
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

K.R. Apt, H.A. Blair

Arithmetic classification of
perfect models of stratified programs

Computer Science/Department of Software Technology Report CS-R8810 March

The Centre for Mathematics ano Computer Science is a research institute of the Sticht1ng
Mathemat1sch Centrum, which was lounded on February 11. 1946, as a nonprof1t 1nst1tut1on aim
ing at the promonon 01 mathematics, computer science, and their applications. It 1s sponsored by
the Dutch Government through the Netherlanas Organization for the Advancement of Pure
Research (Z.W.0.).

\,J J
I

Copyright © Stichting Mathematisch Centrum, Amsterdam

Arithmetic Classification of

Perfect Models of Stratified Programs

Krzysztof R. Apt
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and

Department of Computer Sciences, University of Texas at Austin,
Austin, Texas 78712-1188, U.S.A.

Howard A. Blair
School of Computer and Information Science,

313 Link Hall,
Syracuse University, Syracuse. N. Y. 13244, U.S.A.

We study here the recursion theoretic complexity of the perfect (Herbrand) models of stratified logic pro
grams. We show that these models lie arbitrarily high in the arithmetic hierarchy. As a byproduct we obtain
a similar characterization of the recursion theoretic complexity of the set of consequences in a number of
formalisms for non-monotonic reasoning. We show that under some circumstances this complexity can be
brought down to recursive enumerability.

1985 Mathematics Subject Classification: 68099, 68T99.
1980 CR Categories: F.3.2, F.4.1.
Key Words & Phrases: stratification, arithmetical hierarchy, non-monotonic reasoning.

1. INTRODUCTION
A substantial amount of the recent research in logic programming concentrated on the "safe" use of
negation. This research led to an identification of a subclass of general logic programs, called stratified
programs, which restrict the ways in which recursion and negation can be combined. Intuitively, the
use of negation is restricted by only applying it to already known relations. Thus, in defining a collec
tion of relations some of them are first defined, perhaps recursively in terms of themselves, without
the use of negation. New relations may then be defined in terms of themselves without using negation,
and in terms of the previously defined relations and their negations. The process can be iterated until
all of the relations in the collections have been defined.

Stratified programs were introduced in APT, BLAIR and WALKER [ABW87] and VAN GELDER
[VG86]. They form a simple generalization of a class of database queries introduced in CHANDRA and
HAREL [CH85).

Stratified programs have a natural semantics associated with them in the form of a specific Her
brand model. The special character of these models was captured by PRZYMUSINSKI [P87] who intro
duced the concept of perfect models. The designated model of a stratified program is its unique per
fect Herbrand model. In this paper we study the recursion theoretic complexity of the perfect (Her
brand) models of stratified programs. We show that they lie arbitrarily high in the arithmetic hierar
chy. We also show that under certain circumstances their complexity can be brought down to recur
sive enumerability.

The recent rise of interest in non-monotonic reasoning led to intensive research of the relative
strength and expressive power of the formalisms involved. In this paper we take advantage of this fact
by indicating that the results obtained here directly translate into results concerning default logic of
REITER [R80], pointwise circumscription of LIFSCHITZ [L86] and Iterated Closed World Assumption
of GELFOND, PRzYMUSINSKA and PR.zYMUSINSKI [GPP86]. This allows us to assess the recursion
theoretic complexity of these formalisms, too.

Our results improve upon an observation of KoLAITIS [K87] who showed that the perfect models of

Report CS-R881 0
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam. The Netherlands

2

stratified programs are Al relations. Similarly as [CH85], [K87] is mainly concerned with the complex
ity of perfect models of stratified programs, in the absence of function symbols.

2. PREUMINARIES
In this section we review the basic results and definitions dealing with stratified programs which form
a basis for this paper. All logic programming notation and terminology not defined in this paper may
be found in LLOYD [Ll84].

Recall that by a clause we mean a construct of the form A~BJ, ... ,Bn, where A, B 1, ••• ,Bn (n ~O) are
atoms. A program is a finite, non-empty set of clauses.

In tum, by a general clause we mean a construct of the form A~ L 1 , •.. , Ln, where A is an atom and
Li. ... ,Ln (n ;;;:i:Q) are literals. A general program is a finite, non-empty set of general clauses.

