
TRANSFORMATIONS REALIZING FAIRNESS ASSUMPTIONS

FOR PARALLEL PROGRAMS

K.R. Apt

LITP
Universite Paris VII
75251 Paris

E.-R. Olderog

Institut fur Informatik
Universitat Kiel
D-2300 Kiel 1

Abstract. Parallel programs with shared variables are studied under a semantics
which assumes the fair execution of all parallel canponents. We present transfonn
ations which reduce this fair semantics to a sinple interleaving semantics with help
of randan assignments z:=? . In fact, different notions of fairness are considered:
impartiality, liveness, weak and strong fairness. All transformations preserve the
structure of the original programs ana are thus suitable as a basis for syntax
directed correctness proofs.

1. Introduction

This paper considers parallel programs S = s1 II .•. II Sn where the canponents Si of S

are sequential programs which carrmunicate with each other implicitly via shared

variables. The correctness properties and (in-) formal reasoning about such programs

depend on the sernantical notion of execution of s.

The simplest way of modelling the execution of S is by arbitrary interleaving of

the execution sequences of its ca:rponents Si /Br1 ,Br2,FS1 ,FS2/. But in general inter

leaving is not what we wish to express when writing S = s1 II •.• jl Sn since it ro:xl.els

only the concept of multiprograrrming where S runs on a single processor /MP /.

Here we investigate the I!Dre ambitious idea of a truly con=rent execution of S

where every canponent Si runs on its = processor. To formalize this idea we follcw

the proposal of /MP ,OL/ to model concurrency of s by interleaving the execution

sequences of its components, but with the additional assumption of fairness. Infor

mally, fairness states that every canponent Si of S which is sufficiently often

enabled will eventually progress. Different interpretations of "sufficiently often

enabled" give rise to different notions of fairness, viz. irrpartiality /LPS/, live

ness /OL/, weak and strong fairness /NJ/. For liveness e.g. "sufficiently often

enabled" is interpreted as "not yet terminated".

So far semantics and proof theory for fairness assumptions have been studied

mainly in the context of nondeterrninistic do-od-prograrns (see /Fr/ for an overview).

For parallel programs S = s1 II ... JI Sn the question of fairness has been dealt with

only by translating the given program S back into a nondeterministic do-ad-program

/APS,LPS/ or by resorting to methods of temporal logic /OL/ which often requires a

translation of the original program S into an equivalent fonnula in temporal 'logic

/MP,Pn/.

27

In our paper we present a series of transfonnations T which reduce the =ncurrent

or fair semantics of parallel programs to the simple interleaving semantics with help

of random assignments z:=? /AP/, one transfonnation for each notion of fairness. All

transformations preserve the parallel structure of the original programs. The approach

represents a refinerrent of the transfonnation technique introduced in /AO/ for non

deterministic do-ad-programs.

The interest in such transformations T is twofold:

(j) T can be considered as a sort of scheduler which guarantees that the resulting

program T (S) realizes exactly all the fair executions of S.

(2) T can be used as a basis for syntax-directed correctness proofs. The idea is to

apply an extension of the proof system of /OG/ dealing also with randan assign

ments to T (S) .

In this paper we concentrate on the first aspect. We state a number of results on

the existence or non-existence of transfonnations with paricular properties. We hope

that these results give a better insight into the structure of the various notions of

fairness. Proofs will appear in the full version of this paper.

2. Parallel Programs

We as&ume sets Var of variables ranging over integers, Exp of expressions and Bex of

Boolean expressions with typical elements x,y,zeVar, s,tEExp and b,cEBex.

Sequential programs are defined by the follc:wing BNF-like syntax:

S : := skip I x:=t j z:=? I s1 ;s2 J if b then s1 else s2 fi I
while b do s1 od I await b then s1 end

where for simplicity nested while's and await's are disallONed. Let if b then s1 fi

abbreviate if b then sl else skip fi.

Besides usual assignments of the form x:=t we consider randan assignments z :=?

which assign an arbitrary non-negative integer to z /AP/. Thus z:=? is an explicit

form of unbounded nondeterminism in the sense that termination of z:=? is guaranteed

but infinitely 1TB11Y final states are possible /Pa I.
Await-statements S = await b then s1 end are used to achieve synchronization in

the context of parallel composition. S is executed only if b is true. What makes it

different fran if b then s1 fi is that the await guarantees that s1 is executed as

an indivisible action /OG/ (cf. Sec.3).

By a parallel program we mean a program of the form

S = S0 ; (SJ !I •.• jj Sn)

where s0 is a sequence of assignments and s1, ... ,Sn are sequential programs. S0 is

the initial part of s and s1 , ... ,Sn are the (parallel) components of S inside the

parallel canposition s1 II ..• II Sn.

28

We distinguish four classes of programs: L(II) , L(JI ,?) , 1(II ,await) and

1(!I ,await,?) depending on whether randcm assignments or/and await-statements are

used. L(ll ,await) is essentially the language studied in /OG/.

