in OK will require to perform
computations in the class group in an efficient way. Classically, problems related to
class group computations remain difficult, and the best known classical algorithms
run in sub-exponential time (for example, see [BF14]). Yet, building on the recent
breakthrough on quantum algorithms for the Hidden Subgroup Problem in large
dimensions [EHKS14], Biasse and Song [BS16] introduced quantum algorithms to
perform S-unit group computations, class group computations, and to solve the
principal ideal problem (PIP) in quantum polynomial time. In particular, we derive
from their work a quantum polynomial time algorithm to solve the following class
group discrete logarithm problem: given a basis B of ideals generating a subgroup
of the class group ClK containing the class of a, express the class of a as a product
of ideals in B. More precisely:

Proposition 3.1 (Class group discrete logarithm, Corollary of [BS16, Theorem
1.1]). Let B be a set of prime ideals generating a subgroup H of ClK . There exists
a quantum algorithm ClDLB which, when given as input any ideal a in OK such
that [a] ∈ H, outputs a vector y = ClDLB(a) ∈ ZB such that

∏
pyp ∼ a, and runs

in polynomial time in n = deg(K), maxp∈B{log(Np)}, log(Na), and |B|.

Proof. The prime factorization a = qa1
1 . . . qakk can be obtained [EH10] in poly-

nomial time in n, log(∆K) and log(Na), by adapting Shor’s quantum factoring
algorithm [Sho97]. Let C = B ∪ {q1 . . . , qk}, and one can assume without loss of
generality that this union is disjoint. Let r = n1 + n2 − 1, where n1 is the number

5Note that, as a computational problem, this task is non-uniform. That is, it must be ran
once for each conductor m of interest, but does not need to be re-ran for each CPM instance in
OK . A proof of existence of such a factor basis would already have a consequence in a complexity
theoretic perspective. We however heuristically argue in Section 7 that a good basis can actually
be found efficiently.
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of real embeddings of K, and n2 is the number of pairs of complex embeddings.
Consider the homomorphism

ψ : ZB × Zk −→ ClK : ((ep)p∈B, (f1, . . . , fk)) 7−→

∏
p∈B

pep

 · [ d∏
i=1

qfii

]
.

As described in [BS16, Section 4], solving the C-unit problem provides a generat-
ing set of size c = r+ |B|+k for the kernel L of ψ. From [BS16, Theorem 1.1] such
a generating set {vi}ci=1 can be found by a quantum algorithm in time polynomial
in n, maxp∈C{log(Np)}, log(dK) and |C| = O(|B| + log(Na)). For each i, write
vi = ((wi,p)p∈B, (vi,1, . . . , vi,k)). Since [a] ∈ H and B generates H, the system of
equations {

∑c
j=1 xjvj,i = ai}ki=1 has a solution x ∈ Zc which can be computed in

polynomial time. We obtain

0 = ψ

(
c∑
i=1

xivi

)
=

∏
p∈B

p

∑
j
xjwj,p

 · [ d∏
i=1

q

∑
j
xjvj,i

i

]
=

∏
p∈B

p

∑
j
xjwj,p

 · [a].

Then, the output of ClDLB is y =
(
−
∑
j xjwj,p

)
p∈B

. �

4. Close multiple in the relative class group

Let K+ = Q(ωm + ω−1
m ) denote the maximal real subfield of K, and ClK+ the

class group of K+. The relative norm map NK/K+ : ClK → ClK+ on ideal classes
(which sends the class of a to the class of aaτ , where τ is the complex conjugation) is
a surjection, and its kernel is the relative class group Cl−K . In particular, it induces
the isomorphism ClK+ ∼= ClK/Cl−K .

The core of the method to find a close principal multiple of an ideal a will be
working within the relative class group Cl−K ⊂ ClK . Therefore, as a first step, we
need to “send” the ideal a ∈ ClK into this subgroup. More precisely, we want an
integral ideal b of small norm such that ab ∈ Cl−K ; the rest of the method will then
work with ab. Let hK = |ClK | be the class number of K, and h−K = |Cl−K | its
relative class number. The difficulty of this step is directly related to the index of
Cl−K inside ClK , which is the real class number h+

K = |ClK+ | of K+, and is expected
to be very small.

