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Abstract. Parallel programs with shared variables are studied under a semantics 
which assumes the fair execution of all parallel canponents. We present transfonn
ations which reduce this fair semantics to a sinple interleaving semantics with help 
of randan assignments z:=? . In fact, different notions of fairness are considered: 
impartiality, liveness, weak and strong fairness. All transformations preserve the 
structure of the original programs ana are thus suitable as a basis for syntax
directed correctness proofs. 

1. Introduction 

This paper considers parallel programs S = s1 II .•. II Sn where the canponents Si of S 

are sequential programs which carrmunicate with each other implicitly via shared 

variables. The correctness properties and (in-) formal reasoning about such programs 

depend on the sernantical notion of execution of s. 

The simplest way of modelling the execution of S is by arbitrary interleaving of 

the execution sequences of its ca:rponents Si /Br1 ,Br2,FS1 ,FS2/. But in general inter

leaving is not what we wish to express when writing S = s1 II •.• jl Sn since it ro:xl.els 

only the concept of multiprograrrming where S runs on a single processor /MP /. 

Here we investigate the I!Dre ambitious idea of a truly con=rent execution of S 

where every canponent Si runs on its = processor. To formalize this idea we follcw 

the proposal of /MP ,OL/ to model concurrency of s by interleaving the execution 

sequences of its components, but with the additional assumption of fairness. Infor

mally, fairness states that every canponent Si of S which is sufficiently often 

enabled will eventually progress. Different interpretations of "sufficiently often 

enabled" give rise to different notions of fairness, viz. irrpartiality /LPS/, live

ness /OL/, weak and strong fairness /NJ/. For liveness e.g. "sufficiently often 

enabled" is interpreted as "not yet terminated". 

So far semantics and proof theory for fairness assumptions have been studied 

mainly in the context of nondeterrninistic do-od-prograrns (see /Fr/ for an overview). 

For parallel programs S = s1 II ... JI Sn the question of fairness has been dealt with 

only by translating the given program S back into a nondeterministic do-ad-program 

/APS,LPS/ or by resorting to methods of temporal logic /OL/ which often requires a 

translation of the original program S into an equivalent fonnula in temporal 'logic 

/MP,Pn/. 
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In our paper we present a series of transfonnations T which reduce the =ncurrent 

or fair semantics of parallel programs to the simple interleaving semantics with help 

of random assignments z:=? /AP/, one transfonnation for each notion of fairness. All 

transformations preserve the parallel structure of the original programs. The approach 

represents a refinerrent of the transfonnation technique introduced in /AO/ for non

deterministic do-ad-programs. 

The interest in such transformations T is twofold: 

( j) T can be considered as a sort of scheduler which guarantees that the resulting 

program T (S) realizes exactly all the fair executions of S. 

(2) T can be used as a basis for syntax-directed correctness proofs. The idea is to 

apply an extension of the proof system of /OG/ dealing also with randan assign

ments to T (S) . 

In this paper we concentrate on the first aspect. We state a number of results on 

the existence or non-existence of transfonnations with paricular properties. We hope 

that these results give a better insight into the structure of the various notions of 

fairness. Proofs will appear in the full version of this paper. 

2. Parallel Programs 

We as&ume sets Var of variables ranging over integers, Exp of expressions and Bex of 

Boolean expressions with typical elements x,y,zeVar, s,tEExp and b,cEBex. 

Sequential programs are defined by the follc:wing BNF-like syntax: 

S : := skip I x:=t j z:=? I s1 ;s2 J if b then s1 else s2 fi I 
while b do s1 od I await b then s1 end 

where for simplicity nested while's and await's are disallONed. Let if b then s1 fi 

abbreviate if b then sl else skip fi. 

Besides usual assignments of the form x:=t we consider randan assignments z :=? 

which assign an arbitrary non-negative integer to z /AP/. Thus z:=? is an explicit 

form of unbounded nondeterminism in the sense that termination of z:=? is guaranteed 

but infinitely 1TB11Y final states are possible /Pa I. 
Await-statements S = await b then s1 end are used to achieve synchronization in 

the context of parallel composition. S is executed only if b is true. What makes it 

different fran if b then s1 fi is that the await guarantees that s1 is executed as 

an indivisible action /OG/ (cf. Sec.3). 