2.1. Stratified programs
Given a general program P, we define its dependency graph Dp by putting for two relation symbols p,q

(p,q)EDp iff there is a general clause in P using p in its head and q in its body.

The arc(p,q) is called positive (resp. negative) if there is a general clause in P such that p appears in its
head and q appears in a positive (resp. negative) literal of its body. Note that an arc may be both
positive and negative.

Now, a general program is called stratified if in its depending graph Dp there is no cycle with a
negative arc.

We say that a relation symbol occurs negatively in a general program P, if it appears in a negative
literal of a body of a general clause from P. By a definition of a relation symbol r (within P) we
mean the set of all general clauses of P in whose heads r appears.

An alternative definition of a stratified program is as follows. A general program P is stratified if
for some partition

P = P1 U ... UPn
the following two conditions hold for i = l, ... ,n:
i) if a relation symbol appears in a positive literal of a general clause from Pi> then its definition is

contained within U {P1 U~i},
ii) if a relation symbol appears in a negative literal of a general clause from Pi, then its definition is

contained within U {PJl/<i}.
We allow P 1 to be empty. A head of a general clause is viewed here as one of its positive literals. We
call each Pi a stratum. Note that the definition of any relation symbol is either empty or a subset of
exactly one stratum.

To study the semantics of stratified programs we first discuss operators on complete lattices.

2.2. Finitary and growing operators
Consider an arbitrary but fixed, non-empty, countable set. We denote its elements by A,B. Its subsets
form a complete lattice with the order relation \;;;;, the least upper bound operator U and the greatest
lower bound operator n. We denote its elements by I,J,M. We now consider operators on this lat
tice.

Given an operator T, we define its powers by

TjO(I) =I,

Tj(n + l)(J) = T(Tjn(J))U Tjn(J),

Tjw(J) = U {Tjn(J)ln<w}.

We call an operator T finitary if for every infinite sequence

lo <;;}1 i;;;;; ••• ,

3

T(U Un In <w }) \;;;; U {T(In)/n <w}

holds.
We call an operator T growing if for all J,J,M

I \;;;;J ~M ~ Tjw(I)

implies

T(J)~T(M).

Thus "growing" is a restricted form of monotonicity. The following lemma will be needed in Section
3.

LEMMA 1: Let T be a finitary and growing operator. For all A,1andn;;;::.1,

A ETjn(I)

iff there exists a finitely branching tree of depth ~n such that
e A is its root,
e for every node B with direct descendants Bi, ... ,Bk, k >0, we have B ET(I U {B 1 , •.. ,Bk}),
• every leaf is an element of Ti 1(/).

PROOF. For all I and n;;;:.l, Tjn(I) is countable, so for some sequence So ~S 1 ~-··of finite subsets of
Tjn(J)

Tjn(l) = U{JUSk/k<w}.

Since T is finitary and growing

T(Tjn(/)) = U{T(/USk)/k<w}.

Thus for all A,I and n;;;:, l,

A E T(Tjn(J))

iff for some B i, ... ,Bk E Tjn(J), k ~O, we have A ET(I U { B J, ... ,Bk}).
From this the claim follows by a simple induction on n. D

2.3. Semantics of stratified programs
We now summarize the notions and results of [ABW87]. Given a general program P, we denote by
ground (P) the set of all ground instances of general clauses of P. To avoid some uninteresting com
plications we assume that ground (P) is always non-empty. Consider now the complete lattice consist
ing of all subsets of the Herbrand base Bp of P. These subsets are in the sequel identified with Her
brand interpretations of P. We only study here Herbrand interpretations and models, so we drop the
qualification "Herbrand".

Given a general program P and an interpretation M of P, we put

Tp(M) = {A I for some literals L1 , ... ,Ln

Af--L 1, .•• ,Ln is in ground (P)

and M~L1/\. ... /\.Ln}·

We call a general program P semi-positive, if no relation symbol which appears in a head of a gen
eral clause of P, also appears negatively in P.
The following lemma summarizes the results we shall need in the sequel.

LEMMA 2:
i) For a general program P, Tp is finitary.