4.1. Random walks to the relative class group. For any x > 0, consider the
set Sx of ideals in OK of prime norm at most x, and let Sx be the multiset of
its image in ClK . Let Gx denote the induced Cayley (multi)graph Cay(ClK , Sx).
From [JW15, Corollary 6.5], for any ε > 0 there is a constant C and a bound

B = O
(
(n log ∆K)2+ε) = O

(
(n2 logn)2+ε)

such that any random walk in GB of length at least C log(hK)/ log log(∆K), for any
starting point, lands in the subgroup Cl−K with probability at least 1/(2h+

K).
A random walk of length ` = dC log(hK)/ log log(∆K)e is a sequence p1, ..., p` of

ideals chosen independently, uniformly at random in SB , and their product b =
∏

pi
has a norm bounded by

Nb =
∏̀
i=1

Npi ≤ B` = 2Õ(logh) = 2Õ(n),
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If [a] is the starting point of the random walk in the graph, the endpoint [ab] falls in
Cl−K with probability at least 1/(2h+

K), and therefore an ideal b such that [ab] ∈ Cl−K
can be found in probabilistic polynomial time in h+

K .

4.2. The real class number. The running time of this step relies on the real class
number h+

K being polynomial in n. The literature on h+
K provides strong theoretical

and computational evidence that it is indeed small enough. For any integer k, let
h+(k) be the class number of the maximal totally real subfield of the cyclotomic
field of conductor k. First, the authors of [BPR04] formulate and argue in favor of
the following conjecture, based on Cohen-Lenstra heuristics.

Conjecture 4.1 (Buhler, Pomerance, Robertson). For all but finitely many pairs
(`, e), where ` is a prime and e is a positive integer, we have h+(`e+1) = h+(`e).

Weber conjectured long ago the particular case that h+(2e) = 1 for all e. A direct
consequence is that for fixed ` and increasing e, h+(`e) is O(1). But h+(`) itself
is also small: in [Sch03], Schoof computed all the values of h+(`) for ` < 10, 000
(correct under heuristics of type Cohen-Lenstra, and Miller proved in [Mil15] that
it is correct under GRH at least for the primes ` ≤ 241). According to this table, for
75.3% of the primes ` < 10, 000 we have h+(`) = 1 (matching Schoof’s prediction
of 71.3% derived from the Cohen-Lenstra heuristics). All the non-trivial values
remain very small, as h+(`) ≤ ` for 99.75% of the primes.

5. Short relations in Cl−K via the Stickelberger ideal

Consider any ideal f of OK such that [f] ∈ Cl−K , and F = G(f) its orbit for the
action of the Galois group. Let R be the group ring Z[G]. It projects to ZF, via
the map sending σ to 1fσ . The goal of this section is to a explicit a lattice of
class relations in ZF with an explicit set of generators. Our main tool will be the
Stickelberger ideal. This will allow to reduce the representation of a given class
expressed in F, in Subsection 5.3

Recall that the Galois group G is canonically isomorphic to (Z/mZ)∗ via a 7→
σa = ζm 7→ ζam. In the following, the elements of (Z/mZ)∗ are canonically identified
with the positive integers 0 < a1 < a2 < · · · < an < m such that each ai is coprime
to m. The elements of G are indexed as (σa1 , . . . σan). Define the extra element
an+1 = m+ a1, and note that a2 ≤ 3 and that ai+1 − ai ≤ 2 for any i. The norms
‖ · ‖ and ‖ · ‖1 over R are defined via the isomorphism Z[G] ∼=Z Zn sending σai to
the i-th canonical vector.

The fractional part of a rational x ∈ Q is denoted {x}, it is defined as the only
rational in the interval [0, 1) such that {x} = x mod Z; equivalently, {x} = x−bxc.

5.1. The (augmented) Stickelberger ideal.

Definition 5.1 (The Stickelberger ideal). The Stickelberger element θ ∈ Q[G] is
defined as

θ =
∑

a∈(Z/mZ)∗

{ a
m

}
σ−1
a .

The Stickelberger ideal is defined as S = R∩ θR. We will refer to the Stickelberger
lattice when S is considered as a Z-module.

This ideal of R will provide some class relations in ZF, thanks to the following
theorem.
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Theorem 5.2 (Stickelberger’s theorem [Was12, Thm. 6.10]). The Stickelberger
ideal annihilates the ideal class group of K. In other words, for any ideal h of OK
and any s ∈ S, the ideal hs is principal.