In our paper we will study certain (program) transformations, i.e. I!E.ppings

T: L(II) [or 1(II ,await)] -4 L(II ,await,?).

Sometimes it is more convenient to leave certain details of such a transfonnation

open. To this end, we consider transformation schemes, i.e. mappings

lr: L(fl) [or L (II ,await)] ~ :P (L (II ,await,?))'\ { ~}

which assign to every program S a non-empty set of transformed programs S' € lr(S) ·

(1>(M) is the paver set of a set M.) By selecting a particular S' E lr (S) for every

program S we obtain a so-called instance T of 1r . This is a transformation T as above.

3. Interleaving Semantics

We take an interpretation with integers as danain :D assigning the standard rreaning to

all synbols of Peano arithmetic. The set of (~) states is given by Z: = Var-----? :I>
with typical elerrents cr,?:. Notations like cr [d/x], crtX and cr(b) are as usual. We

add two special states not present in !: : ..L reporting divergence and .C.. reporting

deadlock.

By a configuration we mean a pair <s,cr) consisting of a program SEL(II ,await,?)

and a state cr. Follcwing /HP,Pl/ we introouce a transition relation~ between

oonfigurations. (S,cr)-7(8:1, er 1) means: executing S one step in cr can lead to cr 1
with s 1 being the remainder of S still to be executed. To express termination we

allav the empty program E with E;S = S;E = E.

The relation ~ is defined by structural induction on L (II , await,?) . Typical

clauses are:

a) <skip, cr)~ <E,cr)

b) (z:=?,cr)-4(E,cr[d/xJ> for every o~ d E1>.

cl <while b dos] oo,cr)-? <s1;while b do 81 od,o) if cr(b) =true.

d) <while b do s 1 oo, c:r)-? <E,c) if <:r(b) = false.

e) (await b then s 1 end,cr)~(E,'!:) if cr(b) =true and (s 1 ,<J>~* (E,c:-)

where _.,,. denotes the reflexive, transitive closure of -

f) If (s1,cr)--?-(s2 ,z:-) then (s1;s, cr)4<82;s,r)

g) If (si,cr>-7(Ti,r) the.ri

(81 II ••. n sn,cr)-;.(s1 II .••)I si_1 1l Till 8i+1 II ... It sn, <=").

Note that assignments, evaluations of Boolean expressions, and await-statements

are executed as atanic or indivisible actions. Therefore statements of the form skip,

x:=t, z:=? and await b then 81 end are called atomic. Parallel oomposition is

modelled by interleaving the transitions of its comp:ments.

29

Based on ~ we introduce sane further concepts. A configuration (s, c:r) is maximal

if it has no successor w.r.t. -7 . A terminal configuration is a maximal configuration

(S,cr) with S = E II ••• II E. All other :rraximal configurations are called deadlocked.

A ca:tputation of S (starting in cr) is a finite or infinite sequence

§: (s,cr>~<s1,cr-1>~ ... ~<sk,o-k)~ ...

A ccmputation of S is called ter.mi.nating (deadlocking) if it is of the form

1: (s,o)~ ... ~(T,r)
where (T,1:") is terminal (deadlocked). Infinite canputations of S are called diverging.

We say that S can diverge frcm cr- (can deadlock fran cr-) if there exists a diverging

(deadlocking) canputation of S starting in a-.
The inter leaving serrantics of programs S E L (II , await,?) is

defined by

.M.[s] (cr) {-z:-1 (s,cr>-7* <EU ... !IE,r)}
u { ..L I S can diverge fran CS }

LJ { ~ I S can deadlock fran CS }

We also consider a variant of .M ignoring deadlocks:

..M._A[s](o-) = M.[s] (cr)\ {.6.}.

same further notions. Thecorrponent s. has ter.mi.nated in (s1 II ••• IJ s ,er) ifs. =E.
i n l.

The canponent S. is disabled in (s1 II ••• II S , cr) if either S. = E or
l. n i

Si = await b then S end; T with <r(b) = false. The corrponent Si is enabled if it is

not disabled, i.e. if Si is not tenninated and whenever Si=await b then S end;T holds

then cr-(b) =true. The catq?Onent Si is active in the step (s1 n ... 11 Sn, er)~

<T1 II •.. !) Tn, 7::) if (si,o->~<Ti,'t').AprogramSis deadlock-free if.M[S] =JA.-A[S J.

4. Impartiality

Consider the program

s* =while b do x:=x+1 od II b:=false

'---v---'

s,
Under the interleaving seroantics S can diverge: J. e: .M. [S *] (!J) if er (b) = true.

However, in every concurrent or "fair" canputation of s 11 the second canponent s2
will eventually be executed causing termination of s1 and hence s* itself. The

question is how to capture this intuitive notion of fairness.