4

ii) For a semi-positive program P, Tp is growing.
iii) A stratum of a stratified program is semi-positive. 0

Thus for a stratum P of a stratified program, we can use lemma 1 to characterize the sets Tpjn(l).
Consider now a stratified program P with a stratification

P = P1 u ... UPn·

We assign to P a Her brand model M p by putting

M 1 = Tp, jw(0),

Mi = Tp,iw(M1),

and letting

Mp =Mn·

Mp is called in [ABW87] the standard model of P.
Some general results on non-monotonic operators on complete lattices, like lemma 2, were esta·

blished in [ABW87], to prove the properties of stratified programs and their standard models that are
listed in the following theorem. In the theorem, a supported model M has the property that if ground
atom A is true in M, then there is a ground instance A~L 1 , ... ,Ln of a clause in P such that
L 1 /\. .. /\Ln is true in M. L 1 /\ ••• /\Ln can then be viewed as an explanation for A. Thus in a supported
model every true ground atom has an explanation.

THEOREM 3: Let P be a stratified program. Then:
i) Mp is independent of the stratification of P.
ii) Mp is a minimal supported model of P.
iii) There is an alternative definition of Mp that uses iteratively smallest models as follows:

M1 = n {MIM is supported model of Pi},

Mi = n {MIM is supported model of Pi and MnBp, =Mi},

Mn = n {MIM is supported model of Pn and MnBP,u ... uP,_, =Mn-i},

Mp =Mn.

iv) Mp is a model of comp(P), CLARK's [Cl78] completion of P.
v) When P has no function symbols, there is a backchaining interpreter for P which combines negation

as failure with loop checking to test for membership in M p. On each inference cycle the interpreter
folly instantiates a clause. D

Other properties of stratified programs were proved in [VG86].
When P is a program, M p = Tp jw(0) and M p coincides with the least Herbrand model of P intro

duced in VAN EMDEN and KOWALSKI [VEK76].

5

2.4. Perfect model semantics
Further characterization of the model Mp was provided by PRZYMUSINSKI [P87] who introduced the
concept of perfect models. The essence of his approach can be summarized as follows.

Consider a general program P. Let < be a well founded ordering on the Herbrand base Bp of P. If
A <B then we say that A has a higher priority than B.

Let M,N be interpretations of P. We call N preferable to M if M=j=.N and for every BEN\ M there
exists A EM\ N such that A <B. We call a model of P perfect if no other model of P is preferable to
it.

Intuitively, N is preferable to M if it is obtained from M by possibly adding/removing some atoms
and an addition of an atom to N is always compensated by the simultaneous removal from M of an
atom of higher priority. This reflects the fact that we are determined to minimize higher priority
atoms even at the cost of adding atoms of lower priority.

The above definitions are parameterized by the well founded ordering <. We now consider a fixed
stratified program P and a well founded ordering on Bp obtained by first, putting for two relation
symbols

p <q iff there is a path from q top in Dp with a negative arc,

and then putting for two ground atoms A,B

A <B iff p <q where p appears in A and q appears in B.

Note that if p <q, then in any stratification of P, p is defined in a lower stratum than q is. Thus < is
well founded. This implies that the latter ordering < is indeed a well founded ordering on Bp. In
this ordering ground atoms with a relation symbol from a lower stratum have a higher priority.
The following theorem from [P87] characterizes the model Mp of P.

THEOREM 4: Let P be a stratified program. Then Mp is the unique perfect model of P. 0

3. COMPUTABILITY

3.1. Preliminaries
The results given in the next section are based on a recursion-theoretic characterization of the rela
tions computable by logic programs. We recall here the basic concepts of recursion theory. We assume
the reader is familiar with the inductive definition of (total) recursive functions over the natural
numbers, N, obtained by closing a set of basic functions by composition and application of minimiza
tion under certain totality conditions; see, for example rules Rt, R2 and R3 in SHOENFIELD [Sh67,
chapter 6]. By removing the restriction on when minimization is applicable the partial recursive func
tions are obtained. A relation over N is recursive iff its characteristic function is recursive. (Our usage
of the term relation differs from that of Shoenfield).