We cannot directly use S ⊂ R as our lattice of class relations since it does
not have full rank in R as a Z-module (precisely its Z-rank is n/2 + 1). To solve
this issue, we will augment the Stickelberger ideal to a full-rank ideal which still
annihilates the minus part Cl−K of the class group.

Definition 5.3. The augmented Stickelberger ideal S′ is defined as

(1) S′ = S + (1 + τ)R.

We will refer to the augmented Stickelberger lattice when S′ is considered as a Z-
module.

Lemma 5.4. The augmented Stickelberger ideal S′ annihilates Cl−K . In other
words, for any ideal h of OK such that [h] ∈ Cl−K and any s ∈ S, the ideal hs
is principal. Moreover, S′ has full-rank n inside R as a Z-module.

Proof. For the annihilation property it suffices to show that both S and (1 + τ)R
annihilate Cl−K . By Stickelberger’s theorem S annihilates ClK so it in particular
annihilates the subgroup Cl−K ⊂ ClK . The ideal (1+τ)R also annihilates Cl−K since
h1+τ = hh̄ = NK/K+(h). We conclude from the fact that Cl−K is exactly the kernel
of the norm map NK/K+ : ClK → Cl+K .

For the rank, consider the ideal S− = S ∩ (1 − τ)R. A theorem from Iwasawa
(originally published in [Sin80] but reformulated more conveniently in [Was12, Thm.
6.19]) states that S− is full rank in (1−τ)R. Noting that 2R ⊂ (1−τ)R+(1+τ)R,
we conclude that S− + (1 + τ)R has full rank in R, and so does S′. �

5.2. Short generating vectors of the augmented Stickelberger lattice.

Lemma 5.5. The Stickelberger lattice is generated by the vectors vi = (ai − σai)θ
for i ∈ {2, . . . , n+ 1}.

Proof. This is almost Lemma 6.9 of [Was12]. There, S is considered as an ideal in
R, but the proof actually shows that these elements generate S as a Z-module. �

We are now ready to construct our set of short generators for S′. Let w2 = v2
and wi+1 = vi+1 − vi for i ∈ {2, . . . , n}, and let

W = {w2, . . . , wn+1} ∪ {(1 + τ)σ, σ ∈ G}.

Lemma 5.6. We have the following properties:
(1) W generates the augmented Stickelberger lattice S′,
(2) For any i ∈ {3 . . . n+ 1}, wi =

∑
b∈(Z/mZ)∗ εi,b · σ

−1
b , with εi,j ∈ {0, 1, 2},

(3) For any w ∈W , we have ‖w‖ ≤ max(2
√
n,
√

10).

Proof. We prove each item individually.
(1) First note that {w2, . . . , wn+1} generates S: this is a direct consequence of

Lemma 5.5 and the construction of W . By definition of R = Z[G], the set
{(1+ τ)σ, σ ∈ G} generates (1+ τ)R. One can conclude from the definition
of S′ = S + (1 + τ)R.
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(2) We follow the computation in the proof of [Was12, Lemma 6.9]:

vi = (ai − σai)θ =
∑

b∈(Z/mZ)∗

(
ai

{
b

m

}
−
{
aib

m

})
σ−1
b

=
∑

b∈(Z/mZ)∗

⌊
ai

{
b

m

}⌋
σ−1
b

using the identity x{y}−{xy} = bx{y}c for any integer x and real number
y, since this difference is an integer and the term {xy} is in the range [0, 1).
It remains to rewrite wi =

∑
b∈(Z/mZ)∗ εi,bσ

−1
b , where

εi,b =
⌊
ai+1

{
b

m

}⌋
−
⌊
ai

{
b

m

}⌋
≤ ai+1 − ai ≤ 2.

(3) The property follows from the previous item for any i > 2. For i = 2, we
have w2 = v2 = a2−σa2 , and therefore ‖w2‖ =

√
a2

2 + 1 ≤
√

32 + 1 =
√

10.
Finally, elements w ∈W of the form (1 + τ)σ have norm ‖w‖ = 2.

�

5.3. Reducing a class representative in an R-cycle of Cl−K . Using the gener-
ating set of short class relations above, we wish to reduce an arbitrary representative
α ∈ R of a class C ′ as [hα] to a small representation C ′ = [hβ ], for some small β ∈ R.
We shall rely on the following close vector algorithm.