In this section we define a first approximation to the concept of fairness, viz.

impartiality /LPS/.

30

Definition 4.1 A canputation != <s,cr) = <T1 ,cr 1)- ... 4<Tj,cr j>~··· of an

L (11 ,await}-program S = s ; cs1 II ••• II S) is impartial if ~ is finite or for every -- o n
i E { 1, ... ,n} there are infinitely many j such that canponent Si is active in

step <Tj, cr j>4<Tj+l' CS" j+1 > ·
'11:l.us in an infinite impartial canputation every canp::ment will eventually progress.

'11:J.e concurrent semantics of programs 5€ L (II ,await), modelled here by interleaving

and the assumption of impartiality, is nO;J given by

.M..imp[S] (o-) = {~

v { J_

u{A

(s,c:r> --+* <E II ••. II E, z) }
3 infinite impartial canputation of S l
starting in er J
S can deadlock frcm cr- }

To see the impact of this definition, let us look at the examples* again. Under

the assumption of impartiality s* always tenninates: ..1.4'.M.imp[s*] (er) for every

state er.

5. Structure Preserving Transformations

In this section we restrict ourselves to programs in L (II) . Our aim is to find a

transformation T which reduces the concurrent semantics .M.. of 1 (II) to the ordi -
l.Illp

nary interleaving sauantics vVI., i.e. with

JA.imp[S] = JA[T(S)]

such transformations T are useful for two reasons: firstly, they describe a class of

schedulers which impleirent true concurrency on a single processor machine , and

secondly, they provide a systematic approach of refining existing proof methods for

program correctness unaer interleaving semantics to methods for aealing directly with

concurrent semantics. Of course, we cannot expect the transfonned programs T(S} to

be in L (II) because M imp introduces i.mbounded nondetenni.nism (and thus discontinuous

semantic operators /Di/) as opposed to Jv1. • But we can control this unbounded non

aetenninism by ma.king it explicit via randan assignments

z:=?

as analysed in /AP/.

First attempt

A simple way of reducing concurrency to interleaving is to canbine two types of al

ready existing transfoma.tions. Given a parallel program S = S0 ;(S1 II ••• II Sn) one

first foll= the approach of /FS1 ,FS2/ or /Br1 ,Br2/ and translates s into a big

nonaete.r:mini.stic do-od-program Tnd (S) which makes the interleaving semantics Jil[S]

syntactically visible. 'lhen one can apply the transformations Tfair of /AO/ to

Tnd (S) which use rand.an assignments to realize the assunption of fairness in the

31

context of do-cd-programs. 'lhe drawback of this solution is that the first trans

lation Tnd destroys the syntactic structure of programs s.

Instead we are interested in transformations which preserve the parallel struture

of programs .

Definition 5. 1 A transfomtion T: L (II) -4 L (II ,await,?) is called II -preserving

if T satif ies

T(s ;(s1 JI •.• II s l l = '.f1(s);(T1:1 (s1J !I ..• II Tn(s l) o n o o n n

where T1:1 is a sub-transfor:rnation working on the i -th car;x:ment of S. The notation
1.

implies that the only inforrration ~may use about the structure of S is the total

number n of canponents in S and the index i of the currently transformed canponent.

A transfonnation schEme 1r is II -preserving if every instance T of 1r is II -preserv

ing.

Second attempt

In /AO/ we shc:Med that in the context of Dijkstra's nondeterrninistic do-od-prograrrs

fairness assumptions can be realized by just adding rand.an assignments z:=? and

refining Boolean expressions in a certain "admissible" way. The question arises

whether this is also possible for parallel programs S e L (II) •

Definition 5. 2 A transfonnation T:L (II) ~ L (II , ?) is admissible if it is

II -preserving and if for every SE L (II) there is a set Z of new auxiliary variables

z E Z used in T (S) for scheduling purposes in the follo,..ring two ways:

(1) in additional assignments of the fonn z:=? and z:=t inside of S

(2) in Boolean conjuncts c used to strengthen Boolean expressions b of loops

while b do s1 od or conditionals if b then S:J else s2 fi in S. We require

that this stregthening is done schematically, i.e. the conjunct c in

independent of the actual fonn of b.

Again a transfonnation schere -U- is admissible if every instance T of 1r is.

Note that because T (S) manipulates additional variables Z the best we can hope

to prove is that .Minlp [S] agrees with .M[T(S)] ".rrodulo Z". 'lhis notion is

defined as follows: for states er EL and sets Z ~ Var of variables let

cr \ Z = cr t (Var\. Z) .

'lhis notation is extended to sets M S E. u{..l..,A} pointwise:

M\Z= {cr\zlcreM}v{J..ll.EM}v{A\..6.€ M}

For state transfomers .M 1,M2: 'L 4 :P (L u { l. , ..6.}) we write

JA 1 = JA 2 rood z

32

if .M. 1 (cr) \ Z = JA 2 (cr) \ z holds for ever:y state CJ E Z::

Theorem 5.3 There is no admissilile transfonnation T:L(II)~ L(II , ?) such that for

ever:y program S e L (II)

M.irrp[S] = M[T(S)] m::x1 z

holds where z is the set of auxiliary variables used in T (S) .