We can relativize the total recursive functions by adding new functions to the set of basic functions
from which we previously obtained the rest of the recursive functions. If F is a set of functions, let
Ree (F) be set of functions obtained in this way. The functions in Ree (F) are said to be recursive in F.
A relation R is recursive in a set of relations C iff the characteristic function of R is recursive in the
set of characteristic functions of relations in C. The arithmetic hierarchy is defined as follows.

Here and elsewhere m stands for a sequence of natural numbers. Similar convention is used for
terms and variables.

~8 is the of all relations whose characteristic functions are in Ree (0), which is the set of all recursive
relations.

II~ is the set of all relations whose complement (with respect to N) is in ~~-

6

set

mER iff

m R.

an equivalence of the fonn given in (t) and Q is recursive in a set of
rA"''"~"""'il' enun-Jerable in c. Note that I18 = 2:8' and that the familiar

relations recursively enumerable in I18.
nin1111P.tP for a class of relations C iff R EC and for each relation

.... ~_, .. f such that

Intuitively. R is representative of the hardest decision problem in C. (One may note that the dis
.. ~ .• .,,,.,~ 01elween Turing completeness and many-one completeness is immaterial for our results in the
next

LEMM • .\ 5: A relation R ism ~2+ 1 if! R is recursively enumerable in IT~. D

The preceding lemma is less trivial than it may seem since for R to be recursively enumerable in Il2
there must be a relation Q which is recursive in II2 such that (t), but this does not mean that Q itself
need be in . However Q is recursive in fl2 iff Q is recursive in ~~. Thus

COROLLARY 6: A relation R is in 2:2+ 1 if! R is recursive{}' enumerable in I2. 0

3.2. Computability ower Herbrand universe
Our task is to adapt the entire previous discussion of computability over the natural numbers to com
putability over Herbrand universes. Of course this can be done in one stroke by effectively identifying
the ground terms with the natural numbers. However, if we want to characterize what general pro
grams compute in recursion-theoretic terms, the correspondence between the Herbrand universe and
N is delicate. This point can be brought out vividly by reflecting on the following task: write a pro
gram P such that for a ground term t, .,_r(t) succeeds iff t is a constant. Note that this cannot be
done if, for example, the underlying Herbrand universe contains infinitely many constant symbols and
infinitely many functions symbols. It follows that if the Herbrand universe is generated by an infinite
alphabet then not every computable relation over such a Herbrand universe can be computed by a
logic program.

We now analyse what logic programs compute in recursion-theoretic terms under the assumption
that the underlying Herbrand universe is finitely generated. We assume a fixed finitely generated Her
brand universe Ui with at least one constant and one function symbol. All general programs P con
sidered are such that their Herbrand universe Up coincides with UL.

A program P computes a relation R over Ur using a relation symbol r if for all sequences t of ele
ments from UL

t ER iff there exists an SLD-refutation of PU { ~r(t) }.

A program P defines a relation R over Ui using a relation symbol r if for all sequences t of ele
ments from Vi

teR iff P1;r(h

Here and elsewhere _we assume that R and r have the same arity which also coincides with the
length of the sequence t.

The following theorem links computability and definability and the least Herbrand model of a pro
gram, and is fundamental in logic programming (cf APT and VAN EMDEN [AVE82]; see also Theorem
4.l in A.PT [A]).

4.5 in connocu the

to

a BF-denvatim: of P" lJ } for a pro-
in which in each goo.I a!J

a derivation is

A E 0 atJ there is a BF-refutation

of

of length td most n ..

le::inma for BF-resolution, proved in [WML], in fact

AE 0)ilfthe:reisa

of Pu{-A}

at most 11.

8

But the relation

{(A,n,~I~ is a BF-refutation of PU {+-A} of length at most n}

is recursive. Moreover, ignoring the choice of variables in goals and mgu's, there are only finitely
many BF-refutations of PU {~A} of length at most n. This proves the claim. 0

COROLLARY 11: For a program P, Tp tU>(0) is recursively enumerable. 0

Perhaps surprisingly, lemma 10 does not relativize. Indeed, for a program P, Tpfn(M) is not recursive
in M. To see this, note that Tp(M) need not be recursive in M.

ExAMPLE 12: Let Q be a recursively enumerable, non-recursive, subset of UL. For some recursive rela
tion R

seQ iff3t[(s,t)eR].