By a parallel program we mean a program of the form 

S = S0 ; (SJ !I •.• jj Sn) 

where s0 is a sequence of assignments and s1, ... ,Sn are sequential programs. S0 is 

the initial part of s and s1 , ... ,Sn are the (parallel) components of S inside the 

parallel canposition s1 II ..• II Sn. 
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We distinguish four classes of programs: L( II ) , L( JI ,?) , 1( II ,await) and 

1( !I ,await,?) depending on whether randcm assignments or/and await-statements are 

used. L( ll ,await) is essentially the language studied in /OG/. 

In our paper we will study certain (program) transformations, i.e. I!E.ppings 

T: L( II) [or 1( II ,await)] -4 L( II ,await,?). 

Sometimes it is more convenient to leave certain details of such a transfonnation 

open. To this end, we consider transformation schemes, i.e. mappings 

lr: L(fl ) [or L ( II ,await)] ~ :P (L ( II ,await,?))'\ { ~} 

which assign to every program S a non-empty set of transformed programs S' € lr(S) · 

( 1>(M) is the paver set of a set M.) By selecting a particular S' E lr (S) for every 

program S we obtain a so-called instance T of 1r . This is a transformation T as above. 

3. Interleaving Semantics 

We take an interpretation with integers as danain :D assigning the standard rreaning to 

all synbols of Peano arithmetic. The set of (~) states is given by Z: = Var-----? :I> 
with typical elerrents cr,?:. Notations like cr [d/x], crtX and cr(b) are as usual. We 

add two special states not present in !: : ..L reporting divergence and .C.. reporting 

deadlock. 

By a configuration we mean a pair <s,cr) consisting of a program SEL( II ,await,?) 

and a state cr. Follcwing /HP,Pl/ we introouce a transition relation~ between 

oonfigurations. (S,cr)-7(8:1, er 1) means: executing S one step in cr can lead to cr 1 
with s 1 being the remainder of S still to be executed. To express termination we 

allav the empty program E with E;S = S;E = E. 

The relation ~ is defined by structural induction on L ( II , await,?) . Typical 

clauses are: 

a) <skip, cr)~ <E,cr) 

b) (z:=?,cr)-4(E,cr[d/xJ> for every o~ d E1>. 

cl <while b dos] oo,cr)-? <s1;while b do 81 od,o) if cr(b) =true. 

d) <while b do s 1 oo, c:r)-? <E,c) if <:r(b) = false. 

e) (await b then s 1 end,cr)~(E,'!:) if cr(b) =true and (s 1 ,<J>~* (E,c:-) 

where _.,,. denotes the reflexive, transitive closure of -

f) If (s1,cr)--?-(s2 ,z:-) then (s1;s, cr)4<82;s,r) 

g) If (si,cr>-7(Ti,r) the.ri 

(81 II ••. n sn,cr)-;.(s1 II .•• )I si_1 1l Till 8i+1 II ... It sn, <="). 

Note that assignments, evaluations of Boolean expressions, and await-statements 

are executed as atanic or indivisible actions. Therefore statements of the form skip, 

x:=t, z:=? and await b then 81 end are called atomic. Parallel oomposition is 

modelled by interleaving the transitions of its comp:ments. 
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Based on ~ we introduce sane further concepts. A configuration (s, c:r) is maximal 

if it has no successor w.r.t. -7 . A terminal configuration is a maximal configuration 

(S,cr) with S = E II ••• II E. All other :rraximal configurations are called deadlocked. 

A ca:tputation of S (starting in cr ) is a finite or infinite sequence 

§: (s,cr>~<s1,cr-1>~ ... ~<sk,o-k)~ ... 

A ccmputation of S is called ter.mi.nating (deadlocking) if it is of the form 

1: (s,o)~ ... ~(T,r) 
where (T,1:") is terminal (deadlocked). Infinite canputations of S are called diverging. 

We say that S can diverge frcm cr- (can deadlock fran cr-) if there exists a diverging 

(deadlocking) canputation of S starting in a-. 
The inter leaving serrantics of programs S E L ( II , await,?) is 

defined by 

.M.[s] (cr) {-z:-1 (s,cr>-7* <EU ... !IE,r)} 
u { ..L I S can diverge fran CS } 

LJ { ~ I S can deadlock fran CS } 

We also consider a variant of .M ignoring deadlocks: 

..M._A[s](o-) = M.[s] (cr)\ {.6.}. 

same further notions. Thecorrponent s. has ter.mi.nated in (s1 II ••• IJ s ,er) ifs. =E. 
i n l. 