The theorem states that it is more difficult to find transformations T realizing

fairness (here irrpartiality) for parallel prcgrams than for nondetenninistic ones.

The reason is that transfomations T:L(II)~L(II,?) would have to tenninate the

presently executed canponent S. of a program SE L (II) in order to force a shift of
J_

control to another canponent S . . But after terminating S . there is no possiliili ty J J_

of resuming S. later on. To achieve this effect we necessarily need an additional
J_

language construct in T: the await-statement.

Third attempt

First we extend Definition 5. 2 of adrnissiliili ty to transfonnations

T:L(II)~ L(II ,await,?) by allc:Ming in T(S) also

(3) new await-statements await c then s1 end where s1 is a sequence of

assignments of the fonn (J) of Definition 5.2.

To conduct a finer analysis, we introduce further concepts:

Definition 5.4 A transfomation T:L(II)~L(II ,await,?) is sequential (in every

conponent) if it is admissilile, i.e. if it is of the fonn

and if it preserves sequential canposition in every canponent, i.e. if for every

i = 1, ... ,n

holds. A transformation scheme lf is sequential if every instance T of 1f is.

Sequentiality yields particularly ~ transformations.

Definition 5.5 A transformation T:L(II)~ L(II ,await,?) is faithful if T dces not

intrc:duce deadlocks, i.e. Ll.~JVI. [T(S)] (er) holds for every SeL(ll) and crE2:

A transfonnation scheme T is faithful if every instance T of T is. Otherwise T
and T are called deadlocking.

Transformations implementing schedulers should be faithful as schedulers should

never run into any deadlocked configuration-The notion of a faithful transformation

was first intrc:duoed for nandetenninistic do-ad-programs in /AO/ where it meant

33

absence of guard-failures. Unfortunately, we cannot find a sinple sequential trans

formation which is faithful:

'Iheorern 5.6 There is no faithful, sequential transformation T:L(II)- L(II ,await,?)

such that for every program SE L (II)

.M. . [S] = M [T(S)] m:x1 Z
1.Ilp -

holds where z is the set of auxiliary variables in T (S) .

Faithful, but non-sequential transformations will be presented in Sec. 6.

A Solution

Ho.vever, we can find a deadlocking transfo:anation (scheme)

Tilrp+.C. : L (JI) ~ .:P (L (II ,await,?) l \ {0}

which is sequential and realizes impartiality. Certainly, deadlocking transformations

T are not suitable as inplernentations of fair schedulers, but - as first observed in

/APS/ - may lead to sinplified correctness proofs of transforrred programs T (S) . This

is why we are also interested in deadlocking transformations.

For a given program S = S0 ; (SJ II .•• 11 Sn) in L(II) let Tirrp+LI. (S) be the set of

all programs resulting fran s by

(1) prefixing S with an initialisation part

(2) replacing in every loop while b do S' od of a carrponent Si sare atanic

statement A in S' by

TESTi (A) = await z ~ 1 then

zi :=?; for j 'I' i do zj :=zj-1 od;

A

end

(for i = 1, ... ,n) .

Here we use neN variables z 1, ... ,zn not already present in Sand the follONing

abbreviations:

z ~ 1

for j 4= i do z. :=z .-1 od =
- J J -

z1:=z1-1; ... ;zi-1:=zi-1-1;zi+1:=zi+1-1; ... ;zn:=zn-1

To see its impact, we apply Tilrp+.O. to the program

s* = while b do x:=x+1 oo II b:=false

34

of sec. 4. Here there is exactly one program T E T:ilnp+-A (S), viz.

T = z1:=?; z2:=?;

(while b do await z1 ,z2 ~ 1 then

od

11 b:=false >

z1:=?; z2:=z2-1;

x:=x+1

end

T uses variables z1,z2 for sdleduling purposes. The variable z2 counts hew many

times we may enter the while-loop of the first canponent of T without switching

control to the second catp:)nent. ('Ihe variable z1 is introduced for analogous pur

poses but not relevant for this particular program T without a while-loop in its

seccnd ccnp::inent.) Initially z2 is set to an art>itrary non-negative integer. Each

t:im:! the while-loop is entered z2 is decremented by 1 • This ensures that this loop

cannot be executed arbitrarily long without falsifying z1 ,z2 ~ 1. Note that as

soon as the Boolean expression z1 ,z2 } 1 of the await-statement is false, it remains

so even after executing the second ccmponent b:=false. Hence T can deadlock fran

states cr with cr(b) = true.