Let P be the program

q(X)~r(X, Y),

and let M={r(s,t)l(s,t)eR}. Then Tp(M)={q(s)lseQ}. Mis recursive; Tp(M) is not. 0

3.4. Computability by semi-positive programs
However, Tpfn(M) is recursively enumerable in M. This holds for semi-positive programs, as well.
We need this fact later; to establish it we first need the following observation. Here, <Bi. ... ,Bk>
stands for a natural number associated with the sequence of atoms Bi, ... ,Bk in a standard way (see
[Sh67, chapter 6]).

LEMMA 13: For a general program P, the relation

{(A, <Bi, ... ,Bk>)IA ETp(MU{Bi, ... ,Bk})}

is recursively enumerable in M.

PROOF. Direct, by the definition of Tp and the standard techniques of recursion theory. 0

We can now prove the desired lemma.

LEMMA 14: For a semi-positive program P, the relation {(n,A)IA eTpfn(M),n<w} is recursively enu
merable in M.

PROOF. Thanks to lemma 2 we can use lemma 1 to characterize the relation in question. This charac
terization implies by lemma 13 and the standard techniques of recursion theory, that this relation is
indeed recursively enumerable in M. 0
The following generalizes corollary 11.

COROLLARY 15: For a semi-positive program P, the relation TpfU>(M) is recursively enumerable in M.
0

For an interpretation Mand a relation symbol r, let

Mlr={AIA EM and the relation symbol of A is r}.

We say that an interpretation M of P is strongly recursively enumerable, (or strongly R.E., in short) if
M is recursively enumerable and for each relation symbol r which appears negatively in P, Mir is

9

recursive.
We now show that under some circumstances the relations studied in lemmata 13 and 14 and corol

lary 15 can be characterized in a more precise way.

LEMMA 16: Consider a general program P and an interpretation M. Suppose that M is strongly R.E.
Then Tp(M) is recursively enumerable.

PROOF. We have for all ground atoms A

A ETp(M)

iff for some literals L1> ... ,Ln
i) A~LJ. ... ,Ln is in ground (P),
ii) for every positive literal B from Li, ... ,4 we have BEM,
iii) for every negative literal _,B from LJ, ... ,4 whose relation symbol is r, we have B ~Mir.

Now by the standard techniques of recursion theory, Tp(M) is indeed recursively enumerable. 0

LEMMA 17: Consider a semi-positive program P and an interpretation M. Suppose that M is strongly
R.E. Then the relation {(n,A)IA ETpjn(M),n<w} is recursively enumerable.

PROOF. Analogous to the proof of lemma 14 but using lemma 16 instead of lemma 13.

COROLLARY 18: Consider a semi-positive program P and an interpretation M. Suppose that M is
strongly R.E. Then the relation Tpjw(M) is recursively enumerable. 0

4. ARITHMETIC CLASSIFICATION OF Mp
We are now ready to prove the main results of the paper.

'THEOREM 19: If Pisa stratified program with n strata, then Mp is};~.

PROOF. We proceed by induction on n. If n = 1, then Pisa program and the theorem follows from
corollary 11.

Now suppose the statement of the theorem holds for n -1, and P is stratified by P 1 U ... UPn· We
have Mp=Tp, jw(MP,u ... uP,_), so by corollary 15 and lemma 2 iii) Mp is recursively enumerable in
MP,u ... uP,_,. By the induction hypothesis, MP,u ... uP,_, is ~~- 1 • Therefore by corollary 6, Mp is~~-
0

THEOREM 20: Let P be a stratified program. Suppose that for each relation symbol r which occurs nega
tively in P, M p lr is recursive. Then M p is recursively enumerable.

PROOF. Consider a stratification P1 U ... UPn of P with the corresponding sequence of models
M i, ... ,Mn with Mp =Mn. We prove by induction on i= l, .. .,n that each M; is recursively enumerable.