The canponent S. is disabled in (s1 II ••• II S , cr) if either S. = E or 
l. n i 

Si = await b then S end; T with <r(b) = false. The corrponent Si is enabled if it is 

not disabled, i.e. if Si is not tenninated and whenever Si=await b then S end;T holds 

then cr-(b) =true. The catq?Onent Si is active in the step (s1 n ... 11 Sn, er)~ 

<T1 II •.. !) Tn, 7::) if (si,o->~<Ti,'t').AprogramSis deadlock-free if.M[S] =JA.-A[ S J. 

4. Impartiality 

Consider the program 

s* =while b do x:=x+1 od II b:=false 

'---v---' 

s, 
Under the interleaving seroantics S can diverge: J. e: .M. [ S *] ( !J) if er (b) = true. 

However, in every concurrent or "fair" canputation of s 11 the second canponent s2 
will eventually be executed causing termination of s1 and hence s* itself. The 

question is how to capture this intuitive notion of fairness. 

In this section we define a first approximation to the concept of fairness, viz. 

impartiality /LPS/. 
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Definition 4.1 A canputation != <s,cr) = <T1 ,cr 1)- ... 4<Tj,cr j>~··· of an 

L ( 11 ,await}-program S = s ; cs1 II ••• II S ) is impartial if ~ is finite or for every -- o n 
i E { 1, ... ,n} there are infinitely many j such that canponent Si is active in 

step <Tj, cr j>4<Tj+l' CS" j+1 > · 
'11:l.us in an infinite impartial canputation every canp::ment will eventually progress. 

'11:J.e concurrent semantics of programs 5€ L ( II ,await), modelled here by interleaving 

and the assumption of impartiality, is nO;J given by 

.M..imp[S] (o-) = {~ 

v { J_ 

u{A 

(s,c:r> --+* <E II ••. II E, z) } 
3 infinite impartial canputation of S l 
starting in er J 
S can deadlock frcm cr- } 

To see the impact of this definition, let us look at the examples* again. Under 

the assumption of impartiality s* always tenninates: ..1.4'.M.imp[s*] (er) for every 

state er. 

5. Structure Preserving Transformations 

In this section we restrict ourselves to programs in L ( II ) . Our aim is to find a 

transformation T which reduces the concurrent semantics .M.. of 1 ( II ) to the ordi -
l.Illp 

nary interleaving sauantics vVI., i.e. with 

JA.imp[S] = JA[T(S)] 

such transformations T are useful for two reasons: firstly, they describe a class of 

schedulers which impleirent true concurrency on a single processor machine , and 

secondly, they provide a systematic approach of refining existing proof methods for 

program correctness unaer interleaving semantics to methods for aealing directly with 

concurrent semantics. Of course, we cannot expect the transfonned programs T(S} to 

be in L ( II ) because M imp introduces i.mbounded nondetenni.nism (and thus discontinuous 

semantic operators /Di/) as opposed to Jv1. • But we can control this unbounded non

aetenninism by ma.king it explicit via randan assignments 

z:=? 

as analysed in /AP/. 

First attempt 

A simple way of reducing concurrency to interleaving is to canbine two types of al

ready existing transfoma.tions. Given a parallel program S = S0 ;(S1 II ••• II Sn) one 

first foll= the approach of /FS1 ,FS2/ or /Br1 ,Br2/ and translates s into a big 

nonaete.r:mini.stic do-od-program Tnd (S) which makes the interleaving semantics Jil[ S] 

syntactically visible. 'lhen one can apply the transformations Tfair of /AO/ to 

Tnd (S) which use rand.an assignments to realize the assunption of fairness in the 
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context of do-cd-programs. 'lhe drawback of this solution is that the first trans

lation Tnd destroys the syntactic structure of programs s. 

Instead we are interested in transformations which preserve the parallel struture 

of programs . 

Definition 5. 1 A transfomtion T: L ( II ) -4 L ( II ,await,?) is called II -preserving 

if T satif ies 

T( s ;(s1 JI •.• II s l l = '.f1(s );( T1:1 (s1J !I ..• II Tn(s l ) o n o o n n 

where T1:1 is a sub-transfor:rnation working on the i -th car;x:ment of S. The notation 
1. 

implies that the only inforrration ~may use about the structure of S is the total 

number n of canponents in S and the index i of the currently transformed canponent. 

A transfonnation schEme 1r is II -preserving if every instance T of 1r is II -preserv

ing. 