Thus Tinp+-LI. is a deadlock.iIB transfonnation which transfonns all diverging non

in:partial cacputations of S into deadlocking corrputations of T. Indeed T .i.Irp+ L::.

realizes the asstmlption of ~ality in the sense of:

Theorem 5. 7 For every L(ff)-program S and T € T:ilnp+-A (S) the equation

M.:imp[S] = .M. _~[T] .!!00 Z

holds where Z is the set of auxiliary variables in T.

6. Liveness

Consider the L (II)-program

s"'"* =while b do x:=x+1 od II skip .

Intuitively, s** should diverge for states er with cs (b) = true - independently

whether the interleaving or a concurrent, i.e. "fair" serrentics is chosen. However,

with our definition of :impartiality S ** always te:i:minates: .L ~ JA [s * *] (cr)
:imp

for every state cr .

Thus :inpartility is not adequate to capture the idea of fairness even for L(If) •
Therefore we introduce the refined concept of liveness which distinguishes between

tenninated and running canponents of parallel programs.

35

Definition 6.1 A ccrrputation J: <s,cr) = <T1, o- 1)~ ... ~(Tj, <> j)~ ••• of a

program S = S ; cs1 II ••• II S) in L(II ,await) is live if "- is finite or the follcwing o n -- -- s
holds for every i e. { 1, ... ,n}: either CCll\PO!lent s. has tenn.inated in sane (T.,cr .)

1 J J
or there are infinitely many j such that carrponent Si is active in step

<Tj' cr j)-+<Tj+1' CS"j+1> .

Thus in a live ccrrputation every non-terminated caq;x::inent will eventually be

active and make progress. Analogously to M. we define a semantics .M.1 . which :unp ive
captures this assumption of liveness:

.M.live[s] (cr) {rl<s,cr>~*(Ell ... llE,r)}
u 1.L I 3 infinite live ccrrputation of S starting in o- }
u {Li I S can deadlock fran cr }

Let us first establish an interesting relation between M . and .Mli .
:urp ve

Definition 6.2 A program S in L(II) is called~ if whenever

(s,a}~* (T, II ••• 11 T , r> with T. = E holds for sane i E{1, ... ,n}then T1 II ••• n T . n 1 n
cannot di verge fran Z" •

Informally, s cannot diverge with one catp:)nent tenninated. This property is rot

decidable but it is often easy to check whether a given program is strong. E.g.

program s * of Sec. 4 is strong.

Proposition 6.3 For strong programs S in L(II) the equation

.M. live [S] = M. inl> [S] holds .

As done for inl>artiality we are looking for structure preserving transformations

which realize the assumption of liveness. Clearly, for strong L(II)-programs we can

use Tinp+A due to Proposition 6.3. But in general things are rrore ccrrplicated:

Theorem 6. 4 There is no sequential transforrration T: L (II) -? L (n , await,?) such that

for every S e L (II)

.M.1· [S]I =.M. A [T(S)] .rrod z ive -.- -

holds where z is the set of auxiliary variables in T(S).

The result is based on the fact that sequential transfmniations T cannot distin

guish whether a certain substaternent is the final statement in a CO!ilfOnent of a

parallel program or whether it is followed by sane other staterrent. To acocrrplish

this distinction we use in our transfonnations further auxiliary variables endi

which record tennina.tion of the ccmponent programs.

We present a faithful (but non-sequential) transfonna.tion sch.erre

Tlive: L(IJ)--,> J'(L(ll ,await,?))\ {If)}.

36

For a given prcgram s = s0 ; (S1 II •.• II Sn) in L (II l let Tlive (S) be the set of all

programs resulting fran S by

(1) prefixing S with an initialisation part

INIT = z1:=?; ... ;zn:=?; ena.1:=false; .•. ;end:=false

(2) replacing in every loop while b do S' od of a canpanent Si

scm: atanic statem8nt A in s' by

TESTi (A) = await tum = i V z ~ 1 then

zi:=?; for j * i do

if 1end. then z.:=z.-1 fi

A

end

(for i = 1 , ... ,n) .

(3) suffixing every canp:ment Si by

END. = end. :=true
1. 1.

(for i = 1, ... ,n).

J -- J J

Again the zi's and endi's are new variables not already present in S. As additional

abbreviation we use

turn = min { j j zj = min f 2i< I enc\ = false }}

Due to (3) all con:ponents of transforrred programs T E Tlive (S) have terminated when

all variables endi are true. 'Ihus the expression turn is properly defined whenever

a test TESTi (A) is executed in T.

Theorem 6.5 For every program SE L (II) and TE Tlive (S) the equation

J.1 1. [s] = M[T] mod z ive -

holds where Z is the set of auxiliary variables zi and endi in T.