Proposition 5.7 (Close vector algorithm). Let Γ ⊂ Rk be a lattice, and let W be
a set generating Γ. There exists a (classical) polynomial time algorithm CV, that
when given any y ∈ Γ⊗ R as input, outputs a vector x = CV(y,W ) ∈ Γ such that
‖x− y‖1 ≤ k

2 ·max{‖w‖ | w ∈W}.

Proof. Let first B ⊂ W be a basis of a full-rank sublattice Γ′ ⊂ Γ (this is easily
built in polynomial time). Let B̃ denote the Gram-Schmidt orthogonalization of B.
Let g = max{‖b̃‖ | b̃ ∈ B̃} ≤ max{‖b‖ | b ∈ B} ≤ max{‖w‖ | w ∈ w}. Applying the
Nearest Plane algorithm leads to x ∈ Γ such that x− y belongs to the fundamental
parallelepiped {B̃z, z ∈ [−1/2, 1/2]}. We then have

‖x− y‖2
2 ≤

1
4
∑
‖b̃i‖2.

In particular, ‖x− y‖2 ≤
√
k · g/2 and one concludes ‖x− y‖1 ≤ kg/2. �

Theorem 5.8. Assume n ≥ 3. There is an algorithm Reduce, that given α ∈ R,
finds in polynomial time in n and log(||α||), an element β = Reduce(α) ∈ R such
that ||β||1 ≤ n3/2, and Cα = Cβ for any C ∈ Cl−K .

Proof. LetW be the basis for the augmented Stickelberger ideal S′ as in Lemma 5.6.
From Lemma 5.4, it has full rank in R. So the close vector algorithm from
Proposition 5.7 can be applied to find an element γ = CV(α,W ) ∈ S′ such that
||α − γ||1 ≤ n

2 · max{‖w‖ | w ∈ W} ≤ n3/2. Let β = α − γ. For any C ∈ Cl−K ,
Lemma 5.4 implies that Cγ = 0 and therefore Cα = Cβ . �
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6. Close principal multiple within the relative class group

For this section, suppose the ideal a is in the relative class group Cl−K . We are
looking for an integral ideal b in OK of small norm such that ab is principal.

Let B be a set of prime ideals of OK generating Cl−K . Consider the morphism

φ : ZB −→ IK : (xp)p∈B 7−→
∏
p∈B

pxp ,

where IK is the group of fractional ideals in OK . Let P = {p1, . . . , pd} be the set
of rational primes below the primes of B. We will show in Subsection 7 that these
generators can be chosen such that Np = poly(n). We obviously have d ≤ |B| =
O(n), but much better bounds will be discussed in Subsection 7.

Algorithm 1 Close principal multiple in the relative class group: CPM−

Require: An ideal a in OK such that [a] ∈ Cl−K
Ensure: An (integral) ideal b in OK such that ab ∼ OK and Nb = exp

(
Õ
(
dn3/2))

1: y← ClDLB(a)
2: for i = 1 to d do
3: αi ←

∑
σ∈Gi y(pσ

i
)σ ∈ Z[G]

4: βi ← Reduce(αi)
5: (γ+

i , γ
−
i )← the pair of elements in Z[G] with only positive coefficients, such

that γ+
i − γ

−
i = −βi

6: bi ← p
γ+
i

+τγ−
i

i

7: end for
8: b←

∏d
i=1 bi

9: return b

Theorem 6.1. Algorithm 1, CPM−, runs in quantum polynomial time in n =
deg(K) and log(Na), and is correct.

Proof. The running time follows immediately from Proposition 3.1, Theorem 5.8,
and the fact that d is polynomially bounded in n. Let us now prove the correctness.
We have

φ(y) =
∏
p∈B

pyp =
d∏
i=1

∏
p∈Bi

pyp =
d∏
i=1

∏
σ∈Gi

(pσi )y(pσ
i

) =
d∏
i=1

pαii .