Second attempt 

In /AO/ we shc:Med that in the context of Dijkstra's nondeterrninistic do-od-prograrrs 

fairness assumptions can be realized by just adding rand.an assignments z:=? and 

refining Boolean expressions in a certain "admissible" way. The question arises 

whether this is also possible for parallel programs S e L ( II ) • 

Definition 5. 2 A transfonnation T:L ( II ) ~ L ( II , ?) is admissible if it is 

II -preserving and if for every SE L ( II ) there is a set Z of new auxiliary variables 

z E Z used in T (S) for scheduling purposes in the follo,..ring two ways: 

(1) in additional assignments of the fonn z:=? and z:=t inside of S 

(2) in Boolean conjuncts c used to strengthen Boolean expressions b of loops 

while b do s1 od or conditionals if b then S:J else s2 fi in S. We require 

that this stregthening is done schematically, i.e. the conjunct c in 

independent of the actual fonn of b. 

Again a transfonnation schere -U- is admissible if every instance T of 1r is. 

Note that because T (S) manipulates additional variables Z the best we can hope 

to prove is that .Minlp [ S] agrees with .M[T(S)] ".rrodulo Z". 'lhis notion is 

defined as follows: for states er EL and sets Z ~ Var of variables let 

cr \ Z = cr t (Var\. Z) . 

'lhis notation is extended to sets M S E. u{..l..,A} pointwise: 

M\Z= {cr\zlcreM}v{J..ll.EM}v{A\..6.€ M} 

For state transfomers .M 1,M2: 'L 4 :P (L u { l. , ..6.}) we write 

JA 1 = JA 2 rood z 
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if .M. 1 ( cr) \ Z = JA 2 ( cr ) \ z holds for ever:y state CJ E Z:: 

Theorem 5.3 There is no admissilile transfonnation T:L( II )~ L( II , ?) such that for 

ever:y program S e L ( II ) 

M.irrp[S] = M[T(S)] m::x1 z 

holds where z is the set of auxiliary variables used in T (S) . 

The theorem states that it is more difficult to find transformations T realizing 

fairness (here irrpartiality) for parallel prcgrams than for nondetenninistic ones. 

The reason is that transfomations T:L( II )~L( II,?) would have to tenninate the 

presently executed canponent S. of a program SE L ( II ) in order to force a shift of 
J_ 

control to another canponent S . . But after terminating S . there is no possiliili ty J J_ 

of resuming S. later on. To achieve this effect we necessarily need an additional 
J_ 

language construct in T: the await-statement. 

Third attempt 

First we extend Definition 5. 2 of adrnissiliili ty to transfonnations 

T:L( II)~ L( II ,await,?) by allc:Ming in T(S) also 

(3) new await-statements await c then s1 end where s1 is a sequence of 

assignments of the fonn (J) of Definition 5.2. 

To conduct a finer analysis, we introduce further concepts: 

Definition 5.4 A transfomation T:L( II )~L( II ,await,?) is sequential (in every 

conponent) if it is admissilile, i.e. if it is of the fonn 

and if it preserves sequential canposition in every canponent, i.e. if for every 

i = 1, ... ,n 

holds. A transformation scheme lf is sequential if every instance T of 1f is. 

Sequentiality yields particularly ~ transformations. 

Definition 5.5 A transformation T:L( II)~ L( II ,await,?) is faithful if T dces not 

intrc:duce deadlocks, i.e. Ll.~JVI. [ T(S)] (er) holds for every SeL(ll) and crE2: 

A transfonnation scheme T is faithful if every instance T of T is. Otherwise T 
and T are called deadlocking. 

Transformations implementing schedulers should be faithful as schedulers should 

never run into any deadlocked configuration-The notion of a faithful transformation 

was first intrc:duoed for nandetenninistic do-ad-programs in /AO/ where it meant 
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absence of guard-failures. Unfortunately, we cannot find a sinple sequential trans

formation which is faithful: 

'Iheorern 5.6 There is no faithful, sequential transformation T:L( II)- L( II ,await,?) 

such that for every program SE L ( II ) 

.M. . [ S] = M [ T(S)] m:x1 Z 
1.Ilp -

holds where z is the set of auxiliary variables in T (S) . 

Faithful, but non-sequential transformations will be presented in Sec. 6. 

A Solution 

Ho.vever, we can find a deadlocking transfo:anation (scheme) 

Tilrp+.C. : L ( JI ) ~ .:P (L ( II ,await,?) l \ {0} 

which is sequential and realizes impartiality. Certainly, deadlocking transformations 

T are not suitable as inplernentations of fair schedulers, but - as first observed in 

/APS/ - may lead to sinplified correctness proofs of transforrred programs T (S) . This 

is why we are also interested in deadlocking transformations. 