For i = 1 it is the content of corollary 11. Assume the claim holds for some i, 1 ~i <n.
Consider a relation symbol r which occurs negatively in P; + 1• Then the definition of r is contained

in U{Pjl/~i}, so Mplr=M;lr. By assumption, for every r which occurs negatively in P;+ 1, M;jr is
recursive. Thus by lemma 2 iii) and corollary 18 applied to P; + 1 and M;, M; + 1 is recursively enumer
able. 0

Of course, it is in general not clear how to check that for a relation symbol r and an interpretation
M, Mir is recursive. However, in some situations this is obvious - when r is defined by enumeration,
i.e. exclusively by a list of unit clauses. Then for every such r, Mplr is recursive.

Call a general program strongly stratified if each relation symbol which occurs negatively in P is

10

defined exclusively by unit clauses. Obviously, every strongly stratified program is stratified. By the
above observation and theorem 20 we have:

COROLLARY 21: Let P be a strongly stratified program. Then Mp is recursively enumerable. D
Finally, we prove the following:

THEOREM 22: For each n ;;;ii: I there is a stratified program P with n strata for which Mp is ~2 -complete.

PRooF. We prove the following stronger claim from which the theorem follows by choosing R to be
~2-complete: for each ~~ relation R over Ui we can find a stratified program P with n strata such
that for some relation symbol r

sER iff r(S)eMp.

We now proceed by induction on n.
For n = 1 the claim is a conseguence of lemma 9 and theorem 7 ii). Now assume the claim holds for

a particular n ;;;ii: 1. Let R be a ~2+ 1 relation over Ui. For some II2 relation S over Ui

seR iff 3t[(S,t)ES}.

Let Q be the complement of Sin UL. Q is ~2. By the induction hypothesis we can find a stratified
program P with n strata such that for some relation symbol q

(S,t}EQ iff q(S,t)EMp.

We now add to P two clauses defining R in terms of Sand Sin terms of Q. Let Pn + 1 consist of
the clauses

PR(X)+-ps(X, Y),

Ps(X, Y)+--,q(X, Y}

where PR and ps are relation symbols not occurring in P. Let P' =PUP n +I· Then

Mr = Mp U {pR(S)j3t((S,t)eS}} U {p8(S,t)j(.f,t)Q: Q}

= Mp U {pR(s)jSER} U {p8(S,t)!(S,t)eS}.

Thus,

SER iff fR(S)EMp. D

5. APPLICATIONS TO NON-MONOTONIC REASONING

We now relate our results to three formalisms commonly used in the area on non-monotonic reason
ing. We follow here their description given in PRzYMUSINSKI [P87].

5.1. f)efault lo~c
One of them is default logic introduced in [R80]. In default logic, apart of the usual rules of first order
logic, also default rules are used. They have the form

B: MC1,..,MCn
A

where A, B, C1,..,Cn are first order formulas. Such a rule intuitively means: "if B holds and each of
Crs can be (separately) consistently assumed, then conclude A". The usual rules and the default rules
induce a natural concept of an extension of a set of first order formulas. We omit here its formal
definition. This extension, if it is unique, denotes the set of consequences of a set of formulas under
the default rules.

11

PRzYMUSINSKA [Pa87] related general programs to default logic by noting that a general clause
A +.-A 1, ••• ,Am, ,B 1, •• ,-,Bn where n >0 naturally translates into a default rule

A I /\ ... /\Am : M-,Bi, .. ,M-,Bn

A

Given a general program P, let T denote the set of (positive) clauses of P and let Dp denote the set of
default rules obtained by the above translation. PRzYMUSINSKA [Pa87] showed that given a stratified
program P, the default rules in Dp induce a unique extension Dp(T) of T which coincides with the set
of formulas true in the perfect model of P.

By theorems 19, 20 and 22 we immediately obtain

COROLLARY 23:
i) Let P be a stratified program with n strata. Then Dp(T) is ~~.
ii) Let P be a strongly stratified program Then Dp(T) is~?.
iii) For each n ;;;i: I there is a default theory whose set of consequences is "2.~-complete. 0

5.2. Circumscription
Another approach to non-monotonic reasoning is based on the circumscription method of McCarthy.
We discuss here its variant called prioritized circumscription described in [MC86].