Observe that for each i, bi ∼ p−βii , since p−1
i ∼ pτi . From Theorem 5.8, we obtain

pαii bi ∼ OK , which implies that φ(y)b ∼
∏d
i=1 p

αi
i bi ∼ OK . From Proposition 3.1,

we have φ(y) ∼ a, and therefore ab ∼ OK .
Now, Theorem 5.8 ensures that ||β||1 ≤ n3/2. So ||γ+

i ||1 + ||γ−i ||1 is bounded by
n3/2 and we obtain that Nbi ≤ (Npi)n

3/2 . Then,

Nb =
d∏
i=1

Nbi ≤
(

max
i=1...d

Npi

)2dn3/2

= exp
(
Õ
(
dn3/2)) ,

where the last inequality uses the fact that each Npi is polynomially bounded in n.
�
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7. Good generating sets for the relative class group

The norm of the ideal b found by Algorithm 1 is bounded by exp
(
Õ
(
dn3/2)),

where d is the number of distinct rational primes below the prime ideals in the basis
B of ClK . To optimize the quality of b, we are thereby interested in finding a basis
with a small value of d. We will provide heuristic arguments and computational
evidence that B can be chosen so that d is polylogarithmic in n.

From [JW15, Corollary 6.5], for any subgroup H of the class group ClK , and any
constant ε > 0, there is a bound BH = O

(
[ClK : H]n log ∆K)2+ε) such that H is

generated by classes of ideals of OK of prime norm bounded by BH . In particular,
Cl−K is generated by ideals of prime norm bounded by

B := BCl−
K

= O
((
h+
Kn log ∆K

)2+ε
)

= O
((
h+
Kn

2 logn
)2+ε

)
,

where h+
K = |ClK+ | is the class number of K+. Let G be the set of all prime ideals

whose classes are in Cl−K and norms are primes bounded by B. It is a generating
set for Cl−K , but its ideals have too many distinct prime norms to be practical. It
is not hard to see that one can find a subset of G of size dmax generating Cl−K as a
group, where dmax is the number of components in the primary decomposition of
Cl−K . This number dmax is expected to be small, but obtaining provable bounds is
a difficult problem. A first approximation comes from the fact that dmax ≤ d′max,
where d′max is the number of prime factors of h−K counted with multiplicity. The
factorizations of the first values of h−K can be found in [Was12, Table 3]. To find
a much smaller set of generators, we will take a more powerful approach using the
Z[G]-module structure of Cl−K .

7.1. Generating Cl−K with random classes. Observe that if a set of ideals C

generates Cl−K as a Z[G]-module, then one can choose B = {hσ | h ∈ C, σ ∈ G}
as a generating set, and obtain d = |C|. Moreover, the minimal number r of Z[G]-
generators of Cl−K is expected to be very small, so one should be able to find very
small generating sets C. More precisely, Schoof [Sch98] proved that Cl−K is Z[G]-
cyclic for every prime conductor m ≤ 509, i.e., r = 1. This cyclicity could be
expected to be the typical behavior asymptotically, but more loosely, we make the
assumption that r is bounded by polylog(n). Considering that r is small, we can
heuristically find a small generating set C by randomly taking ideals of small norm,
thanks to the following proposition.

Proposition 7.1. Let K be a cyclotomic ring of conductor m, with Galois group
G and relative class group Cl−K . Let r be the minimal number of Z[G]-generators of
Cl−K . Let α ≥ 0 be a parameter, and s be any integer at least r(log2 log2(h−K) + α)
(note that log2 log2(h−K) ∼ log2(n)). Let g1, . . . , gs be s independent uniform ele-
ments of Cl−K . The probability that {g1, . . . , gs} generates Cl−K as a Z[G]-module is
at least exp

(
− 3

2α
)

= 1−O(2−α).

In other words, a set of Θ(r log(n)) random ideal classes in Cl−K will generate
this Z[G]-module with very good probability. Under the heuristic that this behavior
remains true when restricting to random ideals of norms bounded by poly(n), we
can conclude that one may efficiently build a basis B such that d is bounded by
polylog(n). Let us now prove Proposition 7.1.
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Lemma 7.2. Let O be a Dedekind domain, and h ⊂ O be an integral ideal. Let
g1, . . . , gs be s independent uniform elements from O/h. Then, the probability that
the set {g1, . . . , gs} generates O/h as an O-module is

Pr [Og1 + · · ·+Ogs = O/h] ≥
(
1− 2−s

)log2 Nh
.