For a given program S = S0 ; (SJ II .•• 11 Sn) in L( II) let Tirrp+LI. (S) be the set of 

all programs resulting fran s by 

( 1) prefixing S with an initialisation part 

(2) replacing in every loop while b do S' od of a carrponent Si sare atanic 

statement A in S' by 

TESTi (A) = await z ~ 1 then 

zi :=?; for j 'I' i do zj :=zj-1 od; 

A 

end 

(for i = 1, ... ,n) . 

Here we use neN variables z 1, ... ,zn not already present in Sand the follONing 

abbreviations: 

z ~ 1 

for j 4= i do z. :=z .-1 od = 
- J J -

z1:=z1-1; ... ;zi-1:=zi-1-1;zi+1:=zi+1-1; ... ;zn:=zn-1 

To see its impact, we apply Tilrp+.O. to the program 

s* = while b do x:=x+1 oo II b:=false 
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of sec. 4. Here there is exactly one program T E T:ilnp+-A (S), viz. 

T = z1:=?; z2:=?; 

( while b do await z1 ,z2 ~ 1 then 

od 

11 b:=false > 

z1:=?; z2:=z2-1; 

x:=x+1 

end 

T uses variables z1,z2 for sdleduling purposes. The variable z2 counts hew many 

times we may enter the while-loop of the first canponent of T without switching 

control to the second catp:)nent. ('Ihe variable z1 is introduced for analogous pur

poses but not relevant for this particular program T without a while-loop in its 

seccnd ccnp::inent.) Initially z2 is set to an art>itrary non-negative integer. Each 

t:im:! the while-loop is entered z2 is decremented by 1 • This ensures that this loop 

cannot be executed arbitrarily long without falsifying z1 ,z2 ~ 1. Note that as 

soon as the Boolean expression z1 ,z2 } 1 of the await-statement is false, it remains 

so even after executing the second ccmponent b:=false. Hence T can deadlock fran 

states cr with cr(b) = true. 

Thus Tinp+-LI. is a deadlock.iIB transfonnation which transfonns all diverging non

in:partial cacputations of S into deadlocking corrputations of T. Indeed T .i.Irp+ L::. 

realizes the asstmlption of ~ality in the sense of: 

Theorem 5. 7 For every L( ff )-program S and T € T:ilnp+-A (S) the equation 

M.:imp[S] = .M. _~[ T] .!!00 Z 

holds where Z is the set of auxiliary variables in T. 

6. Liveness 

Consider the L ( II )-program 

s"'"* =while b do x:=x+1 od II skip . 

Intuitively, s** should diverge for states er with cs (b) = true - independently 

whether the interleaving or a concurrent, i.e. "fair" serrentics is chosen. However, 

with our definition of :impartiality S ** always te:i:minates: .L ~ JA [ s * *] ( cr ) 
:imp 

for every state cr . 

Thus :inpartility is not adequate to capture the idea of fairness even for L( If ) • 
Therefore we introduce the refined concept of liveness which distinguishes between 

tenninated and running canponents of parallel programs. 
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Definition 6.1 A ccrrputation J: <s,cr) = <T1, o- 1)~ ... ~(Tj, <> j)~ ••• of a 

program S = S ; cs1 II ••• II S ) in L( II ,await) is live if "- is finite or the follcwing o n -- -- s 
holds for every i e. { 1, ... ,n}: either CCll\PO!lent s. has tenn.inated in sane (T.,cr .) 

1 J J 
or there are infinitely many j such that carrponent Si is active in step 

<Tj' cr j)-+<Tj+1' CS"j+1> . 

Thus in a live ccrrputation every non-terminated caq;x::inent will eventually be 

active and make progress. Analogously to M. we define a semantics .M.1 . which :unp ive 
captures this assumption of liveness: 

.M.live[s] (cr) {rl<s,cr>~*(Ell ... llE,r)} 
u 1.L I 3 infinite live ccrrputation of S starting in o- } 
u {Li I S can deadlock fran cr } 

Let us first establish an interesting relation between M . and .Mli . 
:urp ve 

Definition 6.2 A program S in L( II) is called~ if whenever 

(s,a}~* (T, II ••• 11 T , r> with T. = E holds for sane i E{1, ... ,n}then T1 II ••• n T . n 1 n 
cannot di verge fran Z" • 

Informally, s cannot diverge with one catp:)nent tenninated. This property is rot 

decidable but it is often easy to check whether a given program is strong. E.g. 

program s * of Sec. 4 is strong. 

Proposition 6.3 For strong programs S in L( II) the equation 

.M. live [ S ] = M. inl> [ S ] holds . 