Let cp(R,Q) be a first order formula whose relation symbols appear in R={ri. ... ,rm} or
Q={q 1, ••• ,qn}, where R nQ= 0, and let R'={r'1, ... ,r'm} and Q'={q'i. .. .,q'n} be sets of relation
symbols of the same arities as those in R and Q, correspondingly. By a parallel circumscription of R
in cp with variables Q we mean the following second order formula CIRC(cp;R;Q):

cp(R,Q)/\'VR',Q'[cp(R',Q')/\(R'-+R)-+ R'=R],

where R'-+R stands for
m .
/\ 'VX(r';(X)-+r;(:X))

i=l

and R' = R stands for
m
/\ 'VX(r';(X)~r;(:X)).

i=l

Intuitively, CIRC(cp;R ;Q) states that relation symbols from R are minimal under the assumption
that 3Q'cp(R,Q') holds and moreover, 'i>(R,Q) does hold.

Now, consider disjoint sets of relation symbols R 1,. .. ,Rn· By a prioritized circumscription of a
second order formula cp with priorities R 1 > ... >Rn we mean the following second order formula
CIRC(<f>,R1 > ... >Rn):

CIRC(c[>;R, ;{R2 U ... URk})/\C/RC(«[>;R2;{R3 U ... URn})f\ ... /\ClRC(cp;Rn; 0)

Intuitively, this formula states that the relation symbols in R i, .. .,Rn are minimized in a particular
order given by the priorities R 1 > ... >Rn.

Denote the set of first order formulas imp~ed ~y a second formula cf> by Cn(<f>). Consider now a
stratified program P with a stratification P 1 U ... UPn· Let R 1,. . .,Rn be the sets of relation symbols
defined in Pi, ... ,P n, respectively. After an identification of P with a conjunction of its general clauses,
P can be viewed as a second order formula whose relation symbols are those in R 1, ••• ,Rk.

LIFSCHITZ [L87] showed that the set of formulas Cn (CIRC(P,R 1> ... >Rk)) coincides with the set
of formulas true in the perfect model of P.

Again, by theorems 19, 20 and 22 we obtain

COROLLARY 24: Let P be a stratified program with a stratification P1 U ... UPn. Let R1,. .. ,Rn be the sets
of relation symbols defined in P 1 ,. •• , P"' respectively.

12

i) Cn(CIRC(P,R1 > ... >Rn)) is!.~.
ii) If P is strongly stratified, then Cn(CIRC{P,R 1 > ... >Rn)) is!.?.
iii) For each n;;i.I there is a second order formula tj> with disjoint sets of relation symbols Q1>··,Qn such

that Cn(CIRC(tj>,Q 1 > ... >Qn)) is ~~-complete. 0

5.3. Iterated closed world assumption
Finally, we consider the Iterated Closed World Assumption (ICWA) introduced in [GPP86). ICWA
is a generalization of the Closed World Assumption of REITER [R78] (CWA).

Given a set of (first order) formulas P we define first

CWA (P} = PU {-.A IA is a ground atom such that PFA does not hold}

[R78] showed that for a program P, CWA(P) is consistent. Unfortunately, this result does not hold
for a general program P. To resolve this problem [GPP86] concentrated on the case of stratified pro
grams.

Consider a stratified program P with a stratification P 1 U ... UP n. We define

ICWA(P 1) = CWA(P1),

ICWA(Pi+i) = CWA(Pi+I UICWA(Pi)) for l~i<n,

ICWA(P} = ICWA(Pn).

[GPP86] showed that for a stratified program P, ICWA(P) has exactly one model, namely the perfect
model of P.

By theorems 19, 20 and 22 we obtain

COROLLARY 25:
i) Let P be a stratified program with n strata. Then ICWA(P) is!.~.
ii) Let P be a strongly stratified program. Then ICWA(P) is!.?.
iii) For each n ~ 1 there is a stratified program with n strata such that ICWA (P) is "i.~ -complete. 0

For every reasoning method it is preferable from the logic point of view that the set of conse
quences obtained by it is decidable (recursive} or semi-decidable (recursively enumerable). We showed
here that this is not the case for a majority of commonly used formalisms in the area of non
monotonic reasoning. However, we also indicated a reasonable restriction - to strongly stratified pro
grams, which allows us to bring down this complexity to recursive enumerability.

ACKNOWLEDGEMENT
We would like to thank Marc Bezem for helpful comments and Ms Caroline Swagerman for speedy
typing of the manuscript.