The proof of Theorem 6.5 sho.vs that the transfonnation scheme Tlive not only

rrodels the input-output behaviour of S but in fact provides a on~one correspondence

between live computations of S and arbitrary corrputations of T E Tlive (S). Therefore

we can view Tlive as an abstract specification of schedulers which guarantee liveness

for parallel programs S. By Theorem 6. 5 every deterministic scheduler can be

implemented by replacing the randan assignments z:=? in T E Tlive (S) by deterministic

assignments and by refining the Boolean conjuncts "z ~ 1" in await-statements

TEST i (A) . (See /Pa/ for the notion of implementation in the context of specifica-

37

tions with unbounded nondeterminism.) Moreover Theorem 6. 5 guarantees that all these

irrplerrented schedulers are deadlock-free and therefore never require any rescuing or

backtracking fran deadlocked configurations /Ho/.

7. Weak Fairness

In this section we extend our progranming language to L(11 ,await). Though liveness

is an adequate formalization of the concept of con=rency for the language L(11) , it

is not sufficient for L(l/ ,await). Consider the program

s*** = while b do x:==x+1 od JI await ., b then skip end

We 8}(j'.Ject canputations of s*** starting in a state <S with <:r(b) = true to diverge -

independently whether the interleaving or a concurrent semantics is chosen. But with

the sirrple defintion of liveness s*** always tenninates: .L 4: Jvl live[s**l'".ll (a') for

every state er .
In the presence of await's we have to refine the idea of liveness by replacing the

notion of tennination by the notion of enabledness of components (cf. Sec.3). This

leads to the following concept of weak fairness /AO,FP/ (called justice in /LPS/).

Definition 7.1 A canputation ! : (S, cr) = (T1,o- 1)~ ... ~<Tj,a-j)-4 ... of an

L(II ,await)-prograrn S = S0 ; (S1 II ••• II Sn) is weakly fair if ! is finite or the

follaving holds for every i E { 1, ..• ,n} : if for all but finitely rrany j the can

ponent S. is enabled in <T., <:> .) , then there are infinitely many j such that can-
1 J J

ponent Si is active in step <Tj, cr j>~<Tj+l '<5 j+l) .

Thus in a weakly fair cauputation every component which is fran sane rrarent on

continuously enabled will eventually make progress. This definition induces a semantics

M.wfair analogously to Mlive·

Remark 7 .2 M.wf . [s] =.Ml. [s] holds for all programs s EL(II) •
aJ.r 1ve

As for irrpartiali ty and liveness we wish to develop transfonnations which realize

the assumption of weak fairness. (Note that the previous definitions of ll -preserving,

admissible, sequential, faithful and deadlocking have straightforward extensions to

transformations T: L(II ,await)~ L(II ,await,?).) These transfonnations are again more

sophisticated than the previous ones because we have to check enabledness of canpo

nents in front of every atanic statement inside of while-loops.

We refine the transfonnation scheme Tlive of Sec.6 to an admissible, faithful

scheme Twfair" (Clearly Twfair cannot be sequential by Theorem 6.4 and Fernark 7.2.)

Given a program S = S0 ; (S1 II •.• II Sn) in L(II ,await) this scheme Twfair will use sets

of neN variables, viz. zi, endi, pci for i = 1, ... ,n. The zi 's and endi' s are used

as in Tlive" The pci's are a restricted fo:rm of program counters which indicate whe•

the ccmponent Si is in front of an await-statement and if so in front of which one

38

To this end, we assign to evecy occurrence of an await-statement in Si a unique num

ber 1 j- 1 as label. Let L. denote the set of all these labels for S . and b1 denote
i i

the Boolean expression of the await-staterrent labelled by 1. Further on we introduce

for S. the abbreviation
i

enabled. = 1 end4 A /\ (pc. = 1-+ b1) .
i • 1 EL. i

i

By the foll0;1ing construction of Twfair' enabledi will be true iff the CCllTTfOnent Si

of S is indeed enabled.

'.Ihe transfonnation schems

Twfair: L(II ,await) ~ 1' (L (II ,await,?)) \. { \)J l

rra.ps a given program S = S0 ; (s1 II ••• II Sn) in L(II) into the set Twfair (S) of all

programs resulting fran S by

(1) prefixing S with

lNIT = for i = 1, •.• ,n do zi :=?; endi :=false; pci :=O od

(2) replacing every substaterrent await b 1 then S' end

with 1 E Li in Si by

where k $Li holds, e.g. k = o (for i = 1, ..• ,n).

(3) transforming in the so prepared program every lcop while b do S' od

in a canponent Si as follaivs:

(i) replace ~ ata:nic statenent A in s' by

TESTi (A} = await turn = i v. z ~ 1 then

zi :=?; for j :f i do

A

end

if enabled. then z.:=z.-1
J -- J J

else z. :=? fi
-- J

(ii) replace every other atanic statement B in S' not affected under (i) by

RFSEI' i (B) = awa.i t true then

for j 'f i do if -, enabled. then z . :=? fi od;
J -- J --

B

end

39

can:rent: If A or B are already await-statements, we "amalgamate" their Boolean

expressions with turn = i A z.). 1 or true to avoid nested await's. The expression

turn is here defined as follcws:

turn= min f j I zj = min { ~ I enable<_ = true}}.