As done for inl>artiality we are looking for structure preserving transformations 

which realize the assumption of liveness. Clearly, for strong L( II )-programs we can 

use Tinp+A due to Proposition 6.3. But in general things are rrore ccrrplicated: 

Theorem 6. 4 There is no sequential transforrration T: L ( II ) -? L ( n , await,?) such that 

for every S e L ( II ) 

.M.1· [S]I =.M. A [T(S)] .rrod z ive -.- -

holds where z is the set of auxiliary variables in T(S). 

The result is based on the fact that sequential transfmniations T cannot distin

guish whether a certain substaternent is the final statement in a CO!ilfOnent of a 

parallel program or whether it is followed by sane other staterrent. To acocrrplish 

this distinction we use in our transfonnations further auxiliary variables endi 

which record tennina.tion of the ccmponent programs. 

We present a faithful (but non-sequential) transfonna.tion sch.erre 

Tlive: L(IJ )--,> J'(L(ll ,await,?))\ {If)}. 
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For a given prcgram s = s0 ; (S1 II •.• II Sn) in L ( II l let Tlive (S) be the set of all 

programs resulting fran S by 

(1) prefixing S with an initialisation part 

INIT = z1:=?; ... ;zn:=?; ena.1:=false; .•. ;end:=false 

(2) replacing in every loop while b do S' od of a canpanent Si 

scm: atanic statem8nt A in s' by 

TESTi (A) = await tum = i V z ~ 1 then 

zi:=?; for j * i do 

if 1end. then z.:=z.-1 fi 

A 

end 

(for i = 1 , ... ,n) . 

(3) suffixing every canp:ment Si by 

END. = end. :=true 
1. 1. 

(for i = 1, ... ,n). 

J -- J J 

Again the zi's and endi's are new variables not already present in S. As additional 

abbreviation we use 

turn = min { j j zj = min f 2i< I enc\ = false }} 

Due to (3) all con:ponents of transforrred programs T E Tlive (S) have terminated when 

all variables endi are true. 'Ihus the expression turn is properly defined whenever 

a test TESTi (A) is executed in T. 

Theorem 6.5 For every program SE L (II ) and TE Tlive (S) the equation 

J.1 1. [s] = M[T] mod z ive -

holds where Z is the set of auxiliary variables zi and endi in T. 

The proof of Theorem 6.5 sho.vs that the transfonnation scheme Tlive not only 

rrodels the input-output behaviour of S but in fact provides a on~one correspondence 

between live computations of S and arbitrary corrputations of T E Tlive (S). Therefore 

we can view Tlive as an abstract specification of schedulers which guarantee liveness 

for parallel programs S. By Theorem 6. 5 every deterministic scheduler can be 

implemented by replacing the randan assignments z:=? in T E Tlive (S) by deterministic 

assignments and by refining the Boolean conjuncts "z ~ 1" in await-statements 

TEST i (A) . (See /Pa/ for the notion of implementation in the context of specifica-
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tions with unbounded nondeterminism. ) Moreover Theorem 6. 5 guarantees that all these 

irrplerrented schedulers are deadlock-free and therefore never require any rescuing or 

backtracking fran deadlocked configurations /Ho/. 

7. Weak Fairness 

In this section we extend our progranming language to L( 11 ,await). Though liveness 

is an adequate formalization of the concept of con=rency for the language L( 11 ) , it 

is not sufficient for L( l/ ,await). Consider the program 

s*** = while b do x:==x+1 od JI await ., b then skip end 

We 8}(j'.Ject canputations of s*** starting in a state <S with <:r(b) = true to diverge -

independently whether the interleaving or a concurrent semantics is chosen. But with 

the sirrple defintion of liveness s*** always tenninates: .L 4: Jvl live[ s**l'".ll (a') for 

every state er . 
In the presence of await's we have to refine the idea of liveness by replacing the 

notion of tennination by the notion of enabledness of components (cf. Sec.3). This 

leads to the following concept of weak fairness /AO,FP/ (called justice in /LPS/). 

Definition 7.1 A canputation ! : (S, cr) = (T1,o- 1)~ ... ~<Tj,a-j)-4 ... of an 

L( II ,await)-prograrn S = S0 ; (S1 II ••• II Sn) is weakly fair if ! is finite or the 

follaving holds for every i E { 1, ..• ,n} : if for all but finitely rrany j the can

ponent S. is enabled in <T., <:> .) , then there are infinitely many j such that can-
1 J J 

ponent Si is active in step <Tj, cr j>~<Tj+l '<5 j+l) . 