Proof. Let h = pα1
1 · · · p

αj
j be the prime factorization of h. The event E : Og1 +

· · ·+Ogs = O/h is equivalent to the conjunction
∧j
i=1 Fi, where

Fi : Og1 + · · ·+Ogs = O/pαii .

Note that Fi holds if and only if there is at least one k ∈ {1, . . . , s} such that gk is
coprime with pi. Since the gk’s are chosen independently, we obtain

Pr[Fi] = 1− (Npi)−s ≥ 1− 2−s.

Now, note that the number j of distinct prime factors of h is at most log2 Nh. We
conclude from the fact that the events Fi are independent, by the chinese remainder
theorem. �

Lemma 7.3. Let O be a Dedekind domain, and M be a finite O-module of car-
dinality h and let r be the minimal number of O-generators of M . Let g1, . . . , gs
be s independent uniform elements from M . Then, the probability that the set
{g1, . . . , gs} generates M as an O-module is

Pr [Og1 + · · ·+Ogs = M ] ≥
(

1− 2−bs/rc
)log2 h

.

Proof. Since M is a torsion module over a Dedekind domain, there exist r ideals
h1, . . . , hr such that M =

⊕r
i=1O/hi; in particular, log2 h =

∑r
i=1 log2 Nhi. Con-

sider the first random elements g1 . . . gs′ where s′ = bs/rc, and their projections
g′1 . . . g

′
s′ on the first component O/h1. By the above Lemma 7.2, {g′1 . . . g′s′} gen-

erates O/h1 with probability at least (1− 2−s′)log2 Nh1 .
Let M1 = Og1 + · · · + Ogs′ . To conclude by induction, it suffices to note that

M/M1 is generated by r − 1 (or less) elements. �

Theorem 7.4. Let H be a cyclic group, and M a finite, Z[H]-module of cardinality
h, and r be the minimal number of Z[H]-generators of M . Let g1, . . . , gs be s inde-
pendent uniform elements of M . The probability that the set {g1, . . . , gs} generates
M as a Z[H]-module is

Pr [Z[H] · g1 + · · ·+ Z[H] · gs = M ] ≥
(

1− 2−bs/rc
)log2 h

.

Proof. Let t be the order of H. Observe that we have the decomposition

Z[H] ∼= Z[X]/(Xt − 1) ∼=
⊕
d|t

Z[X]/(Φd(X)) ∼=
⊕
d|t

Z[ωd].

For each d | t, identify Z[ωd] with its natural embedding in Z[H], and let the
ed ∈ Z[H] be the idempotent identified with the unit of Z[ωd]. It induces the
decomposition M =

⊕
d|t edM . First, note that log2 h =

∑
d|t log2 hd, where hd is

the cardinality of edM . Second, each edM is generated over Z[ωd] by at most r
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elements. Applying Lemma 7.3, we obtain

Pr [Z[H] · g1 + · · ·+ Z[H] · gs = M ] =
∏
d|t

Pr [Z[ωd] · g1 + · · ·+ Z[ωd] · gs = edM ]

≥
∏
d|t

(
1− 2−bs/rc

)log2 hd

=
(

1− 2−bs/rc
)log2 h

.

�

Proof of Proposition 7.1. Note that G is trivial if and only if K = Q, in which
case ClK is trivial, and so is the proposition. Otherwise, observe that G splits as
Z/2Z×H where H is a cyclic group, and the component Z/2Z corresponds to the
complex conjugation τ . Note that for any x ∈ Cl−K , the orbits Z[G]x and Z[H]x
coincide since τ ∈ G acts like −1 ∈ Z[H] on Cl−K . Therefore r is the minimal number
of Z[H]-generators of Cl−K . We obtain from Theorem 7.4 that the probability that
{g1, . . . , gs} generates Cl−K as a Z[H]-module is at least (1 − 2−bs/rc)log2 h

−
K . For

any 0 < x ≤ 1/2, we have ln(1− x) > −(3/2)x. We get(
1− 2−bs/rc

)log2 h
−
K = exp

(
log2 h

−
K ln

(
1− 2−bs/rc

))
≥ exp

(
−3

2 log2(h−K)2−bs/rc
)
.

With s ≥ r(log2 log2(h−K) + α), we get bs/rc ≥ log2 log2(h−K) + α− 1 and(
1− 2−bs/rc

)log2 h
−
K ≥ exp

(
− 3

2α

)
.

�
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