(4) suffixing every corrponent Si by

END. = end. =true
l. l.

Insiae :RESEI'. (B) and TEST. (A) each of the variables z . associated with s . is reset
l. l. J J

as soon as S. gets disabled. Thus z. is continuously decrem=nted by z. :=z .-1 insicJe
J J J J

TEST. (A) only if S. is continuously enabled. This fonnalizes the idea of weak fair-
1. J

ness where only those curp::inents which are continuously enabled are guaranteed to

progress eventually.

Theorem 7.3 Far every program SE L(JI ,await) and T € Twfair(S) the equation

M. wfair[s] = M.[T] nod z

holds where z is the set of auxiliary variables zi, endi and pci in T.

8. Strong Fairness

Weak fairness guarantees progress of those canponents which are continuously enablee

A rrore ambitious version of fairness is strong fairness /KJ,FP/ (called fairness in

/Ll?S/) where progress is already guaranteed if the canponent is infinitefy often

enabled.

Definition 8.1 A carputation § : (S,a) = <T1, er 1)-+ ... --+(Tj, <l" j)-+ ... of an

L(11,await)-program S = S0 ; (s3 II ••• 11 Sn) is strongly fair if g is finite ar the

following holds for every i E { 1, •.. ,n} : if for infinitely many j the canponent Si

is enabled in <T., cr .) , then there are infinitely many j such that canponent S. is
J J l.

active in the step < Tj, cr j)--+<'.Tj+l '0" j+l) ·

Analogously to .M.wfair we define .M.sfair" We refine the previous transfonnation

scheme Twfair to a scherre

T f . : L(II ,await)__, P(L(II ,await,?))" {\Zl} s air -- --

for strong fairness. Far a given program S = S ; cs1 II ••• II S) in L(II ,await) let
o n --

Tsfair(S) result fran S by applying the steps (1), (2) and (4) as in Twfair but

with the following new step (3):

(3) replace in the so prepared program ~ atcmic statement A occurring

in a while-loop of Si by

40

TESTi (A) = await turn = i V z ~ 1 then

zi:=?; for j 4' i do

if enabled. then z.:=z.-1 fi
- J -- J J

A

end

As with T . we have to test the enabledness of the canponents S . of S in front of
wfair J

every atanic statement. But in contrast to Twfair the transformed programs

T e T . (S) do not reset the variables z. for carp:inent S. when S. gets disabled.
sfair J J J

Instead we have to decrerrent zj (and be prepared for switching to component Sj)

whenever sj is enabled. 'Ihis change ensures that those sj vmich are infinitely often

enabled make eventually progress. These observations are formalized in:

Theorem 8.2 For every program SE L(II ,await} and TE Tsfair(S) the equation

.M.sfair[s] = .M.[T] nod z

holds where Z is the set of auxiliary variables zi, endi and pci in T.

9. Conclusion

We presented here a series of structure preserving transformations which reduce dif

ferent notions of a concurrent or fair semantics for parallel programs to a simple

interleaving semantics. These transformations can be viewed as abstract specifications

of schedulers guaranteeing only fair computations.

But they also provide a basis for syntax-directed correctness proofs for parallel

programs under fairness assumptions. We outline this idea with help of a simple

example. Consider the L (II) -program

S = vmile x> O do skip; x:=x-J od II while x> O do skip od •

Under the interleaving semantics ..M. this program can diverge but under the semantics

.M,live m:idelling t.he assumption of liveness S always tenninates. We write this fact as

I= live {true} S {true}

in the sense of total correctness modulo liveness.

First observe that S is a strong L(II)-program. Thus to prove (1) it suffices to

apply the transfonnation scheme Tinpl- 6 modelling llnpartiality and prove for sane

prcgrarn T E Timp+A (S)

(2) ~-Li. {true} T {true}

41

where I= -A refers to the interleaving semantics .M. -A ignoring deadlocks. The

equivalence of (1) and (2) folla-;rs fran Theorem 5. 7 and Proposition 6.3.

To prove (2) we will use a sin;ile extension of the proof system /OG/ which ignores

deadlocks but deals with termination in the presence of randan assigmrents z:=? ,

i.e. the extension deals with "total correctness m::x:'lulo deadlocks". As in /ex:;/ the

extended proof system proceeds in two steps: first it proves correctness of the

carponents of a parallel program T and then it uses a proof rule for parallel caapo

si tion to prove co=ectness of the whole program T.