Thus in a weakly fair cauputation every component which is fran sane rrarent on 

continuously enabled will eventually make progress. This definition induces a semantics 

M.wfair analogously to Mlive· 

Remark 7 .2 M.wf . [ s] =.Ml. [ s] holds for all programs s EL( II ) • 
aJ.r 1ve 

As for irrpartiali ty and liveness we wish to develop transfonnations which realize 

the assumption of weak fairness. (Note that the previous definitions of ll -preserving, 

admissible, sequential, faithful and deadlocking have straightforward extensions to 

transformations T: L( II ,await)~ L( II ,await,?).) These transfonnations are again more 

sophisticated than the previous ones because we have to check enabledness of canpo

nents in front of every atanic statement inside of while-loops. 

We refine the transfonnation scheme Tlive of Sec.6 to an admissible, faithful 

scheme Twfair" (Clearly Twfair cannot be sequential by Theorem 6.4 and Fernark 7.2.) 

Given a program S = S0 ; (S1 II •.• II Sn) in L( II ,await) this scheme Twfair will use sets 

of neN variables, viz. zi, endi, pci for i = 1, ... ,n. The zi 's and endi' s are used 

as in Tlive" The pci's are a restricted fo:rm of program counters which indicate whe• 

the ccmponent Si is in front of an await-statement and if so in front of which one 
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To this end, we assign to evecy occurrence of an await-statement in Si a unique num

ber 1 j- 1 as label. Let L. denote the set of all these labels for S . and b1 denote 
i i 

the Boolean expression of the await-staterrent labelled by 1. Further on we introduce 

for S. the abbreviation 
i 

enabled. = 1 end4 A /\ (pc. = 1-+ b1) . 
i • 1 EL. i 

i 

By the foll0;1ing construction of Twfair' enabledi will be true iff the CCllTTfOnent Si 

of S is indeed enabled. 

'.Ihe transfonnation schems 

Twfair: L( II ,await) ~ 1' (L (II ,await,?)) \. { \)J l 

rra.ps a given program S = S0 ; (s1 II ••• II Sn) in L( II ) into the set Twfair (S) of all 

programs resulting fran S by 

(1) prefixing S with 

lNIT = for i = 1, •.• ,n do zi :=?; endi :=false; pci :=O od 

(2) replacing every substaterrent await b 1 then S' end 

with 1 E Li in Si by 

where k $Li holds, e.g. k = o (for i = 1, ..• ,n). 

(3) transforming in the so prepared program every lcop while b do S' od 

in a canponent Si as follaivs: 

(i) replace ~ ata:nic statenent A in s' by 

TESTi (A} = await turn = i v. z ~ 1 then 

zi :=?; for j :f i do 

A 

end 

if enabled. then z.:=z.-1 
J -- J J 

else z. :=? fi 
-- J 

(ii) replace every other atanic statement B in S' not affected under (i) by 

RFSEI' i (B) = awa.i t true then 

for j 'f i do if -, enabled. then z . :=? fi od; 
J -- J --

B 

end 
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can:rent: If A or B are already await-statements, we "amalgamate" their Boolean 

expressions with turn = i A z.). 1 or true to avoid nested await's. The expression 

turn is here defined as follcws: 

turn= min f j I zj = min { ~ I enable<\_ = true}}. 

(4) suffixing every corrponent Si by 

END. = end. =true 
l. l. 

Insiae :RESEI'. (B) and TEST. (A) each of the variables z . associated with s . is reset 
l. l. J J 

as soon as S. gets disabled. Thus z. is continuously decrem=nted by z. :=z .-1 insicJe 
J J J J 

TEST. (A) only if S. is continuously enabled. This fonnalizes the idea of weak fair-
1. J 

ness where only those curp::inents which are continuously enabled are guaranteed to 

progress eventually. 

Theorem 7.3 Far every program SE L( JI ,await) and T € Twfair(S) the equation 

M. wfair[s] = M.[ T] nod z 

holds where z is the set of auxiliary variables zi, endi and pci in T. 

8. Strong Fairness 

Weak fairness guarantees progress of those canponents which are continuously enablee 

A rrore ambitious version of fairness is strong fairness /KJ,FP/ (called fairness in 

/Ll?S/) where progress is already guaranteed if the canponent is infinitefy often 

enabled. 