REFERENCES
[AN78]

[A87]

[ABW87]

[AVE82]

[Bl86]

H. ANDREK.A and I. NEMET!, The Generalised Completeness of Hom Predicate Logic as
a Programming Language, Acta Cybemetica, vol. 4, no. l, 1978, pp. 3-10.
K.R. APT, Introduction to Logic Programming, Centre for Mathematics and Computer
Science, Amsterdam, Technical Report CS-R8741, 1987 (to appear in Handbook of
Theoretical Computer Science (J. van Leeuwen, Managing Editor)).
K.R. APT, R. BLAIR and A. W ALICER, Towards a Theory of Declarative Knowledge, in:
Foundations of Deductive Databases and Logic Programming, (J. Minker, ed.), Morgan
Kaufmann, Los Altos, CA., 1987.
K.R. APT and M.H. VAN EMDEN, Contributions to the Theory of Logic Programming,
JACM, vol. 29, No. 3, 1982, pp. 841-862.
H.A. BLAIR, Decidability in the Herbrand Base, Workshop on Foundations of Deductive

[CH85]

[Cl78]

[GPP86]

[K87]

[L87]

[Ll84]
[MC86]

[P86]

[P87]

[Pa87]
[R78]

[R80]

[Sh67]
[VEK76]

[VG86]

[WGM]

13

Databases and Logic Programming, Washington, D.C., manuscript, 1986.
A. CHANDRA and D. HAREL, Horn Clause Queries and Generalizations, Journal of
Logic Programming, vol. 2, no. I, 1985, pp. 1-15.
K.L. CLARK, Negation as Failure, in: Logic and Databases, (H. Gallaire and J. Minker,
eds.), Plenum Press, New York, 1978, pp. 293-322.
M. GELFOND, T. PRZYMUSINSKI and H. PRZYMUSINSKA, On the Relationship between
Circumscription and Negation as Failure, to appear in Journal of Artificial Intelligence.
P.G. KOLAITIS, The Expressive Power of Stratified Logic Programs, manuscript, Nov.
1987.
V. LIFSCHITZ, On the Declarative Semantics of Logic Programs with Negation, in:
Foundations of Deductive Databases and Logic Programming (J. Minker, ed.), Morgan
Kaufmann, Los Altos, C.A., 1987.
J.W. LLOYD, Foundations of Logic Programming, Springer-Verlag, 1984.
J. McCARTHY, Applications of Circumscription to Formalizing Common Sense
Knowledge, Journal of Artificial Intelligence, vol. 28, 1986, pp. 89-116.
T. PRZYMUSINSKI, On the Declarative and Procedural Semantics of Logic Programs, in:
Foundations of Deductive Databases and Logic Programming (J. Minker, ed.), Morgan
Kaufmann, Los Altos, C.A., 1987.
T. PRzYMUSINSKI, Non-monotonic Reasoning vs. Logic Programming: A New Perspec
tive, to appear in Handbook on the Formal Foundations of A.I. (Y. Wilks and D.
Patridge, eds.)
H. PRzYMUSINSKA, personal communication.
R. REITER, On Closed-World Data Bases, in: Logic and Databases, (H. Gallaire and J.
Minker, eds.), Plenum Press, New York, 1978, pp. 55-76.
R. REITER, A Logic for Default Theory, Jornal of Artificial Intelligence, vol. 13, 1980,
pp. 81-132.
J. SHOENFIELD, Mathematical Logic, Addison-Wesley, Reading, Mass. 1967.
M.H. VAN EMDEN and RA. Kow ALSKI, The Semantics of Predicate Logic as a Pro
gramming Language, JACM, vol. 23, no. 4, 1976, pp. 733-742.
A. VAN GELDER, Negation as Failure using Tight Derivations for General Logic Pro
grams in: Proc. of the 3rd IEEE Symposium on Logic Programming, Salt Lake City,
Utah, 1986.
D.A. WOLFRAM, M.J. MAHER and J.-L. LASSEZ, A Unified Treatment of Resolution
Strategies for Logic Programs, in: Proc. of the Second International Conference on Logic
Programming, 1984, pp. 263-276.