Note that in our particular example S there are two transfonned programs

T E T.ilrp+A (S) for which we could prove co=ectness in the sense of (2) with the

extended proof system of /OG/ - one, say T1, is obtained by applying the eJq:)a!lSion

TEsr1 (A) of Tirlp+A (S) to the atanic statement A = skip in the first Ca!lX>nent of S,

another one, say T2, by applying TEST1 (A) to A = x:=:ic-1. It turns out that for T2
claim (2) is considerably sin;iler to prove correct in the extended proof system

than for T 1 . This observation explains the advantage of having nondetelllli.nistic

transfonnation schemes like T:i.rrp+A to our disposal: they can be applied flexible

according to the needs of particular exanples like S.

Finally, we stress the fact that for proving (1) about S we sin;ily need to prove

total co=ectness m:idulo deadlocks for T2 E T:i.rrp+A (S) in (2). This connection ex

plains why in correctness proofs deadlocking transfo:onation schenes like T:irc\P+ A

are often desirable. For describing schedulers we are of course advised to use

faithful transfonnation schemes only.

Acknowledgement. Research on this paper was supported by the German Research

Council (DFG) under grant La 426/3-1.

References

/PD/ K.R. Apt, E.-R. Olderog, Proof rules and transfonnations dealing with fair
ness, Science of Canputer Prograrrming 3 (1983) 65-100; extended abstract
appeared in: D. Kozen (Ed.), Proc. Logics of Programs 1981, Lecture Notes
in Canputer Science 131 (Springer, Berlin, 1982) 1-8.

/AP/ K.R. Apt, G.D. Plotkin, Countable nondetemiinisrn and randan assignment,
Technical Report, Univ. of Edinburgh (1982); extended abstract appeared in:
s. Even, o. Kariv (Eds.), Proc. 8th Coll. Autarata, languages and Programning,
Lecture Notes in Canputer Science 115 (Springer, Berlin, 1981) 479-494.

/APS/ K.R. Apt, A. Pnueli, J. Stavi, Fair tennination revisited - with delay, in:
Proc. 2nd Conf. on Software Technology and Theoretical Canputer Science,
Bangalore (1982).

/Br1 I M. Broy, Transfonnatianal semantics for concurrent programs, Inform. Proc.
Letters 11 (1980) 87-91.

/Br2/ M. Broy, Are fairness assunptions fair ? , in: Proc. 2nd Intern. Conf. on
Distributed Canputing Systems (IEEE, Paris, 1981) 116-125.

/Di/ E.W. Dijkstra, A Discipline of Progranming (Prentice Hall, 1976).

/FP/

/FS1/

/FS2/

/Fr/

/HP/

/Ho/

/IJ?S/

/1:1P!

/OC,/

/OL/

/Pa/

/Pl/

/Pn/

42

M.J. Fisher, M.S. Paterson, Storage requirements for fair scheduling,
Manuscript, Univ. of Wai::wick (1982) .

L. Flan, N. Suzuki, Nondeterrni.nism and the correctness of parallel programs ,
in: E.J. Neuhold (Ed.), Formal Description of Programming Concepts I (North
Holland, Amsterdam, 1978) 589-608.

L. Flon, N. Suzuki, The total correctness of parallel programs, SIAM J. comp.
10 (1981) 227-246.

N. Francez, Fairness, Unpublished Manuscript, Technion Uni v. (19 83) •

M.C.B. Henessy, G.D. Plotkin, Full abstraction for a simple prograrrming
language, in: J. :seCVar (Ed.), Proc. 8th Syrop. on Mathematical Foundations
of Carputer Science 74 (Springer, Berlin, 1979) 108-120.

C.A.R. Hoare, Sare properties of predicate transfonners, J. ACM 25 (1978)
461-480.

D. Lermiann, A. Pnueli, J. Stavi, Irrpartiality, justice and fairness: the
ethics of concurrent tennination, in: S. Even, 0. Kariv (Eds.), Proc. 8th
Coll. Autanata, Languages and Prograrrming, Lecture Notes in Canputer Science
115 (Springer, Berlin, 1981) 264-277.

z. Manna, A. Pnueli, Verification of concurrent programs: the temporal frame
work, in: R.S. Boyer, J.S. M:lore (Eds.), The Correctness Problem in Computer
Science, International Lecture Series in CCinputer Science (Academic Press ,
London, 1981).

S. O.Vicki, D. Gries, An axianatic proof technique for parallel programs ,
Acta Infomatica 6 (1976) 319-340.

S. O.Vicki, L. Lanport, Proving liveness properties of concurrent programs,
ACM TOPI.AS 4 (1982) 455-495.

D. Park, On the semantics of fair parallelism, in: D. Bj!Zlrner (Ed.), Proc.
Abstract Software Sf€Cifications, Lecture Notes in Computer Science 86
(Springer, Berlin, j979) 504-526.

G.D. Plotkin, A structural approach to operational semantics, Technical Report
DAIMI-FN 19, Caap. Sci. Dept., Aarhus Univ. (1981).

A. Pnueli, The temporal semantics of concurrent programs, Theoretical computer
Science 13 (1981) 45-60.