Definition 8.1 A carputation § : (S,a) = <T1, er 1)-+ ... --+(Tj, <l" j)-+ ... of an 

L( 11,await)-program S = S0 ; (s3 II ••• 11 Sn) is strongly fair if g is finite ar the 

following holds for every i E { 1, •.. ,n} : if for infinitely many j the canponent Si 

is enabled in <T., cr .) , then there are infinitely many j such that canponent S. is 
J J l. 

active in the step < Tj, cr j)--+<'.Tj+l '0" j+l) · 

Analogously to .M.wfair we define .M.sfair" We refine the previous transfonnation 

scheme Twfair to a scherre 

T f . : L( II ,await)__, P(L( II ,await,?))" {\Zl} s air -- --

for strong fairness. Far a given program S = S ; cs1 II ••• II S ) in L( II ,await) let 
o n --

Tsfair(S) result fran S by applying the steps (1), (2) and (4) as in Twfair but 

with the following new step (3): 

(3) replace in the so prepared program ~ atcmic statement A occurring 

in a while-loop of Si by 
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TESTi (A) = await turn = i V z ~ 1 then 

zi:=?; for j 4' i do 

if enabled. then z.:=z.-1 fi 
- J -- J J 

A 

end 

As with T . we have to test the enabledness of the canponents S . of S in front of 
wfair J 

every atanic statement. But in contrast to Twfair the transformed programs 

T e T . (S) do not reset the variables z. for carp:inent S. when S. gets disabled. 
sfair J J J 

Instead we have to decrerrent zj (and be prepared for switching to component Sj) 

whenever sj is enabled. 'Ihis change ensures that those sj vmich are infinitely often 

enabled make eventually progress. These observations are formalized in: 

Theorem 8.2 For every program SE L( II ,await} and TE Tsfair(S) the equation 

.M.sfair[ s] = .M.[T] nod z 

holds where Z is the set of auxiliary variables zi, endi and pci in T. 

9. Conclusion 

We presented here a series of structure preserving transformations which reduce dif

ferent notions of a concurrent or fair semantics for parallel programs to a simple 

interleaving semantics. These transformations can be viewed as abstract specifications 

of schedulers guaranteeing only fair computations. 

But they also provide a basis for syntax-directed correctness proofs for parallel 

programs under fairness assumptions. We outline this idea with help of a simple 

example. Consider the L ( II ) -program 

S = vmile x> O do skip; x:=x-J od II while x> O do skip od • 

Under the interleaving semantics ..M. this program can diverge but under the semantics 

.M,live m:idelling t.he assumption of liveness S always tenninates. We write this fact as 

I= live {true} S {true} 

in the sense of total correctness modulo liveness. 

First observe that S is a strong L( II )-program. Thus to prove (1) it suffices to 

apply the transfonnation scheme Tinpl- 6 modelling llnpartiality and prove for sane 

prcgrarn T E Timp+A (S) 

(2) ~-Li. {true} T {true} 
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where I= -A refers to the interleaving semantics .M. -A ignoring deadlocks. The 

equivalence of (1) and (2) folla-;rs fran Theorem 5. 7 and Proposition 6.3. 

To prove (2) we will use a sin;ile extension of the proof system /OG/ which ignores 

deadlocks but deals with termination in the presence of randan assigmrents z:=? , 

i.e. the extension deals with "total correctness m::x:'lulo deadlocks". As in /ex:;/ the 

extended proof system proceeds in two steps: first it proves correctness of the 

carponents of a parallel program T and then it uses a proof rule for parallel caapo

si tion to prove co=ectness of the whole program T. 

Note that in our particular example S there are two transfonned programs 

T E T.ilrp+A (S) for which we could prove co=ectness in the sense of (2) with the 

extended proof system of /OG/ - one, say T1, is obtained by applying the eJq:)a!lSion 

TEsr1 (A) of Tirlp+A (S) to the atanic statement A = skip in the first Ca!lX>nent of S, 

another one, say T2, by applying TEST1 (A) to A = x:=:ic-1. It turns out that for T2 
claim (2) is considerably sin;iler to prove correct in the extended proof system 

than for T 1 . This observation explains the advantage of having nondetelllli.nistic 

transfonnation schemes like T:i.rrp+A to our disposal: they can be applied flexible 

according to the needs of particular exanples like S. 

Finally, we stress the fact that for proving (1) about S we sin;ily need to prove 

total co=ectness m:idulo deadlocks for T2 E T:i.rrp+A (S) in (2). This connection ex

plains why in correctness proofs deadlocking transfo:onation schenes like T:irc\P+ A 

are often desirable. For describing schedulers we are of course advised to use 

faithful transfonnation schemes only. 
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